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Abstract 

 

The main goal of this dissertation is to investigate linear interference cancellation structures that are 

appropriate for long-code CDMA systems. Motivated by the lack of such structures and exploiting the 

fact that for long-code CDMA systems, the major computational complexity burden comes from the 

frequent calculation of the cross- correlation matrix (it should be calculated each symbol period) and 

not from the interference cancellation itself, we examine the possibility of developing interference 

cancellation schemes that avoid the calculation of the cross-correlation matrix. Such structures are 

known as chip-level (wideband) interference cancellation schemes and they directly make use of the 

spreading codes instead of the cross-correlation coefficients, hence the additional burden of the cross-

correlation computation is avoided. Our approach for developing such structures is based on the 

equivalence between some of the chip-level linear interference cancellation structures and linear 

iterative methods. Such mapping will not only enable the identification of new interference 

cancellation schemes that correspond to other iterative methods but will also facilitate the study of the 

convergence behavior of these structures based on the rich theory developed within the frame of 

iterative methods. In chapter 8, two new chip-level linear weighted SIC/weighted group-wise SIC 

structures that can converge not only to the decorrelator detector but also to the LMMSE detector are 

derived. They proved to exhibit less computational complexity than their symbol-level counterparts. In 

chapter 9, four novel chip-level linear weighted SIC/weighted group-wise SIC structures that are 

equivalent to linear SOR/linear BSOR iterative methods are derived. Their convergence behavior is 

analyzed and their conditions of convergence are determined using two different methods that lead to 

the same result. In chapter 10, using a matrix iterative analysis approach, the chip-level linear group-

wise structure is shown to be equivalent to the linear BSOR iterative method but with a relaxation 

matrix rather than a relaxation factor. Establishing such connection allows the proposition of two new 

corollaries from which two conditions of convergence are determined. In chapter 11, a new chip-level 

linear group-wise PIC detector is proposed. Its inherent parallelism facilitates its implementation in a 

parallel multiprocessor structure and reduces considerably the algorithm time complexity. Other by-

product contributions are also obtained in chapters 4, 5 and 7 respectively. 
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1.2 Aim of this Work  

The main goal of this dissertation is to investigate linear interference cancellation structures that are 

appropriate for long-code CDMA systems. Motivated by the lack of such structures and exploiting the 

fact that for long-code CDMA systems, the major computational complexity burden comes from the 

frequent calculation of the cross- correlation matrix (it should be calculated each symbol period) and 

not from the interference cancellation itself, we examine the possibility of developing interference 

cancellation schemes that avoid the calculation of the cross-correlation matrix. Such structures are 

known as chip-level (wideband) interference cancellation schemes and they directly make use of the 

spreading codes instead of the cross-correlation coefficients, hence the additional burden of the cross-

correlation computation is avoided. Our approach for developing such structures is based on the 

equivalence between some of the chip-level linear interference cancellation structures and linear 

iterative methods. Such mapping will not only enable the identification of new interference 

cancellation schemes that correspond to other iterative methods but will also facilitate the study of the 

convergence behavior of these structures based on the rich theory developed within the frame of 

iterative methods.  

1.3 Thesis Organization 

The dissertation is divided into many chapters that can be roughly partitioned into introductory 

chapters and contributive chapters. This splitting is coarse, in the sense that some of the introductory 

chapters contain contributions, however, they can be considered as minor contributions.  
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•  Chapter 1 describes the aim of the dissertation and its contribution to the literature.  

•  Chapter 2 introduces the cellular concept and discusses different generations of cellular systems. 

Moreover, it describes the spread spectrum technique, its advantages and disadvantages and finally 

it discusses different spreading codes used in CDMA systems and the advantages and 

disadvantages of both short-code and long-code spreading codes. 

•  Chapter 3 introduces different fading mechanisms arising in a wireless fading CDMA channel. 

Then, it proposes the channel model used for all simulations in the subsequent chapters. The power 

delay profile used in all simulations conducted in different chapters is then discussed. Finally, an 

enhanced Jakes model which is used to generate the Rayleigh fading complex coefficients is 

implemented and simulated. 

•  Chapter 4 develops CDMA models for both the synchronous CDMA AWGN and the 

asynchronous CDMA multi-path fading channels. Moreover, it proposes a new CDMA model for 

the asynchronous CDMA multi-path fading channel that allows the development of new multiuser 

detectors. 

•  Chapter 5 reviews various iterative methods covered in the literature. It details different point and 

block iterative methods, study their convergence behavior and determine their conditions of 

convergence. Two new iterative methods are developed and studied in detail. The latter will be 

used in the subsequent chapters to identify some chip-level linear interference cancellation 

structures. Finally, all the aforementioned iterative methods are simulated and compared together. 

•  Chapter 6 reviews and studies some basic multiuser detectors such as the matched filter detector, 

the optimal multiuser detector, the decorrelator detector and the LMMSE detector for both a 

synchronous CDMA AWGN channel and an asynchronous CDMA multipath fading channel. 

These detectors are assessed in terms of many performance metrics such as the probability of error, 

asymptotic multiuser efficiency, near-far resistance and the computational complexity.  

•  Chapter 7 introduces the two main categories of linear interference cancellation structures, namely 

the symbol-level and chip-level schemes. Different structures covered in the literature are restudied 

here and furthermore three new structures using the principle of under-relaxation are developed for 

the case of an asynchronous CDMA multipath fading channel. Finally, the computational 

complexity of both symbol-level and chip-level linear interference cancellation structures are 

compared and commented.        

•  Chapter 8 presents a chip-level linear weighted SIC structure that can converge to either the 

decorrelator detector or the LMMSE detector. Another new structure is obtained by extending the 
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previous scheme to group-wise SIC detection. The convergence behavior of these two novel 

structures is analyzed and conditions of convergence are determined. Finally, simulation results 

supporting the theoretical findings are obtained. 

•  Chapter 9 proposes two novel chip-level linear weighted SIC structures that are equivalent to the 

successive over-relaxation iterative method. These structures are then extended to group-wise SIC 

detection. Convergence analysis is performed using two different methods that lead to the same 

result. Finally, simulation of the previous structures is performed to validate the theoretical 

derivations. 

•  Chapter 10 shows how the rich theory of iterative methods can be used for the analysis of existing 

interference cancellation structures in the literature. First we prove that the group-wise SIC 

structure is in fact equivalent to a BSOR iterative method but with a relaxation matrix instead of a 

relaxation factor. By using such approach, two new corollaries that result in two new conditions of 

convergence are derived. Finally simulations are conducted to substantiate the theoretical results. 

•  Chapter 11 introduces a chip-level linear group-wise PIC detector. Four different group-detection 

schemes are derived. The proposed structure is analyzed and conditions of convergence are 

determined. Finally, simulation results that corroborate the theoretical findings are obtained.     

•  Chapter 12 concludes this work by summarizing the most important results and contributions 

gained throughout this dissertation and points out possible future extensions. 

1.4 Thesis Contribution 

The thesis’s contributions can be summarized into the following points: 

• In chapter 4, a new model for the asynchronous CDMA multi-path fading channel is developed. 

The latter permits the derivation of new multiuser detectors.  

• In chapter 5, two new iterative methods are derived, their convergence behavior is investigated and 

their conditions of convergence are determined. These methods will show to be useful in the 

identification of some existing chip-level linear SIC and group-wise SIC detectors. Moreover, they 

will help in deriving three new chip-level linear SIC and group-wise SIC structures for the case of 

an asynchronous CDMA multi-path fading channel. 

• In chapter 7, three new chip-level linear weighted SIC and weighted group-wise SIC structures 

suitable for the case of an asynchronous CDMA multi-path fading channel are derived using the 

principle of under-relaxation.  
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• In chapter 8, two new chip-level linear weighted SIC/weighted group-wise SIC structures that can 

converge not only to the decorrelator detector but also to the LMMSE detector are derived. They 

proved to exhibit less computational complexity than their symbol-level counterparts. Moreover, 

conditions of convergence are determined and their performance is evaluated and verified through 

simulations.   

• In chapter 9, four novel chip-level linear weighted SIC/weighted group-wise SIC structures that are 

equivalent to linear SOR/linear BSOR iterative methods are derived. Their convergence behavior 

is analyzed and their conditions of convergence are determined using two different methods that 

lead to the same result. Computational complexity of these detectors is shown to be less than that 

of their symbol-level counterparts. 

• In chapter 10, using a matrix iterative analysis approach, the chip-level linear group-wise structure 

is shown to be equivalent to the linear BSOR iterative method but with a relaxation matrix rather 

than a relaxation factor. Establishing such connection allows the proposition of two new corollaries 

from which two conditions of convergence are determined.  

• In chapter 11, a new chip-level linear group-wise PIC detector is proposed. Its inherent parallelism 

facilitates its implementation in a parallel multiprocessor structure and reduces considerably the 

algorithm time complexity. Four different group-detection schemes are derived and investigated in 

terms of convergence speed and behavior. Furthermore, and in order to ensure convergence, a 

chip-level linear weighted group-wise PIC detector is suggested. Conditions of convergence for 

this structure are determined.    
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2.2 Cellular Concept 

In order to understand the underlying principle behind the cellular concept, let us imagine that the 

frequency spectrum available for mobile communications is infinite and that regulatory authorities set 

no limit on the power transmitted within that frequency band. In this case, the simplest wireless system 

will have a centralized base station serving a large area with all the users in that area communicating 

directly with the base station. Such a system is unpractical for two main reasons. First, the users that 
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are far away from the base station have to transmit at very high power levels; this will eventually 

decrease the battery life of their mobile phones very fast. Second, the total bandwidth utilized in an 

area increases with the number of users communicating in that area, hence if a single base station is 

used to cover the entire geographical area and serve all the users, the total bandwidth required would 

be huge.  

As regulatory authorities assign frequency bands for different communication applications, the 

number of users, in a given area, that can be accommodated without exceeding the frequency 

limitations is limited. Additionally, a single base station covering the entire area would require 

transmission at high power levels to communicate with distant users. However, this is not permitted by 

the regulatory authorities in order to avoid interference with other applications. Thus, in practical 

systems, power and bandwidth factors are constraining the service areas to be in the vicinity of the base 

stations. 

Cellular communication consists of partitioning a large geographical area into smaller sized 

areas known as cells. The fundamental concept for such a system has emerged and evolved in 1970’s 

as a result of extensive research in wireless communications  [1]- [7]. It involves using many low-power 

base stations placed within cells at approximately their centers rather than using one high-power 

transmitter for the entire area to be covered  [8]. Using this cellular concept, the allocated frequency 

band can be reused by cells that are separated sufficiently. 

Dividing a certain geographical region into cells “cellularization” includes the determination of 

the size of different cells which is primarily dependent on the population density or subscriber density. 

Moreover, the size of the cell is controlled by the following factors  [9]: 

• Power transmitted by the base station belonging to the cell.  

• Terrain within the region of the cell. 

• Presence of man-made features such as buildings and other structures. 

These factors also determine the shape of the cell, which is rarely regular  [10]. The different cell 

sizes and their applications are illustrated in Table  2.1  [9]. 

The communication link from the base station to the mobile user is known as the downlink 

(forward channel) while that from the mobile user to the base station is known as the uplink (reverse 

channel). In cellular systems, a user belonging to a particular cell communicates with the base station 

of that cell while all other base stations neglect the signal received from this user. The process in which 
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a user moves from one cell to another and establishes a communication link with the base station in the 

new cell is called handoff  [11]. 

 

Table  2.1: Sizes of cells and associated uses 

Application Average cell diameter Name 

Sub-urban 1 – 10 km Macro-cell 

Urban 1 km Mini-cell 

Street 100 m Micro-cell 

Office < 10 m Pico-cell 

 

 

In a cellular system, as the one shown in Figure  2.1, users typically communicate with base stations by 

means of handsets.  

 

 

Figure  2.1: A typical cellular system. 
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The base stations not only offer a communication link to and from the handset, but also provide 

connectivity to the public switched telephone network (PSTN) through the mobile telephone switching 

office (MTSO) which serves as a link between the wired and wireless networks.  

Use of the same frequencies for communications within different cells is known as frequency 

reuse. The frequency reuse factor is the rate at which the same frequency can be used in the network. It 

is 1/Ncells where Ncells is the number of cells which cannot use the same frequency for transmission. A 

cluster is defined as a group of cells in which frequencies are not reused (Ncells). For example, the 

number of cells in an FDMA cluster varies, with 3 and 7 as the typical values ( [12] and  [13]). 

However, in a single cell clusters such as the CDMA system, the same frequency band is reused in 

every cell. Frequency reuse is one of the major benefits of cellular systems as it significantly increases 

the capacity of the system while using only a limited number of frequencies ( [3] and  [12]). An 

illustration of the frequency reuse factor of 1/7 is shown in Figure  2.2. 

 

 

 

Figure  2.2: An illustration of the cellular frequency reuse concept. 

 



 Chapter 2  Cellular and CDMA Concepts 

 9

2.3 Different Generations of Cellular Systems 

2.3.1 First Generation Cellular Systems 

The first generation cellular systems generally employ analog Frequency Modulation (FM) techniques. 

The Advanced Mobile Phone System (AMPS) was the most dominant first generation system. AMPS 

was developed by the Bell Telephone System. It uses FM technology for voice transmission and digital 

signaling for control information. Other first generation systems include  [14]: 

• Narrowband AMPS (NAMPS). 

• Total Access Cellular System (TACS). 

• Nordic Mobile Telephone System (NMT-900). 

2.3.2 Second Generation Cellular Systems 

The rapid growth in the number of subscribers was the main reason behind the evolution towards 

second generation cellular systems. Second generation systems took advantage of compression and 

coding techniques associated with digital technology. All second generation systems employ digital 

modulation schemes. Multiple access techniques like Time Division Multiple Access (TDMA) and 

Code Division Multiple Access (CDMA) are used along with FDMA in the second generation systems. 

Second generation cellular systems include  [12]: 

• United States Digital Cellular (USDC) standards IS-54 and IS-136. 

• Global System for Mobile communications (GSM). 

• Pacific Digital Cellular (PDC). 

• cdmaOne (IS-95). 

2.3.3 Third Generation Cellular Systems 

Research efforts have been ongoing for more than a decade to introduce multimedia capabilities into 

mobile communications. Third generation cellular systems emerged to satisfy the ever-increasing need 

for wideband services like high speed internet access, video and high quality image transmission. The 

primary requirements of the next generation cellular systems are  [15]: 

• Voice quality comparable to Public Switched Telephone Network (PSTN).  

• Support of high data rate. Table  2.2 details the data rate requirement of the 3G systems: 
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Table  2.2: 3G Data Rate Requirements. 

Mobility Needs Minimum Data Rate 

Vehicular 144 kbps 

Outdoor to indoor and 

pedestrian 

384 kbps 

Indoor Office 2 Mbps 

 

• Support of both packet-switched and circuit-switched data services. 

• More efficient usage of the available radio spectrum. 

• Support of a wide variety of mobile equipments. 

• Backward Compatibility with pre-existing networks and flexible introduction of new services and 

technology. 

• An adaptive radio interface suited to the highly asymmetric nature of most Internet 

communications: a much greater bandwidth for the downlink than the uplink. 

Third generation cellular systems include: 

• WCDMA  or UTRAN in Japan and Europe 

• CDMA2000 in the United States 

2.4 CDMA History  

The spread spectrum technology has been originally used in the military field where it has been 

developed to counteract intentional jamming. In this section we highlight the milestones for CDMA 

evolvement starting from the 1950s after the appearance of Shannon’s theorem  [16]. A thorough 

overview of spread spectrum history is provided in  [17]. The CDMA era can be roughly divided into 

three periods, as shown in Table  2.3: the pioneer CDMA era, the narrowband CDMA era, and the 

wideband CDMA era  [22]. 

In 1949, John Pierce wrote a technical memorandum where he detailed a multiplexing system in 

which a common medium carries coded asynchronous signals. This system can be classified as a time 

hopping spread spectrum multiple access system  [17]. Claude Shannon and Robert Pierce introduced 

the basic ideas of CDMA in 1949 where they described the interference averaging effect and showed 

the graceful degradation of CDMA systems  [18].  
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Table  2.3: CDMA evolution. 

Pioneer Era 

1949 John Pierce: time hopping spread spectrum. 

1949 Claude Shannon and Robert Pierce: basic ideas of CDMA. 

1950 De Rosa-Rogoff: direct sequence spread spectrum. 

1956 Price and Green: antimultipath “RAKE” patent. 

1961 Magnuski: near-far problem. 

1970s: Several developments for military field and navigation systems. 

Narrowband CDMA Era 

1978 Cooper and Nettleton: cellular application of spread spectrum. 

1980s: Investigation of narrowband CDMA techniques for cellular applications. 

1986 Verdu: Formulation of optimum multiuser detection. 

1993: IS-95 standard. 

Wideband CDMA Era 

1995 Europe: FRAMES and FMA2. 

Japan: Core-A and WCDMA. 

USA: cdma2000. 

Korea: TTA I and TTA II. 

2000s: Commercialization of wideband CDMA systems. 

 

 

In 1950, De Rosa-Rogoff suggested a direct sequence spread spectrum system  [17]. In 1956, 

Price and Green introduced the anti-multi-path “RAKE” receiver  [17]. They showed that signals 

arriving over different propagation paths can be resolved by a wideband spread spectrum signal and 

combined by the RAKE receiver. The near-far problem (i.e., a high-power interference overwhelming 

a weaker spread spectrum signal) was first mentioned in 1961 by Magnuski  [17]. Introducing spread 

spectrum techniques into the cellular world was suggested by Cooper and Nettleton in 1978  [19]. 

During the 1980s Qualcomm examined the possible use of DS-CDMA techniques in cellular systems, 

which finally led to the commercialization of the narrowband CDMA IS-95 standard in July 1993. 

Commercial operation of IS-95 systems started in 1996. Multiuser detection (MUD) attracted a lot of 
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attention and has been a subject of extensive research since 1986 when Verdu formulated the optimum 

multiuser detection for the additive white Gaussian noise (AWGN) channel  [20]. 

During the 1990s, wideband CDMA techniques with a bandwidth of 5 MHz or more have been 

studied extensively throughout the world, and several trial systems have been built and tested  [21]. 

These include FRAMES Multiple Access (FRAMES FMA2) in Europe, Core-A in Japan, the 

European/Japanese WCDMA scheme, cdma2000 in the United States, and the Telecommunication 

Technology Association I and II (TTA I and TTA II) schemes in Korea.  

2.5 Spread Spectrum Technique 

The recent fast growth in the number of subscribers and the emergence of a wide range of mobile 

applications has increased the need for developing more spectrally efficient schemes that can enable 

more users to share the same spectrum but still maintain a satisfactory quality of service. The most 

promising technology that offers such possibility which is known as CDMA relies on the principle of 

spread spectrum technique.   

By definition, spread spectrum refers to any digital transmission technique where the data signal 

occupies a bandwidth much larger than the minimum bandwidth required for its transmission. Even 

though spread spectrum is not a Bandwidth-conserving modulation technique, it has been implemented 

in a wide range of applications. The main reason behind this is that it solves two key problems in 

communication: the unauthorized interception problem and the jamming problem  [23]- [25]. Both of 

these problems are very critical in military communications, and this explains why this technology 

started and evolved within the military field.  

The mitigation of the first problem is achieved by lowering the probability of unauthorized 

interception. In spread spectrum, this is possible due to the spreading process which lowers the power 

spectral density of the desired signal to a level that is below the thermal noise level of the interceptor.  

This means that any hostile receiver will perceive the spread spectrum signal as noise. The mitigation 

of this problem is shown in Figure  2.3. 

The second problem is alleviated through the despreading process where all signals of undesired 

users, including narrow-band jamming, are spread and therefore their power spectral density within the 

bandwidth of the despread narrow-band desired signal is low compared to that of the desired signal. 

The mitigation of this problem is shown in Figure  2.4. 
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Figure  2.3: Low probability of interception capability of the spread spectrum technique. 

 

Many types of spread spectrum technologies exist such as: direct sequence, frequency hopping, 

time hopping and other hybrids. Since most of the cellular standards (IS-95, UMTS, …) use the direct 

sequence spread spectrum technique, we restrict our discussion to this technique only which will be 

detailed in the following section. 
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Figure  2.4: Anti-jamming capability of the spread spectrum technique. 

 

2.6 Direct Sequence Spread Spectrum  

In direct sequence spread spectrum, the data signal with period Ts is multiplied by a spreading code 

with period Tc that is very small compared to Ts  [26]. This process results in the expansion of the 

signal’s bandwidth as shown in Figure  2.5.  

If we assume that the total power of the spread spectrum signal is the same as that of the original 

narrowband signal, then the power spectral density Pss of the spread spectrum signal is expressed as 

 [25]: s
ss s

ss

BP P
B

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, where Ps is the power spectral density of the narrowband data signal, Bs is the 
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bandwidth of the narrowband data signal and Bss is the bandwidth of the spread spectrum signal. The 

ratio ss s

s c

B T
B T

=  is known as the processing gain of the system  [25]. 

 

 

Figure  2.5: Spreading process. 

 

For most practical systems, this parameter ranges from 10 to 30 dB which means that the 

bandwidth of the narrowband data signal is expanded by a factor of 10 to 1000 times and its power 

spectral density is reduced by the same factor  [25].  

2.7 Radio-Channel Access Schemes 

Multiple access techniques are used to allow many mobile users to share simultaneously a common 

bandwidth. Frequency division multiple access (FDMA), time division multiple access (TDMA) and 

Code division multiple access (CDMA) are the major access techniques used to share the available 

bandwidth in a mobile radio communication system. These techniques are detailed in next sections. 
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2.7.1 Frequency Division Multiple Access 

Frequency division multiple access allocates individual channels (frequency bands) to individual users. 

As it can be seen from Figure  2.6, each user is assigned a unique frequency band on demand. During 

the period of the call, no other user can share the same frequency band. If an FDMA channel is not in 

use (for example, during pauses in telephone conversation) it stays idle and cannot be used by any 

other user for the purpose of increasing the system capacity. FDMA was the multiple access scheme 

used in most first generation standards such as AMPS (Advanced Mobile Phone System). 

 

 

Figure  2.6: Frequency division multiple access. 

 

2.7.2 Time Division Multiple Access 

Time division multiple access systems, however, divide the transmission time into time slots where one 

user is allowed to either transmit or receive in it. As it can be seen from Figure  2.7, each user occupies 

cyclically repeating slots, so a channel may be thought of as a particular time slot that reoccurs 

periodically in every frame. Unlike in FDMA systems, which can accommodate analog frequency 

modulation (FM), digital data and digital modulation schemes, are used with TDMA. 

TDMA shares a single carrier frequency with several users, where each user makes use of non-

overlapping time slots. Analogously to FDMA, if a channel is not in use, then the corresponding time 

slots sit idle and cannot be used by other users. TDMA compared to FDMA needs stringent 

synchronization requirements and, in addition, guard slots are necessary to separate users. Generally, 
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the complexity of TDMA mobile systems is higher compared to that of FDMA systems. TDMA is 

usually combined with FDMA as in the widely used European standard GSM. Thus GSM is a hybrid 

TDMA/FDMA system  [14]. 

 

 

Figure  2.7: Time division multiple access. 

 

2.7.3 Code Division Multiple Access 

Each user of a multiple access system, based on the FDMA or the TDMA principle, is supplied with 

certain resources, such as frequency or time slots, or both, which are disjoint from those of any other 

user. Viterbi  [26] pointed out that these multiple access schemes suffer from three weaknesses:  

• The first weakness is that these schemes assume that all users transmit continuously. However, in a 

two-person conversation, the percentage of time where a speaker is active, that is, talking, ranges 

from 35% to 50%. In TDMA or FDMA systems, reallocation of the channel for such brief periods 

requires rapid circuit switching between the two users, which is practically impossible. 

• The second weakness is the relatively small frequency reuse factor of FDMA and TDMA, which is 

proportional to the user capacity. Actual systems, such as GSM, employ a reuse factor of 1/7. 

• The third weakness, which is common to all multiple access systems but it is more serious for 

FDMA and TDMA, is multipath fading. Multipath fading is caused by interference between two or 

more versions of the transmitted signal that arrive at the receiver at slightly different times. This 



 Chapter 2  Cellular and CDMA Concepts 

 18

phenomenon is particularly severe when each channel is allocated a narrow bandwidth, as in the 

case of FDMA systems. 

A completely different approach, realized in CDMA systems, does not attempt to allocate 

disjoint frequency or time resources to each user. Instead the system assigns all resources to all active 

users. 

In direct sequence DS-CDMA systems, the narrowband message signal is spread by a very 

large-bandwidth signal called the spreading signal. As shown in Figure  2.8, all users in a DS-CDMA 

system use the same carrier frequency and transmit simultaneously. Each user has a unique spreading 

code, which is approximately orthogonal to the spreading codes of the rest of the users. The receiver 

performs a correlation operation to detect the data signal of the desired user. For detecting the data 

signal, the receiver requires the spreading code used by the desired user. 

 

 

Figure  2.8: Code division multiple access. 

 

Theoretically, CDMA systems provide a larger user capacity than FDMA and TDMA systems 

 [27]. This is due to the fact that the CDMA system distinguishes different users by their spreading 

codes; the same spectrum can be used in all cells. Hence the frequency reuse factor is one. 

Besides this, two other important feature of CDMA systems are worth mentioning, the first is 

privacy and the second is its ability to combat multi-path fading. Privacy is realized by virtue of the 

fact that the data signal of a certain user can be recovered only if its spreading code is known. 

Knowledge of such codes is a difficult task and this difficulty increases proportionally to the length of 
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the spreading code. The ability of CDMA systems to combat multi-path fading is largely due to the fact 

that the CDMA signal is a wideband signal and it is larger than the coherence bandwidth  [28] of the 

wireless channel. Hence, the different frequency components of the CDMA signal are affected 

differently by the multi-path fading channel. All multi-paths with delays larger than Tc are resolved, 

processed and combined in an optimal way using what is known in the literature as the Rake receiver. 

This is a form of diversity that can help the receiver in improving its bit error rate (BER) performance.           

Despite all the advantages the CDMA system offers, its performance is limited by two major 

problems, namely: the multiple access interference (MAI) and the near-far problem which are 

interrelated and are usually treated together. 

