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I ntroduction

INTRODUCTION

An exceptional position in physics and astrophysiiss taken by
neutron stars. On the one hand, they have mattereurxtreme physical
conditions, so their theories are constructed oskyi extrapolations of
what we now consider as reliable physical theortdsthe structure of
matter which are experienced in the laboratory. the other hand, the
unigue opportunity their observations offer to teshese theories.
Moreover, neutron stars are importampressive personae on the stage of
modern astrophysics; they participate in many asomical phenomena.

Neutron stars have the matter of density variesnfreomegcm™3 in
the surface, where the pressure is small, to md@nt10®> gcm™3 at the

center, where the pressure excetif$ dyn cm™2.

Many branches of physics are used in thermodynanaiecd kinetics
studies of neutron star matter owing to the enormowanges of

temperatures and densities in neutron stars interio

The kinetic theory (or kinetics) deals with transpecoefficients, the
thermal and electrical conductivitiex (ands) as well as the shear and
bulk viscosities § and () are most useful ones. Many physicists had
studied kinetic theory of the matter inside the trem stars crust , The
electrons are the major contributors to the conduties k and o and the
viscosityn , Coulomb scattering by ions in the liquid casescattering by
phonons, which quantify vibrations of ions in solsdate matter are the
main scattering mechanism for the electrons. At ficuént low
temperatures the electron-ion scattering is strgnglppressed and in this
case the electron scattering by charged impuritvelsich are a small
fraction of ions have different charges from chasgof most abundant

ions and the scattering of electron by electron banmore significant.

Kinetic properties of the electrons in the shefla@utron stars



I ntroduction

We performs the first chapter to play a prepargtoole for the
future and provides a summary of key information tihre envelopes of
neutron stars, which we guided in the performan€avork “specially the
crusts”, as well as a brief overview of previousigites on this subject.

In the second chapter we examined the equilibriumoperties of the
plasma in the shells of neutron stars, excluding #ifect of the magnetic
field, but taking into account the no ideal Coulonpbasma. The main
attention is paid to the Coulomb interaction in tbeter shells of neutron
stars. And because the physical conditions in tluéeo shells of neutron
stars are similar to conditions in the interior white dwarfs and in the

cores of red giants, the results are useful alsoth@se objects.

The third chapter is devoted to the calculation ahermal
conductivity, electrical conductivity and thermoeteic coefficient of a
fully ionized plasma physical conditions encounteri@ the ocean and the
crust of neutron stars without a strong magnetieldi introducing what

we so called “The loffe model”.

The fourth and fifth chapters are central to thiork. They are
dedicated to those effects, and we include othdeadt and study others

situations:

» In the fourth chapter, the effect of the nuclearmofactor on the
electrical and thermal conductivities and we studgo the multi

components plasma systems.

> In the fifth chapter, based on chapters 2-4 we gttite influence
of a strong magnetic field on the properties ofntsport in the shells of
neutron stars, and also the case of thermal effeletsthermore we apply

the loffe model to compute the shear viscosity.

Kinetic properties of the electrons in the shefla@utron stars



Chapter I: Neutron star an overview

Chapter |

Neutron stars, an overview

[.1. Introduction

Stellar evolution is the process by which a staperiences a succession
of drastic transformations for the period of itdeliime. Depending on the
mass of the star, this lifetime varies from onlyfeaw million years (case of
the most massive stars) to trillions of years (fitve least massive ones |,

which is much more than the age of the universe).

As most changes take place in stars happen too Igldew be directly
perceived , so we can not study stellar evolutiondbserving the life of a
star, , even if the observation are made over salveenturies. Instead, to
realize how stars evolve we must observe severatssat the diverse stages

in their life, and also by using simulation and dedsof stellar structure.

A supernova is a kind of stellar explosion in whichore energy is
exploded than a nova. Supernovae are very luminand cause a burst of
radiation that often briefly outshines an entirelaga/, before deappearing
from view over a several of weeks. Supernova iseatd radiate as much
energy as the Sun is expected to emit over its whlofle during this small
interval of time. The explosion expels much of ars$ matter at a very high
velocity of up to 30,000 km/s, causing a shock wave into the neighboring
interstellar medium. This shock wave brushs up apamding shell of dust

and gas what we so called a supernova remnant.

It exist a several types of supernovae. Types | dndan be caused in
one of two ways, both turning off or suddenly tumgion the production of
energy through the nuclear fusion. After the corfeam aging massive star
ceases generating energy from nuclear fusion, ity nexperience sudden

Kinetic properties of the electrons in the sheflaeutron stars 8



Chapter I: Neutron star an overview

gravitational collapse into a neutron star or bladkole, releasing

gravitational energy that warms and ejects the olagers of the star.

A neutron star is a type of remnant that can reswdim the gravitational
collapse of a massive star during a Type Il, Tyfpeolr Type Ic supernova
event. Such stars are have a great portion of noeawst Neutron stars are
very hot and the Pauli exclusion principle suppotteem against further

collapse because.

The typical typical masses of neutron staMs~ 1.4My and their typical
radii R ~10km. hence, their masses are close to the solar mdgs=
1.989 x 1033 g, however their radii are~ 10> times smaller than the solar
radius Ry = 6.96 X 10° km, thus typical masses, thus Neutron stars are
compact stars which have matter of super nuclearsdg in their interiors

with a huge portion of free neutrons.

as a result, neutron stars hold an huge gravitaioanergy E,,, and

surface gravityg:

M 53 2
Egm"NTNS x 10°°erg~0.2Mc (1.1a).
GM 5 10*cm 1 1b
9~ e (1.1b).

Wherec is the speed of light an@is the gravitational constant.

obviously, neutron stars are extremely dense. Tlammass density is :

3M
" (4R3)

~x 10 gem=3~(2 — 3)p, (1.2).

Where p, = 2.8 X 10 gem™ is what we so called the normal nuclear
density. The central density of neutron stars igdar, attaining(10 —
20p0. By the way, neutron stars are the most compaetrsstthat we

recognized in the Universe.

Kinetic properties of the electrons in the sheflaeutron stars 9
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1.2. History of neutron star physics

Prediction:

» L.D.Landau (1931) —expectation[L.D.Landau, “On the theory of
stars,” Physikalische Zs. Sowjetunioh (1932) 285]: for stars with
M > 1.5My “density of matter becomes so great that atomiaclau

come in close contact, fomingne gigantic nucleus.

» J.Chadwick -the neutron’s discovery [Nature, Feb.27, 1932].

» The supposition of the existence of neutron stars by W.Baade &
F.Zwicky (1933) [“Supernovae and cosmic raysPhys. Reyv 45
(1934) 138; “On super-novaeProc. Nat. Acad. Sci20 (1934) 254].
“...supernovae represent the transitions from ordynstars toneutron
stars, which in their final stages consist of extremallpsely packed
neutrons”; “...possess a very small radius and anreamely high
density.”.

» Crab nebula —This is in reality a remnant of the supernova, lexd
on July 4, 1054.

K.Lundmark invented the connection between the raband the
archival Chinese“Guest star” in 1921.and it was confirmed as the
supernova type | remnant in 1942 (Dyuvendak; May&llOort; Baade;
Minkowski).

In 1968, theCrab pulsar has been discovered in the vicinity of the

center of the nebula (in radio and X-rays).

Kinetic properties of the electrons in the sheflaeutron stars 10
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Theory before the discovery:

» T.E.Sterne (1933) — proposed the first model of @S (equation of
state) of the nuclear matter; he predict tlmeutronization with

increasing density.

» F.Zwicky [“On collapsed neutron starsAstrophys. J88(1938) 522].

v" Made an estimation of the maximulminding energyof a neutron star;
v illustrate the difference between the Baryorig and gravitationalV
masses;

v show the huge gravitational red shifts

» R.C.Tolman; J.R.Oppenheimer and G.M.VolkofHys. Rey, 3.01. —
15.02.1939) they :

v. Computed the “TOV equation”( thehydrostatic equilibrium of a
spherically symmetric star).

0.&V.: founded themaximum mas®f a neutron star using the non-

interacting neutrons model as:

Moy = 0.71 My < Mo (WD) = 1.44 M),

» EOS for dense matter.

v J.A.Wheeler, B.K.Harrisonet al. (19505s).
v A.G.W.Cameron (1959) — nuclear forceM,{,, ~ 2 My); hyperons.
v" Ya.B.Zeldovich (1961) — maximally stiff EOS model.

> Superfluidity.

v' BCS: J.Bardeen, L.N.Cooper, & J.R.Schrieffer (1957)

Kinetic properties of the electrons in the sheflaeutron stars 11
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v A.Bohr, B.R.Mottelson, and D.Pines, “Possible armmlbetween the
excitation spectra of nuclei and those of superamtthg metal state,”
[Phys. Rev110(1958) 936].

v A.B.Migdal (1959), V.L.Ginzburg and D.A.Kirzhnitsl@64):

(Tc ~10° K, p ~ 1013 - 1015 -2

m3

g
c

> Neutrino emission.

v" H.-Y.Chiu and E.E.Salpeter (1964); J.N.Bahcall &ARWolf (1965).

» Cooling.

v R.Stabler (1960, PhD); Chiu (1964); Chiu & Salpe(&@p64);
v" D.C.Morton (1964), Bahcall & Wolf; S.Tsuruta & A.@.Cameron
(1966).

Search and discovery:

> Search in X-rays. T ~10°K —» X-rays — space observations.

v R.Giacconi et al. (1962): discovery of S&- 1 (Nobel Prize of 2002

to Giacconi for outstanding contribution to X-ragtaonomy).

v 1.S.Shklovsky (1967): ScoX—1 *“a neutron star in a state of

accretion” (correctput unnoticed).

> Plerion pulsar nebulae.

Kinetic properties of the electrons in the sheflaeutron stars 12
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v' S.Bowyer et al. (1964): discovred an X-ray sournoethhe Crab nebula

~ 10 km (- not a neutron star).
v' N.S.Kardashev (1964), F.Pacini (1967): constructmedels of a

nebula around a rapidly rotating strongly magnedizeeutron star.

Pacini —pulsar model.

» Radio observations.

v' 1962, 1965 (A.Hewish) —the discovery of a pulsarthe Crab nebula,
but unexplained and unnoticed

> 6.08 — 28.11.1967

v Jocelyn Bell, Anthony Hewish — discovery of pulsdidobel prize of
1974 to Hewish).

v in 1969 it become clear that pulsars are rapidltatong neutron stars

with strong magnetic fields (Thomas Gold, 1968).

Kinetic properties of the electrons in the sheflaeutron stars 13
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Neutron stars from a hypothesis turned into reality

Figuel.z  Jocelyn Bell and the telescope in Cambridge, Ergjlarsed tc
discover pulsars in 19¢68. Image Credit: Jocelyn Bell Burnell.

1.3.  Basic parameters of neutron sta

For neutron stars, unlike all others, play impoittaonle effects oi
general relativity (GR). Therefore, the model ofuten stars should b
calculated only in the framework of general relatiw The structure o
the nonrotating star is determined byhe relativistic equation o
hydrostatic equilibrium- the equation of the Tolma- Oppenheimer -
Volkov (TOV). It gives a very good approximationrf@gpinning neutror
stars, except those with millisecond rotation peso The smalles
possible rotation pdod is 0.7 ms, but the smallest of the observed to d
period is 1.396 ms [Hes 06], which corresponds to a "regime of sl
rotation, in which the effects of rotation can becaunted for by
perturbation theory (see, for example., [Hae 200€6h. 6). Amendment
by the magnetic field is negligibly small for lar-scale structure of
neutron stars, except for fields in tk~10'° G, which has not yet bee
observed. Effects caused by the w-known today, the magnetic fielc
B~ 10 G, may be important in the envelops . Solution of thquation

TOV for a given equation of state of itter of the neutron star gives

Kinetic properties of the electrons in the shefla@utron stai 14
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family of models of the star, a parameter whichthe density ofp. in the
center of the star. Stability condition, requirintpat M (p.) was an
increasing function is performed within a certaimnge of stellar masses
and radii, depending on the equation of state tlgedhe greatest mass
Mpnax €an range froml,4to2,5My and the smallest Mpy;, ~0,1 My (for
example [Hae 2006]). For each star, the signifiomrof the effects of
general relativity is determined by the compacte@arametex, = ry/
R, where:

_26M _ 2.95M
9 C2 - M;:g

r (1.3).

- The Schwarzschild radius or gravitational radiuscceleration due to

gravity at the stellar surface is defined by :

i
10'*(1 - x,) 2 (m) Rg%cm

1
g=GMR?*(1-x,) 2~1.328x =

(1.4).

Where R = R/ (10° km). The frequency of the photons at the surface
in a locally inertial reference system (we denoléstfrequencyw,) away
from the star undergoes a gravitational redshift &o value w, in

accordance with the formula:

1/2

zg=—2-1=(1-x,) " -1 (1.5).

o]

Along with a radiusR, determined by the length of the equatrR in
a locally inertial reference system, often introdug the "apparent
radius"” for a distant observer:

R.=R(1 + z,) (1.6).
Models of the neutron star is traditionally considé a star with

M = 1.4My andR = 10km (R, = 13km,g= 2.425 x 10'* cm™2). Note that

currently the most detailed model equations of staits considered the

Kinetic properties of the electrons in the sheflaeutron stars 15
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best, predicting a slightly lower compactness= 12km for M = 1.4 My
(see, for example. [Hae 06], Ch. 6).

1.4. Structure of neutron star envelopes

The atmosphere

Is a thin layer of plasma which establishs the d¢pem of thermal
electromagnetic radiation of the star. By the walyis radiation tell us
about important information on many stellar paraerst(eg temperature,
chemical composition of the surface and gravitatibmacceleration, on
magnetic field, etc.,) and, as a consequence, anitlternal structure.
The geometrical depth of the atmosphere changesnfreome ten
centimeters in a hot neutron star down to some imiters in a cold
one. Very cold neutron stars may have no atmosplegrall but a solid

surface.

Many physisicts make theoretical studies to the tnem star’s
atmospheres ( e.g., Pavlov et al [Pav 95]; Pavlad &avlin [Pav 98]).
The creation of the atmosphere models, in particdida the cold neutron

stars (in which the surface temperatufe < 10°K) in the presence of

strong magnetic field40!!- 10 G, is far from being complete due to the
complication of the calculations of the equatioh state and spectral

opacity of the plasma atmospher.

Ocean

The bottom of the ocean of the neutron star is &tieéd at the melting
point with the mass density,,, and its outer frontier is quite arbitrary,
since in a wusual neutron star ocean goes into thenoaphere

continuously, without the interface. The exclusiacag in the case of the

Kinetic properties of the electrons in the sheflaeutron stars 16
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solid crust, are neutron stars with sufficientlyraatg magnetic field,
which can guide to the absence of an optically khadmosphere and its
replacement of the liquid frontier. In most parté the ocean substance
consists of "naked" nuclei surrounded by degeneraliectrons. In the
surface layers of the ocean, however, a nucleudh witsufficiently large

charge can polarise the electrons (this happens nwhe<k p,5q =

227Z% A). Therefore, in general, one speak of ions surchach by

electrons, implying ions, both fully and partialignize atoms.

The substance of the ocean represents a Coulombidigln large
parts of the ocean Coulomb liquid is strongly coegl that is the
characteristic potential energy of the Coulomb mat&ion of nuclei
greater than their kinetic energy. As a result, aeghe most significant
problems in the theoretical investigation of thisatter is adequately
account for the influence of microscopic correlatsoin the positions of

the ions studied the macroscopic physical propesroé matter.

Outer crust

The outer crust of neutron stars have a thicknessewveral hundred
meters and consist of electron-ion plasma, and atmeverywhere
(except, perhaps, the outer layer thickness of salveneters, where the
density does not exceetl0® g cm™3), the ionization is complete, that is,
the ions are atomic nuclei and free electrons arergyly degenerate. In
this case, the total pressure is determined maibyy the pressure of
degenerate electrons. At= 10° g cm™3 electrons become relativistic (ie,
their Fermi momentunpr is comparable tan.,c) and at p >» 10° g cm™3-
ultrarelativistic @z > m.c). At such densities, the ions form a tightly-
coupled Coulomb liquid (ie liquid, whose propertiase governed mainly
by the Coulomb interaction between ions) or Couloaristals.

Kinetic properties of the electrons in the sheflaeutron stars 17
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In the deep layers of the outer shells of the aelectFermi energy
increases so that the cores are enriched by nestdue to beta-grabs,

and finally, atp = p4ip ,» Where free neutrons appear, the border between

the outer and inner crust of neutron stars.

The inner crust (the inner envelope)

The inner crust can be about one kilometer to saléilometers
thick. The densityp in the inner crust varies fromopg., = 4.3 X
10 g cm™3 at the upper boundary in which neutrons start tgp drom
nuclei producing a free—neutron gas+d,5 p, at the base. Herg, is the
saturation nuclear matter density the matter of imeer crust consists of
electrons, free neutrons, and neutron-rich atomuclai The fraction of
free neutrons increases with growing The neutronization ap = pgrip
greatly softens the EOS, but at the crust bottom thpulsive short-range
component of the neutron-neutron interaction comeso play and

introduces a considerable stiffness.

The pressure in the inner crust of a neutron skarcieated mainly
degenerate neutrons. At the same time, superflyidttan lead to
suppression of heat, and as a result - to the fhat the contribution of
atomic nuclei in the heat capacity of the inner sirlbecomes crucial.
Nucleus form a crystal lattice, supported mainly khe Coulomb
interaction - the Coulomb (or Wigner) crystal. Teésre, an adequate
description of their contribution can be obtainey tonsidering the gas
collective vibrational excitations of phonons. Elexns, being a
relativistic and highly degenerate, do not giveignsficant contribution
to the heat inside the crust is not too low temperas. However, their
contribution can be decisive when the temperaturréhe Coulomb crystal
falls far below the Debye temperature, which leads"freezing out" of

the phonon excitations.

Kinetic properties of the electrons in the sheflaeutron stars 18
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Electrical conductivity principally is supplied byglectrons in the
inner crust of a neutron star. In this case, iteissentially due to the
scattering of electrons by phonons of ionic cryd&tice, the dominant at
relatively high temperatures, and their scatterimg lattice defects and
impurities, giving a residual resistance at low peEmnatures. lons (atomic
nuclei) do not provide a tangible contribution tlket conductivity, being
mounted in the Coulomb crystal lattice. At the sahme as the thermal
conductivity is provided by electrons (the main geaing mechanisms are
the same as that for electrical conductivity, bataddition thereto may be
significant and electron-electron collision), andgmons and neutrons. In
the presence of lattice defects and impurities timaypede electronic heat
transfer, phonons can be major agents of heat feangChu 07].
Significant heat carriers in the inner crust anditrens can be, especially
the superfluid [Agu 09].

Mantle

The mantle situate between the bottom of the owteist and the core

of a neutron star may be a layer, in the densitgge from z%po to =

%po called in [Pet 98], mantle, where the equilibritabomic nuclei take

exotic forms. Mantle, if it exists, consists of s¥al layers containing
such phases of matter, in which atomic nuclei beeomssentially
nonspherical Whereas the spherical nucleus form a three-dimeamasli

crystal lattice, the phases of matter containingpasta” phases such as
slabs or cylinders, have similar properties to lidjerystals.

The presence of the mantle is predicted not all eveadequations of
state of nuclear matter: for some models of suclstate of matter is
energetically unfavorable. As shown in [Gus 04], tile mantle may be
allowed direct Urca process of neutrino emissiompossible in the other

shells of neutron stars and have a high intensityerefore, the presence

Kinetic properties of the electrons in the sheflaeutron stars 19
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of the mantle can accelerate the cooling of neutsbtars and thus appear

in the observations.

The outer core

The outer core of a neutron star typically has a&khess of several
kilometers and the density of matter in the ram@®, < p < 2p,y. Its
matter consists of neutrons with several per cetihixture of protonsp,
electrons, and possibly muons (the so callednpey composition). The
conditions of electric neutrality and beta equilidmn establish the state
of his matter, by using a microscopic model of mamdy nucleon
interaction. The beta equilibrium implies the edhrium with respect to
the beta (muon) decay of neutrons and inverse pgsese. Allnpeu-plasma
components are strongly degenerate. An ideal Fegmses is made by
electrons and muons. The neutrons and protons acteby strong nuclear
forces, which make a strongly interacting Fernguid and it may be in

superfluid state.

The inner core

It can be more than a few kilometers in radius awhtain a central
density as high05p, S p S 2p,. We don’'t know a lot about the
composition and neither the equation of state of thner core. Only we
have several hypotheses thet have been talked aimothe literature and

it is impossible to refuse any of them at present:

(1) Large proton portion X 11%) and/or hyperonization of matter -

the emergence of various hyperons like and A and other hyperons.

(2) The second hypothesis supposes the appearantepion

condensation.
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(3) The third hypothesis tell us about a phasensrdon to the strange
quark matter composed of almost freed ands quarks with small portion

of electrons .

(4) This hypothesis considers the emerges of kammdensation.
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I.5.  Magnetic field and its evolution

Most known neutron stars today have magnetic fietdd&ginable in the

laboratory, with typical values on the surface fihe ~10% —10°G for
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millisecond pulsars, B~ 10° — 103G for the "ordinary" radio pulsars
~ 10 G for the anomalous X-ray pulsars (AXP) and, accagdito the most
widely accepted models of m today, #10** — 10> G for the source of soft
gamma repeaters (SGR). The field strength inside #tar may be even
higher. So, to explain the energy and AXP and S@Roived magnetic fields
that reach the core of a neutron star at its biiththe values of~ 101 —

107 G. The theoretical limit, obtained numerically, B, ~ 10 — 10%° G,

which agrees with the estimate based on the vithredorem . What creates
these fields are still not reliably known. Magniadf the magnetic field of
a neutron star in~ 10?2 G was predicted W. L. Ginsburg it964 (even before
the discovery of pulsars), based on the assumptodnconservation of
magnetic flux of the supernova progenitor star dgriits collapse.
Subsequently proposed various theoretical modeldielfld generation with
differential rotation, convection, magneto-rotatedn instability and

thermomagnetic effects either in the explosion amdlapse of a supernova,
or in young neutron stars . In particul&g¢cording to the P- dynamo model,
the core of a neutron star, born with a fairly shdmillisecond) rotation
period, acquires through its differential rotatiaf the toroidal magnetic
field to B~ 10'® gauss, and for the initial rotation period ~30 ms pulsar

magnetic field is created by convection. Howeverncle of the proposed
models is facing some difficulties when comparedhvthe totality of data

on neutron stars.