The MAI, caused by the cross-correlation between spreading codes of active users, is the 

dominant factor that leads to reduction of user capacity in CDMA systems. The undesirable impact of 

the MAI becomes more remarkable and sometimes disastrous when the number of active users 

becomes large or when the power level of certain users is significantly higher than that of others. In 

this case, weak users may lose communication because of the overwhelming MAI. This phenomenon is 

known as the near-far effect and needs what is known as power control  [29]. Hence, unlike TDMA 

and FDMA systems that are bandwidth limited, CDMA systems are interference limited. Thus, 

increasing the capacity of the system translates directly to decreasing the amount of MAI. This process 

is usually referred as interference cancellation or multiuser detection (MUD)  [30]. 

2.8 Spreading Codes 

In all spread spectrum systems the desired signal is spread prior to transmission using one or more 

spreading codes. Selection of spreading codes for a certain application depends on the working 

environment and on the specific properties desired for the spreading codes. For single user 

communications in a multi-path environment, the most important thing is the ability to resolve multi-

paths. To perform this successfully, the spreading codes must have excellent autocorrelation properties, 

ideally a delta function. However, for a multiuser system in a non-multi-path environment, the most 

important issue in selecting the spreading codes is the capability to minimize MAI. This can be 

achieved if the spreading codes are selected such that the maximum value of the cross-correlation is 

minimized ( [30] and  [31]). In practice, commercial CDMA systems are multiuser systems in multi-

path environment, consequently, the selection of spreading codes for CDMA systems should take into 

account both the autocorrelation and cross-correlation properties. Furthermore, CDMA systems are 

cellular and require separation of intra-cell as well as inter-cell users. This imposes two levels of 
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spreading, which can be accomplished by combining two spreading codes, known as channelization 

codes (to distinguish between different users of the same cell) and scrambling codes (to distinguish 

users of different cells). Multiple spreading is described in detail in  [32]. Two broad categories of 

spreading codes, namely orthogonal codes and pseudo-noise (PN) codes, are discussed in the 

subsequent subsections. 

2.8.1 Orthogonal Codes 

As their name indicates, these codes, known as Walsh-Hadamard codes  [32], are mutually orthogonal; 

hence the cross-correlation between each synchronous pair is theoretically zero. However, if they are 

asynchronous, their cross-correlation is very much dependent on the particular pair of codes used; 

some will have a zero cross-correlation while others will have a very high correlation. In WCDMA, 

they are known as variable orthogonal spreading factor (OVSF) codes and they are used for 

channelization in both uplink and downlink channels  [32]. 

2.8.2 Pseudo-Random Noise (PN) Codes 

A Pseudo-random Noise (PN) code is a sequence of binary numbers, e.g., ±1, which appears to be 

random; but is in fact perfectly deterministic. The sequence appears to be random in the sense that the 

binary values occur in the sequence in the same proportion they would if the sequence were being 

generated based on a fair "coin tossing" experiment. In such an experiment, each head could result in 

one binary value and a tail the other value. The PN code appears to have been generated from such an 

experiment. A software or hardware device designed to produce a PN code is called a PN generator 

( [33] and  [34]). 

The reason behind the use of PN codes is that if the code sequences were deterministic, then 

everybody could access the channel. If the code sequences were truly random on the other hand, then 

nobody, including the intended receiver, would be able to access the channel. Thus, using a pseudo-

random sequence makes the signal look like random noise to everybody except to the transmitter and 

the intended receiver  [31]. The most used PN codes are: 

• Maximal Length codes: The maximum-length shift-register code, or m-code for short, is probably 

the most widely known PN code. It has a length of 2m -1 bits and is generated by using a linear 

feedback shift register with m taps.  The m-codes have excellent autocorrelation properties but their 

cross-correlation properties do not follow any particular rules ( [33] and  [34]) and typically exhibit 

undesirably high values  [31]. Furthermore, the number of m-codes for a given number of registers 
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in a linear feedback shift register is limited. m-codes are used in IS-95 for scrambling for both 

uplink and downlink channels  [32]. 

• Gold codes: Gold codes tackle the problems associated with m-codes. They are derived by 

combining m-codes from two linear feedback shift registers ( [35] and  [36]). In comparison to m-

codes, Gold codes provide larger sets of codes and exhibit better cross-correlation properties ( [31] 

and  [33]). Gold codes are used in WCDMA for scrambling in the downlink channel  [32]. 

• Kasami codes: Kasami codes also solve the two undesirable properties of the m-codes: smaller sets 

of codes and high cross-correlation values. Kasami codes can be generated either as a small set or 

as a large set. The small set has better cross-correlation properties, while the large set provides 

more codes to choose from. Generation of Kasami codes involves a method similar to the one used 

to generate the Gold codes. Kasami codes are used in WCDMA for scrambling in the uplink 

channel  [32]. 

2.9 Short-Code versus Long-Code CDMA Systems 

The selection of spreading codes is critical for the system designer. The choice between a short-code 

and a long-code CDMA system has been subject to a long debate. However, this depends heavily on 

the target of the application. As such, one has clearly to set the targets and main features of the 

application. Nevertheless, the targets are in many cases conflicting and this may explain why the 

debate, which system is better, is not resolved until now. Another factor that adds more ambiguity to 

this issue is that many studies have ended up with conflicting results. For example, vembu and viterbi 

 [37] state that the long-code system outperforms its counterpart the short-code system in terms of user 

capacity and robustness while Kärkkäinen et al   [38] state that the short-code system outperforms the 

long-code system in terms of average BER performance (average of users). 

In order to get a clear picture of the scene, it is better to emphasize on the features of both 

systems and discuss the benefits and shortcomings of each system. In the following we compare long-

code and short-code systems:      

• Historically the choice of a long-code system was motivated by the requirement for a low 

probability of inference of the spreading code, and hence interception of the transmitted data, since 

the over-riding requirement was security  [39]. This prompted the desire for very long codes which 

could be generated easily by co-operating parties but which at the same time, were difficult for 

interfering, or eavesdropping parties to infer. However, the advent of the implementation of spread 
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spectrum techniques for multiple access communications has shifted the emphasis somewhat away 

from such security issues to maximizing the number of subscribers who are able to access a system 

simultaneously  [39], while maintaining a reasonable error performance. One way of maximizing 

the user capacity is the use of advanced signal processing techniques such as multiuser detection. 

Most of the MUD schemes assume cyclostationary interference which motivated the need for 

periodic short-code CDMA systems.  

• In a long code system, the correlation between the users changes from symbol to symbol and the 

MAI therefore appears to be random in time, causing the average performance for different users to 

be identical and determined by the average interference level  [40]. Short codes, on the other hand, 

have cross-correlations that remain unchanged over time, and there is a fear that an unfortunate 

user might be trapped in an inferior performance scenario due to non time-varying cross-

correlations. The capacity is therefore ruled by the distribution of the interference rather than 

solely by its mean. To overcome the shortcoming of the short-code system, the author in  [41] 

proposed a code-hoping technique to reduce the variability of users’ performance within the 

system. 

• In terms of complexity of multiuser detectors, short-code systems are specially introduced to make 

MUD possible, e.g., it is set as an option in the UMTS standard  [32]. Short-code systems have the 

property that codes are periodic with a periodicity equal to the symbol time in contrast to long 

codes, which essentially are random. As such, the cross-correlation matrix is fixed and doesn’t 

have to be recomputed from one symbol period to another. It should be noted that some 

interference suppression and cancellation techniques are applicable to long code systems as well, 

but the complexity is often lower in case of short codes due to the cyclostationary interference. 

• Long-codes provide a large set of codes to choose from, therefore no algorithm for code selection 

is needed. This is in contrast to short-codes where the set of codes is limited and hence spreading 

codes for different users have to be carefully selected  [38]. 

2.10 Conclusion 

In this chapter, we reviewed the basic concept of cellular networks and went through different 

generations of cellular systems. The theory behind the spread spectrum technique is provided and 

advantages of CDMA over other multiple access techniques are detailed. Finally, different types of 

spreading codes that are used in actual standards are discussed and compared. 
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3.2 Introduction 

Radio waves propagate from a transmitting antenna, and travel through free space undergoing 

absorption, reflection and scattering. They are greatly affected by the ground terrain, the atmosphere, 

and the objects in their path, like buildings, bridges, hills, trees, etc. These multiple physical 

phenomena are responsible for most of the characteristic features of the received signal. 

In most of the mobile or cellular systems, the height of the mobile antenna may be smaller than 

the surrounding structures. Thus, the existence of a direct or line-of-sight path between the transmitter 

and the receiver is highly unlikely. In such a case, propagation is mainly due to reflection and 

scattering from the buildings. So, in practice, the transmitted signal arrives at the receiver via several 

paths with different time delays creating a multipath situation as in Figure  3.1.  

At the receiver, these multipath waves with randomly distributed amplitudes and phases 

combine to give a resultant signal that fluctuates in time and space. Therefore, a receiver at one 

location may have a signal that is much different from the signal at another location, only a short 

distance away, because of the change in the phase relationship among the incoming radio waves. This 

causes significant fluctuations in the signal’s amplitude. This phenomenon of random fluctuations in 

the received signal level is termed as fading. 
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Figure  3.1: Wave propagation mechanisms 

 

The propagation factors that affect the strength of the received signals in wireless 

communication systems, excellently introduced in  [42], are the path loss, large-scale fading and small-

scale fading. These are depicted in Figure  3.2 and explained briefly below: 

• The path loss is basically a drop in signal power as a function of distance. When a mobile receiver 

moves away from the base station, i.e., when the distance increases, the signal will become weaker 

because of power loss in the transmission medium. For free-space propagation, the signal strength 

is inversely proportional to the distance squared (i.e., 1/d2, where d is the distance between the 

transmitter and receiver). The path loss has the lowest rate of change of the three factors and the 

attenuation normally reaches 100-120 dB in the coverage area  [43]. 

• The large-scale fading varies faster than path loss and is normally described as a log-normal 

distributed stochastic process around the mean of the path loss. This type of fading is introduced 

because of the shadowing from buildings and other structures in the environment. The large-scale 

fading introduces attenuations of about 6-10 dB  [43]. 

• The small-scale fading is, as the name implies, the fastest varying mechanism. It is introduced as a 

consequence of the multipath propagation together with the time-varying nature of the channel. 
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The small-scale fading attenuates the signal with up to 40 dB, when the mobile moves as short as 

half a wavelength  [43]. 
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Figure  3.2: Fading mechanisms. 

 

The path loss and large-scale fading can be mitigated by the use of power control, for example. 

Small-scale fading, on the other hand, introduces the need for an equalizer that is capable of removing 

the time-varying intersymbol interference (ISI) introduced by the multipath propagation. The multipath 

propagation arises from the fact that the transmitted signal is reflected from objects such as buildings 

or mountains and scattered from smaller objects such as lamp posts, for example  [44]. Hence, the 

signal will reach the receiver from different directions, as shown in Figure  3.1. Each path may have 

different delay, introducing a spread in time (Delay spread) of the received signals, indicating that the 

channel may be characterized by an impulse response, where each impulse represents signal path with 

a certain delay. Depending on the maximum time difference between the first and last received signals, 

the maximum excess delay Tm, and the symbol period Ts, the channel may be classified as frequency 

selective or flat. The channel is said to be frequency selective when Tm > Ts (the mobile radio channel 

has a constant gain and linear phase response over a bandwidth, known as coherence bandwidth, 
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smaller than that of the transmitted signal), because different frequencies of the transmitted signal will 

experience different amount of attenuation. This leads to time dispersion of the transmitted symbols 

within the channel arising from these different time delays, and hence resulting in inter-symbol 

interference  [45]. 

On the other hand, if Ts < Tm (the mobile radio channel has a coherence bandwidth larger than 

the bandwidth of the transmitted signal) then the channel is said to be flat since all frequencies of the 

transmitted signal would experience essentially the same amount of attenuation. 

For wireless systems, the channel is time-variant because of the relative motion between the 

transmitter and the receiver or by movements of objects within the channel, which results in 

propagation changes (i.e., variations in the signal’s amplitude and phase). 

Another important physical mechanism that affects the signal is the Doppler effect. Doppler 

spread is introduced in the received signal spectrum, causing frequency dispersion. If the Doppler 

spread is significant relative to the bandwidth of the transmitted signal, the received signal is said to 

undergo fast fading. This form of fading typically occurs for very low data rates. On the other hand, if 

the Doppler spread of the channel is much less than the bandwidth of the baseband signal, the signal is 

said to undergo slow fading. This is the case for most 3G wideband systems  [46]. 

If we assume that (i) the propagation of the waves takes place in the two dimensional 

(horizontal) plane, (ii) that there is isotropic scattering (uniformly in all directions) around the receiver, 

(iii) that the channel is flat, (iv) uniform distribution of signals arriving from all angles throughout the 

range [0, 2π] and that (v) the receiving antenna is omni-directional (radiates power uniformly in all 

directions), then it is possible to show that, when there is a great number of waves received at the 

antenna, a transmitted signal will be multiplied with a time-varying signal with a power spectral 

density often called Jake’s power spectral density, Clarke’s power spectral density or the classical 

Doppler spectrum. Interested readers are referred to  [47] for full details regarding the derivation of 

Jake’s PSD. It can also be shown that the signal has a complex Gaussian distribution, which implies 

that the magnitude of the signal will have a Rayleigh distribution, in the case of no line-of-sight. When 

a line-of-sight component is present, the distribution will be Rician instead. A nice presentation on this 

topic can be found in  [28].  

The final model of the channel is a time-varying impulse response, where each coefficient in the 

response models a certain multipath; i.e., each coefficient will have the classical Doppler spectrum and 

either a Rayleigh or Rician distribution. 
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For the Rayleigh and Rician processes, it is possible to derive a number of useful statistical 

properties ( [28] and  [48]), such as the average fade duration (AFD), the level crossing rate (LCR) and 

the autocorrelation function. 

The AFD is a measure of the average time the amplitude of the signal is below a certain 

threshold level. The AFD is inversely proportional to the Doppler frequency, that is, the higher the 

Doppler frequency, the shorter the fades will be on the average. The LCR is a measure of how often a 

certain amplitude level is passed by the signal. The LCR is proportional to the Doppler frequency, that 

is, for a higher Doppler frequency, the rate of crossing a certain level is higher. The autocorrelation 

function specifies the extent to which there is correlation between the channel’s impulse response at 

time t1 and at time t2. The time dependence goes down (i.e., less correlation) as Doppler frequency goes 

higher. An excellent overview on this topic and other channel modeling techniques is presented in  [49]. 

3.3 Channel Model 

The time-varying channel impulse response is given by the following expression  [50]: 

( ) ( ) ( )
1

,
L

l l l
l

g t h c tτ δ τ τ
=

= −∑  ( 3-1)

where: 

L: is the number of paths. 

hl: is the given path amplitude satisfying the power normalization condition: ( )2

1
1

L

l
l

h
=

=∑ . This 

requirement allows the channel to be scaled by the transmit power in the simulation. 

τl: is the time delay of the path relative to the first path; usually τ1 = 0 is assumed. 

cl(t): the fading coefficient of the l-path and can be Rayleigh or Rician distributed. 

δ(t): is the delta function 

A typical realization of the time-varying channel impulse response given by equation ( 3-1) is 

shown in Figure  3.3. A practical implementation of the time-varying channel in an uplink 

asynchronous CDMA system is shown in Figure  3.4 and 3.5. Here, the received signal is given by: 
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Figure  3.3: Time-varying channel impulse response. 

 

Figure  3.4: Uplink asynchronous CDMA system. 
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and n(t) is an AWGN noise sample at time t with variance σ2 , moreover, bk(t), ak(t), and sk(t) are the 

transmitted symbol value, amplitude value and spreading code value at time t of the kth user, 

respectively. 

The amplitude of each path 
klh is usually obtained from the power delay profile whereas the 

fading coefficients ( )
klc t  are generated from a fading coefficients generation model. The power delay 

profile and the fading coefficients generation model are the subject of the next sections. 

 

 

Figure  3.5: Time-varying fading channel for the kth user. 

3.4 Power-Delay Profile 

Channel measurements are often summarized in terms of power-delay profiles. A Power-delay profile 

P(τ) (τ ≥ 0) can be interpreted as a density, normalized such that ( )
0

1P dτ τ
∞

=∫ with P(τ)dτ denoting the 
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fraction of power in taps with delays in the interval [τ, τ + dτ]. The mean value and the standard 

deviation for this density are known as the mean excess delay and rms delay spread, respectively. If we 

sample this density function at the sampling rate Fs we obtain L samples that represent the number of 

multi-paths. If the amplitude of the lth multi-path is hl and its delay is τl, then the mean excess delay is 

defined as: 

( )
( )

2

2
l ll

ll

h

h

τ
τ = ∑

∑
 ( 3-4)

 

and the rms delay spread is given by: 

2 2
rms l lτ τ τ= −  ( 3-5)

where: 
2 2

2
2

l ll
l

ll

h
h
τ

τ = ∑
∑

. 

The power-delay profile includes the power distribution and the associated delay of a multipath 

channel, so that it captures the frequency selectivity of the channel. For a simulation to be useful, 

power-delay profiles used should be representative for the given topographical environment, such as 

those summarized in documents of different standard development organizations (ITU, 3GPP, 3GPP2) 

( [51] and  [52]). These models are based on extensive measurements of the time-varying channel 

impulse response and are usually summarized in tables as in Table  3.1, 3.2 and 3.3 ( [53] and  [51]):  

 

Table  3.1: Indoor channel power delay profile (5Km/h). 

Relative Delay (ns) Avg. Power (dB) Avg. Power 

0 0 1 

50 -3 0.7079 

110 -10 0.3162 

170 -18 0.1259 

290 -26 0.0501 

310 -32 0.0251 
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Table  3.2: Indoor to outdoor channel power delay profile (5Km/h). 

Relative Delay (ns) Avg. Power (dB) Avg. Power 

0 0 1 

110 -9.7 0.3273 

190 -19.2 0.1096 

410 -22.8 0.0724 

Table  3.3: Vehicular A outdoor channel power delay profile (120Km/h). 

Relative Delay (ns) Avg. Power (dB) Avg. Power 

0 0 1 

310 -1 0.8913 

710 -9 0.3548 

1090 -10 0.3162 

1730 -15 0.1778 

2510 -20 0.1000 

 

The models given by multi-path channel profiles in tables 3.1, 3.2 and 3.3 should be converted to the 

time resolution of the simulation model (For UMTS we have the chip rate is: 3.84 Mchips/s therefore, 

the time duration of one chip is 1/3.84 = 260.4 ns). The ideal way to do this is to perform an 

interpolation with a sinc(.) function (sin(x)/x), however, this will result in a large number of additional 

paths which will increase the simulation time considerably. Simpler interpolation methods that give 

approximately the same number of paths are discussed in  [54].  

In our case, we implement the method known as constant mean delay spread due to its 

simplicity  [54]. In this method, each ray is split into two rays, one to the left of the sample and one to 

the right of the sample. The power of these new rays is such that the sum is equal to the original power, 

and the power of each of the new rays is inversely proportional to the distance of the original ray. The 

power of all the rays on one sample are added and then normalized. This is graphically demonstrated in 

Figure  3.6. 

After applying the proposed interpolation method and taking into consideration that we are using 

amplitudes in our simulation model instead of powers ( average amplitude average power= ) we get 

the following equivalent amplitude delay profiles:  
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Figure  3.6: Equivalent Channel Model. 

 

Table  3.4: Equivalent indoor channel amplitude delay profile of Table  3.1 at chip rate using the 

proposed interpolation method. 

Relative Delay (ns) Normalized Avg. Power Avg. Amplitude 

0 0.8082 0.8990 

260.4 0.1871 0.4326 

520.8 0.0047 0.0686 

 

Table  3.5: Equivalent indoor to outdoor channel amplitude delay profile of Table  3.2 at chip rate using 

the proposed interpolation method. 

Relative Delay (ns) Normalized Avg. Power Avg. Amplitude 

0 0.8074 0.8986 

260.4 0.1650 0.4062 

520.8 0.0276 0.1661 
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Table  3.6: Equivalent vehicular A outdoor channel amplitude delay profile of Table  3.3 at chip rate 

using the proposed interpolation method. 

Relative Delay (ns) Normalized Avg. Power Avg. Amplitude 

0 0.3521 0.5934 

260.4 0.2540 0.5040 

520.8 0.0939 0.3064 

781.2 0.1361 0.3689 

1302 0.0772 0.2778 

1822.8 0.0557 0.2360 

2604 0.0310 0.1761 

 

3.5 Generation of Rayleigh Complex Channel Coefficients 

Since the introduction of the Jakes model in 1974  [55], many improved models have been developed 

and accessed to generate the Rayleigh complex channel coefficients with correct statistical properties 

 [56]- [59]. Generating Rayleigh complex coefficients for the case of multiple independent fading 

channels was also proposed in  [60]- [63]. 

In this dissertation, we use the improved Jakes model recently introduced in  [64]. By sampling at 

frequency Fs (in our case, it is equal to chip-rate), the discrete form of the normalized discrete lowpass 

Rayleigh fading signal is given below: 

[ ] [ ] [ ]inphase quadrature
l l lc n c n jc n= +  ( 3-6)
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Here, lϕ , lφ , ,om lψ  are random variables that are statistically independent and uniformly 

distributed  over [-π , π] for all om  and l , n is the discrete time index, l  is the lth path and oM  is the 

number of oscillators used to approximate the complex fading signal,  fd (ωd = 2π fd) is the maximum 

Doppler frequency of the signal, fc is the carrier frequency, v is the mobile speed, c is the speed of light 

and Fs is the sampling frequency. When oM  approaches infinity, the envelope 

( ) ( )2 2inphase quadrature
l l lc c c= +  is Rayleigh distributed with PDF: 

and the phase ( ) arctan
quadrature
l

l inphase
l

cc
c

⎛ ⎞
Θ = ⎜ ⎟

⎝ ⎠
 is uniformly distributed over [-π , π]  with PDF: 

( ) ( ) 1
2l ccf θ
πΘ = , [ ],  cθ π π∈ −  ( 3-10)

The autocorrelation and cross-correlation functions of the inphase and quadrature components 

are given by:  

( ) ( )0inphase inphase
l l

dc c
R Jτ ω τ=  ( 3-11)

( ) ( )0quadrature quadrature
l l

dc c
R Jτ ω τ=  ( 3-12)

( ) 0inphase quadrature
l lc c

R τ =  ( 3-13)

( ) 0quadrature inphase
l lc c

R τ =  ( 3-14)

where J0 is the zero-order Bessel function of the first kind. The width of the channel autocorrelation 

function is equal to the channel coherence time, denoted by Tcoh. The coherence time satisfies Tcoh ≈ 

1/fd. The channel is said to be slowly fading if Tcoh >> Ts or fdTs<<1, and fast fading if Tcoh < Ts or fdTs 

> 1. For UMTS system, the complex fading coefficients are generated at the chip rate which is 

3.84Mchips/sec and Doppler shift for practical mobile speeds ranges from 0 to 200 Hz, therefore, fdTc 

<< 1 and hence the mobile channel for UMTS can be considered as a slow fading channel. 

In the following, we simulate the improved Jakes model  [64] and test some of its properties, 

where the following parameters are used: Fs = 1kHz, fd = 100Hz. The second order statistics such as the 

autocorrelation and the cross-correlation of both the inphase and the quadrature components are shown 

( )
2

2

l

c

cf c ce
⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠= , c≥0, ( 3-9)
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in Figure  3.7, 3.8, 3.9 and 3.10. We test two cases for Mo = 10 and for Mo = 100. We note that Mo = 10 

is enough to approximate the theoretical models.  
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Figure  3.7: The simulated and theoretical autocorrelation of the inphase and quadrature components of 

the Rayleigh fading signal c(t) for Mo = 10. 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-0.5

0

0.5

1
Autocorrelation of the inphase

-100 -80 -60 -40 -20 0 20 40 60 80 100
-0.5

0

0.5

1
Autocorrelation of the Quadrature

Simulation
Theoretical

Simulation
Theoretical

 

Figure  3.8: The simulated and theoretical autocorrelation of the inphase and quadrature components of 

the Rayleigh fading signal c(t) for Mo = 100. 
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Figure  3.9: The simulated and theoretical crosscorrelation of the inphase and quadrature components of 

the Rayleigh fading signal c(t) for Mo = 10. 
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Figure  3.10: The simulated and theoretical cross-correlation of the in-phase and quadrature components 

of the Rayleigh fading signal c(t) for Mo = 100. 
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In order to check that different multi-paths generated using the improved jakes model are not correlated 

as it should be, we plot the simulated and theoretical cross-correlation of the in-phase components of 

two paths of the Rayleigh fading signal c(t) and the simulated and theoretical cross-correlation of the 

quadrature components of two paths of the same signal. 

It is clear from Figure  3.11, that the cross-correlation between the in-phase components and the 

quadrature components of the two Rayleigh fading paths is very small. 
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Figure  3.11: The simulated and theoretical cross-correlation of the in-phase components of two paths 

of the Rayleigh fading signal c(t) and simulated and theoretical cross-correlation of the quadrature 

components of two paths of the Rayleigh fading signal c(t) for Mo = 10. 

 

In Figure  3.12, the probability density functions of the envelope and the phase of the signal c(t) are 

simulated. It is clear that the probability density function of the envelope is Rayleigh with mean one, 

and probability density function of the phase is uniform between –π and π. 

In Figure  3.13, a realization of fast and slow fading signals which are controlled through the 

parameter fd is plotted: for fd = 10Hz (slow fading) and for fd = 100Hz (fast fading). 
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Figure  3.12: The simulated probability density function (PDF) of envelope and phase of the Rayleigh 

fading signal c(t). 
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Figure  3.13: The envelope of the Rayleigh fading signal c(t): slow versus fast fading. 



 Chapter 3  Wireless Fading Channels 

 39

3.6 Conclusion 

In this chapter, the multipath Rayleigh fading channel that will be used in simulation for all subsequent 

chapters is detailed. The channel model consists of basically two parts: the power delay profile and the 

complex Rayleigh fading channel coefficients. The WCDMA power delay profile and improved Jakes 

model were selected for implementation. Finally, different properties of the Jakes model such as the 

autocorrelation and cross-correlation were simulated and commented.     

 

 

 

 

 

 

 



 Chapter 4  CDMA Channel Model 

 40

Chapter 4 
CDMA Channel Model 

 

4.1 Chapter’s Contents 

4.1 Chapter’s Contents ..................................................................................................................... 40

4.2 Introduction ................................................................................................................................ 41

4.3 Matrix Form of the Asynchronous CDMA AWGN Channel..................................................... 42

4.3.1 Matrix of the Spreading Codes S ....................................................................................... 43

4.3.2 Matrix of Received Amplitudes A ..................................................................................... 44

4.3.3 Vector of BPSK Symbols b ............................................................................................... 45

4.3.4 Determining the Matrix of Effective Spreading Codes effS ............................................... 46

4.3.5 Determining the Matrix of Effective Received Amplitudes effA ....................................... 50

4.3.6 Determining the Vector of the Effective BPSK Symbols bb ............................................. 51

4.4 Matrix Form of the Asynchronous CDMA Multi-Path Fading Channel.................................... 52

4.4.1 Matrix of the Channel Coefficients H ................................................................................ 53

4.4.2 Matrix of the Spreading Codes S ....................................................................................... 56

4.4.3 Matrix of the Spreading Codes S ....................................................................................... 58

4.4.4 Matrix of the Received Amplitudes A ............................................................................... 59

4.4.5 Vector of the BPSK Symbols b ......................................................................................... 60

4.4.6 Determining the Effective Spreading Code b
effS ................................................................ 61

4.4.7 Determining the Matrix of Effective Received Amplitudes effA ....................................... 67

4.4.8 Determining the Vector of Effective BPSK Symbols bb ................................................... 68

4.5 Conclusion.................................................................................................................................. 68



 Chapter 4  CDMA Channel Model 

 41

4.2 Introduction 

Due to the complex nature of CDMA systems, there have been many different formulations for the 

CDMA uplink channel model. Several linear models have been developed starting from the simplest 

synchronous CDMA AWGN channel to the multiple antennas over multi-path fading channels.  [65]-

 [67]. 

As the CDMA channel introduces MAI/ISI, different techniques of mitigating the effect of MAI, 

ISI or both result in different multiuser structures. The development of such structures depends on the 

CDMA channel model adopted. This is the main reason for having a variety of formulations of the 

CDMA channel model. Structures removing both ISI and MAI are introduced in  [67]. Structures 

removing only MAI but not ISI are introduced in  [68]. Both multiuser detector structures are based on 

the following model  [67]: 

= +r SHAb n  ( 4-1)

where: 

S: is the matrix of the spreading codes. 

H: is the matrix of the channel coefficients. 

A: is the matrix of received amplitudes. 

b: is the vector of BPSK symbols. 

n: is the vector of independently, identically distributed additive white Gaussian noise with zero-mean 

and variance σ2. 

Another model proposed in  [65] is given by: 

= +r HSAb n  ( 4-2)

where H, S, A, b and n are the same as those defined in ( 4-1). The multiuser detector structures 

derived from this model can remove both ISI and MAI. However, if the effect of MAI is not severe, an 

interesting and useful structure that can be derived is a structure that will be able to remove ISI but not 

MAI. Furthermore, the remaining MAI can be due to either a synchronous CDMA channel or an 

asynchronous CDMA channel. The remaining MAI using this model is due to an asynchronous CDMA 

channel.  

In the following, we introduce a new CDMA channel model that results in a multiuser detector 

structure that is able to: 

• Either remove both ISI and MAI, 
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• Or remove ISI but not MAI where the remaining MAI is due to a synchronous CDMA channel. 

Hence, if the spreading codes are orthogonal then the MAI is also automatically removed. 

Another advantage of the proposed CDMA channel model is its suitability for simulation, 

particularly in MATLAB, due its matrix formulation and the use of circular shifting operators. 

In a multiuser CDMA system, there are two levels of asynchronism. In a symbol asynchronous 

system, symbols are not aligned but chips are and thus the delay is a multiple of the chip period. In a 

chip asynchronous system, chips are not aligned and thus symbols are not aligned as well. Usually in 

this case the chip period is sampled at a certain frequency. Hence, the delay is not a multiple of the 

chip period but a multiple of the sample period. In the subsequent sections, asynchronism refers to 

symbol asynchronism and hence all delays are multiple of the chip period. 

4.3 Matrix Form of the Asynchronous CDMA AWGN Channel  

Before starting the derivation of the matrix form of the asynchronous CDMA AWGN channel, let us 

define the following parameters: 

M: is the number of BPSK symbols. 

N: is the processing gain. 

K: is the number of active users in the system 

τk: is the relative delay of the kth user. 

k: is the user index.  

n: is  the chip index. 

m: is the symbol index. 

Tt: is a circular shift operator, it shifts the rows/elements of a matrix/vector clockwise (from up to 

down) t rows/elements. 

ks : is the {N -by-1} spreading code of the kth user. 

A: is the {K -by-K} matrix of received amplitudes. 

The received signal obtained at the output of the asynchronous AWGN channel is expressed in matrix 

form as: 

= +r SAb n  ( 4-3)

where: 

S : is the {(MN + ( )
1
max k

k K
τ

≤ ≤
)-by-MK} matrix of the spreading codes. 
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A : is the {MK-by-MK} matrix of received amplitudes. 

b : is the {MK-by-1} vector of BPSK symbols. 

n : is the {(NM+ ( )
1
max k

k K
τ

≤ ≤
)-by-1} vector of independent, identically distributed (i.i.d) additive white 

Gaussian noise with zero-mean and variance σ2.  The matrices S  and A , and vector b  are derived in 

the following subsections. 

4.3.1 Matrix of the Spreading Codes S  

The following steps are required to construct the spreading matrix S : 

• Define the vector ks of length {(N+ ( )
1
max k

k K
τ

≤ ≤
)-by-1} as k

k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

s
s

0
 where 0 is a { ( )

1
max k

k K
τ

≤ ≤
-by-1} 

zero vector.  

• Construct the matrix S  of length {(N+ ( )
1
max k

k K
τ

≤ ≤
)-by-K} and shown in Figure  4.1 as 

1 2

1 2

k K

k KT T T Tτ τ τ τ⎡ ⎤= ⎣ ⎦S s s s s . 

 

 

Figure  4.1: The matrix S . 

 

• Define S  of length {NM+ ( )
1
max k

k K
τ

≤ ≤
-by-K} as 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

SS
0

, where  0 is a {N(M-1) -by-K} zero matrix. 
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• Finally the matrix S  of length {NM+ ( )
1
max k

k K
τ

≤ ≤
-by-MK}, shown in Figure  4.2 is obtained as: 

( ) ( )1 10 m N M NNT T T T− −⎡ ⎤= ⎢ ⎥⎣ ⎦
S S S S S . 

 

Figure  4.2: The matrix S . 

4.3.2 Matrix of Received Amplitudes A  

The following steps are required to construct the matrix A : 

• Define the matrix A of length {MK-by-K} as 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A
A

0
 where A is a {K-by-K} matrix of the 

received amplitudes and 0 is a {(M-1)K-by-K} zero matrix. 

• Finally the matrix A  of length {MK-by-MK} and shown in Figure  4.3 is constructed as follows: 
( ) ( )1 10 m K M KKT T T T− −⎡ ⎤= ⎣ ⎦A A A A A . 
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Figure  4.3: The matrix A . 

4.3.3 Vector of BPSK Symbols b  

The vector b  of length {MK-by-1}, shown in Figure  4.4, is constructed as follows: 

[ ]1 2
T

m M=b b b b b  where mb  is a {1-by-K} vector of the mth BPSK symbols of K users. 

 

Figure  4.4: The vector b . 
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4.3.4 Determining the Matrix of Effective Spreading Codes effS  

Before proceeding further let us define the following symbols: 

W: is the number of symbols within the processing window (the length of the processing window 

counted in terms of BPSK symbols).  

ug: is the user index within the gth group. 

w: is the symbol index of the symbols detected within one processing window interval. 

b: is the block index. 

B: is the number of blocks in a data packet. 

PW: length of the processing window counted in terms of chips. 

In a purely asynchronous CDMA system, the number of BPSK symbols M within one data 

packet is very large. Actually, each user activates and deactivates its terminal independently from each 

other. Thus, it is not practical to assume that the whole received signal r would be processed in a 

receiver. Therefore, a finite sliding processing (observation) window model will be developed. The 

received signal will be processed using a sliding window of length PW chips and overlap V chips 

where PW and V are defined as: PW = WN + ( )
1
max k

k K
τ

≤ ≤
 and V = ( )

1
max k

k K
τ

≤ ≤
.  This is shown in Figure 

 4.5.  

 

Figure  4.5: The vector r and the sliding window of length PW chips and overlap V chips. 
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In doing so, it is better to buffer the received signal r in a matrix 

[ ]1 2 b B=Q q q q q  of dimension {PW-by-B} where qb is a {PW-by-1} column of Q as 

shown in Figure  4.6:  

 

Figure  4.6: The matrix Q. 

The effective spreading codes are defined as: ( ) ( )1 10 w N W NN
eff T T T T− −⎡ ⎤= ⎢ ⎥⎣ ⎦

S S S S S  

where S  is defined in Section  4.3.1. The structure of effS  is shown in  

Figure  4.7.  

 

Figure  4.7: The matrix effS .  
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effS  can be decomposed as: ( ) ( ) ( ) ( )1 2eff eff eff eff effw W⎡ ⎤= ⎣ ⎦S S S S S  and 

( ) ( ) ( ) ( ) ( ),1 ,2 , ,eff eff eff eff effw w w w k w K= ⎡ ⎤⎣ ⎦S s s s s  where ( ),eff w ks  is the wth 

symbol kth user effective spreading code vector. The structure of ( )eff wS  is shown in Figure  4.8.  

 

 

 

Figure  4.8: The matrix ( )eff wS . 

 

 

The output of the bank of matched filters for the whole data packet is given by: T
MF =y S r while 

the output of the bank of matched filters detector of the bth block is given by: b T
MF eff b=y S q . This is 

shown in Figure  4.9: 
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Figure  4.9: The vectors MFy (left) and b
MFy (right). 

 

The cross-correlation matrix between the codes of active users for the whole data packet is given 

by: T=R S S , while the cross-correlation matrix between the codes of active users for the bth block is 

given by: T
eff eff eff=R S S . This is shown in Figure  4.10. 

In order to show the relation between R  and effR let us arrange the matrix S  as: 

−

∗

+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S

S S

S

, 

where ∗S is of length {(N– ( )
1
max k

k K
τ

≤ ≤
)-by-K}, +S and −S are both of length { ( )

1
max k

k K
τ

≤ ≤
-by-K}. Define 

also ∗R  as: ( ) ( )T∗ ∗ ∗=R S S , +R  as ( ) ( )T+ + −=R S S  and −R  as ( ) ( )T− − +=R S S , hence 

( )T− +=R R . ( )T∗ ∗ ∗=R S S  is the dashed matrix, ( )T− − +=R S S  is the vertically dashed matrix and 

( )T+ + −=R S S  is the horizontally dashed matrix. It is clear that the MAI is not removed completely 

because of some cross-correlation elements that reside outside the sliding window. This effect is 

known as the finite word effect and therefore is a systematic error. 
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Figure  4.10: The matrices R  and effR for the asynchronous CDMA AWGN channel. 

 

4.3.5 Determining the Matrix of Effective Received Amplitudes effA  

The matrix effA  of length {WK-by-WK}, as shown in Figure  4.11, is constructed as follows: 

( ) ( )1 10 w K W KK
eff T T T T− −⎡ ⎤= ⎣ ⎦A A A A A , where the matrix A  is defined in Section 

 4.3.2: 
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Figure  4.11: The matrix effA . 

 

 

4.3.6 Determining the Vector of the Effective BPSK Symbols bb  

The block b of BPSK symbols bb , shown in Figure  4.12, is obtained by arranging the vector b  of 

length {MK-by-1} into blocks as follows: 1 2 Tb B⎡ ⎤= ⎣ ⎦b b b b b where 

1 2

Tb b b b b
w W⎡ ⎤= ⎣ ⎦b b b b b . b

wb  is shown in Figure  4.12 and can be decomposed by itself as 

follows:  ( ) ( ) ( ) ( )1 2
Tb b b b b

w w w w wk K⎡ ⎤= ⎣ ⎦b b b b b , where ( )b
w kb  is the  wth BPSK symbol 

of the bth block of the kth user. 
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Figure  4.12: The vectors bb and b
wb  

 

4.4 Matrix Form of the Asynchronous CDMA Multi-Path Fading Channel 

Before starting the development of the matrix form of the asynchronous CDMA multi-path fading 

channel, let us define the following parameters: 

Lk: is the number of paths for the kth user. 

lk: is the path index for the kth user. 

klτ : is the delay of the lth path of the kth user. 

klh : is the average amplitude of the lth path of the kth user’s channel impulse response (obtained from 

the power delay profile). 

The received signal obtained at the output of the asynchronous multi-path fading channel is 

expressed in matrix form as: 

 

= + = +r HSAb n SAb n  ( 4-4)

where: 

H  is {(NM + ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-NMK} matrix of the channel coefficients. 
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S  is {NMK -by-MK} matrix of spreading codes. 

A  is {MK -by-MK} matrix of the received amplitudes. 

b  is {MK -by-1} vector of BPSK symbols. 

n  is {(NM + ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-1} vector of independent, identically distributed additive 

white Gaussian noise with zero-mean and variance equals σ2 and =S HS .  

The matrices H  and S  and A  and vector b are derived in the following subsections. 

4.4.1 Matrix of the Channel Coefficients H  

Let us define the following: 
1 2 m M

k k k k k⎡ ⎤= ⎣ ⎦C C C C C  is the {Lk-by-NM} matrix of the complex channel coefficients 

(generated using the improved Jakes model of Section 3.4) of the kth user for the data packet of length 

M. 
m
kC is {Lk-by-N} matrix of the complex channel coefficients of the kth user for the mth symbol period. 

kC  could also be decomposed as: 

1

2

k

k

k
l

L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

c
c

C c

c

, where 
klc is the lk row of the matrix kC . 

The following steps are required to construct the spreading matrix H : 

• Define a new variable ( )
1

0,1, , max
k

k k
k ll L
τ τ

≤ ≤
= … . 

• Define m
kC  of length {( ( )

1
max

k
k k

ll L
τ

≤ ≤
+1)-by-N} where ( )1,m

k k nτ +C  is given by:  

( ) ( ), ,  if 
1,

0                      ,  elsewhere
k k

m
k k l k lm

k k

l n h
n

τ τ
τ

⎧ × =⎪+ = ⎨
⎪⎩

C
C . 

• Note that if m
kC is constant during one symbol period then, the elements of each row are constant, 

and m
kC  can be reduced to the vector m

kc of length {Lk-by-1}, that is:  

( ) ( ) ,  if 
1,

0                  ,  elsewhere
k k

m
k k l k lm

k k

l h
n

τ τ
τ

⎧ × =⎪+ = ⎨
⎪⎩

c
C . 
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• Define ( ) ( )ˆ
m
km

k

n
n

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

c
c

0
 where  ( )m

k nc  is the nth column of the matrix m
kC  and 0 is a {(N -1)-by-

1} zero vector. 

• Construct m
kH  of length {{(N + ( )

1
max

k
k k

ll L
τ

≤ ≤
)-by-N} as: 

( ) ( ) ( ) ( )0 1 1 1ˆ ˆ ˆ ˆ1 2m m m m n m N
k k k k kT T n T N T− −⎡ ⎤= ⎣ ⎦H c c c c . 

• Define m
kH  of length {(N + ( )

1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-N} as 

m
m k
k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H
H

0
 where 0 is an 

{ ( )
1
max k

k K
τ

≤ ≤
 -by-N} zero matrix.  

• Construct the matrix 
1 2

1 2

k Km m m m m
k KT T T Tτ τ τ τ⎡ ⎤= ⎣ ⎦H H H H H  of length {(N 

+ ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-NK}. 

• Define mH  of length {(NM + ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-NK} as 

m
m

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

HH
0

 where 0 is an {(M-

1)N -by-NK} zero matrix.  

• Finally, construct the matrix ( ) ( )1 11 0 2 m N M NN m MT T T T− −⎡ ⎤= ⎣ ⎦H H H H H  of length 

{(NM + ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-NMK}. 

The matrices H ,  mH  and m
kH are depicted in Figure  4.13, 4.14 and 4.15, respectively. 
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Figure  4.13: The matrix H . 

 

 

Figure  4.14: The matrix mH . 
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Figure  4.15: The matrix m
kH . 

4.4.2 Matrix of the Spreading Codes S  

The following steps are required to construct the spreading matrix S : 

• First, define the vector ks  of length {NK-by-1} as k
k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

s
s

0
 where 0 is an {N(K-1) -by-1} zero 

vector. 

• Second, construct the matrix ( ) ( )1 10
1 2

k N K NN
k KT T T T− −⎡ ⎤= ⎣ ⎦S s s s s  of length {NK -

by-K}. 

• Third, define S  of length {NMK -by-K} as 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

SS
0

 where 0 is an {N(M-1)K -by-K} zero matrix. 

• Finally, the matrix S  of length {NMK -by-MK} is obtained as: 

( ) ( )1 10 m NK M NKNKT T T T− −⎡ ⎤= ⎢ ⎥⎣ ⎦
S S S S S . 

The matrices S  and S  are depicted in Figure  4.16 and 4.17, respectively. 
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Figure  4.16: The matrix S . 

 

Figure  4.17: The matrix S . 
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4.4.3 Matrix of the Spreading Codes S  

The matrix S  is obtained from =S HS . This is shown in Figure  4.18, where ( )mS is given by 

( ) mm =S H S  and it is shown in Figure  4.19. Here ( ),m ks is the non-zero part of kth column of ( )mS . 

 

  

 

Figure  4.18: The matrix S . 
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Figure  4.19: The matrix ( )mS . 

 

 

4.4.4 Matrix of the Received Amplitudes A  

The following steps are required to construct the spreading matrix A : 

• Define the matrix A  as 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A
A

0
 where 0 is an {(M-1)K-by-K} zero matrix. 

• Construct the matrix A  of length {MK-by-MK}, as shown in Figure  4.20, as follows: 
( ) ( )1 10 m K M KKT T T T− −⎡ ⎤= ⎣ ⎦A A A A A . 
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Figure  4.20: The matrix A . 

4.4.5 Vector of the BPSK Symbols b  

The vector b  of length {MK-by-1}, as shown in Figure  4.21, is constructed as follows: 

[ ]1 2
T

m M=b b b b b , where mb is the {1-by-K} vector of the mth BPSK symbols of K 

users. 

 

Figure  4.21: The vector b . 
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4.4.6 Determining the Effective Spreading Code b
effS  

As depicted in Figure  4.22, the received signal will be processed using a sliding window of length PW 

chips and overlap V chips of dimensions PW =WN + ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
 and V = 

( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
, respectively.  Again, the received signal r is buffered in a matrix 

[ ]1 2 b B=Q q q q q  of dimension {PW-by-B} where qb is a {PW-by-1} column of Q.  

The matrix of effective spreading codes is defined as: b b
eff eff= ×S H S , where: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 1 1 1 10W b W b w W b w N W W b W Nb NT T T T+ − + − + − − + − −⎡ ⎤= ⎢ ⎥⎣ ⎦
H H H H H  and is shown in 

Figure  4.23. Note taht ( )1w W b+ −H  is the same as mH  defined in Section  4.4.1, only m is changed with 

w+W(b-1) and it is shown in Figure  4.24, and ( )1w W b
k
+ −H  is the same as m

kH defined in  4.4.1, only m is 

changed with w+W(b-1) and it is shown in Figure  4.25. 

 

 

 

Figure  4.22: The vector r and the sliding window of length PW chips and overlap V chips. 
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Figure  4.23: The matrix bH . 

 

Figure  4.24: The matrix ( )1w W b+ −H . 
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Figure  4.25: The matrix ( )1w W b
k
+ −H . 

 

 

Moreover, ( ) ( )1w W b
k n+ −c  is the nth column of the matrix ( )1w W b

k
+ −C  and ( ) ( )1 1,w W b

k k nτ+ − +C  is 

given by:  ( ) ( )
( ) ( )1

1 , ,  if 
1,

0                               ,   elsewhere
k k

w W b
w W b k k l k l
k k

l n h
n

τ τ
τ

+ −
+ −

⎧ × =⎪+ = ⎨
⎪⎩

C
C . 

Note that ( )1w W b
k
+ −C  is the same as m

kC defined above, only m is changed with w+W(b-1). On the other 

hand, ( ) ( )1 10 w N W NN
eff T T T T− −⎡ ⎤= ⎢ ⎥⎣ ⎦

S S S S S  where S  is defined in Section  4.4.2, and it 

shown in Figure  4.26. 
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Figure  4.26: The matrix effS . 

 

 

Hence, the matrix b
effS has the following form as shown in Figure  4.27. In this case, ( )b wS , of length 

{(N + ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-K}, is given by ( ) ( )1w W bb w + −=S H S , where S is defined in Section 

 4.4.2. b
effS  can be decomposed as: ( ) ( ) ( ) ( )1 2b b b b b

eff eff eff eff effw W⎡ ⎤= ⎣ ⎦S S S S S , moreover 

( )b
eff wS  can be written as:  ( ) ( ) ( ) ( ) ( ),1 ,2 , ,b b b b b

eff eff eff eff effw w w w k w K⎡ ⎤= ⎣ ⎦S s s s s , 

where ( ),b
eff w ks  is the (w)th symbol (k)th user effective spreading code vector and ( ),b w ks is the non-

zero part of kth column of ( )b wS . This is depicted in Figure  4.28. 
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Figure  4.27: The matrix b
effS . 

 

Figure  4.28: The matrix ( )b
eff wS . 
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The output of the bank of the maximum ratio combining (MRC) rake receivers for the whole 

data packet is given by: H
MRC =y S r while the output of the bank of the MRC rake receivers for the bth 

block is given by: ( )H
b b
MRC eff b=y S q . This is shown in Figure  4.9. 

The cross-correlation matrix between the codes of active users for the whole data packet is given 

by: H=R S S while the cross-correlation matrix between the codes of active users for the bth block is 

given by: ( )H
b b b
eff eff eff=R S S , where ( ) ( )( ) ( )

H
b b b
eff eff effw w w=R S S  is the cross-correlation matrix of 

the wth symbol in the bth block. 

In order to show the relation between R  and b
effR , let us divide the matrix ( )mS  as: 

( )
( )
( )
( )

m

m m

m

−

∗

+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

S

S S

S

where ( )m∗S is of length {(N+ ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-K}, ( )m+S and 

( )m−S are both of length {( ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-K}. Define ( )m∗R as: 

( ) ( ) ( )Hm m m∗ ∗ ∗=R S S , ( )m−R as ( ) ( ) ( )1Hm m m− − += −R S S  and ( )m+R as 

( ) ( ) ( )1Hm m m+ + −= +R S S , hence: ( ) ( )1 Hm m+ −= +R R . 

A typical example of the matrix  H=R S S  for the asynchronous CDMA multi-path fading 

channel is depicted in Figure  4.29. It is clear that the MAI+ISI is not removed completely here as well 

because of some cross-correlation elements that reside outside the sliding processing window, which is 

known as the finite word effect. 

Here b
effR has the same structure as R , only the subscript m is changed with w+W(b-1). The dashed 

matrix is defined as: ( )( ) ( )( ) ( )( )1 1 1
H

w W b w W b w W b∗ ∗ ∗+ − = + − + −R S S , the vertically dashed 

matrix is defined as: ( )( ) ( )( ) ( )( )1 1 1 1
H

w W b w W b w W b− − ++ − = + − + − −R S S  and finally the 

horizontally dashed matrix is defined as: 

( )( ) ( )( )( ) ( )( )( )1 1 1 1
H

w W b w W b w W b+ + −+ − = + − + − +R S S , hence: 

( )( ) ( )( )1 1 1
H

w W b w W b+ −+ − = + − +R R . 



 Chapter 4  CDMA Channel Model 

 67

 

Figure  4.29: Structure of the matrix R  and b
effR for the asynchronous CDMA multipath fading channel. 

4.4.7 Determining the Matrix of Effective Received Amplitudes effA  

The matrix effA  of length {WK-by-WK}, as shown in Figure  4.30, is constructed as follows: 

( ) ( )1 10 w K W KK
eff T T T T− −⎡ ⎤= ⎣ ⎦A A A A A , where the matrix A is defined in Section 

 4.4.4. 
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Figure  4.30: The matrix A . 

4.4.8 Determining the Vector of Effective BPSK Symbols bb  

The block b of BPSK symbols bb  is constructed by dividing the vector b  of length {MK-by-1} into 

blocks as follows: 1 2 Tb B⎡ ⎤= ⎣ ⎦b b b b b where 1 2

Tb b b b b
w W⎡ ⎤= ⎣ ⎦b b b b b . 

Furthermore, b
wb can be decomposed as ( ) ( ) ( ) ( )1 2

Tb b b b b
w w w w wk K⎡ ⎤= ⎣ ⎦b b b b b , where 

( )b
w kb  is the  wth BPSK symbol of the bth block of the kth user. This is depicted in Figure  4.12. 

4.5 Conclusion 

In this chapter we introduced a new linear CDMA model for the uplink asynchronous CDMA multi-

path fading channel. Using this model, new multiuser detection structures can be derived. Of particular 

interest is the one which is able to remove ISI and leave a synchronous-type of MAI. The latter can be 

simply removed if orthogonal codes are used. 
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5.2 Introduction 

As many scientific and engineering problems lead to the requirement to solve systems of linear 

equations, researchers and scientists are showing increasing interest in developing low-complexity, 

efficient and reliable methods for solving such systems. The latter enter at some stage in almost every 

engineering problem, and moreover, it often represents the dominating part of the solution to the 

problem. Even for nonlinear problems, their solution is usually obtained by solving a sequence of 

linear equations, e.g., by Newton’s methods.  

Two different categories of methods for solving systems of linear equations exist: direct 

methods and iterative methods  [69]. In direct methods, such as Gaussian elimination, the system is 

transformed by a sequence of elementary transformations to a system of simpler form, e.g., diagonal or 

triangular form, which can be solved in an elementary way, e.g., forward or backward substitution. On 

the other hand, iterative methods refer to a wide range of techniques that compute a sequence of 

approximate solutions, which in the limit converges to the exact solution of the linear system.  

Iterative methods date back to Gauss (1823) but have been subject to intensive development 

since 1950 when the computers replaced desk calculators. A thorough historical review can be found in 

 [70]. Iterative methods are often used to solve large linear systems where direct methods exhibit high 

computational complexity  [69].    