During the evolution of the neutron star, its magnefield changes.
These changes depend on many parameters and repdtgsical processes.
Occurs ohmic decay of the field, changing its cgufiation as a result of the

Hall drift, possible reconnection of magnetic fieliles atquark star.

Thermoelectric effects, as well as the significa¢pendence of the
components of thermal conductivity, electrical caotivity and
thermoelectric coefficients of the plasma temperatiand magnetic field
leads to the interdependence of the magnetic andrmlal evolution.

Accretion can also strongly influence the magndiedd near the surface.
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If the magnetic field has its source Abrikosov vigds in the core of a
neutron star, its evolution is largely determineg their interaction with
other components of the nucleus, in particular thwihe Feynman-Onsager
vortices in a neutron superfluid, as well as conahs on core boundary, ie,

the interaction of these vortices with the substawn¢ the envelope.
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Chapter ||
General properties of neutron star’s

Coulomb plasma

II.L1. The method of minimizing the free energy

When we consider the equilibrium properties of gtea in the
envelopes of neutron stars in this work, we rely an method of
minimizing the Helmholtz free energy, the introdioat of the model
calculations, the equations of state of the plasmgHar 60].Here and
henceforth one mean by an equation of state sigaifce of the term in a
broad sense, ie not only the dependence of pressuaréhe density of
matter, but also the values of other thermodynaiuections which are
needed for modeling stellar structure and evolutiddnlike some other
approaches, the method of minimizing the free emgyemnsures the
consistency of calculations of various thermodynanfunctions - in
particular, the implementation of the Maxwell rekais. The method
consists in constructing the free energyV,T,{N;}), where{N;} - a set of
numbers of different particles that make up thespha in the volumée/,
and finding the minimum ofF for fixed V, taking into account the
stoichiometric relationships: for example, if thgssem can proceed the
reaction typed < B + C, then the equilibrium must be satisfied the

relation:

dF _ OF N dF )1
N, 0Np 0N, (2.1).

As is well known [LL5], if the free energy is gimeas a function of

V and T, then all other thermodynamic functions can be aobéd by
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differentiating it. The pressurg, internal energyy and the entropy are

given by the first derivatives:

P:_<6_F> U= i%) ,5:_<6_F> 2.2).
V/rn;) 6(%) . OT/y(n;}

Functions of the second order are obtained by dé&heiating the
functions (2.2). In particular, astrophysical simtibns play an
important role logarithmic derivative of pressuren odensity and

temperature

B (6 In P) B (6 In P) (2.3)
X1 =\8mnt/),’%» = \Gmv/, o)

Specific heat at fixed volume and fixed pressure:

C_(&S) C_(&S) 2.4)
Y7 \dInT/,” P \@InT/p e
As well as the adiabatic temperature gradient:
dlogT
Vaa = (6 logP)S (2.5).

In principle, all thermodynamic functions of the coad order can be

obtained fromyr, x,and C, on the basis of Maxwell's relations. In

particular:

PV xi Xr
Cp=Cy+—0"", Vaa =
Xp X7+ X, CyT/(PV)

(2.6).

The fundamental difficulty is that in many importanases F is not
known explicitly, but it requires either the findjnof constructing
approximate models or complex numerical calculasiomhe technical
and astrophysical applications, especially where meed to know the
equation of state in a wide range of plasma paramsetis practically

impossible to carry out such numerical calculatioresquired in each
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point. In this chapter one developed approximatahods for calculating
free energy and, through them, all the necessargrmtodynamic
functions of plasma, the most consistent with therent state of theory
and, in particular, with the available literaturesults of numerical
simulation from first principles. In the next sech we introduce the
basic parameters of plasma, and continue to coesitf examine its
thermodynamic functions in various approximationge avalid for
different ratios between these parameters that amening in various

envelopes of neutron stars.

11.2. Parameters of the plasma

11.2.1. General settings

Let n. - electron number density, ang - ion number density sorts
)]

j = 1,2,.. with chargesZ;e and massesn;,;, = Ajm, wherem, = 1.6605 x
1072* g - atomic mass unit,e - elementary charge. The index
enumerates how different chemical elements presenthe mixture and
ions of different ionization stages of one and tb@&me element. Total
number density of atomic nuclei (ions) is equal theny, =;n;.

Electroneutrality requires:
ne = (Z>nion (27)

Here and below angular brackets without subscrifit9 Denote an

average over the ion specigs

1
) =—> nf; (2.8).

Njon &
J

When examined only one species of ions, we shalltdmackets and
either omit the inde), or replace it on the index «ion» oi»x denoting
the ions.

Total concentration of baryons in the envelopesnefitron starsp,

is approximately equal td'n;,, whered’ = (4) + A” and A”- the number
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of free neutrons attributable to a single atomiclews: A'"n;,, = n,(1 —
w) wheren, - the local number density of free neutrons (olsby, in
the outer envelopes od” = 0 and A" = (4), but in the inner envelopes

A" > (A).

Generally speaking, the mass density of relativasibjects is defined
asp =E&/c* where€ - the total energy density. However, in the shaifs

neutron stars is sufficiently accurate approximagpce= myn,.

At sufficiently low density or high temperature dtbrium
composition of matter includes positrons and phestan quantities that
may affect the thermodynamic properties. For simfh, we neglect
their contribution, because it is negligible for atoconsidered in this
thesis’s applications. If necessary, the contribatiof positrons can
easily be taken into account by the following formufor electrons by
replacing them in the chemical potential of the e#ten p. the chemical
potential of positrons in equilibrium equat,c®> — u,, a contribution of

the photon gas is given to its free energy

4'0'53
Froa = —( 3¢ )VT4 (2.9).

11.2.2.  Electrons
The state of the electron gas in thermodynamiciklgium is
determined by the electron number density, and temperaturel. In
plasma physics, instead of, and often introduce the dimensionless
density parameten; = a,/ag, where az - the Bohr radius, anti, =

4 -1/3 . . _ -1/3
(g”ne) . The rg is easy to assess the to relatign= 1.1723n,, ,

where the n,, =n/10* cm™3, or r, = (pys/p)*/3, Where pys = 2,6752 (4'/
(Z))gcm™3 . In astrophysics, instead df it is convenient to introduce
the parameter of relativity:

PelZ)

!

Pr

eC

1/3
x, = =1. 00884( > = 0.0140057;1 (2.10).
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Where prp = hkp = h(3mn,)'/® - is the Fermi momentum, and
pe = p/10°gcm™ - mass density in grams per cubic centimeters. The
momentum ofpp corresponds to the kinetic Fermi energy= mzc® + pi
equal chemical potential, at T - 0, and the Fermi temperaturé =
€./kg =T.(vy —1) ,whereT, = m,c®/kz = 593 x 10°K - the relativistic
temperature unit, andy( = \/Tx% the Lorentz factor of electrons at the
Fermi surface. If x, « 1, then Tr = 1,163 x 10°r; 2 K. Effects special
theory of relativity controlled parametes, in a degenerate plasma (for

T «Trg) and the parametert, =T/T,; in a nondegenerate plasma (for
T > Tr).

The degeneracy parameter is defined as:

0= d 2.11
=7 (2.11).
In the no relativistic case(x,<«<1) it is equal tof= @ =
2
3.411837 (%) here we have introduced two more parameters:
po__€ _2275( () 173 2 12
e aekBT - T6 Pe A ' )

WhereT, = T/ 10° K, characterizes the Coulomb interaction between the

nondegenerate electrons, and:

2mh? \"?
2, = < ) (2.13).

m, kBT

Is the thermal de Broglie wavelength. In contraséte ultra relativistic, if
(x, » 1) we haved = (263I,)7L.

Another convenient parameter characterizing cheimidageneration
IS the ratio:

_ He
kT

(2.14).
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There are also wuseful to introduce the electron spla

temperaturdy,,, relevant energjtw,,:

B hwp,

Tpe = ks ~ 3.3 x10%,/x, /v, K (2.15).
Where
1
4me?ne\2
®pe =< - > (2.16).

Is the plasma 'frequency of electrons, typical fidreir collective
oscillations, andn; = m,y,- effective dynamic mass of the electron at the
Fermi surface. Electromagnetic oscillations with gahar frequency
w < wpe Can not be distributed freely in non-magnetic plasmnd hence
the thermal spectrum of the star is formed mainhythe region where

X The .

Later, we need the values that characterize thepaese of the
electron gas at the Coulomb effects. The relevaartameters - the radius
of the electronic screening. and its inverse wave vector of Thomas-
Fermi Kyg:

1/2

an
Kpp = 151 = (41te2 aﬂ") 2.17).
e

In a no degenerate ga¢T » Ty) on./du., = n./(kgT), so thoser, =
a. //T.- In the opposite limiting case of strongly degeater gas(T « Tr)

we have:

afYr -1 Yr
kir=2 |——k; =0.185 /— 2.18).
TF (7tx,) F a. X, ( )

Wherea; = e /c = 1/136.037 — is the fine structure constant.
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[1.2.3. lons

In the envelopes of neutron stars, the ions areagbvno relativistic,
so only this case we will consider. Coulomb inteiano of ions of

speciesj characterized by the parameter:

Z;e)?
I =r.z" = (O)’—) (2.19).
aionkBT
Where
al =a.z" (2.20).

J

Called the radius of the ion sphere. The other ak#eristic length

parameter — the thermal De Broglie wavelength afs®f specieg,

2mh? \3
A= (—) (2.21).

./'
|

lg p [g cm~?] lg p [g ecm~2]

Figure 2.1. Density-temperature diagram for the outer envelopmposed of carbon (left) or
iron (right). We show the electron Fermi temperatufyr), the electron and ion plasma
temperaturesTf,. and T,;), the temperature of the gradual gas-liquid traiasi (T;), and the
temperature of the sharp liquid-solid phase trapsit(T;,,). Shaded are the regions of typical
temperatures in the outer envelopes of middle-agealing neutron stars (which are
10* — 10° years old). The lower left domain on the right daseparated by the dotted line,
is characterized by strong electron response omidestate formation. From [Hae 07].
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Similar to I, , in a multicomponent plasma, the Coulomb coupling

strength is characterized by the average parameter:
r=r.(z;"”) (2.22).

This parameter specifies, in particular, statesnatter: if ' < 1 ions
form a classical Boltzmann gas, with increasidg with increasing
density or decreasing temperatureTtox T;, whereT; corresponds to the
value I' =1, the gas gradually acquires the properties of ildqu with
further increase of" phase transition of a Coulomb fluid in a Coulomb

crystal (temperatur& = T,,, "whereT,, corresponds td" = [,,,,).

In the gas phase the characteristic length of tlbeill@mb screening
by ions is the Debye length or his inverse the Debye wave numbey:

-1/2

B 4m 2
™ =qpt = kB_TZ n; (Z;e) (2.23).
J

LI B I N B

10

T

pe

9.5

g7 [K]

8.5

8 |||||||||||||||||||||||||||||_ E_IIIIIIIIIIIIIIIIIIIIIIIIIIII
8 9 10 11 12 13 14 8 9 10 11 12 13 14

lg p [g em—2] lg p [g em—3]

Figure 2.2 Left panel: melting temperature versus density.hRganel: electron and ion
plasma temperature versus density. Solid lines;gtiseind-state composition of the crust is
assumed: Haensel and Pichon [Hae 94] for the oatest, and Negele andautherin [Neg
73] for the inner crust. Dot lines: accretadst, as calculated by Haensel and Zdunik [Hae
08]. Jumps result from discontinuous changes ofid A.Dot-dash line: results obtained for
the compressible liquid drop model of Douchin arakhkel [Dou 01] for the ground state of
the inner crust; a smooth behavior (absence of gJmesults from the approximation
inherent in the compressible liquid drop model.ckhiertical dashes: neutron drip point for
a given crust model. Figure made by A.Y. Poteldunilae 07])
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- and the total plasma screening - wave number :

1/2
ks = (q3 + k2p)" (2.24).

Influence of quantum effects on the dynamics andritmodynamics of

the ion becomes important wh@h< T,,; where:

ha,; pe Z% \2
PR— Pt =~ 6 —6 —_—
Tyt =2~ 7.832 X 10 (A, (A)> K (2.25).

- is the ion plasma temperature, and :
72 1/2
wpl' = <41teznion (_)> (226)
m;on
-is the ion plasma frequency. Quantum ion paramede) = T/T),.

In one-component plasma of ions (OCP- one-compondatma) can

be written:

n=Tr3/R;s (2.27).
WhereRs = a;pnMion (Z€)? /R2 = 1, (Mypy / M) Z7/3 = The ion density

parameter.

The course introduced in this section, the chardstec temperature
depending on the density for carbon and iron plagmahe outer shells
of neutron stars is shown in Fig. 1, and for thdstance of external and
internal envelopes of stars in the ground state (the contpmsis taken

according to the classical model than — [Neg 73]).

11.3. Fully ionized Coulomb plasma

The majority of the envelopes of neutron stars tuky ionized. The
case of complete ionization is determined by thgueement that the
characteristic distance between the ioams, was small compared with
the Thomas-Fermi radius of the atomic corgyag/Z'/? that is equivalent
to p > peip = (My/ap)AZ ~ 11AZ g/cm® =. In p »p,;, in the outer

envelopes of the neutron star model can be appélettron-ion plasma,
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which addresses the point ions in an electron ldquin general, the
electron fluid is compressible, the ions and eleaw interact via
Coulomb forces and are therefore correlated. Cowoworrelations
between ions and the ions with electrons and ebatdrwith each other,
tend to be much different in strength, so it malsense to study them in

sequence on the basis of expansion of the freegnef the form:
F=FO+F% +F;+F,+F,, (2.28).

HereFig) and Fl.Ef) — are the free energy of an ideal Boltzmann gas of
ions and the Fermi gas of electrons, respectivelythout taking into
account the correlations, if; included the Coulomb interaction between
the ions without regard to their correlations witthe electrons, but with
the Coulomb energy of their interaction with "incpnessible” electronic
background providing electrical neutrality of thdapma; F, includes
interactions between the ions and polarizable elactt background
related to deviations from the approximation of anmcompressible
background and, finallyf,, a member of the deviations takes into
account the interaction of the electronic subsyst@ie last three terms

in the sum contribute to the free energy due terattions.

Feszii+Fie+Fee (229)

The expansion (2.28) induces the corresponding agpm of other

thermodynamic functions. In particular, the pressappears in the form
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Table 2.1 Order-of-magnitude of the pressure components in dB0) for the matter
containing strongly degenerate electrons and fidlyized, strongly coupled ions (after Yakovlev &
Shalybkov 1989). The parametgy = ay/f,issmallapp < 1g cm~3. [Hae 07]

Ppal‘t ‘Ppal‘t‘;fﬂ{'cle} Comment

-P:LdL) I Ideal degenerate electron gas, leading term

P, X f:,, ap Exchange-correlation corrections in electron gas

Pi((;) ™t T,ff(ZTF) fo O'BZQ/B/r Ideal ion gas contribution

Ps ~ QB Zgﬁ Coulomb corrections in the rigid electron backgmbun

Pie . G’% 24/3 Coulomb corrections owing to electron polariza
P=P{) +P+P;+Pi+Pe (2.30).

Table 1 gives an idea of the characteristic ratms the order of
magnitude between the different components in aorsgity degenerate
plasma. The corresponding contributions to the intg¢ energy have the
same order of magnitude as the contributions to pmessure, but the
contribution of second-order functions can be ramkeifferently (for
example, as will be shown below, the heat of theuldonb crystal can be

determined not by electrons and ions).

In a weakly degenerate plasma hierarchy of contridrus shown in
Table 1, collapsing: different terms may become epamable in

magnitude.

11.3.1. Ideal electron gas

The free energy of an ideal electron gas can beaioetd from the

general formula:

F'® =N, — POV (2.31).
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and the pressur@iﬁf) and electron density,, in turn, expressed in terms

of u, andT as:

3
e

P, ZkBTfln [1 +exp< KT ) Zrn)?

(2.32).
8 kgT t,
= ﬁf [Is/z(xe, t,)+ EIS/Z(Xe: tr)]
=]
[1 + exp ](211?1)3
(2.33).

\/_113 [Il/z(Xel r) +t IB/Z(Xe: r)]

where €, = ¢y/(m.c)*+ p>—m,c?> - kinetic energy of the electron with

momentum p, and:

2 xV(1+ 1x/2)1/?
1 = 2.34).
e = | T (2.34)
- is the Fermi-Dirac integrals. The internal enemyuals to:
@ 4kgTV
Uld \/E E [13/2(Xe; tr) + trIS/Z(Xe' tr)] (2' 35)'
11.3.2. Coulomb crystal (harmonic approximation)

Below the melting temperaturd <T, an infinite ion motion is
replaced by oscillations near equilibrium positipnghich means that a
crystal is formed. The ground state of the OCP arfsg corresponds to the

body-centered cubic (bcc) lattice. In a real crysthis happens at high
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densities (aty « 1), whereas other types of lattices (face-centeredic,

fcc; hexagonal close-packedicp) may form the ground state at =1

[Koh 96]). Note that the simple cubic Coulomb lattice is talde (as any

simple cubic lattice of particles interacting via&mdral forces; M. Born
in 1940).

We recall some standard definitions [Kit 86], whiehill be useful
later. The primitive cell of the crystal lattice,hwse center coincides
with the equilibrium position of the ion, calledehNigner-Seitz cell. In
the study ofstrongly coupled Coulomb systems, it is often veiseful to
deal with the model of the ion sphere in which theal cell is
approximately replaced by a sphere of the same meluthe radius of the
Wigner-Seitz cell for the case considered here axisi of one species is
a,,n- The reciprocal lattice is determined by the priwé translation
vector b;, defined by the equalitie®, - d,, = 2n6,,, where d,, — is the
primitive translation vectors of the crystal latticWigner-Seitz cell has

an reciprocal lattice called the Brillouin zone,daits volume is equal :

A 3 3
Vpz = 3 98z = (2m)°nipp (2.36).

To study the Coulomb (Wigner) crystals has beendusaccessfully
(see, for example. [Bai 01][Pol 73]) the harmonippaoximation in
which the potential energy of each ion in the cafsis described by the
harmonic oscillator potential (eg, [LL5] ). In thispproximation the free

energy of the lattice is:

Frae = Up + Ugyane + 3NionkpT(In[1 — exp(—z3,) |)pn (2.37).

where U, = N;,n,Co(Ze)?/a;,n-is the classical static-lattice energy,
Co = —0,9 is the Madelung constanlg,qn¢ =§Nionhwpiu1 — is the zero-

point energy of quantum vibrationsy; — belongs to the family of

average phonon frequency moments:
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(@F Yo

u, = L2 (2.38).

wpi

wz, —the eigenfrequencies:

hwy

— ks
P == 2.39).
Zks kBT ( )

the (..),, denotes the average over the phonon wave vedidnsthe first
Brillouin zone and the branches of crystal oscilbat modess:

- 1 oy —
(@ =5 | F(Odk (2.40).

the values ofC, andu, are given in Table 2.1. In the crystal, we can not
distinguish the energy of an ideal gas, %@ replacesFis)+Fii in
equation (2.28).

In the general case that goes beyond the harmoppsaimation, we
have:

Flat _ 3
=Col' + suiN + fiae + fan (2.41).

flat = NionkBT 2

Where the first three terms on the right side cep@nd to the three
terms in the right side of equation (2.37), afig - is a correction for

anharmonicity.

11.3.3. lonic Coulomb liquid (theory)

Taken to separate the free energy of the Coulombdflcomponent
that describes the Boltzmann gas of ions, and thentdescribing the
Coulomb interaction, as in equation (2.28). In tlsisction we consider a
single-component ion plasma in an incompressiblekigaound - OCP. In
this case,

F = NyonkpT

l )‘?on
n| n,—7—|—1 (2.42).

spin
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®

spin

whereg is the spin degeneracy of the ion.

Equation (2.60) for the OCP can be expressed inmserof

dimensionless parameters:

Fia =31 31r 116 Ing® -1 2.43
Ny kgT _ © 17200 =20 ™ M spin (2.43).

the subscript“ii. ” distinct theexcessterms their study is little bit more
complex (we talk about terms that occur from theu@onb interactions
in the case of rigid electron background) in a slasl OCP the quantity
The functionF;;/N;,,kgT depend on a single argument It determines all
other excess (e.g., [Yak 89]).

the theory of Debye & Huckel (1923) is appropriaie the case
(I' «1),. And it gives a formula for the free energy ofmaxture of non-

relativistic weakly coupled ions with chargése and number densities;

[LL5] :
3/2
Fo, (T - 0) 2e3 / m \1/2 5
e (kBT) Zn]-Zj (2.44).
j
It becomes for the OCP:

V3 1

Uiipn = — <7> NionkgT T3/2 | Fyipy = — (\/—5) NionkgT T3/2,  (2.45).

The perturbation theory gives corrections of theder '’ to Eq.
(2.45) [Abe 59] . Cohen and Murphy [Coh 69] com@d the correction
up to the ordem®?. The low{ expansion of the internal energy is given
by:

Uj; V3 3 3
2 = _——r2-3r3 [gln(BF) +

g 1
NipnkgT 2

2 3

(2.46).