5.3 General Concepts 

Consider the following linear system:  

Rb = y ( 5-1)
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where R is the coefficient matrix, y is the right-hand side vector and b is the vector of unknowns. Most 

of the classical iterative methods such as Jacobi, Gauss–Seidel, and successive over-relaxation (SOR) 

are based on splitting R into  [71]: 

R = M – N ( 5-2)

where M is a nonsingular matrix known as the splitting matrix and it is constructed so that it is easily 

invertible . Then Rb = y is converted to the fixed-point iteration defined by the following recurrence: 

bp = M-1Nbp-1 + M-1y ( 5-3)

The matrix B = M-1N is known as the iteration matrix and it controls the convergence behavior of the 

iteration defined by equation ( 5-3). The iteration above can also be formulated as:  

bp = bp-1 + M-1ep-1 = bp-1 + 1p−e  ( 5-4)

where ( )1 1
1 1 1p p p

− −
− − −= = −e M e M y Rb  is the correction term applied to the current approximate 

solution bp and ep is the residual vector. This form ( 5-4) is commonly used in correction methods  [71] 

and  [72].  

Iterative methods of the form in ( 5-3) belong to a special class of iterative methods which are 

known as stationary iterative methods because the transition matrix is independent of the iteration 

index p. To study different stationary iterative methods, we begin by the following decomposition of 

the coefficient matrix R, that is  [71]: 

R = D – L – U ( 5-5)

where D is the diagonal/block-diagonal of R, and L and U are the remaining lower-left and upper-right 

parts of R, respectively. We always assume that diagonal entries of R are nonzero.  

All iterative methods determine the ith element of the next approximation of the solution vector 

bp so as to annihilate the ith element of the residual vector (y – Rbp-1). Basically two different 

approaches exist and are used to determine or update the ith element of the next approximation of the 

solution vector ( [71] and  [73]). In the first approach, the ith element is determined in a complete 

asynchronous way, that is, the determination of one element is independent of the others, while in the 

second approach, the ith element is determined in a complete synchronous way, that is, the 

determination of one element depends on the calculation of the previous one in a given order. Both 

approaches have advantages and disadvantages. The first approach is inherently parallel which enables 

its implementation on a multiprocessor system, however, since it doesn’t use the most recent updates 
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its convergence is slow. The second approach is inherently sequential, and thus cannot be implemented 

on a multiprocessor system; however, since it uses the most recent updates its convergence is usually 

faster.  

5.4 Iterative Methods 

5.4.1 Point Iterative Methods: 

5.4.1.1 Point Richardson Iteration 

The point Richardson iteration is given by  [74]: 

( ), , 1, , 1,
1

1    1, ,
K

p k k k p k k j p j k
j
j k

b r b r b y k K− −
=
≠

= − + + =∑ …  ( 5-6)

This is element-wise implementation of the Richardson iteration, if all elements are grouped into 

vectors and matrices, then the matrix form of the Richardson iteration is given by: 

( ) 1p p−= − +b I R b y  ( 5-7)

Another formulation of the equation above which is most suitable for correction methods is given by: 

( )1 1p p p− −= + −b b y Rb  ( 5-8)

For all subsequent iterative methods, it can be shown easily that they are equivalent to solving a 

preconditioned system M-1Rb = M-1y using the Richardson iterative method. Hence, the splitting 

matrix M can be regarded as a left preconditioning matrix applied to the system Rb = y. In general the 

preconditioning matrix is chosen to satisfy the following two properties  [75]:   

• M is close to R in some sense, for example ||M – R||2. 

• M-1 is easy to compute. 

As such, and since preconditioned systems usually have faster convergence speed, it is expected 

that the convergence speed of iterative systems depends on the closeness of the splitting matrix to the 

matrix R. 

5.4.1.2 Point Jacobi Iteration 

The point Jacobi iteration is given by  [71]: 
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, , 1,
1,

1   1, ,
K

p k k k j p j
jk k
j k

b y r b k K
r −

=
≠

⎛ ⎞
⎜ ⎟= − =⎜ ⎟⎜ ⎟
⎝ ⎠

∑ …  ( 5-9)

This is in fact an element-wise implementation of the Jacobi iteration. The matrix form of the Jacobi 

iteration is given by: 

( )
( )

1 1
1

1 1
1        = 

p p

p

− −
−

− −
−

= + +

− +

b D L U b D y

I D R b D y
 ( 5-10)

The equation above can be reformulated to be suitable for correction methods as: 

( )1
1 1p p p

−
− −= + −b b D y Rb  ( 5-11)

5.4.1.3 Point Gauss-Seidel Iteration 

The point Gauss-Seidel iteration is given by  [71]: 

1

, , , , 1,
1 1,

1   1, ,
k K

p k k k j p j k j p j
j j kk k

b y r b r b k K
r

−

−
= = +

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∑ ∑ …  ( 5-12) 

The matrix form of the Gauss-Seidel iteration is given by: 

( ) ( )1 1
1p p

− −
−= − + −b D L Ub D L y  ( 5-13)

An alternative formulation of the equation above, which is appropriate for correction methods, is given 

by: 

( ) ( )1
1 1p p p

−
− −= + − −b b D L y Rb  ( 5-14)

5.4.1.4 Modified Point Gauss-Seidel Iteration 

In this section, we introduce a new iterative method which can be considered as the complement of the 

Richardson iterative method. The method is in fact a modified Gauss-Seidel method where the splitting 

matrix M = D – L for Gauss-Seidel is replaced by: M = I – L where I is the identity matrix, the 

modified point Gauss-Seidel iteration is given by: 

( )
1

, , 1, , , , 1,
1 1

1    1, ,
k K

p k k k k p k k j p j k j p j
j j k

b y r b r b r b k K
−

− −
= = +

= + − − − =∑ ∑ …  ( 5-15)

The matrix form of the proposed modified Gauss-Seidel iteration is given by: 

( ) ( ) ( )1 1
1p p

− −
−= − − + + −b I L I D U b I L y  ( 5-16)
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A different arrangement of the equation above, that is suitable for correction methods, is given by: 

( ) ( )1
1 1p p p

−
− −= + − −b b I L y Rb  ( 5-17)

As for the Richardson method, the element-wise implementation of the proposed modified Gauss-

Seidel iteration doesn’t require any division, which reduces the computational complexity. 

5.4.2 Point Iterative Relaxation Methods 

The correction term bp – bp-1 = M-1(y – Rbp-1) is usually either too large and thus results in divergence 

or too small and thus the iteration exhibits slow convergence behavior. To overcome this problem, the 

correction term is modified by allowing the splitting matrix M to incorporate a weighting factor which 

is known as the relaxation parameter or relaxation factor and it is used to control the convergence rate. 

Relaxation methods are based on splitting the matrix R into  [74]: 

ωR = M(ω) – N(ω) ( 5-18)

Rb = y is then converted to the fixed-point iteration defined by the following recurrence: 

bp = M(ω)-1N(ω)bp-1 + M(ω)-1y ( 5-19)

where the iteration matrix is given by B = M(ω)-1N(ω), the iteration above can also be formulated as: 

bp = bp-1 + M(ω)-1ep-1 = bp-1 + 1p−e  ( 5-20)

where ( ) ( ) ( )1 1
1 1 1p p pω ω− −
− − −= = −e M e M y Rb  is the correction term applied to the current 

approximate solution bp-1 and ep-1 is the residual vector . Hence, it is clear that the correction term is 

controlled by the relaxation parameter ω.  The general form for the point relaxation iterative methods is 

given by: 

bp = bp-1 + M(ω)-1(y – Rbp-1) ( 5-21)

where ω is a real number. Usually, if ω < 1, the iteration above is known as point under-relaxation 

iterative method, however if ω > 1, the iteration above is known as point over-relaxation iterative 

method. The under-relaxation principle is often used to ensure the convergence of some non-stable 

iterative methods such as the point Jacobi iterative method. On the other hand the over-relaxation 

principle is often used to accelerate the convergence of some stable iterative methods such as the point 

Gauss-Seidel method.  
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As for the point Jacobi and point Gauss-Seidel methods, relaxed versions can be obtained and 

are discussed below. 

5.4.2.1 Point Richardson Relaxation Iteration 

The point Richardson relaxation iteration is given by  [71]: 

( ), , 1, , 1,
1

1    1, ,
K

p k k k p k k j p j k
j
j k

b r b r b y k Kω ω− −
=
≠

⎛ ⎞
⎜ ⎟= − + + =⎜ ⎟⎜ ⎟
⎝ ⎠
∑ …  ( 5-22)

This is an element-wise implementation of the Richardson relaxation iteration, the matrix form of the 

Richardson relaxation iteration is given by: 

( ) 1p pω ω−= − +b I R b y  ( 5-23)

For correction methods, the equation above is rearranged and given by: 

( )1 1p p pω− −= + −b b y Rb  ( 5-24)

5.4.2.2 Point Jacobi Relaxation Iteration 

The point Jacobi method is known to suffer from serious convergence issues, to overcome this problem 

a relaxation factor is inserted and adjusted so that the convergence of the original point Jacobi method 

is guaranteed. The point Jacobi relaxation iteration  [76] is given by: 

( ), , 1, 1,
1,

+ 1    1, ,
K

p k k k j p j p k
jk k
j k

b y r b b k K
r
ω ω− −

=
≠

⎛ ⎞
⎜ ⎟= − − =⎜ ⎟⎜ ⎟
⎝ ⎠

∑ …  ( 5-25) 

The matrix form of the point Jacobi relaxation iteration is given by: 

( ) ( )
( )

1 1
1 1

1 1
1

1

        = 
p p p

p

ω ω ω

ω ω

− −
− −

− −
−

= + + − +

− +

b D L U b b D y

I D R b D y
 ( 5-26)

Another possible arrangement of the equation above, which is suitable for correction methods, is given 

by: 

( )1
1 1p p pω −
− −= + −b b D y Rb  ( 5-27)

5.4.2.3 Point Successive Over-Relaxation Iteration 

The point successive over-relaxation iteration is given by  [71]: 
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( )
1

, , , , 1, 1,
1 1,

+ 1    1, ,
k K

p k k k j p j k j p j p k
j j kk k

b y r b r b b k K
r
ω ω

−

− −
= = +

⎛ ⎞
= − − − =⎜ ⎟

⎝ ⎠
∑ ∑ …  ( 5-28)

The matrix form of the successive over-relaxation iteration is given by: 

( ) ( )( ) ( )1 1
11p pω ω ω ω ω− −
−= − + − + −b D L U D b D L y  ( 5-29)

For correction methods, the equation above is reformulated as: 

( )
1

1 1
1

p p pω

−

− −
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

b b D L y Rb  ( 5-30)

5.4.2.4 Modified Point Successive Over-Relaxation Iteration 

In this section, we present a modified successive over-relaxation method where the splitting matrix 

1
ω

= −M D L  for successive over-relaxation method is replaced by: 1
ω

= −M I L  where I is the 

identity matrix. The point modified successive over-relaxation iteration is given by: 

( )
1

, , 1, , , , 1,
1 1

1    1, ,
k K

p k k k k p k k j p j k j p j
j j k

b y r b r b r b k Kω ω ω
−

− −
= = +

⎛ ⎞
= + − − − =⎜ ⎟

⎝ ⎠
∑ ∑ …  ( 5-31)

The matrix form of the proposed modified successive over-relaxation iteration is given by: 

( ) ( )( ) ( )1 1
1p pω ω ω ω ω− −
−= − − + + −b I L I D U b I L y  ( 5-32)

Another possible arrangement of the equation above, which is most suitable for correction methods, is 

given by: 

( )
1

1 1
1

p p pω

−

− −
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

b b I L y Rb  ( 5-33)

As for the Richardson method, the element-wise implementation of the proposed modified successive 

over-relaxation iteration doesn’t require any division, which reduces the computational complexity.   

5.4.3 Block Iterative Methods 

Block or line iterative methods are generalization of point iterative methods as they update a block of 

elements at a time instead of individual elements. This leads to a slightly different decomposition 

imposed on the coefficient matrix R, that is,  [77]: 

R = D – L – U ( 5-34)
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where D is a block diagonal matrix ( )1,1 2,2 ,, , , G Gdiag=D R R R , and L and U are the remaining 

lower-left and upper-right block triangular parts of R, respectively.  We assume that the sub-

matrices 1,1 2,2 ,, , , G GR R R  , for g = 1,…,G, are nonsingular.  

5.4.3.1 Block Richardson Iteration 

The block Richardson iteration is given by: 

( ), , 1, , 1,
1

  1, ,
G

p g g g p g g j p j g
j
j g

g G− −
=
≠

= − + + =∑b I R b R b y …  ( 5-35)

This is the block-wise version of the block Richardson iteration, if all blocks are grouped together, then 

the matrix form of the block Richardson iteration is given by: 

( ) 1p p−= − +b I R b y  ( 5-36)

For correction methods, the equation above is rearranged as: 

( )1 1p p p− −= + −b b y Rb  ( 5-37)

Note that both matrix forms of the block Richardson iteration and the point Richardson iteration are 

equivalent, however, the advantage of the block Richardson iteration is that if it is implemented in a 

parallel multiprocessor structure, blocks of variables can be assigned to different processors. 

5.4.3.2 Block Jacobi Iteration 

The block Jacobi iteration is given by  [71]: 

1
, , , 1,

1
  1, ,

G

p g g g g g j p j
j
j g

g G−
−

=
≠

⎛ ⎞
⎜ ⎟= − =⎜ ⎟⎜ ⎟
⎝ ⎠

∑b R y R b …  ( 5-38)

This is the block-wise version of the block Jacobi iteration, if all blocks are grouped together, then the 

matrix form of the block Jacobi iteration is given by: 

( )1 1
1p p

− −
−= + +b D L U b D y  ( 5-39)

Another possible arrangement of the equation above, which is most suitable for correction methods, is 

given by: 

( )1
1 1p p p

−
− −= + −b b D y Rb  ( 5-40)
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5.4.3.3 Block Gauss-Seidel Iteration 

The block Gauss-Seidel iteration is given by  [71]: 

1
1

, , , , , 1,
1 1

  1, ,
g G

p g g g g g j p j g j p j
j j g

g G
−

−
−

= = +

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∑ ∑b R y R b R b …  ( 5-41)

The matrix form of the block Gauss-Seidel iteration is given by: 

( ) ( )1 1
1p p

− −
−= − + −b D L Ub D L y  ( 5-42)

For correction methods, the equation above is reformulated and given by: 

( ) ( )1
1 1p p p

−
− −= + − −b b D L y Rb  ( 5-43)

5.4.3.4 Modified Block Gauss-Seidel Iteration 

In the following, we propose a modified block Gauss-Seidel method where the splitting matrix M = D 

– L for Gauss-Seidel is replaced by: M = I – L where I is the identity matrix. The modified block 

Gauss-Seidel iteration is given by: 

( )
1

, , 1, , , , 1,
1 1

  1, ,
g G

p g g g g p g g j p j g j p j
j j g

g G
−

− −
= = +

= + − − − =∑ ∑b y I R b R b R b …  ( 5-44)

The matrix form of the proposed modified block Gauss-Seidel iteration is given by: 

( ) ( ) ( )1 1
1p p

− −
−= − − + + −b I L I D U b I L y  ( 5-45)

Another arrangement of the equation above, that is appropriate for correction methods, is given by: 

( ) ( )1
1 1p p p

−
− −= + − −b b I L y Rb  ( 5-46)

As for the Richardson method, the group-wise implementation of the proposed modified block Gauss-

Seidel iteration doesn’t require any matrix inversion, which reduces the computational complexity. 

5.4.4 Block Iterative Relaxation Methods 

As for the point iterative relaxation methods, relaxed versions of the previous block iterative methods 

are obtained and discussed below. 

5.4.4.1 Block Richardson Relaxation Iteration 

The block Richardson relaxation iteration is given by: 
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( ), , 1, , 1,
1

  1, ,
G

p g g g p g g j p j g
j
j g

g Gω ω− −
=
≠

⎛ ⎞
⎜ ⎟= − + + =⎜ ⎟⎜ ⎟
⎝ ⎠
∑b I R b R b y …  ( 5-47)

This is in fact a block-wise implementation of the Richardson relaxation iteration, if all blocks are 

grouped into vectors and matrices, then the matrix form of the Richardson relaxation iteration is given 

by: 

( ) 1p pω ω−= − +b I R b y  ( 5-48)

This equation can be rearranged to suit correction methods as: 

( )1 1p p pω− −= + −b b y Rb  ( 5-49)

5.4.4.2 Block Jacobi Relaxation Iteration 

The block Jacobi method is also known to suffer from a severe convergence problem. To overcome 

this drawback a relaxation factor is inserted and adjusted so that the convergence of the original block 

Jacobi method is guaranteed. The block Jacobi relaxation is given by  [71]: 

( )1
, , , 1, 1,

1
+ 1    1, ,

G

p g g g g i j p j p g
j

g Gω ω−
− −

=

⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
∑b R y R b b …  ( 5-50)

The matrix form of the block Jacobi relaxation iteration is given by: 

( ) ( )
( )

1 1
1 1

1 1
1

1

        = 
p p p

p

ω ω ω

ω ω

− −
− −

− −
−

= + + − +

− +

b D L U b b D y

I D R b D y
 ( 5-51)

For correction methods, the equation above is reformulated as: 

( )1
1 1p p pω −
− −= + −b b D y Rb  ( 5-52)

5.4.4.3 Block Successive Over-Relaxation Iteration 

The block successive over-relaxation iteration is given by  [71]: 

( )
1

1
, , , , , 1, 1,

1 1
+ 1    1, ,

g G

p g g g g g j p j g j p j p g
j j g

g Gω ω
−

−
− −

= = +

⎛ ⎞
= − − − =⎜ ⎟

⎝ ⎠
∑ ∑b R y R b R b b …  ( 5-53)

The matrix form of the block successive over-relaxation iteration is given by: 

( ) ( )( ) ( )1 1
11p pω ω ω ω ω− −
−= − + − + −b D L U D b D L y  ( 5-54)



 Chapter 5  Iterative Methods for Matrix Inversion 

 80

Another possible arrangement of the equation above, which is most suitable for correction methods, is 

given by: 

( )
1

1 1
1

p p pω

−

− −
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

b b D L y Rb  ( 5-55)

5.4.4.4 Modified Block Successive Over-Relaxation Iteration 

In this section, we introduce a modified block relaxation iterative method. The method is in fact a 

modified block successive over-relaxation method where the splitting matrix 1
ω

= −M D L for 

successive over-relaxation method is replaced by: 1
ω

= −M I L  where I is the identity matrix. The 

block modified block successive over-relaxation iteration is given by: 

( )
1

, , 1, , , , 1,
1 1

  1, ,
g G

p g g g g p g g j p j g j p j
j j g

g Gω ω ω
−

− −
= = +

⎛ ⎞
= + − − − =⎜ ⎟

⎝ ⎠
∑ ∑b y I R b R b R b …  ( 5-56)

The matrix form of the proposed modified block successive over-relaxation iteration is given by: 

( ) ( )( ) ( )1 1
1p pω ω ω ω ω− −
−= − − + + −b I L I D U b I L y  ( 5-57)

For correction methods, the equation above is reformulated as: 

( )
1

1 1
1

p p pω

−

− −
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

b b I L y Rb  ( 5-58)

As for the Richardson method, the block-wise implementation of the proposed modified block 

successive over-relaxation iteration doesn’t require any matrix inversion, this reduces the 

computational complexity.  

In Table  5.1, we present the different splitting and iteration matrices for the point iterative 

methods discussed before. For the line or block iterative methods, the table above should be the same, 

however, D is a block diagonal matrix ( )1,1 2,2 ,, , , G Gdiag=D R R R ,and L and U are the remaining 

lower-left and upper-right block triangular parts of R, respectively. 
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Table  5.1: Splitting and iteration matrices of different iterative methods 

Iterative method M N B 

Point Richardson 

iteration 

I I – R I – R 

Point Jacobi iteration D  ( )+L U  ( )1− +D L U  

Point Gauss-Seidel 

iteration 
( )−D L  U  ( ) 1−−D L U  

Modified point Gauss-

Seidel iteration 
( )−I L  ( )− +I D U  ( ) ( )1−− − +I L I D U  

Point Richardson 

relaxation iteration 

1
ω

I  1
ω
⎛ ⎞−⎜ ⎟
⎝ ⎠

I R  ( )ω−I R  

Point Jacobi relaxation 

iteration 

1
ω

D  1
ω
⎛ ⎞−⎜ ⎟
⎝ ⎠

D R  ( )1ω −−I D R  

Point successive over-

relaxation iteration 

1
ω

−D L  ( )( )1 1 ω ω
ω

− +D U  ( ) ( )( )1 1ω ω ω−− + −D L U D  

Modified point 

successive over-

relaxation iteration 

1
ω

−I L  ( )( )1 ω ω
ω

− +I D U  ( ) ( )( )1ω ω ω−− − +I L I D U  

 

5.5 Convergence Issues 

To study the convergence behavior of different iterative methods detailed above, we should first 

determine the properties and characteristics of the coefficient matrix. The coefficient matrix is a cross-

correlation matrix, that is, Hermitian and positive semidefinite  [45]. In the following, we assume that 

the cross-correlation matrix is positive definite (all eigenvalues of the cross-correlation are positive), 

that is, positive semidefinite and nonsingular. Non-singularity can be guaranteed in the case of the 

synchronous/asynchronous AWGN channel by ensuring that the spreading codes from all K users are 

linearly independent, that is the cross-correlation matrix is full-rank.  

For the synchronous/asynchronous Rayleigh fading multipath channel the cross-correlation 

matrix becomes singular if the product KL is large in comparison to the processing gain of a DS-

CDMA system  [78]. It has been observed that the number of users and multipath components up to KL 
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≈ 3N can be tolerated in asynchronous DS-CDMA systems so that the cross-correlation matrix is still 

nonsingular  [78]. Since R is a Hermitian matrix, it must have an eigenvalue decomposition  [79] as R = 

UΛUH, where U is a unitary matrix satisfying UUH = I that contains the eigenvectors of R while Λ is a 

diagonal matrix formed by the K eigenvalues of R as: Λ = diag(λ1, λ2,…, λK). 

5.5.1 General Convergence Results 

All the iterative methods discussed above are of the form: 

bp = M-1Nbp-1+ M-1y = Bbp-1+ f ( 5-59)

where f = M-1y. The following theorem  [71] determines the condition of convergence for any 

stationary iterative method: 

Theorem  5.1 

Let B be a square matrix such that ρ(B) < 1, then I – B is nonsingular and the iteration of ( 5-59) 

converges for any f and b0. Conversely, if the iteration of ( 5-59) converges for any f and b0, then ρ(B) 

< 1. 

From this theorem, it is straightforward to deduce that the convergence of all iterative methods 

discussed before depends on the spectral radius of the iteration matrix B. However, the calculation of 

the spectral radius is quit complex and thus other alternatives should be used. One alternative is to use 

the inequality ρ(B) < ||B||, for any norm, that is  [71]:  

Corollary  5.1 

Let B be a square matrix such that ||B|| < 1, for some matrix norm ||.||, then I – B is nonsingular and 

the iteration of ( 5-59) converges for any f and b0.  

Another alternative to Corollary  5.1 is to replace the norm by the trace since the trace of a matrix is 

also an upper bound of the spectral radius. More relaxed conditions of convergence can be obtained if 

properties of the cross-correlation matrix are taken into consideration. The cross-correlation matrix is 

hermitian, semi-definite and under most practical conditions positive definite. It is also in some cases 

diagonally dominant. 

5.5.2 Convergence Results for Hermitian Positive Definite Matrices  

Let us first consider the case where the cross-correlation matrix is hermitian and positive definite, that 

is, R = D – L – U = D – E – EH where E = L = UH, Ostrowski  [80] proved that the successive over-
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relaxation iterative method is convergent if and only if the coefficient matrix is positive definite and 

the relaxation factor is between 0 and 2. This is given by the following theorem: 

Theorem  5.2 

Let R = D – E – EH be a K-by-K hermitian matrix, where D is positive definite, and D – ωE is 

nonsingular for 0 < ω < 2. Then, the successive over-relaxation iteration is convergent if and only if R 

is positive definite and 0 < ω < 2.  

Since Gauss-Seidel is a special case of the successive over-relaxation iteration (ω = 1), then it is 

evident from the theorem above that the Gauss-Seidel iteration is convergent if and only if R is 

positive definite, this is detailed in the following corollary  [80]: 

Corollary  5.2 

Let R = D – E – EH be an K-by-K hermitian matrix, where D is hermitian and positive definite, and D 

– E is nonsingular. Then, the Gauss-Seidel iteration is convergent if and only if R is positive definite. 

Ostrowski’s theorem is also extended to both block successive over-relaxation and block Gauss-Seidel 

iterative methods through the following two corollaries  [80]: 

Corollary  5.3 

Let R be an K-by-K hermitian matrix and R = D – E – EH, where D is block diagonal matrix, and E 

and EH are the remaining lower-left and upper-right block triangular parts of R. If D is positive 

definite, then the block successive over-relaxation method is convergent for all y0 if and only if  0 < ω 

< 2 and R is positive definite. 

Corollary  5.4 

Let R be an K-by-K hermitian matrix and R = D – E – EH, where D is block diagonal matrix, and E 

and EH are the remaining lower-left and upper-right block triangular parts of R. If D is positive 

definite, then the block Gauss-Seidel method is convergent for all y0 if and only if R is positive definite. 

Another theorem that is used to prove the convergence of the Gauss-Seidel and the block Gauss-Seidel 

iterative method is the Keller theorem  [81]. This is a very important theorem, which we need later on 

for the subsequent chapters. 
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Theorem  5.3 

Let R be a hermitian matrix and let M be a nonsingular matrix such that ( )( )+ H −M M R  is positive 

definite. Then the iteration ( )1 1
1 p p

− −
−= − +b M M B b M y  is convergent if and only if R is positive 

semidefinite. 

In order to apply Keller’s theorem in our case we set the following: R = D – E – EH, M = D –E which 

is nonsingular because det(M) = det(D –E) = det(D) ≠ 0 EH = M – R, hence we get: 

( )
( )

+

                     = 

H H

H H

− = + −

− +

M M R M M R

D E E
 ( 5-60)

Hence: + H H− =M M R D , and since the matrix D is also hermitian and positive definite then the 

Gauss-Seidel/block Gauss-Seidel iteration matrix is convergent. 

For the modified point/block Gauss-Seidel iterative methods, we obtain the necessary conditions 

of convergence by simply considering the modified point/block Successive over-relaxation iterative 

methods with the relaxation factor set to one. This is detailed in the subsequent sections. 

5.5.3 Convergence Results for Strictly Diagonal Dominant Matrices 

If we consider the case of a diagonally dominant matrix then both Jacobi and Gauss-Seidel iterative 

methods are convergent, this is clear from the following theorem  [71]: 

Theorem  5.4 

If R is a strictly diagonally dominant, then the associated Jacobi and Gauss-Seidel iterations 

converges for any b0. 

For the Richardson, block Richardson, the proposed modified Gauss-Seidel and the proposed block 

modified Gauss-Seidel iterations more conditions need to be set in order to guarantee convergence as 

they are not always convergent for either hermitian positive definite or diagonally dominant matrices. 

Let us start by the Richardson and block Richardson iterations, since their iteration matrix is the 

same then they should have the same condition of convergence. The iteration matrix of both the 

Richardson and block Richardson iterations is given by: B = I – R, hence for convergence |λmax(I – R)| 

< 1 which implies that: 0 < λmax(R) < 2. If the matrix is strictly diagonal dominant then a sufficient 

condition is given by the following proposition: 
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Proposition  5.1 

If R is a strictly diagonally dominant matrix and D ≤ 1 (rk,k ≤ 1 for all k = 1,2…K), then the associated 

Richardson/block Richardson iteration converges for any b0. 

Proof: 

Using the Gershgorin circle theorem  [82], which states that all eigenvalues of an arbitrary i–rowed 

square matrix { },i jr=R lie within i circles. Each center of the i circles corresponds to exactly one of 

the i-diagonal elements of the matrix. The radius of each circle is given by summing up the magnitudes 

of the remaining i-1 elements of each row1. We obtain the following upper bound for the largest 

eigenvalue: 

( ) ,1 1
max

K

max i ji K j
rλ

≤ ≤ =

⎛ ⎞
≤ ⎜ ⎟

⎝ ⎠
∑R  ( 5-61)

It is clear from Gershgorin circle theorem that if we can limit the distance between the origin and the 

centers of these disks to be less than one then due to the diagonal dominancy of the matrix R, the radii 

of these disks are also less than one. Hence, the union of all these disks in which all eiegevalues of 

matrix R lie should be contained within a disk centered at one and with radius one. This ensures that 

the maximum eigenvalue of the matrix R is between 0 and 2. 

5.5.4 Convergence Results for Iterative Relaxation Methods 

For the relaxation schemes, their iteration matrix depends on the relaxation parameter and therefore 

their convergence behavior and region of convergence depend on the relaxation parameter as well. 

For the Successive over-relaxation and block successive over-relaxation, it is clear from the 

Ostrowski’s theorem, Corollary  5.3 and 5.4, that these two iterative methods converge if and only if 0 

< ω < 2. The optimum value of the relaxation factor that results in the highest asymptotic convergence 

rate is the one that minimizes the spectral radius of the iteration matrix. 

Unfortunately, the determination of such factor requires the calculation of the maximum 

eigenvalue of the iteration matrix which is prohibitively complex. A closed form of the optimum 

relaxation factor is obtained for a class of matrices with a special property (consistently ordered 

matrices)  [83]. Unfortunately, the cross-correlation matrix doesn’t possess this property and therefore 

                                                      
1 It could also be applied column-wise but since the crosscorrelation matrix R is symmetric we would obtain the 
same results 
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one has to look for an estimate of the optimum relaxation factor based on some upper bound on the 

maximum eigenvalue of the iteration matrix as in  [84]. 

For the point/block Jacobi over-relaxation, the iteration matrix is given by: 

( ) ( )1 11ω ω ω− −+ + − = −D L U I I D R and thus this iterative method is convergent if |λmax(I- ωD-1R)| < 

1,  which implies that: 0 < ω < 2/ λmax(D-1R). 

For the Richardson relaxation iteration, the iteration matrix is given by: ( )ω−I R and hence this 

iterative method is convergent if |λmax(I- ωR)| < 1  which implies that: 0 < ω < 2/ λmax(R). 

Note that for the synchronous/asynchronous CDMA AWGN channel, the diagonal D of the 

cross-correlation matrix R is the identity matrix. Therefore, D-1 = D = I and the Richardson and Jacobi 

iterations become the same. The optimal relaxation factor for the point/block Jacobi relaxation iteration 

is given by  [85]: 

( ) ( )1 1
max min

2ω
λ λ− −

=
+D R D R

 ( 5-62)

As for the Jacobi relaxation iteration, the optimal relaxation factor for the Richardson iteration is given 

by  [71]: 

( ) ( )max min

2ω
λ λ

=
+R R

 ( 5-63)

For the modified successive over-relaxation iteration, we use the same approach that is used to prove 

the Ostrowski theorem  [80]. Lets first state the following propositions: 

Proposition  5.2 

Let R be a K-by-K hermitian positive definite matrix and R = D – E – EH, where D is the diagonal part 

of R and E and EH are the remaining lower-left and upper-right triangular parts of R. The modified 

successive over-relaxation method is convergent for any initial solution yo if and only if 

( )
20

max
ω< <

D
. 

Proof: 

The iteration matrix of the modified successive over-relaxation iterative method is given by: 

( ) ( )( )1 Hω ω ω−= − − +H I E I D E  ( 5-64)

Using the determinant operator on the iteration matrix one obtains: 
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[ ] ( ) ( )( )

[ ] ( )

[ ] ( )

( )

( )

1

,
1

det det

1           det
det

1           det
det

           det

           1

H

H

K

k k
k

r

ω ω ω

ω ω
ω

ω

ω

ω

−

=

⎡ ⎤= − − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦−

= ⎡ − ⎤⎣ ⎦

= ⎡ − ⎤⎣ ⎦

= −∏

H I E I D E

I D E
I E

I D
I

I D

 ( 5-65)

Since we have: [ ] ( ) ( )( )
1

det
K K

k max
k

λ λ
=

= ≤∏H H H where ( )kλ H ’s are the eigenvalues of H. For 

convergence we should have ( ) 1maxλ <H  and therefore ( )( ) 1
K

maxλ <H . Thus we get [ ]det 1<H  

and hence ( ),
1

1 1
K

k k
k

rω
=

− <∏ . If one can ensure that ,1 1k krω− <  for all k, then ( ),
1

1 1
K

k k
k

rω
=

− <∏ . 

Finally, one gets: 
,

2 0
k kr

ω> >  for all k, which can be written as 
( )

20
max

ω< <
D

. As a special case, 

the modified Gauss-Seidel iterative method is convergent if: 0 < D <2. For the modfied block 

successive over-relaxation iterative method we propose the following corollary: 

Corollary  5.5 

Let R be an K-by-K hermitian matrix and R = D – E – EH, where D is the block diagonal part of R, 

and E and EH are the remaining lower-left and upper-right block triangular parts of R. The modified 

block successive over-relaxation iterative method is convergent for any initial solution y0 if and only if 

[ ]1 det 1ω− < − <I D  and R is positive definite. 

Proof: 

The iteration matrix of the modified block successive over-relaxation iterative method is given by:  

( ) ( )( )1ω ω ω−= − − +H I L I D U  ( 5-66)

Using the determinant operator on the iteration matrix one obtains:  
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[ ] ( ) ( )( )

[ ] ( )

[ ] ( )

[ ]

1det det

1           det
det

1           det
det

           det

ω ω ω

ω ω
ω

ω

ω

−⎡ ⎤= − − +⎣ ⎦

= ⎡ − + ⎤⎣ ⎦−

= ⎡ − ⎤⎣ ⎦

= −

H I L I D U

I D U
I L

I D
I

I D

 ( 5-67)

Since we have: [ ] ( ) ( )( )
1

det
K K

k max
k

λ λ
=

= ≤∏H H H where ( )kλ H ’s are the eigenvalues of H. For 

convergence we should have ( ) 1maxλ <H  and therefore ( )( ) 1
K

maxλ <H . Thus we get [ ]det 1<H  

and hence [ ]det 1ω− <I D . Finally, one gets: [ ]1 det 1ω− < − <I D  which determines the condition of 

convergence for the modified block successive over-relaxation iterative method. 

Corollary  5.6 

A more restrictive condition for the modified block successive over-relaxation iterative method to 

converge is that 
( )

20
max

ω
λ

< <
D

. 

Proof: 

The condition above can be obtained by noticing that 

[ ] ( ) ( )( )
1

det
K K

k max
k

ω λ ω λ ω
=

− = − ≤ −∏I D I D I D . Thus if we can ensure that: ( ) 1maxλ ω− <I D  then 

[ ]det 1ω− <I D . Finally, this results in the condition of convergence: 
( )

20
max

ω
λ

< <
D

. 

Finally by setting the relaxation factor to one, we obtain the conditions of convergence for the 

modified block Successive over-relaxation iterative method as: [ ]1 det 1− < − <I D . A more restrictive 

condition is: ( )0 2maxλ< <D . All the conditions of convergence are summarized and presented in 

Table  5.2. 
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Table  5.2: Conditions of convergence for different iterative methods 

Iterative method Type of Matrix Condition of convergence 

Point Richardson 

iteration 

R is strictly diagonal dominant. D ≤ 1 

Point Jacobi iteration R is strictly diagonal dominant Always convergent 

Point Gauss-Seidel 

iteration 

R is hermitian and positive definite. Always convergent 

Modified Point Gauss-

Seidel iteration 

R is hermitian, positive definite. 0 < D < 2 

Point Richardson 

relaxation iteration 

Any matrix 0 < ω < 2/ λmax(R) 

Point Jacobi relaxation 

iteration 

Any matrix 0 < ω < 2/ λmax(D-1R) 

Point successive over-

relaxation iteration 

R is hermitian, positive definite. 0 < ω < 2 

Modified point 

successive over-

relaxation iteration 

R is hermitian, positive definite. 
( )

20
max

ω< <
D

 

Block Richardson 

iteration 

R is strictly diagonal dominant. D ≤ 1 

Block Jacobi iteration R is strictly diagonal dominant Always convergent 

Block Gauss-Seidel 

iteration 

R is hermitian and positive definite. Always convergent 

Modified block Gauss-

Seidel iteration 

R is hermitian, positive definite. [ ]1 det 1− < − <I D  or 

( )0 2maxλ< <D  

Block Richardson 

relaxation iteration 

Any matrix 0 < ω < 2/ λmax(R) 

Block Jacobi relaxation 

iteration 

Any matrix 0 < ω < 2/ λmax(D-1R) 

Block successive over- R is hermitian, positive definite. 0 < ω < 2 
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relaxation iteration 

Modified block 

successive over-

relaxation iteration 

R is hermitian, positive definite. [ ]det 1ω− <I D  or 

( )
20

max

ω
λ

< <
D

 

 

The optimal relaxation factors for the relaxation methods detailed above are given in Table  5.3: 

 

Table  5.3: Optimal relaxation factors for different iterative methods 

Iterative method Condition on the matrix Optimal factor 

Point/Block Richardson 

relaxation iteration 

R is strictly diagonal dominant. 

D ≤ 1 ( ) ( )max min

2ω
λ λ

=
+R R

 

Point/Block Jacobi 

relaxation iteration 

R is strictly diagonal dominant 

( ) ( )1 1
max min

2ω
λ λ− −

=
+D R D R

 

Point/Block successive 

over-relaxation iteration 

R is hermitian, positive definite. No analytical expression 

Modified point/block 

successive over-

relaxation iteration 

R is hermitian, positive definite. No analytical expression 

 

5.5.5 Rate of Convergence 

Often, we are interested not only in the conditions of convergence but also in the rate of convergence.  

Let’s define the error between the exact solution ∗y and the approximate solution at iteration p to the 

equation Rb = y as p p
∗= −ε y y , we have: 

1 0
p

p p+ = =ε Bε B ε  ( 5-68)

since the initial error vector is not a null vector, then the error vector at p+1, εp+1, converges to the null 

vector as the number of iterations tends to infinity only if the matrix Bp converges to a null matrix as 

the number of iterations p tends to infinity, this is detailed in the following theory  [71]: 
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Theorem  5.5 

For any ,K K∈R we have ( )lim 1p

p
ρ

→∞
= ⇔ <R 0 R .  

Taking in consideration the following inequality: p p≤B ε B ε , where i  is any norm, hence, we 

can write: 

1 0 0
pp

p + ≤ ≤ε B ε B ε  ( 5-69)

Thus, in order to reduce the norm of the error with a factor less than one, that is, 1

0

1p δ+ ≤ <
ε
ε

, we 

should have p δ≤B . Taking the logarithm of the two sides we obtain: 
( )

ln

p

p
R

δ−
≥

B
 where 

( ) 1 ln p
pR

p
= −B B  and ( )pR B is the average convergence rate.  

By using the following theorem  [71]: 

Theorem  5.6 

For any submultiplicative matrix norm i  on ,K K and any matrix ,K K∈B  we have:  

( )
1

lim p p
p

ρ
→∞

=B B   

We define the asymptotic convergence rate as  [71]: 

Definition  5.1  

If the iterative method is convergent, then for any matrix norm i  we define the average rate of 

convergence as:   

( ) 1 ln p
pR

p
= −B B  

and the asymptotic rate of convergence as: 

( ) ( ) ( )lim lnpp
R R ρ∞ →∞

= = −B B B  

Hence, for a sufficient large number of iterations the convergence rate is dominated by the largest 

eigenvalue of the iteration matrix. 
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5.6 Simulation Results 

In the following we simulate the previously discussed iterative methods by focusing on the following 

points: 

• Convergence speed of different point and block iterative methods. 

• Region of convergence and optimal relaxation factors for different point and block relaxation 

iterative methods. 

In the first case we simulate the convergence speed of the four point iterative methods, namely: 

the point Richardson iterative method, the point Jacobi iterative method, the modified point Gauss-

Seidel iterative method and finally the point Gauss-Seidel iterative method. The normalized residual 

defined as: 
( )
( )

1
11 2 2

1
1 0 02 2

pp p
−

−−

−

−−
=

− −

M y Rbb b

b b M y Rb
for different point iterative methods is evaluated for 

increasing number of stages till it goes below a certain tolerance threshold (tol) which is set in our 

simulation to tol = 0.001. In all figures the vertical scale (normalized residual) is a logarithmic scale. 

Even though, the performance of most iterative methods depends on the test matrices, their 

average performance is well known and usually serial (synchronous) methods are faster than parallel 

(asynchronous) methods.  

The test matrix is a cross-correlation matrix obtained by using Gold codes of length 31 where the 

number of users is set to 20 users. In order to distinguish between the Richardson iteration and the 

Jacobi iteration which are equal if the diagonal elements of the cross-correlation matrix are ones, we 

set the diagonal elements of our test matrix to 0.9. Hence the test matrix is symmetric and diagonal 

dominant. Moreover, the diagonal part of the matrix D = 0.9 ≤1, therefore, all point iterative methods 

are expected to converge unconditionally including the point Richardson iteration. 

Simulation results are depicted in Figure  5.1. The latter illustrates that the fastest iterative 

method is the Gauss-Seidel (11 iterations) followed by the Modified Gauss-Seidel (14 iterations) and 

then followed by Jacobi (19 iterations) and finally by the Richardson method (22 iterations).  This 

agrees well with theory. 
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Figure  5.1: Convergence behavior of different point iterative methods. 

 

The same test matrix is used to test the block versions of the previously discussed iterative methods, 

that is: the block Richardson iterative method, the block Jacobi iterative method, the modified block 

Gauss-Seidel iterative method and finally the block Gauss-Seidel iterative method. 

Simulation results depicted in Figure  5.2 indicates that the performance of both the block Jacobi 

(16 iterations) and the block Gauss-Seidel (11 iterations) have improved compared to their point 

counterparts. This agrees well with the theory  [71]. 

However, for the modified block Gauss-Seidel (16 iterations) it is clear that it convergence speed 

worsened compared to its point counterpart. This is due to the fact that the splitting matrix of the 

modified Gauss-Seidel iterative method is closer to R than that of the modified block Gauss-Seidel 

iterative method. 

Finally for the convergence speed of the block Richardson iteration is similar to that of the point 

Richardson iteration (22 iterations). This is expected because the two iterations are equivalent in the 

sense that they have the same iteration matrix, hence they exhibit the same convergence behavior. 

 

 



 Chapter 5  Iterative Methods for Matrix Inversion 

 94

5 10 15 20 25

10
-3

10-2

10
-1

10
0

Number of Iterations

lo
g(

N
or

m
al

iz
ed

 n
or

m
 o

f t
he

 R
es

id
ua

l)

Block Richardson Iteration
Block Jacobi Iteration
Modified Block Gauss-Seidel Iteration
Block Gauss-Seidel Iteration

 

Figure  5.2: Convergence behavior of different block iterative methods. 

  

 

For the point and block relaxation iterative methods we evaluate the normalized residual defined above 

for different values of the relaxation factor. The same test matrix above is also used here and the 

number of iterations is set to 5 iterations for all iterative methods. From Figure  5.2, one can notice the 

following: 

• For the point Gauss-Seidel relaxation iterative method the minimum value of the residual is within 

the interval (0, 2), which agrees well with theory (Table  5.2). 

• For the modified successive over-relaxation iterative method the minimum value of the residual is 

within the interval (0,2/max(D)), which agrees well with theory (Table  5.2). 

• For the point Richardson relaxation iterative method, the theoretical optimum value is given in 

Table  5.3 and found to be in our case equal to 1.64. Hence it is very close to the value of the 

relaxation factor for which the residual is minimum in our simulation. 

• For the point Jacobi relaxation iterative method, the theoretical optimum value is given in Table 

 5.3 and found to be in our case equal to 1.47. Therefore, it is very close to the value of the 

relaxation factor for which the residual is minimum in our simulation. 
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Figure  5.3: Convergence behavior of different point relaxation iterative methods versus the relaxation 

factor. 

 

All the above comments for the point iterative relaxation methods are also true for the results obtained 

for their block counterparts as illustrated in Figure  5.4, that is: 

• For the block Gauss-Seidel relaxation iterative method the minimum value of the residual is within 

the interval (0, 2), which agrees well with theory (Table  5.2). 

• For the modified block successive over-relaxation iterative method the minimum value of the 

residual is within the interval (0,2/λmax(D)), which agrees well with theory (Table  5.2). 

• For the block Richardson relaxation iterative method, the theoretical optimum value is given in 

Table  5.3 and found to be in our case equal to 1.64. Hence it is very close to the value of the 

relaxation factor for which the residual is minimum in our simulation. 

• For the block Jacobi relaxation iterative method, the theoretical optimum value is given in Table 

 5.3 and found to be in our case equal to 1.47. Therefore, it is very close to the value of the 

relaxation factor for which the residual is minimum in our simulation. 
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Figure  5.4: Convergence behavior of different block relaxation iterative methods versus the relaxation 

factor. 

 

5.7 Conclusion 

In this chapter, we reviewed the basic linear point and block iterative methods. Their corresponding 

relaxation schemes are also introduced. Two new iterative methods are introduced and studied in 

detail. The convergence behavior of these methods is studied and their conditions of convergence are 

determined. Finally, these methods are simulated and the results accessed and commented. 
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6.2 Introduction 

In CDMA, the term Multi-User Detection (MUD) or Joint Detection is any method or technique that 

exploits the knowledge of the spreading codes of users other than the desired user to enhance the 

quality of its data estimates. In general, we are not interested in the data estimates of only one user, but 

of all of them. As such, the detector considers the effects of all users on all other users, and attempts to 

improve the data estimates for all of them, thus resulting in a multiple-input multiple-output system.  

In a pure flat fading synchronous channel, where all users' signals arrive synchronously at the 

base station, there is no need for MUD. For such systems, the best performance is obtained if 

orthogonal spreading codes are used along with a bank of conventional Matched Filter detectors. The 

performance of such systems reduces to that of the single user detector and provides an upper bound on 

the performance of all multi-user systems.  

In practice, however, most CDMA systems are asynchronous and channels frequently exhibit 

dispersive multipath. Together, these factors are sufficient to destroy the orthogonality of the system 

and hence MAI is generated.  In this situation, MUD techniques can be used to notably reduce the 

effect of MAI and to improve the performance so that it is closer to that of an orthogonal system. 

In the ensuing, we set the following conventions in order to facilitate the study of different 

multiuser detectors: ( ) ( ),b b
MF eff MFy k y w k , ( ) ( )b b

eff wb k b k , ( ) ( ),b b
eff eff effk w ks s  and 

( ) ( ),eff eff effk w ks s where keff is an index that takes values from 1 to WK and it is related to k and w 

as follows: keff  = (w – 1)K+k. If keff is provided instead, then w and k are determined from keff as 

follows: effkw
K

⎡ ⎤= ⎢ ⎥⎢ ⎥
 where ⎡ ⎤⎢ ⎥  is the ceiling operator and k = keff – (w – 1)K. This index will be used 

interchangeably with (k,w) here and and in the subsequent chapters. 

6.3 Performance Metrics and Computational Complexity 

There are many criteria that can be used to quantify the performance of a multiuser detector. In this 

section, we list a number of important performance measures that will help in comparing different 

multiuser detection techniques. Mainly, we are interested in the Bit Error Rate (BER), the Asymptotic 

Multiuser Efficiency (AME), Near-Far Resistance (NFR), and finally the computational complexity. 
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6.3.1 Bit Error Rate (BER) 

It is the figure of merit of most communication systems. It is defined as the number of incorrectly 

detected bits relative to the total number of detected bits. For some multiuser detectors it is possible to 

derive an analytical expression for the bit-error-rate, however, for many other systems this is often not 

straightforward and in some cases it is not possible at all (e.g. a closed form expression can not be 

obtained for the optimum multiuser detector that minimizes the probability of bit error). The only way 

to acquire a bit-error-rate for these detection schemes is through simulation.  

6.3.2 Asymptotic Multiuser Efficiency and Near-Far Resistance 

The need for other performance measures that are easier to derive is vital. One of them is the multiuser 

efficiency  [30]. In this performance measure, assume that the BER of a certain multiuser detector 

working under a background noise of variance σ2 for user keff is ( )
effkP σ , the effective energy ( )

effke σ  

is defined as the energy that is required for a single user detector to achieve ( )
effkP σ , that is: 

( )
( )

eff

eff

k
k

e
P Q

σ
σ

σ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, hence: ( ) ( )( )( )2
2 1

eff effk ke Q Pσ σ σ−= .  

Since the multiuser error probability is lower bounded by the single user error probability 

( )( ), ,su eff eff effP k k σA (assuming the same background noise with variance σ2), we have: 

( ) ( )( ), ,
effk su eff eff effP P k kσ σ≥ A  thus 

( ) ( ),effk eff eff eff
e k k

Q Q
σ

σ σ

⎛ ⎞ ⎛ ⎞⎜ ⎟ ≥ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

A
 and hence 

( ) ( ),
effk eff eff effe k kσ ≤ A . The ratio 

( )
( )

[ ]2 0,1
,

effk

eff eff eff

e

k k

σ
∈

A
 is known as the multiuser efficiency 

and it quantifies the BER performance loss due to the existence of other users’ signals in the channel. 

The asymptotic multiuser efficiency (AME) is defined as: 
( )

( )20
lim

,
eff

eff

k
k

eff eff eff

e

k kσ

σ
η

→
=

A
 and 

measures the slope with which ( )
effkP σ  goes to zero (in logarithmic scale) in the high SNR region 

 [30]. 

Another definition for the AME provided by Verdu and is useful for our analysis in the 

subsequent chapters is given by  [30]:  
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( )
( ) ( ) ( )

2
20 0

2 1sup 0 1: lim lim log
,,

eff

eff
eff

k
k

keff eff effeff eff eff

P
r Pk kr k k

Q
σ σ

σ
η σ σ

σ

→ →

⎧ ⎫
⎪ ⎪
⎪ ⎪ ⎛ ⎞

= ≤ ≤ < +∞ =⎨ ⎬ ⎜ ⎟⎛ ⎞ ⎝ ⎠⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

AA
 

which is read as: “AME is the largest value of r in [0,1] for which 
( )
( ),

effk

eff eff eff

P

r k k
Q

σ

σ

< +∞
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

A
 in the 

limit as σ vanishes to zero ”. 

The worst-case AME, taken over all possible interference power profiles, characterizes a 

detector’s robustness to the near-far problem and is known as the near-far resistance. The latter is 

given by: 
( ), 0
inf

eff eff
eff

eff

k kj j
j k

η η
>

≠

=
A

. 

Intuitively, near-far resistance provides an indication of the worst-case performance loss due to 

interference for any individual user over all possible other-user transmit power profiles. 

6.3.3 Computational Complexity 

Another criterion that is commonly used to compare multiuser detection structures is the computational 

complexity. This factor is of paramount importance, since it determines whether the multiuser detector 

can be implemented in practice or not.  One way to quantify the computational load is with the notation 

of a flop where a flop stands for floating point operation  [86].  Throughout this dissertation, operations 

such as multiply, add, subtract, divide and compare are considered as one flop. The computational load 

is primarily a function of the number of users, K, and the number of bits within the sliding window W. 

Algorithm execution time is another important factor that determines the efficiency of any 

algorithm. It is defined as the amount of time an algorithm takes on a specific machine. Its importance 

resides in the fact that if the algorithm is parallelizable, then one can benefit from parallel processors or 

machines to reduce the algorithm’s execution time. In general the computational complexity in terms 

of flops is roughly equal to the algorithm’s execution time if no parallelism is considered.  

6.4 Classification of Multiuser Detectors 

A variety of multiuser detectors have been proposed in the literature  [87]- [90]. Depending on the 

criterion selected, such as linearity, complexity…, multiuser detectors can be classified into several 

categories. Linear multiuser detectors are structures that perform only linear transformations to the 
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received signal or the matched filter/Rake receiver outputs  [91]- [93]. As such, interference cancellation 

detectors, usually considered as nonlinear multiuser detectors, are linear if the function used to estimate 

the MAI to be cancelled at each stage is linear. Typical examples of such detectors are the decorrelator 

and LMMSE detectors. Nonlinear multiuser detectors  [94], on the other side, perform nonlinear 

transformations to the received signal or the matched filter/Rake receiver outputs. Usually, these 

detectors perform better in terms of BER than their linear counterpart at the expense of increased 

computational complexity.  Moreover, these detectors usually require estimation of channel 

coefficients, noise level ,…, thus if the estimation of these parameters is not accurate, due for example 

to fast time-varying channel conditions, then the performance of such detectors is poor. 

Another classification of multiuser detectors is whether they are adaptive or fixed  [89]. If the 

channel conditions are slowly varying, then an effective way (in terms of computational complexity) to 

implement the LMMSE detector is to use adaptive filters  [45]. During the training period, the latter 

usually employ some adaptive algorithms such as the LMS, RLS, … to adjust the filter’s taps such that 

the adaptive filter’s performance converge to the that of the LMMSE detector. Non-adaptive detectors 

are also known as fixed detectors  [89].   