—-I%?%(1.6875v31InT — 0.23511) + -
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whereCg = 0.57721 ...isthe Euler constant. So, one have:

3
Fy; rz 3
_ = —— 73 (—ln ')+ 0.24225) —
NionkBT \/§ 8 ( )
(2.47).

—I%?2(0.64952 InT — 0.19658) + -

To study liquid and solid phases of the OCP of iatdarge value of
the coulomb coupling parametef authors used numerical methods
(typical examples, one would see Baus and Hanseau[BO] ; Ichimaru
et al[lch 87]). the Monte Carlo method (Brusdt al.,.[Bru 1966] ) and
the hypernetted chain (HNC) method (e.g., Hansed ®tDonald[Han

76]) The most powerful of them.

The Monte Carlo methods begin with an initial cogpiration that
contains Ny, ions and one allow make succeeding ion displacemsent
The potential energyu(?l...,FNion) reside from ions-ions Coulomb
interaction and between ions and the uniform electibackground is
computed in each step and one sums those contahatwith a suitable

weight to have the excess internal energy :

1 wn
Uii = mf‘llexp( kBT>1_[drq (248)
where:
1 NlOTl
Zeons = VNf exp( kBT> 1_[ drq (2.49).

is the so-called the configurationally part of tpartition function.

The hypernetted chain method -on the contrary- igsdd on

integrating equation for the radial pair distribami Function :

NlOTL

— — 1
9071 ~T)) = g VN_Zfexp( kBT>1_[drq (2.50).
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It can be obtained in different approximations.

11.3.4. Structural factor: Multiphonon processes

We need the characteristics of pair correlationsiaris, called the
dynamic structure factor. lon structure factor dekes the correlation of
their position in space and time. The ion corredas in momentum space
are described by the dynamical ion structure factor

1 +oo oy
S@ w) =5— ) dt f dz dx' el (F-)-iot G % HRE, 0))en (2.51).
where i — The imaginary unit numbeit(¥,t) = Xz, 6(¥ —7;) — nion - Is the
instantaneous charge density distribution in undé Ze, and (..)
denotes the Gibbs average over the ensemble ofigast (thermal
average should be distinguished from averaging rovkee phonon

spectrum, a certain equation (2.40)).

The static structure factor which describes thetamsaneous spatial

correlation of the charges is:

(@) = j (G, w)do (2.52).

11.3.4.a The structure factor of the classidasotropic plasma

_For isotropic plasma the static structure factors5@ is:

S(g)=1+ [g(r) — 1]r%dr (2.53).

3r f‘” sin(qr)
0

3
ion qr

where g(r) — is the pair correlation function.

In the limit ¢ -0 have S(q) = (qa;,,)?/(3T) (eg, [Han 73]). The

approximation of the Debye-Huckel corresponds te farmula:
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qZ

q? + 3Ta;?

ion

S(q) =( (2.54).
In general, S(q) are found numerically from Eq (2.51) (see, eg., A
review [Bau 80]). Contribution of ion-ion interaom in the internal

energy is expressed througd(r) or S(q) as:

N? [ (Ze)?
ii = ﬁ

[g(r) — 1]d*r = NkyT F‘Z"” f "15(q) — 1]dg (2.55).
0

11.3.4.b  Structure factor of the Coulomb crysal and Debye-Waller factor

As is well known (eg, [Kit 63], [Kit 86],), in thgeneral case, taking
into account the quantization of the ions motiomeir local density
n(a?,t)=2j5(f—§j—ﬁj(t))is replaced by the density operat@r(x,t),
which operates in the space of quantum states adtarezed by phonon’s
number, and the displacement vectai is replaced by the displacement
operator #; . More precisely,p (%,t) is defined as the operator of the
charge density in units ofe.The equation (2.51) for the dynamic
structure factor is generalized as follows:

1

S(q, ) =
(q, w) 2N,

+00
f dt f d% dx' e 4 (%)=t (5t (%, Op(X', 0)),  (2.56).

using just the described quantized density fromatgqun (2.56) is easily
obtained the structure factor of the ion densikyctuations in the solid

phase:

+ o0

1 f e it (Z i@ Ri-R)[oi@1(®) _ 1][e@H©® — 1]),, dt (2.57).
anion oy

—00

$(q, w) =

expanding the ion displacement operatay in term of the phonon
creation-annihilation operators and using the Wegerator identity
edeB = eAtBeB-BA)/2 (see [Kit 86]), can be divided into structural

factors on two terms:

S(qw)=5(q)é(w)+S"(q w) (2.58).

Kinetic properties of the electrons in the shefla@utron stars 41



Chapter Il Gealeproperties of neutron star's Coulomb plasma

where the termS'(4) is associated with an ordered lattice (so-called
Bragg term), while the "inelastic" ter$i’(4,w) due to ionic fluctuations
around the equilibrium positions. In the harmonjpaoximation we have
(eg, [Kit 63]):

S'@ = @1 *nigne W@ > 5(G - 6) (2.59).
G#0
where:
exp(—2W(q)) = (e'@%)2, (2.60).

is the Debye-Waller factor. In equation (2.5}, denotes summation

over all reciprocal lattice vectoré with the exception of = 0.

In isotropic (eg, cubic) crystals we have (eg [I8&]):

. rZZI’Z
w(g) = T6 (2.61).
where r# = (@1%)y is the mean-squared ion displacement from
equilibrium. In the harmonic approximation:
, 3k 1
r: = Yoh (2.62).

2m;,, wy,tanh(zg /2)

where z; defined by equation (2.39). In classical crystat T z Tp;)

typical valuesz;, are small, and equation (2.62) make simpler to:

3kBTu_2 u_, 2
= a; 2.63).
artZ*e* n;,, r on ( )

rims1) =

Formally, in this case we can write? = 3u_,r5, where rp-is the

Debye length (2.23). In the opposite case, wifex T,

2
3 hu—l _ U_1Qjonl]

rim»1) =~ (2.64).

Zmionwpi r

For an arbitrary value ofp, r? can be estimated by the following

formula :
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aizonn u_4 + n
r 2 3a;(exn — 1)

ﬂ
~N
I

2
Dl(atn) (2.65).

here, a; = 0,426548 and «; =0,88412 for the bcc, a; =0,436671 and
a; = 087817 for the fcc, a; = 0,436671 and «; =0,87817 for the hcp
lattice, andD;(x)- is the Debye function, for which in [Pot 20003,Y.
Potekhin et al constructed the approximation:

1+R§@
Dl(x)z1+1 > 240, 00139x4+(6)R(x)
2%t 122 1

(2.66).

R;(x) = (440x + 9¢%)(0.1x)°

The relative error of this approximation is hundtlesl of a percent.

11.3.4.c Multiphonon processes

D.A. Baiko et al [Bai 98] have shown that the inglix part of the

structure factor can be written:

1 +oco
Sll(a: (1)) — f dte—lwt ZW(_')Z iq- (Rl R]) z
27tNop
(2.67).
L 2 "
h (9- %)
= (e, +1) +
Zmioan’onZ wzs [al]kS(n ) al]ks ks]
ks
where A gs = exp[ml-onk . (ﬁl — I_?)]) — mionwﬁst] and
_ 1
n;, = m (2 68)
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iIs the mean occupation number of the phonon mQEI,es). Expression
(2.67) takes into account the contribution of phanoorrelations in the
structural factor of the crystal. Eaahth term in the sum according to
claim corresponds to the contribution of n-phononogesses in the

scattering sample particle in the crystal. Summaowgri,j gives the delta
function that eliminates one of the summation ov?erThus, we haven
sums overs and n —1 sums overk in each of then-th term of the

formula (2.67).

The expression for the static structure factor 5¢).becomes:

S(‘_i) — Z eia.(l_ii_l_ij)<eia.ﬁie_ia.ﬁj)th (2 69)

ion ~=
Yy

It just may be divided into "elastic" (the Bragg)nd inelastic

components:
S@ =S' @ +S5" (@,
where:
§'(G) = e~ W@ Z T R; [ev(a'.z‘e}-)qz _ 1] (2.70).
Rj
and

— o 2 7T R
_, — 3h q-e; cos(k-R
v(¢,R) = (( i) ( Zz ))ph

= (2.71).
2
2Mion q wy, tanh (—é‘s

Generally speaking, a function i8'(§g) has sharp peaks, whose
calculation is difficult (eg, [Bai 00]). But in théntegrals overq when
q >» qgz these peaksan often k& smeared out, and thus the method
introduced ly M.E. Raikh and D.G. YakovleJyRai 82] is applicable,
which uses the fact that these integrals of thetoeg runs on many
Brillouin’s zones,of which has its own principal st®rs of polarization
éz, Therefore, the polarization is changing rapidly thre scaleq ~qpz,

and forqg >» gqg; one can use the approximate substitution :
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S (@ %) (o) - 4 g )hon 2.72)

provided that thef(w) - sufficiently smooth function. Then from (2.69)

after averaging over orientations of the vectgrsone obtain [Bai 98]

[Bai 00] [Rai 82 ] [Kam 99]:

ho 71 (% . dt
" _ _ _ —iwt _
S'"(q,w) = exp|—-2W(q) _ZkBT] j_w e '“'K(q,T,t) = (2.73).
hq*  cos(wg.t
K(q,T,t) = exp 2 ( ( ’“Zz Ypn| — 1 (2.74).
Mion ¢ sinh (%)

Equation (2.73) takes into account the correlation of ionsusad by
the absorption and emission of any number of ph@andn the literature,
guantum-mechanical amplitude interactions of intdrans are often
linearized with respect t@ with, thus neglecting multiphonon processes.
In this one-phonon approximation (eg, [Flo 76]) tls¢ructure factor
reduces to (2.74).

hg?> 6w — w3 )+ 8(w+ wy
St (g w) = e W@ 1 ( ic) haf k)
exp (o) 1]

) (2.75).
2my,, . ph
S

which is equivalent to replacindexp[...]—1} — [...] in the equation
(2.74). This approximation is justified only whell < T,. In a dense

astrophysical plasmas multiphonon processes areortamt near the
boundary of the melting of the Coulomb crystal [E8].

In [Bai 98], D.A. Baiko et al derived an approxibeaexpression for
the inelastic part of the static structure factoorresponding to equation
(2.73):

Si(q) =1—e V@ (2.76).

this approach, as tested in [Bai 00], is very aata wheng < 3/a;on-
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In [Kam 99] the dynamic structure factor (2.73) wapplied to the
calculation of the contribution of electron scaitey in the crust of a
neutron star the neutrino luminosity of the cruktwas shown that the
inclusion of multiphonon processes significantlyy(lbens of percent)
increases the total neutrino luminosity in the aqutegion of the crust,
near its border with the ocean. As we shall seeenewmore strongly
influenced by multiphonons processes on the conidigt and thermal

conductivity of this part of the crust.

11.3.5. Melting

The phase transition between the Coulomb and Coblohguid
crystal occurs afrl' =T, where the free energF(I") of liquid and solid
phases intersect. This point is difficult to detenm with great accuracy,
because the intersection of the free energy cuilgestrongly affected by
the thermal corrections which are smallI'~T,, (the free energy curves
are nearly parallel). And therefore the positionpafint of intersection of
[, depends strongly on the small corrections. Fornepke, changingF;;
by 0,1% shifts thel;, on, AT = 15, ie ~ 9% [Pol 73] .

A good first approximation to determine thg, can be considered as
approximation of an incompressible background. Thest is a realistic
assessment ofl, =170 + 10, was Van Horn [Hor 69] based on the
Lindemann criterion according to which the crystaélts when ther; the
root-mean-square ion vibrations in a lattice siPe6@3) becomes a sizable
fraction of inter-ion distance. Specifically, Vanokh equated the ratio
rr /a,,n t0 the experimental valuery /a;,, = 0.070 +0.004 for alkali
metals This value ofl,, was considerably larger than numerical
estimates available at that time, but it provedb® remarkably close to
the value obtained twenty years later from sopltisted theoretical
studies. Those studies included numerical evaluatmf the internal

energy of the classical liquid and solid OCP andedisquantum
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expansions of thermodynamic functions of OCP, adlws Monte Carlo

simulations.

[1.3.6.  Polarization of the electrons in the Coulomb liquid

In electron-ion plasma, the interaction of ions tharshielded by the
polarization of the electronic background. Effedt molarization on the
thermodynamic functions of a Coulomb fluid is calated by using
perturbation theory [Yak 89] [Gal 76] and by ugitiNC method [Cha
09] [Pot 00] [Cha 90a]. At the same time in [Yak]88&nd [Pot 00] into
account relativistic effects. When the electron-iarteraction is small
compared with the kinetic energy of electrons (Bxample,Ze?/a, < €
for degenerate electrons), this interaction cantaleen into account by
the linear response theory. In this case the exdatniltonian of the
electron-ion plasma can be divided into two partke first of which
describes the ions screened by electrons, and tkeorsd - the
Hamiltonian of the rigid electron background, the-salled "Jelly” [Gal
76].

The polarization properties of the electron gas atdgmd by the
dynamic dielectric tensor, as in the case of antrigpic gas (in
particular, in the absence of a magnetic field)he tdielectric function
e(k,w), wherek - is the wave vector, and - frequency. For processes
with a characteristic length> w,,;, we can replace(k,w) on the static
dielectric functione(k) = ¢(k,0). For her, in the degenerate relativistic
gas is the most widely used analytical expressipkan 62], resulting in
the random-phase approximation (RPA - random-phapproximation),
which is valid forr, K 1 andT < Tg:

K2, (2 2y%r
S(k) _1+F{§_§ 7, ln(xr+yr)+
x2+1-3x2y* |1+y
ln| |+
6yx?2 1-y

(2.77).
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2y°x2 — 1,1+ x%yzl
6yx? Yr

yYr + 1+ x2y°

YYr — 1+ x2y°

n

}

Static dielectric function satisfies the importareiation

wherey = (k/2kg)

k2
e(k) =1+ % at k < kg (2.78).

If the =1 and T =T, we should take into account the
finite temperature and non-linear effects, whicle an the no relativistic
case can be included in the dielectric function@ackeng to [Cha 90b]:

gppa(k) — 1
1 — [egpa(k) — 1]G (k)

k) =1+ (2.79).

where ezps(k) - is the dielectric function obtained in theandom
phase approximation, andi(k) — the local field correction (LFC -

local field correction), which is estimated nunelly.

Screening can also be estimated by the method tecéifve potential
(eg, [lch 1987]). In this method, the Coulomb patieh in the expression
for the electrostatic energy is replaced by an eefive potential, in
which the Fourier transform is equal tV,z (k) = 4n(Ze)?/(k*e(k)) ,
wheree(k) - is the static dielectric function of the eleeh gas (2.77)
or liquid (2.79).

11.3.7.  Polarization of the electrons in the Coulomb cryl

Correlations between the ions - and, consequerttig, crystallization
- affect the electronic screening. Calculation bétmodynamic functions
for the Coulomb crystal, taking into account elaatrc polarization is a
task not yet completely solved. For classical iosamplest model
screening is to replace the Coulomb potential oa dukawa potential.
Simulation of the system by the method of molecutlynamics were
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carried out in [Ham 97], where it was found thI, increases with
decreasing screening radius. Moreover, there mayabtansition from
bcc to fcc structure. Subsequently, the same madslitem was studied

using the method of integration over trajectoridsil[06].

However, the Yukawa potential is not an exact model the
screening, since its use is tantamount to limititige long-wavelength
asymptotic behavior of the dielectric functionHowever, the Yukawa
potential is not an exact model for the screenirggnce its use is
tantamount to limiting the long-wavelength asymptobehavior of the
dielectric function (2.78). The exact solution regs the calculation of
the dynamic matrix of the crystal with electron-ionteraction and the
solution of the dispersion relation for the phongmectrum.

In the first order perturbation theory the dynamimatrix of the
classical Coulomb crystal was obtained in [Pol 78)}d the phonon
spectrum  of the quantum Coulomb crystal with grozation was
calculated in the harmonic approximation in ajB)2]. Note that the
harmonic approximation only has limited applicabylito the problem of
screening in a Coulomb crystal: for example, in ttlassical limit(T >

T,;), it certainly gives a zero contribution to the etleon-ion interaction

in the heat capacity.
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Chapter Il
Electronic transport coefficients

without magnetic field

A- Basic relations for the electronic transportcoefficients

This section has an introductory character. Orgliresults are
presented in later sections, but here we summarthe basic
approaches and formulas for calculating the kinete@fficients in the

plasma to be used later.

.1.  Boltzmann equation: General relationships

To be specific, as carriers of heat and charge wallsconsider the
electrons as their contribution to the thermal aralectrical
conductivity of the plasma, usually dominates. Theasis of
consideration of the well-known (eg, [LL10]), Bamann kinetic

equation for the distribution functiorf = f(#,p, s,t).

6 - = —_ —
=L TS HF T =L, L= I (fl, (B,

j
Wherep, 7, v ands - are the momentum, the radius vector, velocityd a

electron spin index, respectively;- the time; F denotes the external

force acting on the electrong,; - Collision integral of electrons with
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particles of specieg (electrons, ions and etc). The collision integrals

are functionals of.

Suppose that in the plasma there small stationaeytyrbations
characterized by a temperature gradi@’ﬂ‘tand a gradient in chemical
potential Vueand the electric fieldE (thenﬁ =—eE), and that these
gradients and the field is so weak that the chagastic scale of the
resultant non-uniformity of the plasma is much héghthan the
average characteristic length of electron free pathrhis volume
element of matter is close to the thermodynamic ieQquum, and
deviations from the strict equilibrium associatedtiwthe currents of

heat and charge. Solution of equati@m)has the in the form:

f=r9+8éf, (3.2).

fOe—- p.,T)= (3.3).

exp(e_ ”"’)+1

- is the local function of Fermi-Dirac distributo andsf -is a

correction due to disequilibrium in the first apmimation linear in
VT, Vpand E. In view of the smallness of the gradients on ta# side
of the equation (3.1) in a first approximation wancneglectéf on

compared withf(®:

% ~ dg(:) - —(e;h VT+eE*) .365:)) (3.4).
hereh = u, + (S./N.)T - enthalpy for electron:
- =V S, Vr
F =F + g"’+N—‘:? (3.5).
and
So= - s [mf +a-pmA-plde 36,
(21h)3
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-is the electronic entropy. The collision integnadnishes atf = f(® so
the first nontrivial approximation for it gives tes linear indf.
Restricting the expansion frodf only by those members, from (3.1) we
obtain linearized -Boltzmann equation, corresporgdino the first
approximation in the method of Chapman-Enskog e)gpam of the
distribution function of the small parameter. Inethcase when the
medium is isotropic, we can write (eg, [Zim 1960]).

afv o
_ — © (1 — £
8f = @ 5= 1 fO-F),

€—h
T

D=

A,(€)U- VT + e A,(€)U-E* (3.7).

Where A.(e) and A.(e) - some functions of electron energy to be

determined.

Using equations (3.2) and (3.7), we can derisome general relations

connecting thevT, Vueandﬁwith the density of electric current:

. 2e -
Je = ~ @nh)? fvfd3p (3.8).

And the heat flux density:

jr = 2e v(e — h) d? 3.9
jr = - G | - @p 3.9).

And energy flux densityg = jr — (h/e)J., from (3.8) and (3.9), we

obtain:

jo = 6E —a; VT, jr = a;TE* — KVT (3.10).

Where :
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{‘{T} = o f(_ ge ) v? eAe,T(E)z (h—e€)/T} d®p (3.11).
Ar(€)(e — h)*/T

K

Here o —is the electrical conductivityp; and £ - auxiliary transport
coefficients (the same ratia; is included in both equations (3.10) due

to the Onsager symmetry principle - eg. [LL5], 8013Zim 60]).

It is convenient to rewrite relation (3.10) in therm:

B = ’;" — Q; VT, Jr= —-Q;Tj.— kVT (3.12).
ar _ Taf
- - 3.13)
Qr g = Kk-— ( )

- Respectively, the thermoelectric coefficient ah@at conductivity.
Each set of transfer coefficients (o,a7,&) or (0,Qr,k) - completely
determines the transport of heat and charge insatropic medium.

Substituting relation (3.4) in equation (3.1), miplying both sides

by 2 (2nh)73® and integrating ovep, we obtain the useful relation.

-

. VT 2 — — — — ¢ VT
ve : T) & 20 B T+ (E)2o=Ef -1 (3.14).
Where:
. 2V , L/ H
Q= (21th)3fd p (e—h)AT(e)?+ eE*A,(e)| -V, (3.15).

Using Equations (3.1) - (3.7) and taking into actothe conservation of the
number of electrons and their total energy in easbllisions, we can show (for
example, [LL10]) thaQ = TS,,; whereS,,; — is the rate of entropy production by
collisions. This allows us to consider the ratidld and (3.15) as a variation, in which

A.(e) and A;(e) are test functions (eg, [Zim 1960]). Putting themVilr = 0 or

E* = 0, we obtain, respectively:

gr _ (VI)?
i T

_o_ (Ey

1
2 ==
Z s

Qlm

(3.16).

pd )

)
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1.2 Electron-electron scattering

The exact form of the collision integrgl, depends on the scattering
mechanism. We first consider the collision of elects with each other -
its scattering, which can be schematically repréednas (p;S;,p25, —
P151,D25,), Where the non primed momentum and spin indicess
determine the state of the electrons 1 and 2 betbeecollision, and the
primed - after the collision. Denote a quantum mamcital transition
matrix element in the collision throughM,, ,.,» The transition

probability per unit time is (eg, [LL3]).

o 2n : '
w(212) = = |m,, ol et —er—€)  (3.17).

According to the principle of microscopic reverdlby, |M1,2%1,,2,| =

|M1/,2/H1,2|2, so according to the principle of detailed balanbe identity:
(0) (0) (1 f“’))(l _ fgm) f(O) (0) (1 _f§0)’) (1 _ fgm’) (3.18).

For the collision integral we have:

d3p; d3p, d®p, "
Iee[f1] = Z f 22nh)° w(12;12") x

82, 5152

(3.19).
X[f1f2(A=f)@A = f)-f1f2(1 = f)A = f3)]

Where the additional factor 2 in the denominatorseres the
exclusion of double counting the same index, diffigrby permutation of

indices 1 and 2.

Linearizationl,. in accordance witl3.2) and(3.7) leads to the expression:
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1 d*p; d3p, d3p, "
Iee[f1] =T Zf 2Znh)’ w(12;12") x

02,010,

3.20).

<O (1= FO) (1 - 1) x (@4 + @, — @7 — @})

11.3. Electron-ion scattering. Approximation of the rebxation time

As another important example, consider the scamigmof electrons by
ions in the case when the characteristic energyndfar de in a single
collision is small:de < kgT. Then [Zim 60]

__9
I = 7000 (3.21).

Wherety(e) - the effective relaxation time for the electrondcstribution
function. This approximation is called the relaxatitime approximation;
If this type of collision dominated, the solutionf ahe linearized

Boltzmann equation is simply:

A.(€) = Ar(€) = To(€) (3.22).

If the provisions of the ions are uncorrelated, rintkhe relaxation time is

estimated as:

To(€) =n (3.23).

. v—
on 0 (€)

Where:

o.-(€) = f 0(9,¢) (1 — cosI)dQ (3.24).
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- is the transport scattering cross sectioh,- scattering angle, and
o(9,$)dQ —is the cross section of an electron in an elen@nsolid angle
dQ = 2msin9dd

Differential scattering cross section is equals to:

|Uq|2m§

c(d,¢) = APt (3.25).

Where Uy - the Fourier transform of the screened Coulomlkepdial,

depending orhq = 2psin(9/2) — is the momentum transferred in the

collision. Define the screening functiop, by equality:

lu,|* = —anze?¢, (3.26).

Then the transport cross section (3.24) is:

Ze?\’
Oy = 4T (p_v> Ai(p) (3.27).

Where:

2p/h

Ayi(p) = ] 0| é,| dg (3.28).

0

- Coulomb logarithm, which depends on the electmtaomentump. For
the unscreened Coulomb potentidp,| = 1/q° so integral in (3.28)
diverges logarithmically at smadl. Plasma shielding eliminates this

divergence. Energy-dependent relaxation time iml23Bbecomes:

p*v
4 Zze4 Nion Aei(p)

T,qi(€) = (3.29).
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1.4 General expressions for the nondegenerate plasma

Kinetic coefficients of degeneratel (> Tg) nonrelativistic &, < 1),
electron-ion plasma, taking into account both tHecéron-ion (ei), and
electron-electron (ee) collisions were discussed@atail by Spitzer [Spi
62] using the expansion of the functioAg(e) and Ar(e) on the attached
Sonin- Laguerre polynomials, traditionally used ite kinetics of
rarefied gases (eg, [Hir 54]). In the nondegenenali@esma, The effective
energy-averaged collision time for ei-scattering given by:

1
= 3.30).
Tel verl ( )

where:

_ 4 2m Z%e* 3 31
Vo =3 o TepT)3i2 Mo (3.31).

And A -the so-called Coulomb logarithm, has an ordem&gnitude:

T
A ~ 1n< "“”‘) (3.32).
Tnin
Where rp.x and rp, -, respectively, maximum and minimum impact

parameter. The maximum impact parameter can beegatl to the Debye
screening lengthrg., = 1/kgs, wherek is defined by equation (3.24).
Minimum impact parameter can be estimatedrgs = max (A, Ze?/kgT).
Where A, thethermal de Broglie wavelength of the electron limit,;, at
high temperatures, ande?/kgT - is the classical closest approach
distance of a thermal electron, which limits;, in the low-temperature,

quasiclassical regime.

Coulomb logarithm depends only weakly on the plaspeaameters and

usually ranges from several te 20. The effective relaxation timey;
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characterizes the efficiency of electron-ion coibss. A similar
effective relaxation time for ee collisions:

3\/ me (kB T) 3/2
.., =
“ 8Vmetn,A,,

(3.33).

Characterizes the efficiency of collisions. M.~A;, the =¢~Z, ie, ei-

Tee

collision at aboutZ times more effective than ee- collisions .

Consider a plasma of heavy ions, in which ee codms can be
neglected, and for ei-collision is a fairly accuegatpproximation of
(3.23). Moreover, if in (3.29) one neglect the @éapence ofA onp (eg,
[ref]) and use the relaxation time approximatior8.42) , one can make

explicit integration in (3.11), which leads to tlegualities:

_32n.e’t,, P 16n.et,; - 200k3Tn T (3.34).
3mm, mm, 3mm,

Hence, using (3.13):

32 n.e’t,; _3kg  128kjTn.t,

=—— K
3 m, 7 2e’ 3mTm,

(3.35).

111.5. Strongly degenerate electron gas

We now consider the opposite limiting case, wherecélons are
strongly degenerate. An analysis of electron tramsh this simplified by
the fact that the main contribution is only the &lmn, whose energies
lie in a narrow range near the Fermi level. Thehaxtpyh (and chemical
potentialu, different from the Fermi energgs small terms p, (T / Tr) ?
Therefore, it suffices to put in (3.11% = pu,. In addition, the second
ratio (3.13) a2/o~(T /Ts)? , so k=K. It is convenient to write the

transport coefficients in the form:
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n.ex, m’kiTn, T, kAT
o= K=————,Qr =

3+8&€  (3.36).

)

m; 3m; ~ 3eppvp

Wherem; = z—i = m,Y, - dynamic electron mass; = ’;—F - the speed on the Fermi

r

surface, and thosg, , 7,.andé - values to be determined on the basis of thezB@hn
equation (3.1). The values of andr, called the effective electron relaxation time in
relation to the charge transfer and heat transtspectively; {~1 - dimensionless
factor, which depends on the mechanism of eledcaittering.

For numerical estimates there is convenient ratios:

= 1.485 x 1022 % (_To = 4.038 x 1015T X7 (T 3.37
g = . X Z(lO_IG)r’c_ . X GZ(W) ( . )'

When considered the scattering of electrons by yngawticles, the approximation of

relaxation time (3.22). In this case, from (3.1l §3.22) easily obtain expressions:

Ts =T = Tei(ﬂe) (3.38).
Tei

zﬁa[lna(ue)]_g — v a[lnﬂe (”9)] (3.39)

Vr a”e FoF aﬂe . .

As well as Wiedemann — Franz law:

m’ k3T
K= >
3e

o (3.40).

That Functiorr,;(u.) The right side of (3.38), as previously deterdinby
formulas (3.23) and (3.24), in which section of Htattering electron with a given total
energy at a given potential, and does not dependhenstatistical distribution of
electrons. Therefore, the functiap;(e) is given by (3.29), regardless of the degree

electronic degeneracy.
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.. Matthiessen's rule

If there are several scattering mechanisms, theutsoh is
complicated. But with strong electron degeneracy @an independently
calculate the effective frequencies for different scattering mechanisms
and to obtain the effective relaxation time = 1/v based on the
Mattissena’s rule (eg, [Zim 60]):v¢: =v, + v, + - In practice, this rule
provides a good approximation in the absence obrsgr degeneracy. In
particular, if there are two scattering mechanismsth effective
frequenciesv; anduv,, then using the variational principle (3.16) candthown
that the resulting effective frequency and satssfie; + v, <v <v; +v, + §vand,
where v <« min (v4,v,) [Zim 60]. In this case the ionic liquid and theystal are

different.

In a liquid or gas (af > T,,) is the main Coulomb scattering of electrons nsio
Electron-electron collisions are virtually absentharge transfer due to conservation of
momentum, and hence the average current in thecplisions, so they usually can be
neglected when calculating the conductance (seegXample., [ref]). However, they
may be important for the thermal conductivity. Cemsently, the Mattissena’s rule :

1
e ooy (3.41a).
Ty Tei Tee

We can rewrite the second equation (3.41a) iridima:

k= (Kt + Kol (3.41b).

The crystal (at T< T,) of the main scattering mechanism - a
scattering electrons on phonons (it is preferabbe the scattering by
ions in the liquid, use the notation «ei») and aed inhomogeneities
(the index «imp»). Electron-phonon scattering uswatominates at
temperatures not too small compared to thglf T> T,, then the

determinant can become the scattering of electrbysimpurities or
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lattice defects."” Scattering by inhomogeneities daa described by an

effective relaxation timer;,, . Thus, the combined effect of scattering of

electrons by phonons, electrons and impurities barrepresented as:

1 1 1 1 1 1 1
L - 4= (3.42).

- K
ei Timp Ty Tei Timp Tee
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B- _Outline_OCP calculations (IOFFE model)

1.7. Scattering of electrons on ions

1m.7.12.  longas
In the case where ions are virtually uncorrelatade effective
relaxation timet,; for electrical and thermal conductivity, resultireg-
collisions, may be obtained by using the equation8.23) and (3.24)
differential scattering cross section for relativts electron Mott, was
amended to second-order Born approximation (eg,nNA&lk]):

47%e*€? 2 vt 9 v _ 9 )
o(€,9) =W|¢q| 1—C—ZsmE +1tZafzsmE<1—smE> (3.43).

Where ¢, — is screening function, introduced in (3.26). Bhwe arrive

at formula (3.29) with the refined expression ttee Coulomb logarithm
Aei(p) : instead of (3.28) we now have:

2
4 9

A()—IT3I *1(1 v in) + wza, Usi (1 'ﬂ)d 3.44
eilp) = , q’° |Pq czsmz nafcsmz sm2 q (3.44).

That reflects the account of relativistic and n@worn corrections. Neglecting these
amendments of plasma shielding, one can perforiytasa integration of the last two
terms in (3.44), which arrive at the explicit exgs®n for them, just a weak screening
(ie 2prp >» 1) [Yak 87] [Pot 97]:

v)Z nZasv

—7- (3.45).

1
_ A0 _=
Aei(p) - Aei (p) 2 ( 2 c

c

Where the first term/\(e(;)(p) - Coulomb logarithm beyond the relativistic Born
approximation, which is calculated taking into aeabthe dynamic screening on the
basis of the formalism of Williams and DeWitt [V&9] and is:
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Aei(p) = In (2”;”) - (:—”)2 In (:—D) - % [1 + (:—”)2] In

Whererp andr , those defined by (2.23) and (2.17), respectively.

1+ (:—D)Zl (3.46).

e

According to (3.38) and (3.29), for strongly degmate electrons effective

relaxation time can be estimated as:

3mh 5.7 x 10717
= c
4zmza)2fAei(ﬂe)Cz ZAei(”e)Yr

Tei = Tei(le) = (3.47).

If A,; = const, the t,; will be independent of temperature, while in the

non-relativistic electrons also on the density.

N.7.2.  lonic liquids (degenerate electrons)

Let us now consider most important case in neutsbars, the case of
strongly Coulomb plasmd,~1 In this case, the ionic screening is
strong: the formal expression for the Debye scregnliength (2.23) gives
the resultsy < a;,. Assuming that the successive acts of scattering
incoherent with each other, the total number ofnidions per unit time
“the differential scattering rate” between stateghagiven initial (p) and
final (p ) momenta are obtained by summing over finaJand averaging

over initial (¢) spin states (cf. [Hub 66]):

wWE-p)=— EZ'U@“’| S(q, w) (3.47).
oo’

Where hg =p —p is the momentum transferhwis the transmitted

energy, U; ' is the matrix element of the operator of elemgn&ainteraction, and

q,00
S (q,w) is the dynamic structure factor (2.51). Screenpifgthe Coulomb
potential are taken into account with dielectricntwion (2.77), and the

finite size of ions - using the form factor (Fourieransform of the
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charge density)l;, As a result of the formula (3.44) for the Coulomb
logarithm has an extra integral factors that takdo account the
correlation of the ions and their finite size, attdus refined the formula

in the Born approximation (ie without the last teim brackets) can be

written as:
2kp 2 2
Aei(P) = Aei(p) = fo @ |Dq|”Sers @ [1 -5 (ZikF) ] dq (3.49).
F
bg =~ (3.50).
q°€.(q)

And S.¢¢(q) — is the effective static structure factor, is eapsed through
the dynamic structure factd¥(qg, w) by the integral ovew with weighting
factors that allows for the dependence of the disittion of ion plasma

oscillations in frequency.

These factors are different for different transpoaefficients, which
serves as the cause of differences in the effectelaxation timer, and
7, in (3.36), which manifests itself in & < T,; The explicit form of the
Coulomb crystal will be presented later. These weigend to unity at
hw < kgT, so in the classical regionT(> T,), to which we confine
ourselves to the case of ionic liquid as an effeetistructure factor
Serr(q) is often used static structure factS€q). But in the article [Bai
98] D.A. Baiko et al gave arguments in favor of &N
modificationsS.sr(q), which becomes important lat- 100. Considering

these modifications.

l.7.2.a Effective structure factor of strongly coulomb liquid

Formally, the liquid is no long-range order. Howeyet is known
that strongly coupled Coulomb liquid has much inmioon with a

Coulomb crystal. Thus, modeling the molecular dymasnmethod along
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with the familiar longitudinal ion Plasmon [Sch 9demonstrated the
emergence of collective shear vibration modes (¢ppifor crystals) in a
Coulomb liquid atr x 120. This means that in the ionic liquid appear a
quasi-ordered structure, D.A. Baiko et al [Bai 9%84d verified that the
spectrum of these modes can be described by thenghospectrum
averaged over orientations of a crystal. Althoudte tlong-range order
does not persist forever, it may be well preserdeding typical electron
scattering time. Thus a temporary electron bandictiure emerges, and
an associated elastic scattering does not conteibtd the conduction (as
in solid). This means that one should deal withlacal disorder
“observed” by an electron along its mean free patdther than with the
global disorder [Edw 62]. Allowance for the influea of quasi-ordering
of ions on the electronic transport coefficients thfe Coulomb liquid
was first implemented in [Bai 98], in which they alewith S.(q) instead
of the full structure factorS(q) including its inelastic component
Therefore it suggests to subtract the elastic cibntion from the total

static structure factor in the liquid phase (e.[Edw 62][Han 73]).

S"(q) =S(@) —S'(q) (3.51).

Where S'(q) is the elastic (Bragg) component, which by analogith
(2.59) is calculated by the formula:

S'(q) = e @ (2m)%n,,, z 5(G-C) (3.52).

G

Where e 2¥(@ js the Debye-Waller factor, determined by formul@s61)
and (2.64), and the bar over the delta functionresgnts an average over
orientations of wave vectod in the bcc structure “There may be various
types of periodic structures in this regime, bueyhare very similar and

one can use the bcc lattice.

D.A. Baiko et al [4-5] had checked that the resisitalmost the same

for face-centered cubic (fcc) and hexagonal closeked (hcp)
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lattices ».which it means that the Selection of tgpe of crystal lattice
for such averaging is ambiguous, but the resultinsensitive to this
choice.

I1.7.2.b  Nuclear form factor
In the inner crust of a neutron star the size o€ thuclei are no
longer negligible compared with the distances betwethem. In this
case, we should take into account the distributadnelectric charge on
the volume of the nucleus. It must take into acciotime nuclear form
factor Fy in the expression for the screening function (3.50
For spherical nuclei the assumption that the nucledarge is

distributed uniformly inside a sphere of radius,., the nuclear form
factor is given by:

3 -
F, )3 [sin(qTnuc) — qTnuc €OS(qTnuc)] (3.53).

QT nuc

The dimensionless parameter characterizing theorafi core size to the
distance between the nuclei is determined the chaeglius of the atomic
nucleus rp,. to the radius of the ion sphereX,uc = 'nuc/dion 'This

parameter can be approximately expressed in terfins. dsee [Hae 06],

Appendix B):

0.00155(4/2)3x,. i < Pari
xnuc={ A/Z)r i P = Pary (3.54).

000247x,. lfp > pdrip

In fact, the proton charge in the atomic nucleus nst quite
uniformly distributed: the density falls off smodyhfrom a maximum to
zero near the nucleus surface, which becomes eaflgchoticeable at

high density near the bottom of inner crust of meut stars.
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.7.2.c Going beyond the Born approximation

NonBornian corrections are taken into account byltmplying the
integral (3.49) on o(e,q)/0gorn(6,9) Where a(e,q) is the exact
nonBornian differential cross section of electromatering by the
Coulomb potential [Dog 56] at the energy and the transmitted
momentumhq and o, (€,q) IS the scattering cross section in the Born

approximation, i.e. the expression (3.43) withoheé tlast term.
l1.7.2.d  Accounting the polarizability of electronic backgraund

Electronic screening not only leads €.(q) in the denominator of
(3.49) but also affects the structure factSfg) in (3.50). The latter
effect is usually ignored in the calculation of msport coefficients in
the Coulomb liquid, that is, the model of the OQR.order to assess the
acceptability of this approximation, in [Pot 94 the calculation of(q)
was taken into account the polarizability of the&tronic background as
amended LFC, according to [Cha 90b]. Such an aatiolg background
polarizability leads to an increasd,; for hydrogen abouts15% at
p =100g/cm® and I' =10 and 40% for largEé. For the helium effect is

several times weaker, while for heavy elementssinegligible.

[1.7.3.  lonic Crystal (multiphonon processes)

In the crystal, ei-scattering can be described ennts of absorption
and emission of phonons. It can happen through radrprocesses, and
through Umklapp processes (eg, [Kit 1986]): In tHest case, the

momentum transfeg = p —p lies in the first Brillouin zone and the

second over and through the zone. The wave vectorabsorbed and

emitted phonons, by definition, lie in the firstiBouin zone. Therefore,
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for normal processes = G, and for the umklapp processds = § — gy,
where ¢, —is the equivalent radius of the Brillouin zonehiwh reaches the
vector 4. If the electron momentunp on the Fermi surface is free to
disperse to any other point of the Fermi sphege<(2 kz), then according
to the equationgg, = (6mn;,,)*/ 3 (2.36), the ratio of the normal process
to the umklapp scattering (2 kr / qgz)?>~ (4Z)?/3. In the laboratory, the
number of conduction electrons per idnis small, so it is usually the
most important are the normal processes, but inséemastrophysical
plasmas of heavy elements, on the contrady,» 1, and therefore
dominated by the Umklapp processes (if not too lbamperatures, as
explained below).

As noted above, the Bragg scattering does not dbote to the
electronic relaxation, so in the collision one colex only the inelastic
component of the structural factor. Inelastic dynamtructure factor is
calculated by formula (2.67). If in this formulaf one shaves off the
amount ofn. n= 1, he arrives at the one-phonon approximation (2.75)
which is used in earlier studies [ Flo 76] [ Ito ]8@to 93] [Bai 95].
However, as it was noted in the paper [Bai 98], tthene-phonon
approximation breaks down wheh approaches td;,, - Contribution of

the n-phonon processes (n-th term) fBrabove the Debye temperature

Uu_

2
22 can be

can be estimated agqr;)?"/n! ~ (kgry)?"/n!, where r# =~ =

estimated by the formula (2.63). For example, fayni atI' ~T',,, obtained
subsection(kzrr)? ~ 3 - no small number.

Given the dominance of Umklapp processes for catunlg the
Coulomb logarithm can use the approximation (2.73).

As noted above, in the general case to distingubdtween the
effective relaxation time to calculate the condutty 7,and 7,in the
heat equation (3.36). Therefore, in equation (3.29d (3.49) will,
generally speaking, different Coulomb logarithmAg, and AY; (the

difference between them can be neglected when ecafg quasielastic,
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ie at T ~Ty,). Accordingly, in (3.49) asS.sr(q) using different effective
static structure factorS,(q) andS,(q) [Bai 98]:

2kr 2 v/ q \?

AT =f @ |Pg| Sox(@ 1——§(ﬂ) ldq (3.55).
(] c F

o p%vp K p%vF

= T* = 3.56).
Tei anZ%e*n;,, AZ; Tei anZ%e*n; A%, ( )

Factors andS,;(q) and S,.(q) to be expressed througS'(q,w) by the

equalities:
+oo z
S+(q) =f o= (@wdo (3.57).
3k 1
Se(q@) = Ss(q) + < 2 65.(q) (3.58).
+o0 3
6S,.(q) = j 1oz S'"(q,w)dw (3.59).

Where z = hw/kgT.

Using (2.74), one can rewrite (3.57) and (3.59) a

5,(@) = 2o W@ f kg1 2% _ (3.60)
g 2 . 4 coshzx . .
oo 1 — 2sinh®x
= e ZW(@) - = " -
6Sc(q) =e f_m K(qTt)——5_—dx  (3.61).
Wherex = mtT/n, and the functionK(q,T,t) defined in (2.75).

Calculations [Bai 98] [Pot 99a] show that these dtions are almost

independent of the type of crystal lattice.
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Consider the classic crystalf = T,;. Then the characteristic phonon
energy is much smaller thakzT. Consequently, only the values o 1
give a contribution to the integrals (3.57) and .58), and it can be a

good approximation to put:

S,(q) = Se(q) = f 5"(q,w) dw (3.62).

Finding A9, = AL; from (3.49) (with the substitution af''(q, w) instead of
S(q)), and tJ; =1};. This approximation is equivalent to the relaxatio
time approximation used before . In this caa&; (in the formula (3.56)
usually takes values 1.

In the opposite limiting case of low temperatuffe « T,;) correlation

ions - essentially dynamic. In this cas§ # Af; andAJ « 1.