Blind multiuser detection ( [95] and  [96]) in the context of multiuser detection usually refers to 

the situation where the knowledge of the spreading codes of all interferers is not available at the 

receiver. This situation is common at the downlink channel. Such detectors are usually adaptive and 

derived to optimize a certain criterion such the minimum output energy criterion ( [95]- [97]) and the 

constant modulus criterion  [98]. If all the spreading codes of all interferers are available and are also 

used by the receiver, then the latter are non-blind multiuser detectors.  

Another classification, which is very important in the context of our work, is based on which 

level the multiuser detection operations are performed, at chip-level or symbol-level ( [87],  [89], and 

 [99]). Chip-level multiuser detectors (known as wideband) perform all operations at chip-level and thus 

are computationally intensive whereas symbol-level multiuser detectors (known as narrowband) 

performs all operations at symbol-level and thus exhibits less computational complexity compared to 

the chip-level detectors. Usually, chip-level detectors act directly on the received signal while the 

symbol-level detectors act on the matched filter/Rake receiver outputs.  

Depending on whether Rake combining is performed before or after multiuser detection most 

multiuser detectors can be classified as either pre-combining detectors or post-combining detectors  [67] 

and  [93]. The latter have better BER performance but restricted to slow channel conditions where the 
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pre-combining detector exhibits acceptable BER performance but is not sensitive to channel conditions 

and therefore can be implemented in fast-varying channel environments. 

The last classification is whether the multiuser detector uses a deterministic approach to obtain 

the final outputs or not. If so, then the detector is known as a deterministic multiuser detector, however, 

if the detector incorporates some random tunable parameters then this detector is known as a heuristic 

multiuser detector ( [100] and  [101]). The latter is usually used to approximate the optimal multiuser 

detector.   

6.5 Multiuser Detection Structures for Asynchronous CDMA AWGN Channel 

The transformation T, which is applied to either the received chip-matched signal qb or to the vector of 

the matched filter outputs b
MFy , determines the type of the multi-user detector as shown in Figure  6.1 

and 6.2.  

 

 

Figure  6.1: Multi-user detection Receiver acting on the vector of matched filters outputs 

 

It is important to mention that usually, multiuser detectors acting on the vector of matched filter 

outputs make use of the cross-correlation coefficients and consequently the cross-correlation matrix 
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needs to be calculated. Finally, note that no restrictions are put on the transformation T, therefore it can 

be any transformation, e.g., linear or nonlinear. 

 

 

 

 

Figure  6.2: Multi-user detection acting on the received chip-matched signal. 

 

6.5.1 The Conventional Matched Filter Detector 

This is the simplest multiuser detector in terms of computational complexity but also the less effective 

in terms of performance. It consists of a bank of matched filters, where each filter is matched to the 

spreading code of the desired user. The conventional receiver is illustrated in Figure  6.3. For its proper 

operation, the conventional receiver needs the knowledge of the spreading codes, and accurate 

synchronization with the received signal. 

The vector of the matched filters’ outputs can be expressed as: 

( )b T T b b b b
MF eff b eff eff eff eff eff eff eff= = + = +y S q S S A b n R A b z   ( 6-1)

 



 Chapter 6  Multiuser Detection in CDMA 

 104

qb

Matched filter 
keff

Decision 
device

Decision 
device

Decision 
device

Decision 
device

Matched filter 
2

Matched filter 
1

Matched filter 
WK

( )b
MF effy k

( )1b
MFy

( )2b
MFy

( )b
MFy WK

( )1 1bb

( )1 2bb

( )b
effb k

( )bb WK

 

Figure  6.3: Bank of matched filter detectors 

 

where effS , effA , bb  are defined in Chapter 4, b
effn is the bth block of the vector  n  defined in Chapter 

4, with dimensions {(NW+ ( )
1
max k

k K
τ

≤ ≤
)-by-1} and b

effz is the vector of additive colored Gaussian noise 

samples with a covariance matrix equal to: 

( )( ) ( )
2

2

                                        

                                        

T TT b T b T b b
eff eff eff eff eff eff eff eff

T
eff eff

eff

E E

σ

σ

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

=

S n S n S n n S

S S

R

  ( 6-2)

One can see that the elements of the data vector bb are correlated (coupled) through the cross-

correlation matrix effR .  To see the impact of coupling the data bits of different users let us assume for 

simplicity a synchronous channel and hence keff = k and W = 1. The matched filter output of the bth 

block, kth user is: 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

1
colored 

Gaussian Noise
 from other users 

     , , ,

b T T b b
MF eff b eff eff eff eff

K
b b T b

eff eff eff eff
i

additivei k

MAI

y k k k

k k b k R k i k k b k k∗

=
≠

= = +

= + +∑

s q s S A b n

A A s n  
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  It is clear that the MAI resulting from the interfering users degrades the reliability of the matched 

filter detector output. The MAI is controlled by two factors, the cross-correlation coefficients between 

active users and the received amplitudes of different active users. The second factor is mainly due to 

the spread of users over a large area which results in a wide discrepancy in the received amplitudes of 

active users’ signals. If strict power control in not used then weak users may lose communication 

because of the overwhelming MAI. This phenomenon is known as the near-far effect.  

The conventional matched filter detector is optimum under white Gaussian noise conditions. 

Due to the well built structure of the MAI this assumption is not true, especially for short-code CDMA 

systems, and as such, the optimality of the conventional matched filter detector is lost. Moreover, its 

performance degrades greatly when the received powers of the interfering users are much greater than 

those of the desired users.  

Verdu’s pioneer work  [30] showed that the near-far problem is not inherent to the CDMA 

system. In fact, it is due to the detection schemes. This reformulation of the problem launched a 

tremendous research, which is still active, to develop detection schemes that are able to combat 

shortcomings of the conventional receiver. 

Before ending this section, let us go through a number of performance indicators of the 

conventional matched filter detector. The most important, which is the BER is given by  [30]: 

( ) ( )

( )

1
 

1

1
2th

eff

T
eff eff eff eff

k WK
all

k

k
P Qσ

σ−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑
b

b

s R A b
  ( 6-3)

On the other hand, the multiuser efficiency is given by  [30]: 

( )
( ) ( )2

1

,
max 0,1 ,

,eff

eff

WK
eff

k eff eff
j eff eff eff
j k

j j
j k

k k
η

=
≠

⎧ ⎫
⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑
A

R
A

  ( 6-4)

It is obvious that if ( ) ( ) ( )
1

, , ,

eff

WK

eff eff eff eff eff eff
j
j k

k k j j j k
=
≠

≤ ∑A A R then 0
effkη = . Hence, the near-far 

resistance of the matched filter detector is given by: 

0
effkη =   ( 6-5)
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6.5.2 The Optimum Multiuser Detector  

As mentioned earlier, the most important performance measure for communication systems is the 

BER. The multiuser detector that minimizes the BER is known as the maximum a posteriori (MAP) 

detector. It minimizes the following objective function  [30]: 

{ }
{ }

1,1
arg min 2

WK

T b T
eff MF eff eff eff

∗

∈ −

= − +
b

b b A y b A R A b   ( 6-6)

For the matched filter output b
MFy  of each block b, the optimal detector performs an exhaustive search 

over all possible transmitted data sequences b constrained to the set {-1,1}WK to find the data sequence 

that minimizes the above objective function. This technique is the same as that used for single user 

systems with ISI, where the number of bits spanned by ISI is replaced in our case by the number of 

users. The number of possible sequences in an asynchronous CDMA system with a processing window 

of length W bits is 2WK, and hence the search space consists of 2WK possibilities.  

It has been shown that this problem is an NP-hard  [102], which means that there is no algorithm 

with a polynomial time complexity that can solve the above optimization problem. Therefore, the 

optimum detector is far too complex for practical implementation even for a moderate number of users. 

The exponential complexity of the MAP detection has inspired a considerable effort over the 

past decade in the development of suboptimum receivers with low complexity and which are robust to 

the near-far problem. It is not possible to derive a closed-form analytical expression for the bit-error-

rate or the multiuser efficiency of the optimum multiuser detector, however it is possible to derive a 

closed form expression for the near-far resistance and it is given by  [30]: 

( )1

1
,effk

eff eff effk k
η −=

R
  ( 6-7)

6.5.3 The Decorrelator Detector 

This approach operates to eliminate MAI in the same manner analogous to the way the zero forcing 

equalizer mitigates ISI. The linear transformation applied is the inverse of the effective cross-

correlation matrix   T = V = 1
eff
−R . The decorrelator detector’s output is given by: 

1 1b b b b
DEC eff MF eff eff eff

− −= = +y R y A b R z   ( 6-8)

From an optimization point of view, the decorrelator detector is the least square solution to the 

maximum likelihood sequence detection if the constraint on the vector b is relaxed to span all values in 
WK   [30], that is: 
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 ( ) ( ){ }1arg min
WK

Tb b
MF eff eff eff MF eff eff

∗ −

∈
= − −

b
b y R A b R y R A b   ( 6-9)

or equivalently:  

{ }2
arg min

WK
b eff eff

∗

∈
= −

b
b q S A b  

which reduces to: 

{ }arg min 2
WK

T b T
eff MF eff eff eff

∗

∈
= − +

b
b b A y b A R A b   ( 6-10)

By taking the derivative of the above objective function and equating it to zero, we get: 

2 2 b
eff eff eff eff MF=A R A b A y  

and finally we obtain: 
1 1

1

b
eff eff MF

b
eff MF

∗ − −

−

=

=

b A R y

R y
  ( 6-11)

where the term 1
eff
−A is omitted due to the fact that it is a positive scaling diagonal matrix and doesn’t 

affect the decision statistics. The decorrelating detector eliminates MAI completely; however, the 

receiver considerably enhances the noise in the system. This can be verified by examining the 

covariance matrix of the noise vector at the output of the decorrelator detector, that is: 

( )( ) ( )1 1 1 1

1 2 1

2 1

                                        

                                        

T Tb b b b
eff eff eff eff eff eff eff eff

eff eff eff

eff

E E

σ

σ

− − − −

− −

−

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

=

R z R z R z z R

R R R

R

  ( 6-12)

 and since the cross-correlation elements are less than one, then ( )1 ,eff eff effk k−R  is larger than 1  [103] 

hence the decorrelator detector enhances noise. Consequently the probability of error of the 

decorrelator detector of the kth effective user is  [30]:  

( ) ( )
( )1

,

,eff

eff eff eff
k

eff eff eff

k k
P Q

k k
σ

σ −

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

A

R
 

 ( 6-13)

The AME of the decorrelator detector is given by  [30]:  

( )1

1
,effk

eff eff effk k
η −=

R
  ( 6-14) 

which does not depend on the amplitudes of the interfering signals, and thus the near-far resistance 

equals the asymptotic multiuser efficiency and it is given by: 
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( )1

1
,effk

eff eff effk k
η −=

R
  ( 6-15)

The decorrelating detector has several desirable features. It does not require the knowledge of signals’ 

amplitudes of active users, and thus its performance is independent of the amplitudes of the interfering 

users. In addition, since the decorrelator detector is near-far resistant it is well suited for the near-far 

environment ( [91],  [104]).  

6.5.4 The Linear Minimum Mean Square Error (LMMSE) Detector 

The decorrelator detector works on the principle of channel inversion and, consequently, leads to poor 

BER performance at low SNRs  [31]. This is because the decorrelator simply eliminates MAI without 

taking in consideration the AWGN, which results in noise enhancement in the detector’s output. 

Minimizing the mean square error is another approach to linear multiuser detection. The resultant 

detector, which is known as the LMMSE multiuser detector, performs better than the decorrelator at 

low and moderate SNRs because it accounts for AWGN  [105]. 

The LMMSE transformation is given by: ( ) 12 2
eff effT σ

−−= = +V R A . It was shown that the 

LMMSE detector is the solution of the following optimization problem  [30]: 

{ }2
arg min

WK WK

b b
MF

×∈
−

V
Vb y   ( 6-16)

Unlike the decorrelator detector, the LMMSE detector requires the estimation of the SNR of each user, 

thus adding some computational complexity. If ( ) ( )12 2 :,eff eff jσ
−−+R A is the jth column of the 

transformation matrix ( ) 12 2
eff effσ

−−+R A  (we are using matlab notation for the column of a matrix), 

then the bit error probability of the LMMSE detector for kth effective user is given by  [30]: 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

12 2

1
1 1 2 2 2 2

1

:,1
2

:, :,
eff

eff

T

eff eff eff eff eff

k WK T
all

k eff eff eff eff eff eff eff

k
P Q

k k

σ
σ

σ σ σ

−−

−
− −− −

=

⎛ ⎞
+⎜ ⎟

⎜ ⎟=
⎜ ⎟

+ +⎜ ⎟
⎝ ⎠

∑
b

b

R A R A

R A R R A

b
  ( 6-17)

For the AME and near-far resistance, since the LMMSE detector reduces to the decorrelator detector 

when the noise level vanishes to zero, then the LMMSE detector exhibits the same AME and near-far 

resistance as the decorrelator detector, that is, the AME of the LMMSE detector is given by  [30]:  
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( )1

1
,effk

eff eff effk k
η −=

R
  ( 6-18)

which does not depend on the amplitudes of the interfering signals thus the near-far resistance equals 

the asymptotic multiuser efficiency and it is given by  [30]: 

( )1

1
,effk

eff eff effk k
η −=

R
  ( 6-19)

Since the LMMSE detector enjoys the same interference rejection capabilities as the decorrelator 

detector (they have the same near-far resistance), the LMMSE detector is also suitable for near-far 

environments.   

6.6 Multiuser Detection Structures for Asynchronous CDMA Multipath Fading 
Channel 

As for the case of AWGN channel, the transformation T applied to either the received chip-matched 

signal qb (Figure  6.4) or to the vector of Rake receivers’ outputs b
MRCy  (Figure  6.5) can be linear, 

nonlinear… 

 

 

Figure  6.4: Multi-user detection Receiver acting on the vector of Rake receivers outputs. 
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Finally, here as well, multiuser detectors acting on the vector of matched filter outputs usually make 

use of the cross-correlation coefficients and consequently the cross-correlation matrix needs to be 

calculated.  

 

 

Figure  6.5: Multi-user detection acting on the received signal. 

 

6.6.1 The Conventional Rake Receiver 

Diversity is a powerful technique for alleviating the effects of fading environments. Diversity 

techniques make use of multiple, independent signal paths between the transmitter and the receiver to 

improve the detector’s performance. Most common forms of diversity reception are spatial (using 

multiple antennas), temporal (data interleaving with coding), and frequency (DS or FH spread 

spectrum). 

DS-CDMA systems are well-matched for diversity reception because for frequency selective 

fading, the signal bandwidth is much greater than the coherence bandwidth of the channel. As such, 

multi-path components with delays greater than one chip period are resolvable and independent of each 

other. In fact, multi-path resolution and combining is one of the major advantages of DS-CDMA 

system over other multi-access wireless communication systems.  
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The most prominent diversity combining scheme is known as the RAKE receiver and was first 

introduced by Price and Green in 1958  [106]. The RAKE receiver is composed of several fingers each 

of which consists of a matched filter detector. The matched filter detectors’ outputs are weighted and 

combined to form a single decision statistic. In order to constructively add these components, the phase 

must be known. The resolution of the RAKE (i.e., its ability to resolve separate multi-paths) is 

dependent on the chip rate of the system. To be resolved by the Rake receiver, the multi-path 

components should be separated by at least one chip period. Figure  6.6 shows a generic RAKE receiver 

and Figure  6.7 shows a bank of Rake receivers for a multiuser environment. It is important to mention 

that the Rake receiver exploits frequency diversity provided by the system but it doesn’t remove ISI, 

therefore if the latter is significant the performance of the Rake receiver degrades considerably and an 

equalizer should be used instead. 

There are several methods for choosing the combining weights  [107]: The maximal ratio 

combining technique (MRC) phase shifts and weights each multi-path component according to its 

relative SNR before coherent signal combining. This method is most appropriate in situations where 

phase changes of individual multi-path components vary slowly enough to be accurately estimated and 

tracked. In terms of implementation complexity, MRC requires a data path (finger) for each multi-path 

component, channel estimation blocks, and signal combining blocks. The equal gain combining (EGC) 

technique on the other hand, weights all multi-path components equally. Yet it is a simpler, though 

suboptimal combining alternative. In a selection diversity system, the receiver simply selects the 

strongest multi-path component, and uses it for signal detection. A major benefit of this approach is 

that multiple data paths are not required although additional hardware is required to distinguish the 

strongest path.  

Unlike the simple matched filter detector in the AWGN channel, the implementation of the 

RAKE receiver requires channel coefficient estimation, which leads to additional computational 

complexity burden. 

In our work, the Rake (MRC) receiver is easily implemented by despreading the received signal 

using the matrix of effective spreading codes developed in  Chapter 4, that is: 

( ) ( ) ( )H H
b b b b b b b b b
MRC eff b eff eff eff eff eff eff eff= = + = +y S q S S A b n R A b z   ( 6-20)

where b
effS , effA , bb  are defined in  Chapter 4, b

effn is the bth block of the vector  n  defined in  Chapter 

4, with dimension {(NW+ ( )
1
max k

k K
τ

≤ ≤
+ ( )

1
max

k
k k

ll L
τ

≤ ≤
)-by-1}.  
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b
effz is the vector of additive colored Gaussian noise samples with covariance matrix given by: 

 

 

Figure  6.6: MRC Rake receiver 

 

( ) ( ) ( ) ( )

( )2

2

                                        

                                        

HH H H Hb b b b b b b b
eff eff eff eff eff eff eff eff

H
b b
eff eff

b
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E E

σ

σ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤=⎢ ⎥⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦

=

=

S n S n S n n S

S S

R

 
 ( 6-21)

Consequently, the probability of error of the MRC Rake receiver for the kth effective user conditioned 

on ( )Hb b
eff eff effks S is given by: 
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( ) ( ) ( )
( )( )

1|
 

1

1
2 ,

Hb b
eff eff eff eff

eff

Hb b
eff eff eff eff

WKk k ball
eff eff effk

k
P Q

k k
σ

σ
−

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠

∑s S
b

b

s S A b

R
  ( 6-22) 

 

 

Figure  6.7: Conventional bank of Rake receivers. 

 

Taking the expectation over possible values of the vector ( )Hb b
eff eff effks S results in: 

( ) ( )( ) ( )( ) ( ) ( )

( )( ) ( )( )
|

0 0 0

1

1

Hb beff eff eff eff eff

H Hb b b b
k eff eff eff eff k k

H Hb b b b
eff eff eff eff

P pdf pdf WK P

d d WK

σ σ
∞ ∞ ∞

= ∫ ∫ ∫ s S
s S s S

s S s S

 

where pdf stands for probability density function. 

The evaluation of this WK multiple integral expression is very intensive and can be assessed 

only numerically. For this reason, the probability of error will be evaluated only by simulation. Since 

the multiuser efficiency depends on the BER in its derivation, it is also not straightforward to 

determine a closed form expression for the AME of the MRC Rake receiver. Hence, we refer to 

simulation to assess the performance of the MRC rake receiver. As for the matched filter detector, the 
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Rake receiver treats MAI as additive white Gaussian noise (AWGN), which is not the optimal 

approach since its structure is well defined through the cross-correlation matrix, and therefore can be 

exploited to achieve better performance results. Hence, the Rake receiver suffers from the same 

shortcomings of the matched filter detector, such as the near-far problem. 

6.6.2 The Optimal Multiuser Detector  

As for the AWGN channel, the optimum multiuser detector is the solution to the following objective 

function: 

{ }
( ){ }

1,1
arg min 2

WK

T b T b
eff MRC eff eff effe∗

∈ −

= − ℜ +
b

b b A y b A R A b   ( 6-23)

where b
MRCy  is the vector of the Rake receivers’ outputs. The complexity of such detector is also of the 

order of 2WK, where K is the number of users and W is the number of bits within the sliding detection 

window. Hence it is an NP-hard problem  [102]. 

As for the asynchronous CDMA AWGN channel, there is no analytical closed-form expression 

for the BER of the optimal multiuser detector. And since the AME relies on the derivation of the BER, 

it is difficult to obtain a closed form expression for the AME and hence we asses it through simulation 

only. 

6.6.3 The Decorrelator Detector 

The linear transformation applied is the inverse of the effective cross-correlation matrix   T = V = 

( ) 1
b
eff

−

R . The decorrelator’s outputs are given by: 

( ) ( )1 1
b b b b b b
DEC eff MF eff eff eff

− −

= = +y R y A b R z   ( 6-24)

The decorrelating detector eliminates MAI+ISI within the detection window completely; nevertheless 

the receiver significantly enhances the noise in the system  [103]. The probability of error of the 

decorrelator detector of the kth effective user conditioned on ( ) ( )
1

,b
eff eff effk k

−

R is:  

( ) ( )
( ) ( )

( ) ( )
1

1| ,

,

,
b

eff eff eff eff

eff eff eff

k k k b
eff eff eff

k k
P Q

k k
σ

σ
−

−

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

R

A

R
  ( 6-25)
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Taking the expectation of the previous expression over all possible values of ( ) ( )
1

,b
eff eff effk k

−

R  

yields: 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

1

1

1

| ,

0| , 1

,

,
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⎝ ⎠
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R

R

R

R
 

The probability density function (pdf) of ( ) ( )
1

,b
eff eff effk k

−

R is not straightforward to evaluate and 

hence we refer to simulation to evaluate the BER of the decorrelator detector. 

6.6.4 The Linear Minimum Mean Square Error (LMMSE) Detector 

The LMMSE transformation is given by: ( ) 1
2 2b

eff effT σ
−

−= = +V R A .  Following the same approach as 

for the matched filter detector, the probability of bit error of the LMMSE detector for kth effective user 

conditioned on ( ) ( )
1

2 2 :,
T

b b
eff eff eff effkσ

−
−⎛ ⎞+⎜ ⎟

⎝ ⎠
R A R is given by: 

where: ( ) ( )
1

2 2 :,b
eff eff jσ

−
−+R A is the jth column of the transformation matrix ( ) 1

2 2b
eff effσ

−
−+R A . Taking 

the expectation over possible values of the vector ( ) ( )
1

2 2 :,
T

b b
eff eff eff effkσ

−
−⎛ ⎞+⎜ ⎟

⎝ ⎠
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 ( 6-26)
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∫ ∫ ∫

R

.  

The evaluation of this WK multiple integral expression is very intensive and can be assessed only 

numerically. For this reason, the probability of error will be evaluated only by simulation.  

6.7 The Linear Transformation of the Received Signal 

In this section we derive the BER, AME and near-far resistance of a general linear detector applied to 

the received signal qb.  

6.7.1 The Linear Transformation of the Received Signal for AWGN Channel 

Suppose that qb is multiplied by a linear transformation matrix VT of dimension {(WN + ( )
1
max k

k K
τ

≤ ≤
)-by-

WK}. The output of this detector is given by: 

b T T b T b
V b eff eff eff= = +y V q V S A b V n   ( 6-27)

The noise vector now is an additive colored Gaussian noise with covariance matrix: 

( )( ) ( )
2                                        

T TT b T b T b b
eff eff eff eff

T

E E

σ

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

V n V n V n n V

V V
  ( 6-28)

Thus the BER of the general linear detector applied to the received signal qb for the kth effective user is 

given by: 

( ) ( )
( ) ( )( )

1
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∑
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  ( 6-29)

where V(:,j) is the jth column of the matrix V. The multiuser efficiency is given by: 

( ) ( )

( ) ( )
( )

( ) ( ) ( )
2

1

0, :,
1 ,max :,:, :, ,
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T
eff eff eff
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eff effeff eff
j eff eff eff
j k

k k

j j
k jk k k k

η
=
≠

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬−⎪ ⎪
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∑

V s

A
V sV V A

  ( 6-30)

where V(:,j) is the jth column of the matrix V. 
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The near-far resistance of general linear detector applied to the received signal qb for the kth effective 

user is given by: 

( ) ( )

0

0

0 lim

1 lim
:, :,

eff

T
eff

k T
effT

eff eff

if

if
k k

σ

σ

η
→

→

⎧ ≠
⎪

= ⎨
=⎪

⎩

V S I

V S I
V V

  ( 6-31)

The derivation of the BER and AME is detailed in Appendices A and B, respectively.  

6.7.2 The Linear Transformation of the Received Signal for Multipath Fading Channel 

Suppose that qb is multiplied by a linear transformation matrix VH of dimension {(WN 

+ ( )
1
max

k
k k

ll L
τ

≤ ≤
+ ( )

1
max k

k K
τ

≤ ≤
)-by-WK}. The output of this detector is given by: 

b H H b b H b
V b eff eff eff= = +y V q V S A b V n   ( 6-32)

The noise vector now is additive colored Gaussian noise with covariance matrix: 

( )( ) ( )
2                                        

T TH b H b H b b
eff eff eff eff
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E E

σ
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=

V n V n V n n V

V V
  ( 6-33)

Hence, the BER of the kth user at the wth bit of the bth block at the output of the transformation matrix 

conditioned on the vector ( ):, H b
eff effkV S  is: 

( ) ( ) ( )
( ) ( )( )

1| :,
 

1

:,1
2 :, :,

H b
eff eff eff

eff

H b
eff eff eff

WKk k H
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P Q
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⎝ ⎠

∑V S
b

b

V S A b

V V
  ( 6-34)

Obtaining the average BER and AME requires taking the expectation over all possible values of the 

vector ( ):, H b
eff effkV S . This results in a WK multiple integral expression, which is very intensive and 

can be evaluated only numerically. For this reason, the BER and the AME will be evaluated only by 

simulation. 

6.8 The Linear Transformation of the Matched Filters/Rake Receivers’ Outputs 

In this section, we derive the BER, AME and near-far resistance of the general linear detector applied 

to the matched filters/Rake receivers’ outputs /b b
MF MRCy y .  
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6.8.1 The Linear Transformation of the Matched Filters’ Outputs  

Suppose that b
MFy  is multiplied by a linear transformation matrix VT of dimension {(WK-by-WK}. The 

output of this detector is given by: 

b T b T b T b
V MF eff eff eff= = +y V y V R A b V z   ( 6-35)

The noise vector now is additive colored Gaussian noise with covariance matrix: 

( )( ) ( )
2                                        

T TT b T b T b b T
eff eff eff eff eff eff eff eff

T
eff

E E

σ

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
=

VS n VS n VS n n S V

V R V
  ( 6-36) 

Consequently, the BER of the general linear detector applied to the bank of matched filters’ outputs for 

the kth effective user is given by: 

( ) ( )
( ) ( )( )
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  ( 6-37)

where V(:,j) is the jth column of the matrix V. The multiuser efficiency is given by: 

( ) ( )
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  ( 6-38) 

where ( ):,eff jR is the jth column of the matrix effR . The near-far resistance of the general linear 

detector is given by: 

( ) ( )
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:, :,
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  ( 6-39)

The detailed derivation of the BER and AME can be found in Appendices A and B, respectively. 