Effective structural factors: First of all, using the fact that in high

temperature Coulomb crystallyf < T <T,), one can use the equation
(3.62) withS"(q), defined by equation (2.76). Debye-Waller
factore™2" @, the incoming In this equation, and it can be ewstied by
formulas (2.61) and (2.63).

In general, the effective structure factors in (8).5%an be described

by the approximation formulas [Pot 99a]:
Ss(q) = e W@ (e 2W1@ — 1) (3.63).

91n2e 2@ 0.101n*

85,(q) =
(@) = @1 | 17 2097 T (0.06408 £ 79)(0,001377 + )72

(3.64).
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Where:

q> _ (qrp)® 4kiaf X,
- =77 = =1.683 [— 3.65).
Yoz "y T 3 AZ (3.65)

a, =

These formulas cover a fairly wide range of paraems0,001 <n <
10, and0 < a; <0.3. Equations (3.63) and (3.64) also reproduce the
asymptotics of effective structural factors at largnd small, which can
be obtained from formulas (3.60) and (3.61). The xmam

approximation error of 4%, achieved with; = 0,001 andn = 0,04.
11.7.3.a Low temperature: the case of normal processes

Near the boundaries of Brillouin zones, dispersioalation for
electrons of e(p) differs from the free-electron case, and at the
boundaries the electron energy spectrum contairnssgdhe gaps\e can
be estimated in the weak coupling approximation ,(dKit 86]) as
Ae ~ ¢p(kp) = dnZen; ,kp? = 4e2/(3nky) . The effect of gaps is most
significant if the deviation of the electron moment from the
intersection line between the Fermi surface and tBellouin zone
boundary does not excead~Ae/(hvp)~(4/3m)(asy,/x, )kp. However, with
decreasing temperature the strips of the Fermi aaef between which
the umklapps proceed effectively, become narrowed @loser to these
intersection lines. When the widths of the stripsyz;/n become smaller
than Ak, the umklapp processes are frozen out and the abpnocesses
prevail. The above estimates indicate that this geaps when the

temperature falls below:

1
Tpiz3af)'r

G0 (3.66).

In this case3.555hould be replaced by:
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a 2 2 2
(E)- 222 o )
el c ka

e ? q’
% Zs[qes(k)] m{qz — (qz/m)? + 3(sz/1:)2}
(3.67).

Where dQ anddQ - elements of solid angle near the directionspodnd
p'p =p =pr . Expression equivalent to (3.67) was obtained[Rai 82]
using the general method [Zim 61] and the sphdridagner-Seitz cell
and single-phonon scattering.

At T T, from (3.67) can be possible to obtain precise astatics
for the Coulomb logarithm [Rai 1982], which arepgrssed in terms of

plasma parameters as follows:

A% _ agx” ((4m/3)(apyy/x )0 S 3 68
Agi T Al/2Z71/2 77_3 (3.68).
180 3 m 1/2
Where: ag=— (anm_e> {(5) =159 and {(5) = 1.0369 here {(x) -

Riemann zeta function).

111.8. Overall approximation for the outer shells

In this section we present unified analytical appmations to
calculate the electronic thermal conductivity, caoctivity and
thermoelectric coefficient caused by electron sesdttg on ions.

Let us start treat the case whdh« T,. the Strongly degenerate
case, the classical Coulomb liquid of strongly bduand the classical
ionic crystal have similar physical properties. Callations [Gne 01]
[Bai 1998] [ref214] show that due to this similayitjump kinetic
coefficients at the phase boundary between Coul@amd liquid crystal is
very small, provided that of strongly degenerateu@mnb fluid used
inelastic structure factor (3.51), and in the dajsare taken into account
multiphonon processes according to (3.62) and §2.Tarrying out the

calculations forI' > 1 facilitated by the approximate formulas (3.63)
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(3.64). On the other hand, whdnh« 1, one can usdhe formula (3.45).
The Coulomb logarithms, calculated by this forméda I' < 1, sufficiently
smoothly matched with the Coulomb logarithms, cla@d atl’ > 1. This
allowed one to construct a unified approximate faanfor calculating the

electronic conductivity due to ei-scattering, apglile in all phases [Pot 99a]. It

is based on the expression (3.49), in Whidb(ﬁz S (q) is replaced by effective

screening function:

eff|? _ 1 T
4 _W[l_e 04" ]e~519" G, D (1) (3.69).

Here the first factor has the form of the Debyeesning function with the

effective inverse screening length:

qs = \/ (q; + kip)e P (3.70).

A fZXy

associated with the second Born correction in

Where the parametgt =

Yr

(3.45), and:
q? = q(1+0.06I)eT (3.71).

-is the effective length of the inverse ion scregniThus,q, becomesk, at
'« 1 andk;r at T' > 1. The second factor (in brackets), in form simiiar
(2.76), plays the role of an effective structuretda, so thes, on the order of

magnitude close to the? / 3, expressed by the formula (2.63), and namely :

So = U_pT5 (1 +§) (3.72).
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The third factor is introduced in [Gne 01], takatoiaccount the ionic form

factor and, thus, allows expanding the range ofiegiplity of approximation to

the inner crust too. Included in this factor isaaigmeter:

VA
s, = 1%, (1 + xnucﬁ) (1 +E) (3.73).

Order of magnitude close to thg,. wherer,,. - proton radius of the atomic
nucleus (ie the characteristic radius of the distion of positive charge in the
nucleus). For the calculations is useful to noté thyr ,,,, = (97 / 4)'/3 x,.,
but x,,,. is given by (3.54). Finally, the functiod@sandD describe the quantum
effects at low temperature. the function:

D(n) = exp|—ayu_,e~91/1/4] (3.74).

- Is associated with the quantum correction to bhebye-Waller factor .
and G is a phenomenological factor that describes the reductof ion
thermal displacements in quantum solid BAts T, and contains non-

Born corrections expressed through the argungent

1+ (2Z/125)?
7 J1+(0.199)%Z 13

(3.75).

0.0105n>

G.=6G,+8G,8G=
©oe (1+ 0.0081n?)3/2

[1 + (xr/Yr)gﬂ](l - Z_1) (3' 76)'

G Increases witlZ and decreases gs! atn > 1. Note that one can safely put
G = l1latT = T,;andZ < 30.

Equation (3.49) with the effective screening furmcti (3.69) can be
integrated. As a result, O.Y. Gnedin et al obta@Gnp 01]:
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AL = [Ag(s,w +wy) — Ag(s,w1)]G, D (1) (3.77).

2
Where S:4q_k512: ,W:4k12::50 ,W1:4k12::51

2

Ay(s,w) = A, (s, W) — %Az(s, w) (3.78).
s+1 s
2A:(s,w) =1n + 71 1—-e™)— (1 +sw)eV[E;(sw) — E{(sw+w)]
(3.79).
20,( )_e‘w—1+w s? (1 e
2\5 W)= s+1 €
(3.80).
s+1
—2sln + s(2 + sw)e’V[E,(sw) — E{(sw + w)]

Where El(x)zfxwy‘le‘ydy is the exponential integral given, for
example, ly the rational-polynomial approximations in Abramdwiand
Stegun [Abr 72].

Note that the direct use of (3.79) (3.80) can bé&idult in various
limiting cases whers <1, w« 1, orw> 1. In these cases it is better to

use explicit asymptotic limit [Pot 99a]:

Ar(s,w < 1) (2”1 1”1) 3.81
1(s,w ~WZs+2 sin (3.81).
A «1) 1 — 3s — 65 3l s+1 3 82
25 W W\ 4s+4 2 s (3.82).
Aq( > 1) 1(1 st 1 ) 3.83
1(s,w ~ 5 n ST 1 (3.83).
Ay ( > 1) 2st+1 lsJr1 3.84
2(s,w ~ 55T 2 sin (3.84).
1
AMs<K1Lwgs = E[El(w) +Inw + Cg] (3.85).
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eV—-1+w
A(sK1wK s = —ow (3.86).

Where C; = 0.5772...—is the Euler's constant.

These formulas are obtained for not too low tempees, when not frozen

transfer processes. At low temperatures , one jiacate by interpolation:

AT = Nr exp(—T,/T) + A%, [1 — exp(~T,/T)] (3.87).

eilow

Where %", defined by (3.77) and?/,,, - low-temperature asymptotic (3.68).

ei,low
Note that despite the practical convenience of sitérpolation the actual
behavior of the Coulomb logarithm in the interméglidemperature regime
requires a separate study, which is still lacking.

Thus, the kinetic coefficients in the strongly degeate plasma, one
can obtain using (3.36) (3.47) and (3.87).
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Chapter IV
Electrical and thermal conductivities

In dense plasma

A- Theoretical contribution

IvV.1. The effect of the nuclear form factor

Basing on the loffe model that unifies the descioptof the transport
phenomena in both liquid and solid states of maiteside the extremely
dense matter of neutron star crusts , our firsttcibmution is to study
some aspect of nuclear physics , the main charactparameter is the

nuclear form factor that we talked about.

IV.1. 1. The Gaussian Charge distribution

The general form of the Gaussian Charge distribmti® given by (eg

[Pov 08]):

a> 3/2 2,2
o(r) = <ﬁ> e 2 (4.1).

The Fourier transform of the relation (4.1) givesetso called the

Gaussian nuclear form factor:

2
G _ q
anuss = exp (—m (4 2)

To apply this formulate to neutron star crust, finge must replace

the termah by r;l. then our Gaussian nuclear form factor (4.2) beeom

ZTZ
Fgauss = exp (_ q 2'"“) (4—. 3).
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Replacing (4.3) in (3.69) we get the effective smeng potential of an

exponential charge distribution of the ions :

2 _ exp(_qzr%uc)

eff -50q?
= 1 - e~504*|G, D
|¢q Gauss (q2+q§)2 [ € ] oK (71)
(4.4).
_ 2| Leff|?
— |Fgauss| Z .
By combining equations (3.55) and (4.4), we:
ka 2 vz q 2
N0 =J- 3| peff 1__F(_> d
et )Gauss 0 1 1 lGauss c? 2kp 1
(4.5).
_ kaF 3 |F6auss|2 ¢eff 2 1 _ﬁ(i)z
—Jo q q q PL c2 2kp
Also:
oK _ [2kF 3eXP(_q2r%uc)
ei )Gauss - fo q (q2+q§)2
(4.6).

x [1 - e ]G, D(n) |1 vi( 1 )2 d
e O,K 11 Cz ZkF q

And then we get by computing analytical formulae tbe Coulomb

logarithm:
1 wrZ,, wr,zmc(szw+so)
——nuc 2
AP = S (5—e s (—e % s?w? x
SO rnuc
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211,222 2 2 wr
s2wir2,. wriu(s?w + s9) Wliiue
x (El[s—z] —Eq[ 2 Driuc+ (—1+e S0 )s)
0 0
1 _W(rfuctso) W(SZWHO)z(rEUCHO) 2,2 S2w2(r2uc + So)
-—————e S0 (—e So s‘w*| E 5
T24c + So s3
w(s?w + 5o)(Tuc + 50)]\
—E; s2 Thuc
0
w(s?Ww+s0) (rAuc+so) 2002 (4.2
2 s*w (rnuc + SO)
— So(e 5o s2w? (Eq[ 5 ]
So
2
w(s?W + 50)(Tauc + So) w+ ¥ nuc
— Eq] 2 D+ (-1+e %0 )sg)))
0
(4.7).
1 1 wrZ,, wr,zmc(szw+so)
AP =—(———e S (—e S5 stwt x
WSy Thuc
2.,,2..2 2 (2 Wi
swiri,. wriyc(s*w + sp) Wiwe
x (E1[s—2] — Eq[ 32 Drjuc+ (=1 +e S0 )sj
0 0
erzluc
—wr,s3((—1+e S0 )s?w + sg))
1 _w(rEuctso) W(SZW+SZ)2(r§uc+So) i SPWE (P2 + 50)
— ¢ o (—e 0 s*twh (Eq[ > ]
(rnuc + S()) SO
w(s?w + 5o) (Thuc +50).. 4
- El[ s2 Drnuc
0
w(s?w+sg) (rauctso) 20,2022
S2wi(r2, . +s
bwreso(-2e o stwi(E [ e TS0
0
2 2 wr
W(s?w + s9)(r2yc + s Wriiue
_ El[ ( ())2( nuc 0)]) + (_1 + ew+ So )SZWS() 4 S%)
So
w(s?w+s0) (rAuc+so) 2002 (2
2 s*w (rnuc + SO)
— s5(e %o stwh(Eq[- 5 ]
So
2 2 wr
W(s?w + 59)(r2yc + s Wriiue
-2 ‘;)z( e £ 50)y) 14 e R0 52wy + (-1
0
Wrrzluc

+e"" 5 —w)s?))

(4.8).
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IV.1. 2. The homogeneous sphere charge distribution

The general form of the homogeneous sphere Chaiig&ibution is

given by (eg [Pov 08]):

o) = {3™R’ (4.9).

Where:

R : Is The nuclear radius, for ordinary nuclei inuteon star crusts is
usually given byr,Z'/? instead of the well known formula in nuclear

physicsr,AY? (eg: [Hae 06]) where, ~ 1.2 x 10> fm.

The Fourier transform of the relation (4.10) gividse so called the

oscillating nuclear form factor,;

Fg*¢ = % [sin(a) — acos(a)] (4.10).

where:a =R.q .

To apply this formulate to neutron star crust, fisge must replacing
the termR by ry,. (8111.7.2.b), then our oscillating nuclear form cfteor
(4.10) becomes:

F?ISC = [Sin(qrnuc) — qQIpyc COS(ql‘nuc)] (4.11).

(qryue)3

Which is the same result given in [Hae.07], and dudey authors in

previews work, but we shall use it in different way

Replacing (4.11) in (3.69) we get the effective screening potential

of an exponential charge distribution of the ions:
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2

I o [sin(@hue) — ATmuccos(@rmol] X
q osc - (qZ + qg)z (qrnuc)3 AQhuc qThuc qTrhuc
(4.12).
X [1 —_ e_SOQZ]GU’KD(n) FOSCl |¢eff oL
2kp ,
Ag‘i’c)osc = fo 3 |Fosc| ¢€ff [1 e s ]Ga,ch(n) X
(4.13).

2 2
_YF i)
% Il c? <2kp l dq

To have an analytical formula fofAg) — we must first take into

account Gneding result [Gne. 01]:

ff e_slq2
e —
|| = D (4.14).
Then our Coulomb logarithm can be written as:
ka e—Slq2
O,K _ 3
A Dose = T@+ar2”
(4.15).
q 2
x [1 - e |G, D) |1 ——(—) dq
2kg

Thus the exact result is:
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1 _ws wsy w(sw+so)s1

A€ = (—e so (—1+e%)si+e S  s*w?x
2,,,2 2

s“w*sq w(s“w + s¢)s1

2 ] Eq [_ 2 ])Sl)

So So

1 W(sgtsy) W(SEWso)(so+s1)

2
e o (e So
So + 81

x (Eq[—

2..,2
s“we(sg + 51)
2w? (El[_ 2 ]
So
2 ws
w(s“w+ s So+ S 51
—Eq[- ( ‘;)( : 1)])50 +(~1+e"" 50 )s3
So
w(szw+so)(so+sl)
2
+e So

2.2
S“we(sg+ S

ZWZ(E1[——( : d

So

w(s?w + s¢)(So + 51)

_El[_

. Ds1)

(4.16)

1 1 Wik wriyc(s*w+sp)

ASSC — — ( < S0 (_ s% S4w4 X
WSO Tnuc

2
2,222 WThuc
X (El[ s WS:nUC] El[ Wrnuc(s w+Sg)

])rnuc + ( 1+e % )S()

2
WT'huc

wr2, s3((—1+e s )s?w+sg)) +

2 2
1 _wahuetsg)  WETWHS0)(huctso)

2
S,
2 2
w(s“w+59)(TquctSo) 4
El [_ 5(2, ])rnuc +

w(s2w+s0)(r12mc+s0)
2 2
WriucSo(2e 50

20,2 (12
4.4 s“w*(rauctSo)
W (E[-——F—

2 ]_

So

s2w2(rZuc+50)
(B [ )
2
w(s? w+so)<rnuc+so) we 2
Eq[— 2 D+(=1+e€" 5 )s wsg + 8p) —
0

w(s?w+s0) (rfuc+so) 22 (y2 ) (s )@ )
2 2 4.4 S“W”(rhuctSo w(s"w+59)(TnuctSo
sg(—e 0 WiEl-— 1~ El-

0 s5 D=

erluc 2. 2 w_,_erluc
5o )s“wsg+(—1+e

0 —w)sg)))

-1+ e’

(4.17).

Kinetic properties of the electrons in the shefla@utron stars

82



Chapter IV: Electrical and thermal conductivities in dense plasma

IV.1. 3. The exponential charge distribution

The general form of the exponential Charge disttibo is given by
(eg [Pov 08]):

3
o(r) = (;’—n> e (4.18)

The Fourier transform of the relation (4.12) gives the so called the

Gaussian nuclear form factor:
1
2
q?

To apply this formulate to neutron star crust, first we must

Fdip —

a (4.19).

replacing the term ah by rpl. (§111.7.2.b) then our Gaussian

nuclear form factor (4.19) become:

: 1
e e — (4.20).

T 1+

Replacing (4.20) in (3.69) we get the effective eseming potential of an
exponential charge distribution of the ions:

2 1

dip  (1+q*r2,.)*(q% + q3)?

eff
q

[1- e 5|6, D)

.2 2
= |FZ"’| |¢fo

(4.21).
PL

And we have by substituting the equation (4.21)iriguation(3.55):

AO‘,.K) — J-Zqu3 ¢eff 2 1 _ﬁ(i)z
et Jdip ) dip c? \2kp

q

dq

(4.22).

2
eff
Pq PL

= g |F 1-22(5) |d
L q | q | c2 2kp q
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Also:

o,K 1

2kg
AN = 3 1-—
i Daip fo i e TTemrrrd il

~500°]G,,, D (1) X
(4.23).
2 2
_YF i)
% Il c? <2kp l dq

To have an analytical formula fc(t?\;’g")dip we must first write:

1 _ ATuc
1+ q*r2,)*(q* + q%)?  (q* + q2)(—1 + q2r%,)°

4'rr‘}-uc n
(1 + qzrr%uc)(_l + qgrr%uc)s

1
+
(qz + qg)z(_l + qgrl%uc)‘l

+ 3r1‘11uc
(1 + qzrr%uc)z(_l + q%lﬁuc)‘l’

2, )
1+ qzrl%uc)g(_l + qgrl%uc)3

4
+ Thuc
(1 + qzrr%uc)4(_1 + qgrl%uc)z

(4.24)

Then we find:

(AN (Az,iK PL :
(A aip = ( ; + corrective terms (4.25)
—1+ q2riy
S

Thus the dipolar Coulomb logarithm can be writte:n a

A‘;ip = (s&(s3(1 + s)worl2. + 3s2(—3 — 2s + s®)worll s, —
3sw*(3 + 6s + 552 — 6(1 + s)Log[sw] + 6(1 + s)Log[(1 +
er%uc

s)w] — 6Log[1 + ——] — 6sLog[1 +

So So

2
ey k8 53 +
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w3(17 — 22s — 1552 + 6(1 + 10s + 9s?)Log[sw] — 6(1 + 10s
2
{

Wrnuc
So
2

Wrnuc

+ 9s2)Log[(1 + s)w] + 6Log[1 +

2
WThyc

+ 60sLog[1 +

54s2Log[1
5o ]+ 54s“Log[1 + 5o

])rl?ucsg
+
9w?(5 —s — 2s% + (2 + 8s + 6s®)Log[sw] — 2(1 + 4s
Wiy
]+ 8sLog[1
So

+ 3s?)Log[(1 + s)w] + 2Log[1 +

2 2

wr, wr,
] + 6s%Log[1 + ——
So So

+ Driese +

6w (6 + 2s + 3(1 + s)?Log[sw] — 3(1 + s)?Log[(1 + s)w]

wr? wr?
+ 3Log ll + nucl + 6sLog ll + nucl
So So
wr
+ 3s’Log [1 + Sn“cD 12,55 +
0
2
wrllllC
6(1+ (1 +s)Log[sw] — (1 +s)Log[(1+ s)w] + Log[1 + S ]
0
2
W,
+sLog[1 +—=1)s8)/(6(1

+ S) (Swrl%uc - SO)S(er%uc + 50)3) -

s2(24(1 — e ™™ + eSVswE, [—sw]| — eSWswE, [— (1

6(Swr§uc - 50)5

+ S)w])rl%ucsg - 1+s

6e W(e¥ —s+eVs+eVSY(1+5s)(1+ sw)E;[—sw]
—e"tY(1 4+ 5)(1 + swE,[—(1 + s)w]) (swrZ,.

-w2 WY .2 w+r520 So So
24e™"sp((—1+eM)ryyc + e Tiue(Eq[———] = E4[-W — —=])s)
Thuc Thuc
1
rr%uc(wrr%uc + SO)
So So So

18e " (swr2,. — 5o)s2(e"w(1 + eMmucE;[— ——] — efucE,[-w

rr%uc
So

2 ])r:uc +
nuc
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w+ SZO So w+ 520
+e¥ +e Tuc(1l+ w)E{[— 2 ]—e Tuc(l+w)E{[—w
nuc
So

So wt— So

——Driucso + e Tue(Ej[———] — Eq[-W
nuc nuc
So 2

——=so) —
rllllC

1
l‘Illluc (erguc + SO)Z

6e Vso(—swr2,. + sp)%(e"w?rd,. + w(-2

So
wt— So
+2e" + e"w +2e TuewE [———]
l‘Ill.lC
w+ 520 So 6
—2e TwuewE{[—-w — rz—])rnucso +

nuc

w+ 520 So w+ 520
(-1+e¥—w+2e"w+e Tuew(4+w)E;[— 2 ]—e Tuew(4
nuc

So 2
+ W)El [_W 2 Dr;ll-ucso +
Thuc

So S0

+ +
(—1+e¥ +2e Hue(l+w)E;[— 2 - 2e" uc(1+ W)Eq[-w —

S0

50 1\w2 o3 Wto— So S0 7y 4
= DTucSp +€  Mue(Eq[— -] — Eq[-W — 5-])sg) +
nuc nuc nuc

1 _
———— e " (swryc — So)*(e"Wryi. — eVw? (=3 +
rnuc(Wrnuc"'SO)
2w)rlds, — w(3 — 3e¥ — 3w + 6e"w + eVw? +

w2 w2

3e tuE([—=-]—3e Tuew?E([-w— %])Fgucsg -

nuc

2 2 WS,
(1—-eY—-5w+ 6e"w—w” +3e"w” +e Mmucw?(9
So

wio—
]—e Tuew®(9 + W)E;[—W

So

2
nuc

+ W)Eq[—

So 3
2 Drr?ucso -
nuc

w w w+ 520 So
(—2+2e% - 2w+ 3e"w + 3e Twew(3 + w)E;[— = ]

nuc

w+ 520 So 4 4
—3e Twew(3 + W)E [-W — ——DThucSo —
rnuc
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w w+ 520 So w+ 520
(—1+e"+3e Tuc(l+w)Ei[-——]—3e TNuc(l+w)E[-w
nuc
So

So 5 wt— So
— —Drfucsg — e Tue(Eq[— Z | —E4[—W

nuc nuc
s
rnuc]) 5))

(4.26).

205" = (S3(5* (1 + S)WOrafe + 3s2WH(3 + 25
2

—2(1 + s)Log[sw] + 2(1 + s)Log[(1 + s)w]| — 2Log[1 + S““C]
0

12
— 2sLog[1 + ——)r8,cs0 —

3sw? (3 — 65 — 552 + (2 + 8s + 6s?)Log[sw]

wr2
—2(1 + 4s + 3s?)Log[(1 + s)w] + 2Log l1 + S““cl
0
2

2
T, I

+ 8sLog [1 + Sn“cl + 6sLog [1 + SMCD r8,csa —
0 0

w? (1 + 22s — 352 — 6s3 + 18s(1 + s)?Log[sw]

rIlllC

wr2
— 18s(1 + s)?Log[(1 + s)w] + 18sLog [1 + S l
0

wr?
+ 36s%Log [1 + S““cl
0

2
wr,
+ 18s3Log [1 + SEUCD i cSe —

3w <1 + 55 + 25(3 + 4s + s?)Log[sw]

WIc
— 2s(3 + 4s + s?)Log[(1 + s)w] + 6sLog |1 +

So
r2, r2,
l + 2s3Log [1 + D r2.cSo —
So So
3(1+ 2s+ 2s(1 + s)Log[sw]| — 2s(1 + s)Log[(l + s)w] + 2sLog|1

2
Thuc

+ 8sLog [1 +

——] + 2s%Log[1 + ““°]) s$)/(3(1

+ S) (Swrnuc SO) (Wrnuc + SO) ) -
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1
6W(sWrfyc — So)°
+ ew+stZW2E1[—SW] _ ew+stZW2E1[—(1
+ S)W])rl%ucso +

e ¥s3(—24(1—e" + w—sw + e¥sw

1
1—+S6(—1 +e¥ —s+e%s + e¥sw — s’w + eVs’w

+ eVSWs(1 + s)w(2 + sw)E;[—sw]
_ ew+st(1 +s)w(2 + SW)El[—(l + S)W])(SWI}%“C
— S9)Sp +

2
nuc

24s, ((1 — eV +wWrg,. + (=1 + e")r2,.so

w2 s s
+e Tau (E1 [— 2_0] —E, [—w - ])s(z) +
Ihuc rnuC

18(swrz,c — So)so((—1 + e")wrf, + (-1 + e¥

rr‘}'uc(wrr%uc + SO)

S So w2
+e"w+2e TuewE [-——]—2e TMuewE;[-w
rnuc
So
- 2_])r1‘11uc50 +
nuc
w+ SZ() So w+ 520
(—1+e"+e Muc(Z+W)E[-—5-]—e TMuc(2Z+w)E[-w
nuc
So
So 2 wt— So
2 ])rI%uCSO t+e rn“C(El[_ 2 ]_El[_w
nuc nuc
So 3
- r2 ])SO) +
nuc
1 6s0(—swr2,. + sg)%(e"w?(3 + ZerrsfzcE [— >0 ]
rl?uc(wrr%uc + SO)Z 0 e 0 ! rr%uc

So
s
— 2efnucE; [-w — rz—o])r,‘,’uc + w(—4 + 6e¥ + e"w
nuc

w+ SZO So
+4e Toue(1l+ w)E{[— 2 | —

nuc

w+ 520 So 6
4e rnuc(l + W)El[—w - 2_])rnu(:SO + (—3 + 3eV¥ —w+ 2e"w
nuc

So

fuc (2 + 8w

w+ SZO 2 So
+e Tuc(2Z+8w+w )El[—r2 ]

nuc

w+
—e€

So
+ WZ)EI[_W 2 ])r:ucs(% +
Thuc
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w w+ 520 So w+ 520
(“1+e¥+2e (2 + WEy[- 0]~ 2e Fus(2 + WEs[-w
So 2 .3 w+t 520 So
2 ])rnuCSO t+e rn“C(El [_ 2 ] - El[_w
nuc nuc

So
-2 ])Sg)-l'
nuc

1
rl?uc(wrr%uc + SO)

5 (SWrgye — S0)°(2e¥W3rga. + w?(—6 + 6e"

So + So

w w+r2 So w 2
+ 5e"w + 6e  TuewE;[-——] —6e TucwE;[-w
nuc

So
2 ])rl}l(l)CSO +
nuc

w (—6 + 6e¥ — 6w + 15e"w + e"w?

w+ S0 S
+6e Tuew(3 + w)E; [— 20 ]
l‘Ill.lC

2
nuc

So
w+ S
—6e Tnuew(3 + w)E; [—w - —OD rd,csé +

(—2 +2e%¥ — 11w + 15e"w — w? + 3e"Vw?

2
nuc

+0 S
+e Tuew(18+ 18w + w2)E, [— 0 ]

w0 2 S0 6 3
—e Muew(18+ 18w+ w )El [_W - 2_] TucSo +
nuc

w w W+SZO 2 So
—5+5e" — 2w+ 3e"w + 3e (2 + 6w+ w)E; |[—

2
nuc

w+ 520 2 So 4 4
—3e Tuc(2 + 6w+ w“)E, [—w - 2—] InucSo +

nuc

So SO So

_ w W+r2 _ _ W+r2 _
(—1+e“+3e Mmu(2+w)E{| ] —3e TMuc(2+w)E{[—w

2
nuc

So
So 5 wt— So
2 ])rI%ucSO te r"“c(El[_ 2 ]_E1[_W
nuc nuc
So
2 ])Sg))
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(4.27)
IV.2. Multi components plasma

Astrophysical plasmas — such in accreted neutrarsst are often a

mixture of different ions. Furthermore, ionic cras$s may contain
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structural defects. In these cases, the formula$gB recorded for the
same ionic components are subject to change, wimely depend on the
state of the plasma, such as inhomogeneities, thember and nature of

the location.

To study those plasmas we propose to deal with thenthree point

of view.

IV.2.1 Formalism of charged impurities in a crystal

Consider the scattering of electrons by charged unipes in the
crystal. This case was previously studied in [FI®] [Ewa 75] [Ito 94].
Approaches of all the authors are essentially thema, differing only in

the choice of shielding functionp,, which slightly depend on the

Coulomb logarithm.

Charged impurities in the crystalline crust of newut stars or a
crystalline core of white dwarfs - are ions (atommnawclei) with the
charge numberz; # Z, where Z - charge number of ions forming the
lattice. It is assumed that they are randomly aged in the crystal."
Then the scattering of electrons by impurities cle regarded as

Coulomb scattering on the excess chaifje- 7).

In essence, this is the same scattering as thetesgag of electrons on
the ion in the gas phase, and it also can be dbsdriin the relaxation

time approximation.

Similarly, the expression (3.56), the electronidaneation time for

scattering by impurities is equal:

2
PFVF

ame? ¥(Z — Z;) ;A

)" "imp

(4.28).

Timp =
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Where the summation is over all sorts of impuritiede will consider
uncorrelated impurity, the Coulomb Iogarithltﬂl)lp- is a slow function of
plasma parameters, depending on the screening edtedn scattering by
impurities, described by the functiop,. Shielding is determined by

electrons, and possibly also the correlations betweéhe impurities, but

the latter are neglected.
We will simply make the transformatiodorallj Z - (Z;— Z)e

In the formulas (3.56) - (3.69) then we sum ovelr jab compute the
Coulomb logarithm due to the contribution of impies putting a
Debye-like screeningexp[—w(q)] =0, and G=1, then our impurities
Coulomb logarithm is given by :

)
Almp c2 K2 (4k2+‘Is) ( g[4k2

7145 tv} + 8ki(c*(1 + 2Log[q] —

Log[4kZ + q2]) + v2) — 2kZq%(c*Log[1+ ‘”‘F

4Log(q,] + 2Log[4k} + qZ])v}))D (n,)

M+ (-2-

(4.29).

Where n; =

We defineQim,- The so-called parameter heterogeneity. or impurit

parameter as
2
J

Thus the total frequency will be the sum of theduency of collision of
the domine elementy_. and the impurity frequency

V= Vd_el+vimp (431)
According to [Dal 09] we have:

v (Z%) A

(4.32).
vimp Qimp Aimp
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Since A and Aj,,, have the same order of magnitude~ A, we can

write:

v (2}

~ 2 V= -——Vim
vimp Qimp Qimp P

(4.33).

Generally speaking, this assumption may be violatedcases where
the impurity ions constitute a significant fractioaf the total ion
concentration. Recent modeling results by the mdthof molecular
dynamics [Ito 94] indicate that there could be a@ukar Wigner lattice,
consisting of several types of ions. This case feeg special study and

is not considered here.

We will show the validity of the suggest made byDadligault and
S.Gupta [Dal 09] -they used the method of molacudynamics- that
for a multicomponents mixture if we deal withishmixture as an
amorphous solid or heterogeneous liquid dependimglovalues ,the
Scattering by charged impurities method gives gomdults only for

small values of the impurity parametQf,, < 100 .

Since 1, almost independent ofl, the scattering by impurities
dominates at sufficiently low temperatures. Therefo the ionic
impurities can be a major source of residual rasisg (nearly
independent ofl) and heat capacitye{ T) in the crust of neutron stars at
sufficiently low temperatures and high densities Ta< T,;) - mainly in

the inner crust.

IV.2.2 Linear Mixing rule

When there are no dominant-type ions, arranged uoryestal lattice -
for example, if we consider the liquid, gas or amloous alloy, suitable

alternative method of calculating the kinetic caefénts. In this case we
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can use equation (3.56), having made it to the aepment

Znion/leinamenateIerZ]-an/lil.where the sum is over all ion specigsand
the Coulomb IogarithmAf3i in general, depend on j. In [Pot 99a], A.Y
Potekhin and al proposed a way to approximate dalicon of Ajei 'is
based on "rule of additivity” for ionic mixtures gth 77]. It consists in
the fact that each of tha"ei i rely on the formulas (3.56) - (3.69),
substituting in then%; instead ofZ and[;, instead, of I

IV.2.3. The effective OCP comportment

Almost as good and much more straightforward apphoés that all

Coulomb logarithms replaced by one designed by dhme formulas, but

with the replacement o by /(Z?)).

IV.3. Scattering of strongly degenerate Electron by electns

Despite just shown the inapplicability of relaxatkbime
approximation to its collisions, comfortable yetopide the transport
coefficients in the form of (3.36), which allows u® apply the rule
Mattissena in the form of (3.41) for a liquid or.42) for the crystal.

The character of thermal conductivity due to calbiss between
degenerate electrons is different at temperatumgs sT < T, and
T & T, [Lam 68]: In the first case, the characteristic mantum q ~k
transferred in the scattering is much smaller thhe thermal smearing
of the Fermi surface and in the second case thastfexred momenta in
the collisions exceed the width of the thermal smeg out of the Fermi
surface. By the virtue of the Pauli principle folnet electron momenta
before and after the scattering must be within thermal width of the
Fermi surface.

Consequently, aff « T, the number of transition$p;,p, = P1,P2)

suppressed: there are allowed only transitions ok the directions of
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the momenta change, but not their absolute valuBben Ty, ST < Tg
this restriction disappears, as the transfer of mobom in either
direction is not able to withdraw the electron odis the thermal width
of the Fermi surface.

E. Flowers and N. Itoh [Flo 76] derived a variatednexpression for
Tee Strongly degenerate relativistic electronsT « T,, V Urpin and D.
Yakovlev [Urp 80] obtained a more general resulatthapplies also for
T < T, but does not requirT < T,, This result is used in The papers
[Pot 97] [Pot 99a], which were calculated by electic conductivity, due
to its scattering, and obtained approximate formida them, the result

can be written in analogy with (3.36) as follows:

ee

_ 3ag (kpT)? (sz

kTF)](xr,y) (4.34).

2713 hmc?

wherey = \/§Tpe/T and J(x,y) - analytical approximation function is

given by:
(X, 7) (1+ 6 2 )x
S y) ~ 5x2 5x%
y3 2.81 0.81v%\n® y*
X In ——— | —_———
3(1+0.07414y)3 y y ¢/ 6 (13.91 + y)*

(4.35).

In our simulation we will deal with the whole eleonhs of the

multicomponent plasma, that require a special cdesation of n, =
Xz -
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B- Simulation

IV.4. Nuclear form factor effects

In order to study the effect of the nuclear formctfar on the
transport coefficients we like to compute electlicand thermal
conductivities against the mass density of sevesl@&ments at different
temperatures, we compute those coefficients from #&guation (3.34) ,
and we substitute the analytical formulae (4.7)8()4for the Gaussian
form factor, and (4.16) (4.17) for the oscillatiigrm factor , and (4.26)
(4.27) in the case of dipolar form factor, precioestimation of the
nuclear effect will be shown by computing the reévat error from the
point like form factor case, a series of MATLAB @®s are developed to

simulate and illustrate these objectives.

The figure (4.1) illustrate the relation betweenethadial charge
distribution and its corresponding form factor asdow some examples

from standard nuclear physics.

pln) IFg?)l Example

pointlike constant Electron

'1\ exponential '\ dipole Proton
\\____

- | )
%55 \gauss “Li

|homogeneous |-
sphere \\ oscillating -

y

—\ sphere with |__

\ a diffuse ‘\\ o N
‘~ surface  oscillating Ca
\

"-

N — .I':;'f_—-'
Figure 4.1 : Relation between the radial charge distributigir) and the correspondingform

factor in Born approximation from [Pov 08].
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vV.4.1 Results

Thermal conductivity vs density
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Figure 4.2a: Thermal conductivity Vs the mass density for 2He using dipolar form factor.
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Figure 4.2b : Electrical conductivity Vs the mass density for 2He using dipolar form factor.
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Relative error
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Figure 4.2c : Relative error (with respect to point like case )Vs the mass density for 3He.
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Thermal conductity vs density
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Figure 4.3a: Thermal conductivity Vs the mass density for $Li using Gaussian form factor.

Electrical conductivity vs density
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Figure 4.3b : Electrical conductivity Vs the mass density for $Li using Gaussian form factor.
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Figure 4.3c : Relative error (with respect to point like case )Vs the mass density for $Li.
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Thermal conductivity vs density
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Figure 4.4a : Thermal conductivity Vs the mass density for 35Ca using spherical form factor.
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Figure 4.4b : Electrical conductivity Vs the mass density for 43Ca using spherical form factor.
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Figure 4.4c : Relative error (with respect to point like case )Vs the mass density for 33Ca .
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IvV.4.2 Discussion

Figures(4.2-4.4) type (a ,b) shows the dependeotdhe Thermal
conductivity (a) and electrical conductivity (b) euo electron-ion scattering
in fully ionized plasma at different temperaturesr fdifferent elements on
the mass density. the blue line fér= 10°K, the green line forT = 107K, the

red line forT = 108K , and we use different form factors that ordinanyclei

FS

tPL
—c ) » Where theFsS: for

had in terrestrial conditions, the relative erier(
finite size case/PL: for point like case ) on the masse density iswhoin
Figures(4.2-4.4) type (c), we see that in the spdadrform factor case even in
our calculation , it still produce the same resudss previous studies (eg [Gne
01]) the increasing of the decrease of kinetic dmeénts beyond the drip
point (until 40% at p =10'3g/cm3), but for the case that we studied (the
dipolar and the Gaussian form factors) and for gbgb situations ie~10° —
10’g/cm?® for light element we see an increasing of the esluof kinetic
coefficients from few percent te-40% and a decreasing of the values of
kinetic coefficients forp < 10°g/cm® until ~60% and a decreasing of the
values of kinetic coefficients forp = 107g/cm?® until ~60%. for heavy
elements like thejdCa we see an decreasing of the values of Kkinetic

coefficients atT = 10°K ~80% — 95%.

IV.5.  Multi components plasma

We like to study transport coefficients of plasmgstems
contains more than one components , and show themportment
against change in the temperature figures (4.241tbl) and in the
total mass density figures (4.12 to 4.21) by usiifferent methods
introduced in §1V.2.

In order to get this objective we develop a Numbef
MATLAB codes especially to deal with Data Bases ttlwvee need to

save our results.
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In our work we only consider the point like fornadtor case

and using the high temperature “the fitted” Couloholgarithm.

Our simulation is based on the consideration tHag telative

. pj . . . .
mass density of all element§ =?’ is fixed, and we will give these
ratios for every figure.

IV.5.1 Results

|Elec.1rcn-lcn Electrical conductivities "Born approximation | |Electrcn-lcn Electrical conductivities "Beyeond Born approximation |
[— Eff OCP method — Imp method ~~ — LM method I [— E#f OCP method — Imp method ~~ — LM method |
@ @
o o
2 2
E 221 2
- 32 -

Log (T/K) Log (Theta)

Figure 4.5a: Electron ion electrical conductivities in the Born approximation
(Left panel) and beyond Born approximation (Right panel) , we show different
method of computation :Effective OCP method ( Green line ) ,Impurities
method( Red line ) , Linear mixing method ( Blue line ) for the mixture
1Hp, =5x10°g/cm3,%He p, =5 x 10°g/cm3.

| Electron - lon Thermal conductivities "Born approximation | | Electron - lon Thermal conductivities "Beyond Born approximation |
[— Eff OCP method — Imp method ~ — LM method I [— EffOCP method — Imp method ~ — LM method |
7 i : : : 7 i :
2 1?' """"" i pmEmsEms———— TEE=EEEE=== i il sl s E 1? b Fe========= i T mEsmEmEmmE————
£ | 1 j | E | H
3 1 1 1 3 1 '
w i [} . H
Q | i i Q 1
% h h h d 1o '
o L e R Rt B o L R R A [l R e
o ' ' ' ' [
m ' ' (]
= 1 1 - 1
& . . o 1
o ' ' =] il
— ' 1 ' - ' ' ' 1
| —— T S PR R | R e e—————— et e Ao
T T T T T T T T T
4 5 § 7 8 5 5 -4 -3 2
Log (T/K) Log (Theta)

Figure 4.5b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for themixture 1H p; = 5 x 105g/cm? ,3He p, = 5 x 10°g/cm3.

Kinetic properties of the electrons in the sheflaeutron stars 100



Chapter IV: Electrical and thermal conductivities in dense plasma
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Figure 4.5c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) for the mixture 1H p; =5x10°g/cm3,%He p, =5 X

105g/cm3.
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Figure 4.5d: the Fermi temperature VSthe temperature in the logarithmic scale for the
mixture 1H p; = 5x 10%g/cm3 ,4He p, = 5 x 105g/cm3.
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Figure 4.6a: Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line ) , Linear mixing method ( Blue line
Yfor the mixture '2C p; = 5 x 106g/cm3, 180 p, = 5 x 10°g/cm?3.
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| Electron - lon Thermal cenductivities "Born apprcximaticn"|

| Electren - lon Thermal conductivities "Beyend Born apprcximaticn"|
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Figure 4.6b:
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Electron ion thermal conductivities in the Born approximation (Left panel) and

beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for the mixture 12C p; = 5 x 106g/cm3, 180 p, = 5 x 10°g/cm3.