6.8.2 The Linear Transformation of the Rake Receivers’ Outputs 

Suppose that b
MRCy  is multiplied by a linear transformation matrix VH of dimension {(WK-by-WK}. 

The output of this detector is given by: 

b H b H b b H b
V MRC eff eff eff= = +y V y V R A b V z   ( 6-40)

The noise vector now is additive colored Gaussian noise with covariance matrix: 
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( ) ( ) ( ) ( )
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Thus, the BER of the kth effective user at the output of the transformation matrix conditioned on the 

vector ( ):, H b
eff effkV R  is: 

( ) ( ) ( )
( ) ( )( )

1| :,
 

1

:,1
2 :, :,

H b
eff eff eff

eff

H b
eff eff eff

WKk k H ball
eff eff effk

k
P Q

k k
σ

σ
−

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠

∑V R
b

b

V R A b

V R V
  ( 6-42)

As for the case of the linear transformation matrix applied to the received signal, getting the average 

BER and AME requires taking the expectation over all possible values of the vector 

( ):, H b
eff effkV R which results in a WK multiple integral expression, which is very intensive and can be 

assessed only numerically. For this reason, the BER and the AME will be evaluated only by 

simulation. 

6.9 Computational Complexity 

In this section, we evaluate the computational complexity of the aforementioned multiuser detectors. 

The simplest multiuser detector which is the conventional matched filter detector consists basically of a 

correlation operation and it has the following computational complexity: 

( )( )1
2 max k

k K
WN WKτ

≤ ≤
+   ( 6-43)

In a multi-path environment, a Rake receiver is the conventional multiuser detector. It consists 

basically of a convolution operation to obtain the effective spreading code and a correlation operation 

for matched filtering. The computational complexity of the Rake receiver is given by: 

( ) ( ) ( ) ( ) ( )( )1 1
2 1 1 max 1 max

k

k
k k k lk K k K

L WN L L WKτ τ
≤ ≤ ≤ ≤

+ + + + −   ( 6-44)

The computational complexity of the optimal multiuser detector is exponential in both the number of 

users and the number of bits within the sliding window. Hence we will not give any expression for its 

computational complexity since it is not comparable with any of the subsequent multiuser detectors. 

The computational complexity of both the decorrelator detector and the LMMSE detector is due 

mainly to matrix inversion and the calculation of the cross-correlation matrix. All these operations cost 

at least (lower bound)  [78]:  
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( ) ( ) ( )( )( ) ( )( )3 2 2

1 1

311 2 max 2 max
2

k k

k K k K
KW KW KW WN WK WN WKτ τ

≤ ≤ ≤ ≤
+ + + + + +   ( 6-45)

for an asynchronous CDMA AWGN channel and: 
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for an asynchronous CDMA multi-path fading channel. 

6.10 Simulation Results 

In this part, we simulate the previously discussed multiuser detectors except the optimum multiuser 

detector which is not included here due to its exhaustive computational complexity. All these detectors 

are simulated in two different scenarios; the first is a synchronous CDMA AWGN channel whereas the 

second is an asynchronous CDMA multipath Rayleigh fading channel. The simulation parameters are 

summarized in Table  6.1: 

 

Table  6.1: Simulation parameters. 

Synchronous CDMA AWGN channel Asynchronous CDMA 

multipath Rayleigh fading 

channel 

Average BER versus 

SNR performance 

Average BER versus 

number of users 

performance 

Average BER versus 

near-far ratio 

performance 

Average BER versus SNR 

performance 

K = 20, N = 31, 

W = 1, (Gold codes), 

perfect power control 

 

 

SNR = 6dB, N = 31 

(Gold codes), W = 1, 

perfect power control 

SNR = 5dB, K = 20; 

N = 31 (Gold codes); 

W = 1. 

 

W = 5, K = 10, N = 31 

(Gold codes), 

Vehicular A outdoor 

Channel power delay profile 

for WCDMA is used, 

( ) ( )
1 1
max max

k

k
lk K k K

Nτ τ
≤ ≤ ≤ ≤

+ ≤ . 
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In Figure  6.8, the average BER (average BER of all users) versus the SNR is depicted. As expected, 

the LMMSE detector achieves the best performance while the matched filter detector achieves the 

worst performance. The reason is that the matched filter detector performs no MAI reduction while the 

LMMSE reduces MAI but at the same time reduces the noise enhancement effect. The performance of 

the decorrelator detector is close to that of the LMMSE detector however it is slightly worse due to 

noise enhancement effect. 

In Figure  6.9, the system capacity in terms of number of users expressed as the average BER 

(average BER of all users) versus the number of users is depicted. As expected, the LMMSE detector 

can support more users than both the matched filter detector and the decorrelator detector. The 

decorrelator detector in general can support more users than the matched filter detector, however, for 

highly loaded systems the converse is true. This is due to the fact that at high loads the noise 

enhancement effect becomes more severe and thus the benefit gained from interference cancellation is 

overwhelmed by the noise enhancement effect. Hence, in this situation leaving the interference is better 

than canceling it using the decorrelator detector. 
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Figure  6.8: Average BER versus SNR performance of different multiuser detectors in a synchronous 

CDMA AWGN channel. 
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Figure  6.9: Average BER versus the number of users’ performance of different multiuser detectors in a 

synchronous CDMA AWGN channel. 

 

In Figure  6.10, the near-far resistance expressed as the average BER (average BER of all users) 

versus the near-far ratio is depicted. For the near-far ratio, we fix the amplitude of the first user and 

vary the amplitude of the other users from one to 3 times that of first user. From a theoretical point of 

view, the LMMSE detector and decorrelator detector have the same near-far resistance which is better 

than that of the matched filter detector. However, because the noise level here is not zero (SNR = 5dB), 

slightly different results are obtained. First, the LMMSE detector performs better than the decorrelator 

detector because it cancels interference but at the same time it does not enhance the background noise. 

Second, the decorrelator detector is really near-far resistant sine its near-far resistance is constant and 

does not change with the near-far ratio. Finally, the matched filter detector performs worse than the 

decorrelator and the LMMSE detectors, but not for all near-far ratios. Specifically, for small near-far 

ratios, the matched filter detector performs better than the decorrelator detector. This is due again to the 

noise enhancement effect which overwhelms the gain obtained from interference cancellation. Hence, 

for near-far ratios under a certain threshold, it is better to leave the interference than removing it using 

a decorrelator detector. 

In Figure  6.11, the average BER (average BER of all users) versus the SNR in an asynchronous 

CDMA multipth Rayleigh fading channel is depicted.  
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Figure  6.10: Average BER versus near-far ratio performance of different multiuser detectors in a 

synchronous CDMA AWGN channel. 
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Figure  6.11: Average BER versus SNR performance of different multiuser detectors in an 

asynchronous CDMA multipath Rayleigh fading channel. 
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The vehicular A outdoor channel power delay profile for WCDMA is used and 

( ) ( )
1 1
max max

k

k
lk K k K

Nτ τ
≤ ≤ ≤ ≤

+ ≤  so that ISI is negligible. The conclusion deduced for the synchronous 

CDMA AWGN channel can be set here as well. 

6.11 Conclusion 

In this chapter, we introduced the multiuser detection principle and evaluated the performance of 

different fundamental multiuser detection techniques for both CDMA AWGN and multipath fading 

channels. We detailed the basic performance metrics commonly used in this field such as the BER, the 

AME and the near-far resistance. Finally, simulation of the fundamental multiuser detectors is 

conducted for both CDMA AWGN and multipath fading channels.  
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7.2 Introduction 

Linear interference cancellation (IC) structures are based on linear iterative methods and are used to 

approximate the decorrelator/LMMSE detector  [108]. Depending on the implementation details of 

these methods, two different approaches exist ( [87],  [89] and  [99]). The first approach uses the cross-

correlation coefficients and it is suitable for short-code CDMA systems. This approach results in what 

is known as symbol-level or narrowband linear IC detectors. The second approach uses the spreading 

codes and it is suitable for long-code CDMA systems. This approach results in chip-level or wideband 

linear IC detectors. Suitability of these detectors for short-code or long-code systems is determined by 

the implementation complexity which is system-dependent through the frequency of computation of 

the cross-correlation matrix. This frequency is very low for a short-code system whereas it is very high 

for a long-code system.  

Since we are interested in developing linear IC detectors for long-code CDMA systems, chip-

level linear IC detectors are the best candidates in terms of computational complexity since they make 

use of the spreading codes directly and not the cross-correlation coefficients and hence the computation 

of the cross-correlation matrix is not necessary. This reduces considerably the total computational 

complexity of multiuser detectors.  

In this chapter, we study different chip-level linear IC detectors detailed in the literature in terms 

of convergence behavior and computational complexity. These detectors are compared to their symbol-
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level counterparts. Moreover, we extend some structures which are suitable for CDMA AWGN 

channels only to CDMA multipath fading channels. 

7.3 Symbol-level Linear SIC (SL-LSIC) Structure 

This structure is based on direct implementation of the Gauss-Seidel iterative method for the inversion 

of the cross-correlation matrix effR . It was implemented for the case of synchronous CDMA AWGN 

channel in  [84] and for the asynchronous CDMA AWGN channel, in both  [109] and  [108]. For the 

case of synchronous CDMA multipath fading channel, this structure was proposed in  [110].  

Using the linear CDMA channel model presented in  Chapter 4, we implement this structure. The 

basic building block for the kth effective user is shown in Figure  7.1. 

 

 

Figure  7.1: SL-LSIC unit of the kth effective user 

 

The decision variable of the kth effective user is given by:  
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which is clearly the Gauss-Seidel iteration that is used for the inversion of the matrix effR . Hence it is 

an iterative implementation of the decorrelator detector.  

7.4 Symbol-Level Linear SOR-SIC (SL-LSOR-SIC) Structure 

As discussed in  Chapter 5, the SOR method is an enhanced variant of the SIC method based on the 

relaxation principle. It has been proven in  [80] that the SOR method converges faster than the SIC 

method by an order of magnitude if an optimal weighting factor is used. The direct implementation of 

this iterative method was presented in  [84] for the synchronous CDMA AWGN channel. Furthermore, 

an approximate optimal acceleration (weighting) factor was obtained and is given by  [84]: 

( ) ( )
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1 1 1 1
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D R D D R D

D R D D R D
 ( 7-2)

where λmin and λmax denote the minimum and maximum eigenvalues, respectively, and D is the diagonal 

part of the matrix effR . Upper bounds for λmax and lower bounds for λmin can be obtained using 

theorems like the Gershgorin theorem  [82] or the shifted matrix power method  [111]. Here also we 

present a more general structure for the SIC based on the SOR iterative method. The latter is based on 

the linear asynchronous CDMA multi-path fading channel model presented in Chapter 4. The basic 

building block for the kth effective user is shown in Figure  7.2. 

The decision variable of the kth effective user is given by:  
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Figure  7.2: SL-LSOR-SIC unit of the kth effective user  

 

which is indeed the SOR iteration used for the inversion of the matrix effR . A Symbol-level SIC that 

can implement iteratively the LMMSE multiuser detector was proposed in  [84] for the synchronous 

CDMA AWGN channel and it can be obtained simply by replacing effR  by 2 2
eff effσ −+R A . 

7.5 Symbol-Level Linear Group-Wise SIC (SL-LGSIC) Structure 

In the symbol-level linear group-wise SIC structure, the K users are partitioned into G disjoint groups 

where the gth group consists of gU users such that 1 2 g GK U U U U= + + + + + . This yields a bank 

of detectors; each detects the information symbols of users in each group. In a parallel group detection 

scheme these group-detectors operate independently in order to cancel interference, whereas in a 

sequential scheme, also known as group-wise successive interference cancellation (GSIC) scheme, 

each group-detector uses the decisions of the previous stage of group-detectors to successively cancel 
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the interference.  These methods are based on block iterative methods such as the block Gauss-Seidel 

and block successive over-relaxation methods. Before detailing this structure it is of paramount 

importance to introduce the following indices and variables to simplify different expressions obtained 

during the analysis of this and all subsequent structures. Let us define a new index geff = 1,2,…,GW. It 

is related to g and w as follows: geff  = (w–1)G+g. If geff is provided then w and g are determined from 

geff as follows: effgw
G

⎡ ⎤= ⎢ ⎥⎢ ⎥
 where ⎡ ⎤⎢ ⎥  is the ceiling operator and g = geff – (w-1)G. Hence, 

1 2 effg WGWK U U U U= + + + + +  where: ( )1effg w G gU U − += , however, if 
effgU  is provided then gU  

is determined as: ( )1effg g w GU U − −=  where effgw
G

⎡ ⎤= ⎢ ⎥⎢ ⎥
. 

In addition, both k and keff are related to ug and 
effgu as: 
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respectively. However, if k anf keff are given, then ug and 
effgu  are obtained as follows: 
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The index geff will be used interchangeably with (g,w) whenever needed in this and subsequent 

chapters. 

The decision vector of the gth effective group of users is given by: 

( ) ( )
( ) ( ) ( )

( ) ( )

11

1

1

1, , 1,
, ,

, ,

eff

eff

GW

eff eff eff
j g

eff eff eff eff g

eff eff
j

g g j p j
p g g g

g j p j

= +−

−

=

⎛ ⎞
− −⎜ ⎟

⎜ ⎟= ⎜ ⎟
−⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

y R y
y R

R y
 ( 7-4)

For the special case where the group size is one, that is, G = W, we obtain the symbol-level linear 

block-wise SIC (SL-LBSIC) detectors. In this structure, the interference due to users in one bit period 

is cancelled in parallel whereas the interference due to users of different bit intervals is cancelled in 

series. Such detectors are presented in  [112] and  [113]. The basic building block of the SL-LBSIC 

detector is shown in Figure  7.4. 
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Figure  7.3: SL-LGSIC unit of the gth effective group of users 

 

where ( ),eff i jR  is the ith row, jth column submatrix of the matrix effR .The decision vector of the wth 

block of users is given by: 

( ) ( )
( ) ( ) ( )

( ) ( )

11

1

1

1, , 1,
, ,

, ,

W

eff
j w

eff w

eff
j

w w j p j
p w w w

w j p j

= +−

−

=

⎛ ⎞
− −⎜ ⎟

⎜ ⎟=
⎜ ⎟
−⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

y R y
y R

R y
 ( 7-5)

Here, the inverse of the submatrix ( ),eff w wR  in the SL-LBSIC unit of Figure  7.4 is obtained 

by direct inversion, however, if the number of users is large then iterative methods can be used 

resulting in the inner-outer iterative methods, nested iterative methods or two-stage block iterative 

methods  [114]- [116]. 
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Figure  7.4: SL-LBSIC unit of the wth block of users. 

 

7.6 Symbol-Level Linear Block SOR Group-Wise SIC (SL-LBSOR-GSIC) 
Structure 

A symbol-level linear block SOR group-wise SIC structure can also be obtained by modifying the 

SOR-SIC structure to process a group of users instead of single users. The SL-LBSOR-GSIC structure 

is shown in Figure  7.5. The decision vector of the gth effective group of users is given by:  
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Figure  7.5: SL-LBSOR-GSIC unit of the gth effective group of users. 

 

As for the SL-LGSIC detector, the SL-LBSOR-GSIC structure can be extended to obtain the symbol-

level linear block-wise SOR-SIC detector by simply letting G = W. The new structure is shown in 

Figure  7.6.  

The decision vector of the wth block of users is given by: 
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Figure  7.6: SL-LBSOR-GSIC unit of the wth block of users. 

 

All the previously detailed structures are easily extended to approximate the LMMSE detector 

by simply changing effR  to 2 2
eff effσ −+R A . As mentioned earlier, all symbol-level detectors make use 

of the cross-correlation coefficients and consequently the cross-correlation matrix needs to be 

computed. If working in a long-code CDMA system where the cross-correlation matrix is changing 

randomly from one symbol period to another, these detectors become computationally inefficient 

because the computation of the cross-correlation matrix which costs 2NK2 is more intensive than the 

interference cancellation itself. Hence, this category is suitable for CDMA systems implementing 

short-codes (periodic) only.  

7.7 Symbol-Level Linear PIC/Weighted PIC (SL-LPIC/SL-LWPIC) Structure 

This structure was proposed in  [84], and was shown to be a direct implementation of the linear Jacobi 

iterative method. Because of the well known convergence problems of the linear PIC, where it 
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converges for only less than 17% of the loading factor  [84] ( ( )lim  with 
K

N

K K cstN N→∞
= ), the 

LWPIC structure was proposed to ensure convergence. It was shown also that this scheme is equivalent 

to the point relaxation Jacobi iterative method. The SL-LWPIC structure is shown in Figure  7.7: 

 

 

Figure  7.7: SL-LPIC/SL-LWPIC unit of the kth effective user. 

 

The decision variable of the kth effective user is given by:  
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which is clearly the point Jacobi relaxation iteration that is used for the inversion of the matrix effR . 

Hence it is an iterative implementation of the decorrelator detector. Note that the SL-LPIC detector is 

obtained by setting the relaxation factor ω to one. 

7.8 Chip-Level Linear SIC (CL-LSIC) Structure 

Unlike the SL-LSIC structure, its counterpart the CL-LSIC structure acts directly on the received chip-

matched signal. Furthermore, it makes use of the spreading codes and not the cross-correlation 

coefficients and consequently the calculation of the cross-correlation matrix is not required. This is 

very suitable for long-code (aperiodic) systems where the cross-correlation matrix is changing every 

symbol period. This structure is well covered in the literature for both synchronous/asynchronous 

CDMA AWGN channel and synchronous/asynchronous CDMA multipath fading channel, for example 

see  [117]- [120]. 

In this sequel, we implement the CL-LSIC structure using the linear CDMA model proposed in 

 Chapter 4. The CL-LSIC consists of interference cancellation units (ICU) arranged in a multistage 

structure as illustrated in Figure  7.8. The interference cancellation unit of pth stage, kth effective user is 

shown in Figure  7.9. The composite signal ( ) ( ) ( ), , ,eff eff effy p k p k p k= +e I  at the input of the pth 

stage, kth effective user ICU, is first despreaded to estimate the decision variable ( ), effy p k , that is: 

( ) ( ) ( ) ( )( ), , ,T
eff eff eff eff effy p k k p k p k= +s e I .  

The MAI ( ), effp kI due the pth stage, kth effective user, is obtained by spreading the decision 

variable ( ), effy p k , that is: ( ) ( ) ( ), ,eff eff eff effp k k y p k=I s , which in turn is subtracted out from the 

residual signal ( ) ( ), ,eff effp k p k+e I  to get a cleaned version of the residual signal ( ), 1effp k +e . This 

process is repeated in a multistage structure as it is shown in Figure  7.8.  

It was shown in  [118] and  [119], that the general expression for the residual signal vector and the 

decision variable of the kth effective user’s ICU unit at the pth stage, respectively, can be written as: 

( ) ( ) 1
1,

eff

p
eff k WK bp k −

−=e Φ Φ q  ( 7-9)

and: 

( ) ( ) ( )
1

1 ,
0

,
eff eff

p
T i T

eff eff eff k WK b p k b
i

y p k k
−

−
=

= =∑s Φ Φ q g q  ( 7-10)
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Figure  7.8: Multistage structure of the CL-LSIC detector 

 

 

Figure  7.9: pth stage, kth effective user’s CL-LSIC unit (ICU) 

 

Collecting the decision variables of all users in one matrix we get: 

( ) T
p bp =y G q  ( 7-11)
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where: ,1 ,2 , ,effp p p p k p WK⎡ ⎤= ⎣ ⎦G g g g g . Hence, the CL-LSIC could be described as linear 

matrix filtering of the received chip-matched signal vector. Using the same method as for the matched 

filter detector, the BER of the kth effective user at the pth stage can be shown to be: 

( ) ,
,

all , ,1

eff

eff

eff eff
keff

T
p k eff eff

p k WK 1 T
p k p kb

1P Q
2

σ
σ

−

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
b

g S A b

g g
 ( 7-12)

where Q(.) is the Q-function. The asymptotic multiuser efficiency for the kth effective user at the pth 

stage is given by: 

( ) ( )
( ) ( )2

, , ,
1, ,

,
max 0,

,eff eff eff

eff eff
eff

WK
effT T

p k p k eff eff p k effT
jp k p k eff eff eff
j k

A j j1 k j
A k k

η
=
≠

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑g s g s
g g

 ( 7-13)

7.8.1 Convergence Behavior 

It was demonstrated in  [118] and  [119] that if the CL-LSIC detector converges, it converges to the 

decorrelator detector. Hence: 

( ) 1 T
eff eff b
−∞ =y R S q  ( 7-14)

where T
eff eff eff=R S S  is the positive definite cross-correlation matrix (the spreading codes are linearly 

independent).  

7.8.2 Conditions of Convergence  

It was shown also in  [118] and  [119] that the CL-LSIC detector is always convergent. At intermediate 

stages where the residual received vector gets close to estimating the noise vector correctly, it is 

possible that the CL-LSIC performs better in terms of BER than at convergence. 

7.9 Reduced Complexity Chip-Level Linear SIC (RC-CL-LSIC) Structure 

A RC-CL-LSIC structure was proposed initially in  [121] for the case of synchronous CDMA AWGN 

channel, it was extended to the case of asynchronous CDMA multipath fading channel in both  [122] 

and  [123]. In fact, the RC-CL-LSIC structure can be considered as a hybrid chip-level symbol-level 

SIC structure, in the sense that not all the computations are performed at chip-level since some of them 

are performed at symbol-level. Nevertheless, this scheme still doesn’t make use of the cross-correlation 

coefficients and hence it is considered as a chip-level SIC detector. Because of performing some of the 

computations at symbol-level, this structure exhibits a reduction in computational complexity of about 
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33% compared to that of the conventional chip-level linear SIC structure. This will become clear later 

on when we discuss the computational complexity of different SIC structures. 

The RC-CL-LSIC structure consists of ICU’s arranged in a multistage structure as illustrated in 

Figure  7.10. The ICU of the pth stage, kth effective user is shown in Figure  7.11. The residual signal 

( ), effp ke  at the input of the pth stage, kth effective user ICU is first despreaded to estimate the partial 

decision variable ( )' , effy p k of the pth stage, kth effective user, that is: 

( ) ( ) ( )' , ,T
eff eff eff effy p k k p k= s e . The residual signal of the next user (keff+1) is obtained as: 

( ) ( ) ( ) ( ) ( )( ), 1 , , 1,eff eff eff eff eff effp k p k k y p k y p k+ = − − −e e s  where: 

( ) ( ) ( ), ' , 1,eff eff effy p k y p k y p k= + − . This process is repeated in a multistage structure as it is 

shown in Figure  7.10.  

As shown in  [121], it is easy to show that after some manipulations the general expression for 

the residual signal vector and the decision variable of the kth effective user’s ICU unit at the pth stage, 

respectively, can be obtained as: 

( ) 1
1,

eff

p
eff k WK bp k −

−=e Φ (Φ ) q  ( 7-15)

and: 

( ) ( )
1

1 ,
0

eff eff

p
T i T

eff eff eff k WK b p k b
i

y p,k k
−

−
=

= =∑s Φ (Φ ) q g q  ( 7-16)

where: 

( ) ( )( )
1

eff

eff

T
k eff eff

j k

j j
=

= −Φ I s s  ( 7-17)

Collecting the decision variables of all users in one matrix we get: 

( ) T
p bp =y G q  ( 7-18)

where: ,1 ,2 , ,effp p p p k p WK⎡ ⎤= ⎣ ⎦G g g g g . Hence, the RC-CL-LSIC detector can be described 

as matrix filtering of the received chip-matched signal vector. 
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Figure  7.10: Multistage structure of the RC-CL-LSIC detector. 

 

 

Figure  7.11: pth stage, kth effective user’s RC-CL-LSIC unit (ICU). 

 

Using the same method as for the conventional detector, the BER of the kth effective user at the pth 

stage can be expressed as: 
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 ( 7-19)

where Q(.) is the Q-function. As for the BER, the asymptotic multiuser efficiency for the kth effective 

user at the pth stage is given by: 

( ) ( )
( ) ( )2

, , ,
1, ,

,
max 0,

,eff eff eff

eff eff
eff

WK
effT T

p k p k eff eff p k effT
jp k p k eff eff eff
j k

A j j1 k j
A k k

η
=
≠

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑g s g s
g g

 ( 7-20)

7.9.1 Convergence Behavior 

As for the case of the CL-LSIC structure, it can be shown that if the RC-CL-LSIC detector converges it 

converges to the decorrelator detector  [121], that is,  

( ) 1 T
eff eff b
−∞ =y R S q  ( 7-21)

where T
eff eff eff=R S S  is the positive definite cross-correlation matrix (the spreading codes are linearly 

independent). 

7.9.2 Conditions of Convergence 

As for the case of the CL-LSIC detector, it can be shown that the RC-CL-LSIC structure is always 

convergent for any positive definite symmetric matrix  [121]. Here also and at intermediate stages 

where the residual received vector gets close to estimating the noise vector correctly, it is possible that 

the linear SIC performs better in terms of BER than at convergence. 

7.10 Reduced Complexity Chip-Level Linear Group-Wise SIC (RC-CL-LGSIC) 
Structure 

This scheme was first introduced in  [124]. As for the SL-LGSIC detector, the users are partitioned into 

groups; the interference due to users within the same group is cancelled in parallel while the mutual 

interference between groups is cancelled in series. Additionally, this scheme reduces the detection 

delay with a factor of G/K.  

Even though this scheme is considered as a chip-level structure, its classification in fact is 

dependent on the group-detection scheme. For example, if the group-detection scheme is the CL-LPIC 

detector or the matched filter detector, then the resultant structure is a pure chip-level linear group-wise 

SIC structure. However, if the group-detection scheme is the decorrelator detector or the LMMSE 
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detector, then the resultant structure is in reality a hybrid chip-level symbol-level linear group-wise 

SIC structure. The RC-CL-LGSIC detector consists of group interference cancellation units (GICU) 

arranged in a multistage structure as illustrated in Figure  7.12. The basic interference cancellation unit 

of the pth stage, gth effective group of users is shown in Figure  7.13. The residual signal ( ), thp ge  at the 

input of the pth stage, gth effective GICU is first despreaded to estimate the partial decision variable 

( )' , effp gy of the pth stage, gth effective group, that is: ( ) ( ) ( )' , ,T
eff eff eff effp g g p g=y S e .  

 

 

Figure  7.12: Multistage structure of the RC-CL-LGSIC detector. 