Figure 4.6c:
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Electron ion electrical conductivities in the Born and beyond Born

approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) for the mixture 2C p, =5x10%g/cm3,180 p, = 5 X
10g/cm3.
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Figure 4.6d the Fermi temperature VSthe temperature in the logarithmic scale for the mixture
12¢ py =5x10%g/cm3,180 p, = 5 x 10°g/cm?3.
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Figure 4.7a: Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for the mixture 2C p; =5 x 10%g/cm3,180 p, = 5 x 106g/cm3.
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Figure 4.7b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for the mixture 2C p; =5 x 10%g/cm3,180 p, = 5 x 106g/cm3.
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Figure 4.7c Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) ) for the mixture 2C p; = 5 x 106g/cm?,180 p, = 5 x
10%g/cm3.
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Figure 4.7d: the Fermi temperature VSthe temperature in the logarithmic scale) for the mixture
12¢ pp =5x10%g/cm3,180 p, = 5 x 10%g/cm?3.
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Figure 4.8a: Electron ion thermal conductivities in the Born approximation (Left panel) and beyond
Born approximation (Right panel) , we show different method of computation : Effective OCP method
( Green line) ,Impurities method( Red line ) , Linear mixing method ( Blue line ) for the mixture
1H p; =5x%x105g/cm®,%He p, = 3 x 103g/cm3,8Li p; = 2 X 10°g/cm3.
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Figure 4.8b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for the mixture 1H p; =5 x 10%g/cm3 ,3He p, = 3 X 10°g/cm3,8Li p; = 2 x 10°g/cm3.
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Figure 4.8c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) for the mixture 1H p; =5x10°g/cm3,%He p, = 3 X
10%5g/cm3,8Li p; = 2 X 10°g/cm3.
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Figure 4.8d : the Fermi temperature VS the temperature in the logarithmic scale for the
mixture 1H p; =5 x 105g/cm3 ,3He p, = 3 X 10°g/cm3,8Li p; = 2 x 105g/cm3 .
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Figure 4.9a: Electron ion thermal conductivities in the Born approximation (Left panel) and beyond
Born approximation (Right panel) , we show different method of computation : Effective OCP method
( Green line ) ,Impurities method( Red line ) , Linear mixing method ( Blue line ), for the
mixture'2C p; = 5 x 10%g/cm3 , 13N p, = 4 x 10°g/cm3,180 p; = 10°g/cm3.
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Figure 4.9b: Electron ion electrical (upper panel) and thermal (lower panel) conductivitiesin
the Born approximation (Left panel) and beyond Born approximation (Right panel) , we show
different method of computation : Effective OCP method ( Green line) ,Impurities method( Red
line) , Linear mixing method ( Blue line ), For the mixture'2C p; =5 x 106g/cm3 , YN p, =
4 x10%g/cm3,180 p; = 10°g/cm3.
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Figure 4.9c: Electron ion €lectrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel), For the mixture'2C p; =5 % 10°g/cm3,YIN p, = 4 X
10%g/cm3,180 p; = 10%g/cmS.
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Figure 4.9d : the Fermi temperature VS the temperature in the logarithmic scale, for the mixture
12¢ pp =5x10%g/cm3 , 13N p, = 4 x 10°g/cm3,180 p; = 10°g/cm3.
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Figure 4.10a: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line),
for the mixture 39Crp; =4x107g/cm3,52Mn p, = 3 x 107g/cm3,58Fe p; = 3 x

107 g/cm3.
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Figure 4.10b: Electron ion electrical (upper panel) and thermal (lower panel) conductivities
in the Born approximation (Left panel) and beyond Born approximation (Right panel) , we
show different method of computation :Effective OCP method ( Green line ) ,Impurities
method( Red line ) , Linear mixing method ( Blue line ) for the mixture 39Cr p; = 4 X
107g/cm?,532Mn p, = 3 x 107 g/cm3,38Fe p; = 3 x 107 g/cm?
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Figure 4.10c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) for the mixture 39Cr p, = 4 x 107 g/cm?®,5iMn p, = 3 x
107 g/cm3,58Fe p; = 3 x 107 g/cm3.
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Figure 4.10d: the Fermi temperature VS the temperature in the logarithmic scale , for the mixture
39Cr p1 =4 x107g/cm?,52Mn p, = 3 x 107 g/cm?3,58Fe p; = 3 x 107 g/cm?3.
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Figure 4.11a: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line ) , Linear mixing method ( Blue line
).for the mixture 1H p; = 10°g/cm3,3H p, = 10°g/cm3,3H p; = 10°g/cm3,3He p, =
105g/cm3,4He ps = 10%g/cm3,$Li pg = 10°g/cm3,%Li p; = 10°g/cm3,}Be pg =
10%g/cm3, 3Be pg = 10°g/cm3,$Be p;o = 10°g/cm?
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Figure 4.11b: Electron ion electrical (upper panel) and thermal (lower panel) conductivities

in the Born approximation (Left panel) and beyond Born approximation (Right panel) , we

show different method of computation :Effective OCP method ( Green line ) ,Impurities

method( Red line ) , Linear mixing method ( Blue line ), for the mixture:

1H p; = 105g/cm3,2H p, = 10°g/cm?3,3H p; = 10°g/cm3,3He p, = 10°g/cm3, 5He ps
=10%g/cm3,$Li pg = 10°g/cm3,%Li p; = 105 g/cm3, Be pg
=10%g/cm3, JBe py = 10°g/cm3,3Be p;o = 10°g/cm?
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Figure 4.11c:Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right pand), for the mixture 1H p, =10%g/cm3,2H p, = 10%g/
cm ,1H p3 = 10°g/cm3,3He p, = 10°g/cm3,4He ps = 10°g/cm3,8Li pg = 10%g/

3,7Li p; = 10°g/cm3,}Be pg = 10°g/cm3, JBe py = 10°g/cm?3,13Be p;q = 10°g/cm?
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Figure 4.11d :the Fermi temperature VS the temperature in the logarithmic scale, for the
mixture:1H p; = 10°g/cm?,3H p, = 105g/cm3,3H p; = 105g/cm3,3He p, =
10%g/cm3,4He ps = 10%g/cm3,$Li pg = 10°g/cm?3,%Li p; = 10°g/cm3,}Be pg =
10%g/cm3, JBe py = 10°g/cm3,4Be p;o = 10°g/cm?
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[— Eff 0CP method — Imp methed  — LW method I [— Eff 0CP method — Imp methed ~ — LW method |

Log{segmaiCiG s unites)
Log{segmaiCG s unites))

s 5 6 7 8 9 £ - 3 2 R
Log (T/K} Log (Theta)

Figure 4.12a: Electronion thermal conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line),
for the mixture
{oNe p; = 10°g/cm? ,#iNa p, = 10°g/cm?,{3Mg p; = 10°g/cm?, 334l p, =
10%g/cm3,38Si ps = 10°g/cm3,35P pg = 10%g/cm3,3ES p; = 10°g/cm3,35C1 pg =
10°g/cm®, 334r py = 10°g/cm?, 33K p1o = 10°g/cm?
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Figure 4.12b: Electron ion electrical (upper panel) and thermal (lower panel) conductivities
in the Born approximation (Left panel) and beyond Born approximation (Right panel) , we
show different method of computation :Effective OCP method ( Green line ) ,Impurities
method( Red line ) , Linear mixing method ( Blue line ), for the mixture
{oNe py = 10°g/cm? ,#iNa p, = 10°g/cm? 13Mg p3 = 10°g/cm?, 1Al p,
= 10°g/cm?,2§Si ps = 10°g/cm?, 4P ps = 10°g/cm®, 1ES p;
= 10°g/cm®,35C1 pg = 10°g/cm3,3§Ar pg = 10°g/cm®, 33K py,
=10%g/cm3
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Figure 4.12c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel), for the mixture %3Nep, = 10°g/cm3,23Na p, = 10°g/
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Figure 4.12d: the Fermi temperature VSthe temperature in the logarithmic scale, for the mixture
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Figure 4.13a: Electronion thermal conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Greenline) ,Impurities method( Red line) , Linear mixing method ( Blueline),
for ten Ca's isotopes at fixed mass density ratio .
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Figure 4.13h Electronion electrical (upper pandl) and thermal (lower panel) conductivitiesin
the Born approximation (Left panel) and beyond Born approximation (Right panel) , we show
different method of computation : Effective OCP method ( Green line) ,Impurities method( Red
line), Linear mixing method ( Blue line) for ten Ca's isotopes at fixed mass density ratio.
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Figure 4.13c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left pandl), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) for ten Ca's isotopes at fixed mass density ratio.
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Figure 4.13d :the Fermi temperature VSthe temperature in the logarithmic scale for ten Ca's
isotopes at fixed mass density ratio .
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Figure 4.14a: Electron ion electrical conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line ) , Linear mixing method ( Blue line),
for 89 elements from the hydrogen to the iron at fixed mass density ratio.

| Elzctran - lon Thermal conductivities "Born apprcximaticn"| | Electron - lon Thermal conductivities "Beyvend Born apprcximﬂticn"|
[ = Eff OCP method — Imp methed ~ — LW method | [— Eff OCP method — Imp method ~ — LI method |

E 17 9 1"13 17 ¢

5 164 5 164+

w w

il il

S 15 513

o (=%

T F I

= 14 = 141

o o

5 3 1

134 131

Log (T/K) Log (Theta)

Figure 4.14b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)
for 89 elements from the hydrogen to the iron at fixed mass density ratio.
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Figure 4.14c Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law

violated (WFV) (Right panel) , for 89 elements from the hydrogen to the iron at fixed mass
density ratio.
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Figure 4.14d :the Fermi temperature VS the temperature in the logarithmic scale, for 89 elements
from the hydrogen to the iron at fixed mass density ratio .
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Figure 4.15a: Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline) ,
for themixture {H ,3He ,X; = 0.5,j = 1,2 at T = 10°K.
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Figure 4.15b : Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)
for themixture {H ,3He ,X; = 0.5,j = 1,2 at T = 10°K.
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Figure 4.15c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) , for themixture {H ,3He ,X; = 0.5,j = 1,2 at T = 10°K.
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Figure 4.15d the Fermi temperature VSthe total mass density in the logarithmic scale, for the
mixture {H ,3He ,X; = 0.5,j = 1,2 at T = 10°K.
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Figure 4.16a: Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Greenline) ,Impurities method( Red line) , Linear mixing method ( Blueline) ,
for themixture '2C, 130 ,X; = 0.5,j = 1,2 at T = 107K.
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Figure 4.16h Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)
, for the mixture ¢, 180 ,X; = 0.5,j = 1,2 at T = 107K.
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Figure 4.16c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) , for the mixture '¢C, 130 ,X; = 0.5,j = 1,2 at T = 107K.
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Figure 4.16d :the Ferm temperature VS the total mass density in the logarithmic scale ,for the

mixture '¢C, 130 ,X; = 0.5,j = 1,2 at T = 107K.
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Figure 4.17a: Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Greenline) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for themixture 32Mn ,3¢Fe ,X; =0.5,j = 1,2 at T = 108K.
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Figure 4.17b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line ) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for the mixture 32Mn ,3¢Fe ,X; =0.5,j = 1,2atT = 10°K.
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Figure 4.17c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) for the mixture 3Mn ,3¢Fe ,X; =0.5,j =12 at
T = 108K.

Kinetic properties of the electrons in the shefla@utron stars 119



Chapter IV: Electrical and thermal conductivities in dense plasma

Electron - lon Electrical conductivities |

— Fermi Theta

e R A e

R B e s e SR
E | | . : . | | . . .
% _2.....L ..... | S — { S —— [ A [ [/ A | E N — | — L P —— [
a | | . . h | | . . .
- ' ' ] ] ] ' ] ] ]
B R Femee- R R e P SR -

-4 T T T T T T T T T .

4 5 [ 7 8 5 10 1 12 13

Log (Rha/CGS unites)

Figure 4.17d:the Fermi temperature VSthe total mass density in the logarithmic scale,for the mixture
5eMn ,3¢Fe ,X;=05,j=12atT = 10°K.

Log{segmalCGS unites)

LogikappaiC G5 unites)

| Electren - lon Electrical conductivities "Born apprcximaticn"| | Electren - lon Electrical conductivities "Bevond Born apprcximaticn"|

[ — Eff OCP method — Imp methed ~ — LW methed | [— Eff 0CP method — imp method ~ — LM method I

Log{segmal/C G5 unites)

Log (Rho/CGS unites)

Figure 4.18a Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for themixture 1H , 5He, §Li, X; = 1/3,j = 1,2,3 at T = 10°K.
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Figure 4.18b: Electronion thermal conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for themixture 1H ,5He, §Li, X; = 1/3,j = 1,2,3 at T = 10°K.
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Figure 4.18c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) ,for the mixture 1H , 3He, §Li,X; = 1/3,j = 1,23 at T = 10°K.
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Figure 4.18d: the Fermi temperature VSthe total mass density in the logarithmic scale, for the
mixture 1H ,3He,§Li,X; = 1/3,j = 1,2,3at T = 10°K.

| Electren - lon Electrical conductivities "Born ﬂpprcximaticn"| | Electren - lon Electrical conductivities "Beyond Born ﬂpprcximaticn"|
[ — Eff OCP method — Imp method ~ — LW method | [— Eff OCP method — imp method ~ — LM method |
.- . 26
w25 T 251
= = .
5 24_ _________________________________________________ 5 24_|
w [72]
g R Ty o 23]
B2zl b T e : g 22f
521_ _________ 1 ______________l _______________________ %21_‘
A i i R
@ 204 T - @204
3 ' : I |
19F- -t e - T 18
T T T T
4 5 ] 7 ] 9 10 " 12 13

Leg (Rho/CGS unites) Log (Theta)

Figure 4.19a: Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)
for themixture 2C , 3N, '50,X; = 1/3,j = 1,2,3at T = 107K.
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Figure 4.19b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line ) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for themixture 2C , 3N, '§0,X; = 1/3,j = 1,23 at T = 107K.
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Figure 4.19c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) ,for the mixture '2C ,'7N, 30, X; = 1/3,j = 1,23 atT = 107K.
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Figure 4.19d :the Ferm temperature VS the total mass dengity in the logarithmic scale ,for the
mixture '¢C , 1IN, 180,X; = 1/3,j = 1,23 at T = 107K.
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Figure 4.20a: Electron ion electrical conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Greenline) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for themixture 39Cr , 32Mn, 35Fe, X; = 1/3,j = 1,23 at T = 107K.
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Figure 4.20b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for themixture 39Cr , 32Mn, 35Fe, X; = 1/3,j = 1,23 at T = 107K.
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Figure 4.20c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel), for the mixture 33Cr ,3ZMn,3¢Fe,X; =1/3,j =123 at
T =107K.
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Figure 4.20d: the Fermi temperature VS the total mass density in the logarithmic scale ,for the
mixture 39Cr , 32Mn, 36Fe,X; = 1/3,j = 1,23 at T = 107K.
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Figure 4.21a: Electronion electrical conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)

for the mixtureiH ,iH,3H,3He,3He,§Li,jLi, }Be, 2Be, '3Be ,X; = % j=1..10 at
T = 10°K.
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Figure 4.21b: Electronion thermal conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)

for themixture 1H ,$H ,3H ,3He , 3He,$Li, 5Li, }Be, 3Be, '}Be ,X; = %,j =1..10 at

T = 10°K.
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Figure 4.21c: Electronion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) ,for the mixture:

1H ,3H ,3H,3He,3He,5Li, 3Li, }Be, 3Be, '{Be ,X; = %,j =1..10atT = 10°K..
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Figure 4.21d: the Fermi temperature VSthe total mass density in the logarithmic scale ,for the
mixture 1H ,iH ,3H ,3He ,3He, §Li, 3Li, }Be, 3Be, '{Be ,X; = %,j =1..10atT = 10°K.
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Figure 4.22a: Electron ion electrical conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)

for the mixture 23Ne,?2Na,?3Mg ,35Al,285i,31pP, 335 ,35C1, 354r , 33K , X; = 0,j =1..10

atT = 107K.
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Figure 4.22b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line)
for the mixture:

%8N€,11Na,12Mg,13Al,14 ’15P’16 ’17Cl’18 ,19K X O,]=110 atT=1O7K
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Figure 4.22c: Electronion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law
violated (WFV) (Right panel) ,for the mixture

{0Ne , 3iNa, 35M g, 3541, 3551, 35P, 335, 35C1 , 354r 33K , X; = 1..10atT = 10’K
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Figure 4.22d: the Fermi temperature VSthe total mass density in thelogarithmic scale ,for

H 20 —_ ] =
the mixture 23Ne , 22Na, 25Mg , 2841, 385i,31pP, 335 ,35C1, 3%Ar , 33K, Xj = 5] = 1..10 at
T =107K.
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Figure 4.23a: Electron ion electrical conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)

for the mixture 33Ca ,35Ca,33Ca, 33Ca, 35Ca, 53Ca, 56Ca , 50Ca , 35Ca , X; = o’j =1..10
atT = 107K.

Kinetic properties of the electrons in the sheflaeutron stars 127



Chapter IV: Electrical and thermal conductivities in dense plasma

2

Log(k appa,

| Electron - lon Thermal conductivities "Horn apprcximaticn"|

| Elzctron - lon Thermal cenductivities "Beyond Born apprcximaticn"|

[— Eff OCP method — Imp method ~ — LM method |

Log(kappallGs unites)

t
4 5 [ 7 2 9 10 11 12 13
Log (Rhe/CGS unites)

[— Eff OCP method — Imp methed ~ — LM method |

Log (Theta)

Figure 4.23b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)

for the mixture: 33Ca ,355Ca, 35Ca, 33Ca, 35Ca, 53Ca, 56Ca, 50Ca , 55Ca , X; = 0,j =1..10

aT =10"K. .
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Figure 4.23c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law

violated (WFV) (Right panel) ,for the mixture:

40 — — 7
40Ca ,33Ca ,43Ca, 33Ca , 38Ca, 43Ca , 45Ca , 37Ca , 38Ca,, Xj = 10,] =1..10atT = 10"K.
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Figure 4.23d: the Fermi temperature VS the total mass density in the logarithmic scale ,for the
mixture 30Ca , 56Ca, 55Ca, 53Ca, 36Ca, 33Ca, 35Ca, 55Ca, 55Ca , X; = —O,j =1..10atT = 107K
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Figure 4.24a: Electron ion electrical conductivitiesin the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blue line),
for 89 elements from the hydrogen to the iron at fixed mass density ratioat T = 107K.
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Figure 4.24b: Electron ion thermal conductivities in the Born approximation (Left panel) and
beyond Born approximation (Right panel) , we show different method of computation : Effective
OCP method ( Green line) ,Impurities method( Red line) , Linear mixing method ( Blueline)
for 89 elements from the hydrogen to the iron at fixed mass density ratioat T = 107K.
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Figure 4.24c: Electron ion electrical conductivities in the Born and beyond Born
approximations (Left panel), and the difference between Thermal conductivities in the case
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law

violated (WFV) (Right panel) , for 89 elements from the hydrogen to the iron at fixed mass
density ratioat T = 107K.
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Figure 4.24d: the Fermi temperature VS the total mass density in the logarithmic scale , for 89
elements fromthe hydrogen to the iron at fixed mass density ratioat T = 107K.

IV.5. 2. Discussion

a ) Figures. (4.5t0 4.14) and (4.15 to 4.24) Tyf# and ‘b’

In the figures (4.5 to 4.14) we show the dependeficke Electrical conductivity and
thermal conductivity due to electron-ion scatterimy temperature in fully ionized plasma
mixtures of different elements at different demsitand mass densities ratios , and In the
figures (4.15 to 4.24) we show the dependence @fBlectrical conductivity and thermal
conductivity due to electron-ion scattering on toal mass density in fully ionized plasma
mixtures of different elements at different tempar@a and mass densities ratios , we find that
the points of view used to compute kinetic coediiti are approximately the same as it
already expected in [Pot 99a], but this is truthm case were the impurity parameter is small
as it was mentioned by Daligault & Grupta [Dal @8 green circles) , the fundamental
difference between the two approach that in thie lofodel we don’t need the knowledge of
the point of melting which give us a great advaatag unification between liquid and solid
states , which is the major results of Baiko’s letvark [Bai 98] : The Modification of the
structural factors improves the calculation of gwnductivities in liquid and in the solid
phase, and virtually eliminates the jumps for tifeecent chemical elements in a wide range
of density in the OCP case and then The modifiecttiral factor is physically accepted for
[Bai 98] , but Itoh et al [Ito 93] Suggest that tine field of condensed matter physics,
however, the correctness of the original Ziman m#1] method with the use of the full
liquid structure factor has long been establish&sh¢roft and Lekner [Ash 66]; Rosenfeld
and Stott [Ros 90]). Part of the motivation for th#oduction of the suggestion in [Bai 98]
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appears to be the finding by Itoh et al [Ito 934tthhe conductivity of astrophysical dense
matter typically increases ¥ — 4 times upon crystallization. Regarding this findirome
should note that simple metals in the laboratorgwstsimilar phenomena. The electrical
conductivity of the simple metals in the laboratshyws significantZ — 4 times) jumps
upon crystallization (lida and Guthrie [Lid 1993or these reasons they follow the method
in which they used the full liquid structure fagtarhich is in accord with the method used in
condensed matter physics (Ashcroft and Lekner [P866];Rosenfeld and Stott [Ros 90]).

Interestingly, for the multi-component systems fdumthe crusts of accreting neutron
stars, the jump may be much less important thagesigd by the calculations of Itoh et al.
[lto 93]. However in our work we don'’t treat tpeoblem of the physical meaning : if this is
likely due to the reason proposed by Baiko et al @], or because of the lack of long-range
order for those complex mixtures and the high degreimpurity-like disorder that those
systems possess as suggested by J. Daligault &wp& [Dal 09] .

b ) Figures. (4.5 to 4.24) Type ‘C’

Figures (4.5 to 4.14) shows the dependence of ligwtri€al conductivity in the Born
and beyond Born approximations due to electronsoattering in fully ionized plasma
mixtures of different elements at different demsitand mass densities ratios (left panels) and
and the difference between Thermal conductiviiegshe case were The Weidermann-Franz
Law respected (WFR) on temperature , and were Theed&mann-Franz Law violated
(WFV) (Right panel).and Figures (4.15 to 4.24) shene but the dependence was in the total
mass density at different temperature and masstasnstios For comparison, and numerical

results does not differ from previous works thatdiseuss in chapter 3.

c) Figures. (4.5 to 4.24) Type ‘d’

Show the dependence of the Fermi temperature orethperature or on the total
density , we see that the approximation of strondgggenerate electrons break down
practically wher® > 1073 | red circles gives us those situations , therttaal treatment of

the problem will be discuss in the next chapter.
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IV.6.  Scattering of strongly degenerate Electron by elemins

Now we like to add the electron-electron scatter@ftpcts for multi-components
plasma systems as we explained in 8IV.3, for thatwl simulate the electron-electron (ee)
and the total (ee+ei) thermal conductivity agathst temperature for different elements, we
will use a MATLAB codes to make the simulated figsirand in all our work we consider

the relative mass density for each specie as d fiwantity.

IV.6. 1. Results

Electron - Electron Electrical conductivities
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Figure 4.25: Electron electron thermal conductivity Vs Temperature ( Red line )and the total (ei+ee)
in the non-Born approximation beyond thermal conductivity ( Blue line), for the 1H  with p; =
10*g/cm?3.
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Figure 4.26: Electron electron thermal conductivity Vs Temperature ( Red line )and the total
(ei+ee)in the non-Born approximation beyond thermal conductivity ( Blue line), for the mixture 1H
,18C , 180, 3¢Fe with p; = 103g/cm3.
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Electron - Electron Electrical conductivities
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Figure 4.27: Electron electron thermal conductivity Vs Temperature( Red line )and the total
(ei+ee)in the non-Born approximation beyond thermal conductivity ( Blue line ), , for 89 elements
from the hydrogen to the iron at fixed mass density ratio.

IV.6. 2. Discussion

Figures (4.25 to 4.27) shows the dependence oth@enal conductivity on the
temperature : the Electron electron thermal condtyi Red line ) and the total (ei+ee)in
the non-Born approximation beyond thermal condhtgt( Blue line ). As one can expect
no thing new differ from old studies eg [Pot 99bjce one does not need to know from
which atom come the electrons and as a resultléfoér@n-electron scattering influence be

considerable at light values Bf; and sufficient high temperature.
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CHAPTER V
Viscosity coefficients and thermal

and magnetic effects

A- Theoretical contribution

V.1. Viscosity

V.1.1. On the theory of viscosity

We take on consideration the viscosity of the crimsthis paragraph,
the crust may be in a liquid or a solid phase. Bomongly coupled I[ >»
1) and solid plasma the transport is assured priadipby the electrons.
We will consider only this case, and by the powdrtbe ioffe model
computations may be generalized to the liquid plastase. For the solid
crust, we suppose that we have a polycrystal striectherefore that on a

macroscopic scale the crust acts as an isotropidiars.

Let us symbolize a stationary macroscopic hydrodyita velocity

field, on the plasma, bV(?). The viscous part of the stress tensor in the

isotropic medium given by:

ms =1 <a_xl + 30 30V v> +38;V -V (5.1).
j i

Where{ ,n are the bulk and the the shear viscosity respégtiv
Thouse component of the stress tensor come into e¢lqeations of
neutron star hydrodynamics and are related to thésations of the

neutron stars.
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First, let us take on consideration the conservatflows, described

byV-V=0. The figure (5.1) shows us a schematic represeéonatof

characteristic of torsional oscillations of the studlow in the solid crust.

The shear viscosity produces the dissipation resulting in the
entropy production. In the outer crugtjs a summation of the electrons
and ions contributionsy, +n;, however forp > 10°g/cm3 n, become much
larger than n;and n=n..In the inner crust, the dripped neutrons

contribution should be took on consederation &nanust be added.

The electrons are scattered on ions, on impurityclay and on
electrons themselves, therefore the total frequewéythe collision is
specified by the summationv, = v, +v], +v. . but, as long as the
temperature is not too low, the approximatian= v,; is statisfory.

To computen, from the Boltzmann equation for electrons, one mus
to find outsf = f — f© due to the presence of a weak plasma velocity

field, V. linearizing inV and in 6f, The solution of the Boltzmann
equation, take the form:

8f = Ay (@[5 - V(5 - V)] %2

de

(5.2).

Where A4,(e) is a function to be founded from the Boltzmann
equation. For strongly degenerate electrons andhi@ relaxation time
approximation4, = rZi = 1/v;7l. is the effective relaxation time appropriate

for ei scattering, evaluated at the electronic Fiesonrface.

The collision frequencw., can be written in terms of the effective
Coulomb logarithmA’; by :

2,4
Z7e" iy, 4

no_
v, =121 . 5.3).
el p%vp el ( )
on obtain the electron viscosity using a standarydrfula:
NePFrVF
Ne = 57 (5.4).

ei
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equilibrium shear flow in torsional pulsations

Figure (5.1): representation of torsional oscillations in neutrestar crust.
Left: equilibrium arrangement of the crust, as aotdimensional square
lattice. Right: shear flow in the crust [Hae 08].

The effective Coulomb logarithm for the electronseosity is given
by [Bai 98]:

A77 =3 2ler 3 eff
( ei)pL q ¢q

qBz

2 vE( q \? 1/ hq \’
ll c_2<2_kp)H1 z(m;cz) dg (5.5

Then we see obviously that we can write it in tloenf

vZ
(2, =3| 0D, - () (0D, | 6.0 5.6)
Where A7, Al ; defined as :

2k 1 , 1, ha \2
(AZ)PL = L qgm [1 — e 509 ] ll - Z( 1 ) ldq = (Al)PL — A(Al)pL(S 7)

m;c?
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Zkr 1 q \? 1, hq \?
An:f 3 _ 1_e_SOq2 (—) [1——( )]d = A —AA 58
2 ” q (qz_l_qg)z[ ] sz 4 mzcz q ( Z)PL ( Z)PL( )
Where :
A(A)p = 1j2kp s 1 1 —Soqz]( hq >2d (5.9)
Ol @t T ) i

q0

1 [2kr 1 2( q \2/ hq \*
— 3 |1 —eS0q"||—
A(A2)py 4fqo q @+ a2)2 [1 e ](ka) (mzcz> dq (5.10).

We like to call AA;,AA, correctives terms of the viscosity Coulomb

logarithm.

V.1.2. Determination of the correctives terms

Thus by integrating (5.9),(5.10 we have:

2A(A;) 1 ( h )2
— X
1/PL 12(1 + s)s3 \m;c?

x (W3(1 + 2s(—1 + 3s + 6s%) — 24s3(1 + s)ArcCoth[1 + 2s]) —)
—3e™( —2+2e¥ —2s+2e%s — 2w — 2e¥sw + 2s*w —
—2e"s’w — w? + sw? — s?2w? + 3e"stw? —
—3s3w? + 3e”s3w? + e¥s3w3 — stw3 + eVstw? —
—e"tWs3(1 + s)w3(4 + sw)E [sw] +

+e"*s3(1 + s)w3(4 + sw)E{[(1 + s)w] (5.11).
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2A(A,) 1 ( h )2
= W X
2PL T 48(1 + 5)s8 \mjc?

x (w4 (3 —5s (1 +2s(—1+3s + 6s2)) + +120s*(1 + s) coth™1[1 + 2s]

+12e7% (6 — 6" + 6s — 6e%s + 6w + 2sw +
+4eVsw — 4s?w + 4eVsZw)
+3w? — sw? — s?w? — 3e"s?w? + 3s3w? — 3e"s3w? + wi +
—sw3 + s2w3 — s3w3 + 4eVs3w3 — 4stw3 +
+4e¥stw3 + eVstw? — sSw?t + e¥sPw? +
—eWtsWst(1 + s)w*(5 + sw)E;[sw] +
+e" Wt (1 + s)w*(5 + sw)E;[(1 + s)w])

(5.12)
As one may expect we can compute the analogue eobltmgarithms
for other king of form factors, but we will not gurther to discuss the

viscosity phenomena.

V.2. Thermal and magnetic effects on kinetic coefficrds

In this section we shall study thermal effects @ihzero temperature
on the neutron star’s plasma, using a simple phalspicture leads to an

appropriate interpolation formula.
V.1.1.Problema One “ magnetic fields”

Properties of shells changed consederaly by straragnetic fields
that’s in the order of ~102G for pulstars and higher for magnetostars,

the atomic magnetic field is giveB, by:

mZe3c

By = 3= 2.35x10°G (5.19).
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It is the value ofB for which the electron cyclotron energy is
identical toe?/a, = 2x 13.6eV (wherea, is the Bohr radius). setting it
differently, atB =B, the characteristic magnetic length, = (hc/eB)/?
equals the Bohr radius. For usual pulsars and meagsethe surface
magnetic field is considerably stronger th&p. As a result, the atomic
structure at low pressure is estimated to be chdngadicaly. The

electrons motion perpendiculy t® is quantized into Landau levels.

If one consider only thezcomponent of the magnetic field i =
[0,0,B], the electron energy levels are specified by tbtation €,(p,) =
c(mec® + 2hwemen + p2)*/2, wherep, the z—component of the electron

momentum and is the Landau quantum number.

The ground state of the Landau’s level= 0 is nondegenerate with
respect to the spin (the spin amBdare antiparallel, with spin projection

s = —1), but the upper levela > 0 are degenerate two times &€ +1).

The cyclotron frequency for electrons is givemczli—Bc; and it is 1836

e

times bigger than its values for protons. The Caonbobinding energy of
electrons in the nucleus is considerably less difecalongB, while in
the plane perpendicular t® the electron motion is restricted to the
n = 0 Landau level. so atoms get a cylindrical form ageh form linear

chains alongB.

A phase transition into a “magnetically condensegliase can be
made by this attraction between these chains is[&gd 08]).

We now in a few words examine the effects of thagmetic field on
plasma properties at finite pressudte> 0. The magnetic field strongly
quantizes the motion of electrons, if it confinesosh of them to the
ground Landau staten = 0. The parameters related to a strong

guantization regime are :
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3
A\ p2
Mygnp 7045 (7) B1,9

hw,
T..=—=1.343 x B;3K ,pg =

T z o (5.20).
And
T, if P<pPs
Tg=1{Tce if p>p (5.21).
Vr

The field B is said to be strongly quantizing ip < pg and T « T,,.
On the contrary, a magnetic field will be weaklyantizing if many
Landau orbitals are occupied, but still Tz. to end with,B is said to

be nonquantizing iff » Tz. The temperatur&; and densitypy are shown

in Figure 5.2.
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Figure 5.2: Different domains in thg — T plane for *°Fe with magnetic field B =
10" G.Dash-dot line: melting temperatuf,. Solid lines:T, — Fermi temperature
for the electrons;T,; — ion plasma temperature. Long-dash line& and pg
appropriate for the quantized regime of the elets;ofor comparison we also show,
by dotted lines, TF, Tm and Tpi for B = 0. Forther explanation see the text. From
[Hae 06].
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We say that a surface magnetic field to be stroh® ik 10°G. Such
magnetic fields change the accretion of plasmahe theutron star and
change the main properties of atoms in the atmosg@he

On the opposite, a magnetic field in the rangk < 10°G, such as
related to most X-ray bursters or with millisecopdlsars, is taken to be
weak. almost pulsars are magnetized neutron stard) the value of B
near the magnetic polB~10'2G. Much higher magnetic fields are typical
for magnetars,B~10** — 10'°G; such magnetic fields withB x 10* are
often called “super-strong”. These magnetic fieldan strongly affect
transport processes in neutron star shelles. Ebectransport coeffitions
in magnetized neutron star crusts are reviewed Pot[ 99b]. In this

section we only show to a very short indications.

A magnetic field is regard as uniform, locally. Wake the z axis of

a coordinate system along, ie B = [0,0,B]. We examine only the

strongly degenerate electrons case and we suppbae the relaxation

time approximation is valid. Let relaxation timerf® = 0 be 7,. The

electron gyromagnetic frequency is a central timeecrelated with
magnetic fields:

_eB

“p = mic

(5.22).

The electron trajectories in the plaiiey) are bended magnetic field,
and restraines the electron transport acrBssas a result, the transport
properties will be anisotropic, and one must tdkasorso;; andx;, in

consideration which can be written as:

2
_nee o
o= - Eij (5.23).
m’k4Tn,
=— - &k 5.24).
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In what follows we will have three basic regimes tfinsport in

magnetic fields.

22
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Figure 5.3 Transport coefitions: longitudinalllj and transverse l()in the outer
envelope composed @ for B = 102G and log T [K] = 6,7. Quantum
calculations (solid lines) are compared with classiones (dash lines). Vertical
bars: liquid-solid transition af” = 107 K. Based on Figure 5 from [Pot 99b].

V.2.1.a. Nonquantizing magnetic fields

A lot of Landau levels are occupied, and becakik > hw. the
quantum effects are smeared by thermal effects. Wegnetic fieldB
does not affect the transport properties along mh@gnetic field, while
the Hall magnetization parameters wgty™ characterises totaly the

transport across$ :

g,K

10—16

wpTy" = 1760 — (5.25).

where 13" are the effective relaxation times & = 0 for the

transport coeffitions. The nonzero components o §fi“tensors are:
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2
0.k oK
oK _ 0K g0K _ z0OK _ To (wBTO

zz Tlex_yy_

(5.26).

fO’K: U'K:
o2 ' Sxy xy 2

1+ (wpty 1+ (wptd™

V.2.1.b. Weakly-quantizing magnetic fields

Electrons occupe a lot of Landau orbitals, howewercausekgT <
hw.the quantization effects are well pronounced. Theaee two
relaxation times,t;”, and t7*, which oscillate with with respect to the
density. As shown by Potekhin [Pot 99b], the nomze tensors

componentsig"‘ are specified by a equations similar to the presmgdone:

2

O,K 0,K
TO ((I)BTO

(5.27).

0K _ 0K 0K __ gOK __ 0K _ 0K __
Ezz _TO 'fxx _Eyy - o1\ 2 'fxy _fxy -

1+ (wpty 1+ (wprd*)*

The density dependence of the components of thensgpart
coeffitions exhibits characteristic oscillationsoand the nonquantized
(classical) values , if the temperature is constamdl in the presence of a
weakly quantizingB. every oscillation represents to the filling ofnaw
Landau orbitale. The amplitude of these oscillasodiminishs with

decreasing of the mass density.

As we see in Figure 5.3, the oscillation amplitudecrease with
decreasing T ,the *“density period” of oscillation decreases Hvit
increasingp, and the. At T = 107K, a magnetic field ofl0'?G consider

to be weakly quantizing ap > 10*2 gcm™3.

V.2.1.c. Strongly-quantizing magnetic fields

If kgT < hw., and the majority of the electrons are occuping th
ground Landau orbital. the;and x;; and their density dependence are

significantly different from those of the nonquazitig one.
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In [Pot 99b], the formulae fot™ andt]" are governed by equations
(5.27). the fitting formulae forr]™ and 17 are derived in [Pot 99b],
which we will use it in our work.

the Figure 5.3,show us that &= 10°K a field of 102G is strongly

quantizing forp > 10*2 gcm™3.
V.1.2. Problema Two: “ partially degenerate electrons”

The strongly degenerate electron approximation §3.8reak down
when the temperature become comparable to the Féemperature. The
figues 5.4, 5.5 illustrate the situation:

logT

toss o (s <o )

Figure 5.4 T Vs p graphs for the'?C, the dashed region is the region where we
should take quantum corrections.
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56]_:"‘3

logT

— =100
=180

108 o (& cm =)
Figure 5.5:same graphs for the®Fe (5.4).

V.1.3. Interpolation formula:

We like to deal with partially degenerate case \lieen 8 is not negligible
against unite), by proposing an interpolation fodma in analogy with
equation (3.87) , We replace the fitted Coulomb Iogarithmgt}cequation
(3.77) by an interpolation formulate, we can writhe new fitted

Coulomb logarithm irthe form:
AT = Al (ep)e® + ALY 1—e® 5.28
oK — a',]c(EF)e + a',]c(ETh)[ e ] ( . )

Where A?ﬁc iIs the thermally corrected Coulomb logarithm, and},:
play the role of thermally corrected energy to then zero temperature
case, then one can derive simply the correspondpagameters like

kT prn vrn, Wwhich we need to computzﬁng(eTh) , and thenAE;(.

The strongly degenerate electron approximation kd@avn when the
temperature become comparable to the Fermi tempeeatin [Pot 10]
one can compute the chemical potential at goodoatdgaccuracy —and in

a simple way - using (1),(3),(6) in [Pot 10] , thewe defineer, as:

€rn = mc?fi (5.29).
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B- _Simulation
To study the effect of magnetic field on the MCPagma for

astrophysical conditions,by computing parall we det define our

parameters .
We consider only the effect on the strongly degexterelectrons ,
thus momentum levels is given by :

puler) = [(ep/€)? — (m,c)? — 2m hw,n]" (5.28).

For n<np. Wherenpy,, — is the maximum possible number of Landau

levels for a given Fermi energagt:

1 p%(EF)
hw. 2m,

Npax = Int(v) = Int l (5.29).

Note thatvis an energy parameter , and it should be cleat tha Fermi
energy in the presence of quantizing magnetic fselid given by (
without the stress on the theory “for review seeofP99b]”) the

inversion of the equation :

Z 9nPn(€r) at fixed n, (5.30)

We proposed in our simulation an algorithm to demith this non-

standard numerical equation:

Initial conditions e(FO) =m.c?,n ( ) = ne(eg)))
; @ _ (-1 mec’

Iteration € =€ ~ +ij

Repeat since n® <n,

It is clear that our algorithm gives us a precisiom the Fermi energy on
the order of~10713eV.

we need all that to compute relaxation tlmeﬁ,, andt{™ from equation
(5.27) and then to simulate the transport coedfis against the mass
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density of several elements at different temperasyrwe compute those
coefficients from the equation (3.34) , using a MIAAB codes to reach
these objectives.

For multi component plasma we like to define tha idensity number
of the specie

J
Nion
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Figure 5.6: Electrical (Left panel ) and Thermal (right pdpeonductivities Vs the variabtefor
1H at T = 108K, andB = 1013G.
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Figures. (5.6 to 5.9) shows the dependence of ladynal and
transverse conductivities on the energy parameterfor different
mixtures in a accreted neutron star envelope ddhdrvalues ofT and B

as shown in the figure.

Transverse components are non zero and are not igibtd
comparable to longitudinal one , which lead torantsversal transport of

energy and momentum of electrons.

We see that one can get the Landau levels in thee acd mixture by

take a fixed ion density number for each speci¢he mixture.

We don’'t get the second peak near each Landau himlésas the
result made by A.potekhin et al [Pot 99b] (see figub.3) because we
don’t use the thermal averaging and we only take #ero temperature

approximation.

We see also that the amplitude of oscillation irecye with increasing
magnetic field strength, decreasing with increasimgss density and

number of elements.
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Conclusion

In this work we present a comprehensive approach the
investigation of kinetic properties of the substantn the shells of

neutron stars:

Study (1) thermodynamic functions of fully ionizgdasma under
conditions typical of the shells of neutron starsthmut magnetic field.
(2) The study of the electrical and thermal condvities using the loffe
model for the scattering of strongly degeneratectiiens by ions in a
fully ionized plasma in the shells of neutron starghout magnetic field
and in presence of strong magnetic field. (3) Btedy of the condensed
matter and nuclear effects on kinetics.(4) The depevent basing of a
software program to deal with Multi-components ptes transport
coefficients including the effect of electron-ele@t scattering.(5)We
use the loffe model and other physical effects tompute the shear
viscosity coefficient in neutron stars curst’s meatt (6) We discuss the
thermal and magnetic effects lead to the break dominthe strongly

degenerate approximation, and we suggest an intatppm formula. .

Main results
In more detail, the main results of the thesis asefollows.

1. We calculated electronic thermal and electricdnductivity, in
Coulomb liquids and Coulomb crystals in the Oce&uyter and Inner
crusts, including the effects of dipolar, Gausseard homogenous sphere
form factors, An analytical description of the tisgort coefficients in a
strongly degenerate electrons. Created set of cderpprograms for the

calculation of these coefficients.
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2. We compute an analytical formula for the conttilmn of impurities
basing on the loffe model, and we developed a satioh program to
show and describe the comportment of the Multmp@mnents plasma as

we can find in accreted neutron stars.

3. We calculated also the shear viscosity coeffiitigin Coulomb liquids
and Coulomb crystals in the Ocean , Outer and Inamrrsts, including
the effects of dipolar , Gaussian and homogenousesp form factors,
An analytical description them in a strongly degeate electrons. We
created set of computer programs for the calculatiof these

coefficients.

4. We discuss and simulate the condition and thmitihg cases of
thermal and magnetic, especially the partially degmate electrons case,

and magnetic Landau levels, and we proposed amrpoiation solution.
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Abstract:
In this work we deal in a detailed and comprehensheoretical consideration of the most

important thermodynamic and kinetic properties ltd substance in the shells of neutron stars,
taking into account the influence of strong, in@hgd quantizing, magnetic fields, nuclear and
condensed matter effects , and the presence of thereone elements and created a complex
computer programs to compute ttransport coefficients , results which are impatrtéor
modeling mechanical and thermal structure of neustars and their spectra thermal radiation, thus
contributing to the development of important fiellisresearch at the contemporary of astrophysics
and plasma physics - the study of matter underemdr conditions, due to unique properties of
neutron stars: they have strong gravity, high dgasd strong magnetic fields.

Key words: stars: neutron— dense matter— conduction-viscesitggnetic fields-plasma-nuclear.

Résumé :

Dans ce travail on traite d’'une maniére détaill&s lconsidérations théoriques des
propriétés thermodynamiques et cinétiques les phugortantes des substances dans les
enveloppes des étoiles a neutrons , prenons ersidénations l'influence des champs
magnétique fort quantifiant, les effets nucléaires des états de matieres , et la
possibilité de présence des plusieurs élémentsaetdnstruction des programmes pour
calculer les coefficients de transport , c’est riéats sont importants pour la
modélisation de la structure mécanique et thermidae étoiles a neutron et leurs spectre
thermique , alors la contribution a développée dlsmaines importants de recherche
contemporain en astrophysique et la physiquesplasmas — I’étude de la matiere dans
les conditions extrémes, d0 aux propriétés uniqudes étoiles a neutron : il ont une
gravité forte , de densité élevée , et champs mégnés intenses.

Mots clés :Etoiles : neutron-matiere denseenduction-viscosité ehamps magnétiques-
plasmas-nucléaire