 

The residual signal of the next group of users (geff+1) is obtained as: 

( ) ( ) ( ) ( ) ( )( ), 1 , , 1,eff eff eff eff eff effp g p g g p g p g+ = − − −e e S y y  where: 

( ) ( ) ( ), ' , 1,eff eff effp g p g p g= + −y y y . This process is repeated in a multistage structure as it is shown 

in Figure  7.12 
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Figure  7.13: pth stage, gth effective group RC-CL-LGSIC unit (GICU). 

 

It was demonstrated in  [124] that the general expression for the residual signal vector of the gth 

effective GICU at the pth stage can be obtained as: 

( ) ( ) 1
1,

eff

p
eff g WG bp g −

−=e Φ Φ q  ( 7-22)

and similarly, the vector of decision variables of the gth effective GICU at the pth stage can be 

expressed as: 

( ) ( ) ( ) ( )
1

1 ,
0

,
eff eff

p
T i T

eff eff eff eff g WG b p g b
i

p g g g
−

−
=

= =∑y F S Φ Φ q G q  ( 7-23)

where: ( ) ( ) ( )( )
1

eff

eff

T
g eff eff

j g

j j j
=

= −Φ I S F S . 

Collecting the decision variables of all groups in one matrix we get: 

( ) T
p bp =y G q   

where 

,1 ,2 , ,effp p p p g p WG⎡ ⎤= ⎣ ⎦G G G G G .  

and 

, , ,1 , ,2 , , , ,eff eff eff eff g eff geff effp g p g p g p g u p g U
⎡ ⎤= ⎣ ⎦G g g g g . 

The matrix Gp can also be written as: ,1 ,2 , ,effp p p p k p WK⎡ ⎤= ⎣ ⎦G g g g g . Therefore the RC-

CL-LGSIC can be described as a matrix filtering of the received chip-matched signal vector. Using the 
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same method as for the matched filter detector, the BER of the kth effective user at the pth stage can be 

evaluated as: 

,
, 1

all , ,1

1( )
2

eff

eff

eff eff
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p k eff eff
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−

=
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⎜ ⎟=
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∑
b

g S A b

g g
 ( 7-24)

where Q(.) is the Q-function. On the other hand, the asymptotic multiuser efficiency for the kth 

effective user at the pth stage is given by: 

( ) ( )
( ) ( )2

, , ,
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,
max 0,

,eff eff eff

eff eff
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effT T

p k p k eff eff p k effT
jp k p k eff eff eff
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⎝ ⎠

∑g s g s
g g

 ( 7-25)

7.10.1 Group Detection Schemes 

Depending on the transformation matrix F(geff), several group detection schemes can be obtained. Four 

linear group detection schemes were considered in  [124], namely the reduced-complexity chip-level 

linear group matched filter successive interference cancellation detector (RC-CL-LGMF-SIC), the 

reduced-complexity chip-level linear group parallel interference cancellation successive interference 

cancellation detector (RC-CL-LGPIC-SIC), the reduced-complexity chip-level linear group 

decorrelator successive interference cancellation detector (RC-CL-LGDEC-SIC) and finally the 

reduced-complexity chip-level linear group minimum mean square error successive interference 

cancellation detector (RC-CL-LGMMSE-SIC). All these group detection schemes are detailed in the 

next section. 

7.10.1.1 The RC-CL-LGMF-SIC Detector 

It is the simplest scheme, and it is obtained by letting: 

( )effg =F I  ( 7-26)

where I is an (
eff effg gU by U− − ) identity matrix. This can be seen as a generalization of the 

conventional SIC where more than one user is considered in each cancellation. 

7.10.1.2 The RC-CL-LGPIC-SIC Detector 

We can generalize the concept of the RC-CL-LGMF-SIC if we let the group detector to be a linear 

PICN -stage PIC detector. Thus the linear transformation is given by: 
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( ) ( ) ( )( )
0

PIC
iN

T
eff eff eff eff eff

i
g g g

=

= −∑F I S S  ( 7-27)

7.10.1.3 The RC-CL-LGDEC-SIC Detector 

For this detector, the linear transformation is given by: 

( ) ( ) ( )( ) 1T
eff eff eff eff effg g g

−
=F S S  ( 7-28)

Note that if the group size is equal to one, we obtain the conventional linear RC-CL-LSIC detector. 

7.10.1.4 The RC-CL-LGMMSE-SIC Detector  

For the RC-CL-LGMMSE-SIC detector, the linear transformation is given by: 

( ) ( ) ( ) ( )( ) 122 ,T
eff eff eff eff eff eff eff effg g g g gσ

−−= +F S S A  ( 7-29)

where σ2 is the variance of the AWGN. Note that when the noise level is low the linear transformation 

F(geff) approaches the one for the RC-CL-LGDEC-SIC detector but, if the noise level is high F(geff) 

approaches a scaled identity matrix, which corresponds to the RC-CL-LGMF-SIC detector. 

7.10.2 Convergence Behavior  

It was shown in  [124] that if F(geff) is invertible for all geff = 1,2,…,WG. and effR is also invertible (all 

spreading codes are linearly independent) than the RC-CL-LGSIC scheme converges to the 

decorrelator detector if it converges. Hence: 

( ) ( ) 1T T
eff eff eff b

−
∞ =y S S S q  ( 7-30)

7.10.3 Conditions of Convergence  

It was demonstrated in  [124] that only the RC-CL-LGDEC-SIC is always convergent. For the other 

group detection schemes, the convergence is not always guaranteed. Nevertheless, their convergence 

can be ensured by inserting a weighting parameter that forces all the eigenvalues of the transition 

matrix to be less than one as in  [125]- [127].  

7.11 Case of CDMA Multi-Path Fading Channel   

The cross-correlation matrix for the case of a CDMA multi-path fading channel is different than that of 

a CDMA AWGN channel because the main diagonal is not equal to the identity matrix. This causes the 
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previously detailed chip-level linear SIC structures to diverge. Hence, a modification to these schemes 

is necessary for their proper functioning in a CDMA multi-path fading channel. All the convergence 

analysis detailed above for the chip-level linear SIC/GSIC structure operating in a CDMA AWGN 

channel holds here as well. The CL-LSIC unit is modified as follows: 

 

 

Figure  7.14: The CL-LSIC unit for the CDMA multi-path fading channel 

whereas the reduced-complexity chip-level linear successive interference cancellation unit is modified 

as follows: 

 

Figure  7.15: RC-CL-LSIC unit for the CDMA multi-path fading channel 

 

Finally, the RC-CL-LGMF-SIC unit is modified as follows: 
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Figure  7.16: RC-CL-LGMF-SIC unit for the CDMA multi-path fading channel 

 

The under-relaxation principle is generally used to ensure the convergence of divergent iterative 

methods. It was used in  [125]- [127] to ensure the convergence of the divergent schemes introduced in 

 [124]. In the following, the under-relaxation principle is used to ensure the convergence of the 

structures that are convergent for the CDMA AWGN channel but not for the CDMA multipath fading 

channel. The structures developed using this principle (Figure  7.17, 7.18 and 7.19) exhibit minor 

reduction in computational complexity compared to their counterparts in (Figure  7.14, 7.15 and 7.16) 

in the sense that these detectors avoid the inversion of the matrix D. 

At the pth stage, the residual signal due to the kth effective user of the CL-LSIC/RC-CL-LSIC 

detectors is derived as  [117]: 

( ) ( ) ( ) ( ) ( )
1

1
, , 1,    for   1,2,..., .

eff
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k WK

eff b eff eff eff
j j k

p k j y p j j y p j k WK
−

= =

= − − − =∑ ∑e q s s  ( 7-31)

Hence, the decision variable is given by: 
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( ) ( ) ( )

1

1

1

, ,

1,    for   1,2,..., .

eff

eff

k
T T

eff eff eff b eff eff eff
j

WK
T

eff eff eff eff
j k

y p k k k j y p j

k j y p j k WK

−

=

= +

= −

− − =

∑

∑
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 ( 7-32)

Also, from Figure  7.13, the residual signal due to the kth effective user of the RC-CL-LGMF-SIC 

detector is derived as we have: 

( ) ( ) ( ) ( ), , 1,
T

eff eff eff eff effp g g p g p g= + −y S e y  ( 7-33)
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where ( ), effp ge can be written in terms of the decision variables as: 

( ) ( ) ( ) ( ) ( )
1

1
, , 1,

eff

eff

g WG

eff b eff eff
j j g

p g j p j j p j
−

= =

= − − −∑ ∑e q S y S y  ( 7-34)

A careful look to the equations above can easily show that CL-LSIC/RC-CL-LSIC and RC-CL-LGMF-

SIC detectors are equivalent to the modified point Gauss-Seidel and modified block Gauss-seidel 

iterative methods, respectively, detailed in  Chapter 5. These methods were proven to converge if, in 

addition to the symmetry and positive definitiveness of the coefficient matrix, the maximum 

eigenvalue of the diagonal/block diagonal part of the coefficient matrix is between 0 and 2. This can be 

ensured by inserting a relaxation factor as for the case of modified point successive over-relaxation 

method and modified block successive over-relaxation method. These two methods are convergent if 

( )
20

max

ω
λ

< <
D  which can be replaced by some upper bound of the maximum eigenvalue of the 

matrix D, e.g. trace(D).  

Therefore Figure  7.14 and 7.15 are modified by replacing ( ) ( )( ) 1Hb b
eff eff eff effk k

−
s s by ω. 

However, for Figure  7.13 the group detection matrix F(geff) = I (for the case of RC-CL-LGMF-SIC 

detection scheme) is replaced by  F(geff) = ωI. The resulting figures are shown below: 

 

 

Figure  7.17: CL-LSIC unit for the CDMA multi-path fading channel using the under-relaxation 

principle 
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Figure  7.18: RC-CL-LSIC unit for the CDMA multi-path fading channel using the under-relaxation 

principle. 

 

 

Figure  7.19: RC-CL-LGMF-SIC unit for the CDMA multi-path fading channel using the under-

relaxation principle. 

 

7.12 Chip-Level Linear PIC/Weighted PIC (CL-LPIC/CL-LWPIC) Structure  

This scheme was proposed in  [128]- [134]. It uses directly the spreading codes instead of the cross-

correlation matrix coefficients in the detection process. In this section, the CL-LWPIC detector 

presented in  [128] and extended here to the case of multipath fading scenario, consists of ICU’s 
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arranged in a multistage structure as shown in Figure  7.20. The internal structure of each ICU is 

illustrated in Figure  7.21.   

The vector of decision variables of the (p-1)th stage, kth user y(p-1,keff) is first despreaded added 

to the decision variables of the other users to form the interference due to all users at the (p-1)th stage , 

that is, ( ) ( ) ( )
1

1 1,
KW

eff
j

p j y p j
=

− = −∑I s The latter is subtracted out from the received signal q to obtain 

a purified received signal (q – I(p-1)) where all users exhibit less mutual interference. The decision 

variable of the pth stage, kth user y(p,keff) is obtained by despreading the purified signal, multiplying the 

result by a weighting factor and finally adding the result to the decision variable of the previous stage, 

that is: 

( ) ( )
( ) ( )

( )( ) ( ), 1 1,
T

eff eff
eff effT

eff eff eff eff

k
y p k p y p k

k k

ω
= − − + −

s
q I

s s
  ( 7-35)

This process is repeated in a multistage structure as shown in Figure  7.20. 

 

 

Figure  7.20: Multi-stage structure of the CL-LWPIC detector. 
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Figure  7.21: The pth stage interference cancellation unit of the CL-LWPIC detector. 

 

It was shown in  [128] using an algebraic approach that the CL-LWPIC detector is equivalent to matrix 

filtering of the received chip-matched signal. This enables the determination of analytical expressions 

for the BER and AME of the proposed detector. Equation ( 7-35) can be written in matrix form as: 

( ) ( )( ) ( )1 1 1T
eff effp p pω −= − − + −y D S q S y y   ( 7-36)

where D is the diagonal part of the cross-correlation matrix T
eff eff eff=R S S . Taking in consideration 

that y(p) = 0, it can be shown as in  [128]  that ( 7-36) is equivalent to: 
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∑ I D S S D S q

G q
  ( 7-37)

where   ,1 ,2 , ,effp p p p k p WK⎡ ⎤= ⎣ ⎦G g g g g . 

Therefore, the CL-LWPIC can be described as matrix filtering of the received chip-matched signal 

vector. Thus, if the spreading codes and grouping of all users are available, the decision variables of all 

users could be obtained without explicitly performing parallel interference cancellation. 

Using the same method as for the matched filter detector, the BER of the kth effective user at the 

pth stage can be evaluated as: 
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where Q(.) is the Q-function. Additionally, the AME for the kth effective user at the pth stage is given 

by: 
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 ( 7-39)

Before discussing the convergence behavior of the proposed scheme let us develop the relation 

between the latter and the Jacobi iterative method. Equation ( 7-35) can be written as: 
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  ( 7-40)

which is exactly the linear point Jacobi relaxation iteration used for matrix inversion. 

7.12.1 Convergence Behavior 

From ( 7-36), it easy to show that as the number of stages tends to infinity the vector of decision 

variables tend to that of the decorrelator detector, that is, 
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which is the decorrelator detector. Therefore, if the CL-LWPIC detector converges, it converges to the 

decorrelator detector.  

7.12.2 Conditions of Convergence 

The parallel interference cancellation detector is well known to suffer from severe convergence issues 

( [128],  [129] and  [134]). By observing that the iteration matrix of the proposed detector is given by: 

( )1 T
eff effω −= −B I D S S   ( 7-42) 

It is easy to determine the condition of convergence of the proposed scheme, that is: 

( )1
max

20
T
eff eff

ω
λ −

< <
D S S

  ( 7-43)

7.13 Computational Complexity 

In order to conduct a fair comparison between different SIC structures one has first to specify the 

CDMA system whether it is a short-code CDMA system or a long-code system. This is very important, 

since many multiuser detectors with low-computational complexity in a short-code system exhibit 

high-computational complexity in a long-code system and vice versa.  

In all parts of this dissertation, we focus on developing linear interference cancellation structures 

that are suitable for long-code CDMA systems. Thus, if not stated otherwise, the CDMA system 

considered here is a long-code system. The computational complexity considered here is expressed in 

terms of number of flops per sliding window. If the computational complexity in terms of number of 

flops per bit is required instead, one can determine it simply by dividing the computational complexity 

in terms of number of flops per sliding window by the number of bits within a sliding window W. 

7.13.1 Computational Complexity of the SL-LSIC Structure 

The computational complexity of symbol-level linear interference cancellation structures consists of 

three steps: 

• Computation of the matched filter outputs. 
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• Computation of the cross-correlation coefficients (because we are considering a long-code CDMA 

system). 

• Computation of the symbol-level linear interference cancellation structure decision variables. 

While the first two steps are common to all symbol-level linear interference cancellation 

structures, the third step distinguishes between different structures in terms of computational 

complexity. 

The matched filter is given by: ( ) ( )( )1 1
2 max max

k

k
lk K k K

WN WKτ τ
≤ ≤ ≤ ≤

+ +  and the complexity required for 

the computation of the cross-correlation matrix is ( ) ( )( )( )2

1 1
2 max max

k

k
lk K k K

WN WKτ τ
≤ ≤ ≤ ≤

+ + .  The 

computational complexity of the SL-LSIC structure is given by: (3W- K - 1)WKP. Thus the total 

computational complexity of the SL-LSIC structure is given by: 

( ) ( )( )( ) ( ) ( )( )( )

( )

2

1 1 1 1
2 max max 1 2 max max

3 1  

k k

k k
l lk K k K k K k K

WN WK WN WK

WK WKP

τ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + − + + +

+ −
 ( 7-44)

7.13.2 Computational Complexity of the SL-LSOR-SIC Structure 

The computational complexity of the SL-LSOR-SIC structure is higher than that of the SL-LSIC 

structure since it comprises the estimation of the optimal relaxation factor. In view of the fact that 

different estimation algorithms for the relaxation factor lead to different computational complexities, it 

is desirable to exclude the computation of the relaxation factor when comparing different linear LSOR-

SIC schemes and focus on the structure instead. However, if one whishes to compare a LSOR-SIC 

structure with another multiuser structure then the computation of the relaxation factor should be 

included. 

The total computational complexity of the SL-LSOR-SIC structure (excluding the estimation of 

the relaxation factor) is: 

 

( ) ( )( ) ( ) ( )( )( )

( )

2

1 1 1 1
2 max max 2 max max

3 4  
k k

k k
l lk K k K k K k K

WN WK WN WK
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τ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + +

+ +
 ( 7-45)
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7.13.3 Computational Complexity of the SL-LGSIC Structure 

The computational complexity of the SL-LGSIC structure is obviously higher than that of the 

conventional SL-LSIC structure since it acts on a group of users rather than one user. Moreover, it 

comprises the inversion of a set of cross-correlation sub-matrices.   

Here we are assuming that the inversion of these sub-matrices is implemented using direct 

methods  [78]. This is reasonable if the size of these sub-matrices is relatively small, that is, the number 

of users within each group is small. Otherwise, one has to refer to iterative methods again.  The total 

computational complexity of the SL-LGSIC structure is: 

( ) ( )( ) ( ) ( )( )( ) ( )

( ) ( )

2 2

1 k 1 1 1
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2 2 3 2
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∑ ∑ ∑ ∑ ∑
 ( 7-46)

7.13.4 Computational Complexity of the SL-LBSOR-GSIC Structure 

The computational complexity of the SL-LBSOR-GSIC structures is obviously higher than that of the 

conventional SL-LSOR-SIC structure since it acts on a group of users rather than individual users. 

Here also, we are assuming that the number of users in each group is relatively small such that direct 

inversion of the corresponding sub-matrices can be performed using direct methods. As for the 

symbol-level linear SOR-SIC structure, the estimation of the relaxation factor is excluded from the 

computation complexity calculation. The total computational complexity of the symbol-level linear 

group-wise SOR-SIC structure is: 

( ) ( )( ) ( ) ( )( )( )
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7.13.5 Computational Complexity of the SL-LWPIC Detector 

The computation complexity of the SL-LWPIC detector proposed in  [84] and illustrated in Figure  7.7 

is given as follows: 
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7.13.6 Computational Complexity of the CL-LSIC Structure 

Unlike the symbol-level linear SIC structures, the chip-level linear SIC structures doesn’t require the 

calculation of the matched filters outputs and the cross-correlation matrix, except the cross-correlation 

elements of the main diagonal. This represents a considerable reduction in computational complexity. 

Thus, the computational complexity of the CL-LSIC structure is: 

( ) ( )( ) ( ) ( )( )1 1 1 1
6 max max 2 max max

k k

k k
l lk K k K k K k K

WKP WN WK WNτ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + +  ( 7-49)

7.13.7   Computational Complexity of the RC-CL-LSIC Structure 

Since some computations are performed at symbol-level, this structure exhibits lower computational 

complexity which is given by: 

( ) ( )( )( ) ( ) ( )( )1 1 1 1
4 max max 1 2 max max

k k

k k
l lk K k K k K k K

WKP WN WK WNτ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + + +  ( 7-50)

Comparing it with that of the conventional CL-LSIC structure yields a reduction in 

computational complexity of about 33%. 

7.13.8 Computational Complexity of the RC-CL-LGSIC Structure 

The computational complexity of the RC-CL-LGSIC structure is clearly higher than that of the 

conventional reduced complexity CL-LSIC structure since it acts on a group of users rather than one 

user. The computational complexity of the structure is dependent on the group-detection scheme 

implemented. At the first look, it seems that the structure using the matched filter detector has the 

lowest computational complexity while the one using the decorrelator or the LMMSE detectors has the 

highest computational complexity. However, this maybe misleading because the structure using the 

decorrelator detector needs less stages than the structure using the matched filter detector to converge 

to the decorrelator detector’s BER performance. Hence, to perform a fair comparison between the CL-

LGSIC structure with different group-detection schemes, it is better to first determine the number of 

stages P needed for convergence for each one and then use P for the calculation of the computational 

complexity. For proper comparison with the SL-LGSIC structure that uses the decorrelator detector as 
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the group-detection scheme, we state only the computational complexity of the CL-LGSIC structure 

using the decorrelator detector as the group-detection scheme as well. Hence, it is given by:  

7.13.9 Computational Complexity of the CL-LWPIC Detector 

The computation complexity of this structure is given by: 

7.14  Simulation Results 

In this section, the abovementioned multiuser detectors are simulated and the results obtained are 

commented. We simulate the convergence behavior of the chip-level interference cancellation 

detectors and compare their computational complexity to their symbol-level counterparts. Two 

different scenarios are considered, a synchronous CDMA AWGN channel and an asynchronous 

CDMA multipath Rayleigh fading channel. The simulation parameters are depicted in Table  7.1: 

 

Table  7.1: Simulation parameters 

Channel Synchronous CDMA 

AWGN 

Asynchronous CDMA 

multipath Rayleigh fading 

Performance measure Average BER versus 

number of stages 

Average BER versus 
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( ) ( )( ) ( ) ( ) ( )( )1 1 1 1
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SNR 6dB 4dB 

W 1 5 

Spreading codes Gold Gold 

Power control Perfect Perfect 

Power delay profile Not applicable Vehicular A outdoor Channel 

for WCDMA 

Length of ISI+MAI 0 ( ) ( )
1 1
max max

k

k
lk K k K

Nτ τ
≤ ≤ ≤ ≤

+ ≤  

 

In Figure  7.22, the average BER (average of all users) is plotted versus the number of CL-LSIC/CL-

LSIC stages. As it can be easily seen, the CL-LSIC converges faster than the CL-LPIC detector (4 

stages for the CL-LSIC detector and 9 stages for the CL-LPIC detector) which corroborates with the 

theory, however, the CL-LPIC detector achieves a lower average BER level than the CL-LSIC 

detector. In addition, it is important to notice that lower average BER levels are achieved prior to 

convergence, this is more noticeable for highly loaded systems and it has also been reported in other 

references such as  [121]. 
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Figure  7.22: Convergence behavior of the CL-LSIC/CL-LPIC detectors. 
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In Figure  7.23, the average BER (average of all users) is plotted versus the number of RC-CL-

LGSIC stages. Different detection schemes are considered. For the RC-CL-LGPIC-SIC detector, a 2-

stage PIC detector is used. It is easy to see that the RC-CL-LGDEC-SIC converges faster than the other 

group-detection schemes (it needs only 4 stages whereas the RC-CL-LGPIC-SIC detector needs 6 

stages, the RC-CL-LGMMSE-SIC detector needs 7 stages and the RC-CL-LGMF-SIC detector needs 9 

stages). However, the linear RC-CL-LGMF-SIC detector achieves the lowest average BER level 

among all detection schemes. Moreover, it is important to notice that lower average BER levels are 

achieved prior to convergence, this is more noticeable for highly loaded systems and it has also been 

reported in other references such as  [121]. 
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Figure  7.23: Convergence behavior of the RC-CL-LGSIC detector. 

 

 

The effect of grouping is analyzed in depicted in Figure  7.24, 7.25, 7.26 and 7.27.   
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Figure  7.24: Convergence behavior of the RC-CL-LGDEC-SIC detector for G = 2 and G = 10. 
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Figure  7.25: Convergence behavior of the RC-CL-LGMMSE-SIC detector for G = 2 and G = 10. 
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Figure  7.26: Convergence behavior of the RC-CL-LGPIC-SIC detector for G = 2 and G = 10. 
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Figure  7.27: Convergence behavior of the RC-CL-LGMF-SIC detector for G = 2 and G = 10. 

 

It can be seen that the convergence speed of the linear RC-CL-LGMF-SIC detector increases with 

increasing number of groups whereas for the RC-CL-LGDEC-SIC, the RC-CL-LGMMSE-SIC and the 
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RC-CL-LGPIC-SIC detector, the opposite is true. However, the average BER difference between 

different groupings is small and of theoretical importance only.  

To show the instability of some detectors, a set of 10 highly correlated codes are used for 

spreading and despreading. The six users are divided into two equally sized groups 3 users each. It can 

be seen from Figure  7.28, that while the RC-CL-LGDEC-SIC and the RC-CL-LGMMSE-SIC detectors 

are converging to the decorrelator detector’s performance, the RC-CL-LGMF-SIC detector exhibits an 

oscillatory convergence behavior while the CL-LPIC/RC-CL-LGPIC-SIC detectors are exhibiting an 

oscillatory/smooth divergence behaviors, respectively. Different modes of convergence and divergence 

are discussed in detail in  [134]. 

Not only high correlated spreading codes are causing divergence of some multiuser detectors, 

grouping is also affecting their convergence behavior. To illustrate this, we divide again the six users 

into two groups where the first one contains 2 users and the second one contains 4 users. From Figure 

 7.29, it easy to notice that not only the RC-CL-LGPIC-SIC and the CL-LPIC detectors is divergent but 

also the RC-CL-LGMF-SIC detector is divergent too. Thus, the grouping of users also affects the 

convergence/divergence behavior of different CL-LGSIC detection schemes. 
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Figure  7.28: Divergence behavior of some chip-level linear interference cancellation detectors due to 

highly correlated codes. 
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Figure  7.29: Divergence behavior of some chip-level linear interference cancellation detectors due to 

grouping. 

 

In the following, we simulate the convergence behavior of the aforementioned multiuser detectors in an 

asynchronous CDMA multipath fading channel, the simulation parameters are depicted in Table  7.1. 

For the RC-CL-GSIC detector the 10 users are divided into two equally sized groups. In addition, a 

two–stage PIC detector is used for the RC-CL-GPIC-SIC detector. Figure  7.30 shows the convergence 

behavior of the CL-LPIC and the CL-LSIC detectors. It is straightforward to see that while the CL-

LSIC detector converges within two stages, the CL-LPIC detector diverges. Hence, the principle of 

under-relaxation is used here to ensure the convergence of the CL-LPIC detector and results in the CL-

LWPIC detector. The maximum eigenvalue of the matrix 1
eff

−D R  used to determine the relaxation 

factor is estimated using the Gershgorin theorem  [82].  

The computational complexity of the CL-LSIC detector can be reduced by omitting the 

inversion of diagonal elements of the cross-correlation matrix by using the principle of under-

relaxation as in Section  7.11. This results in the CL-LWSIC detector for which the BER performance is 

depicted in Figure  7.30. It easy to see that it’s performance is indistinguishable from that of the 

conventional CL-LSIC detector. This suggests that it can be used as alternative. 
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Figure  7.30: Convergence behavior of the CL-LSIC/CL-LPIC detectors. 

In Figure  7.31, the convergence behavior of different RC-CL-LGSIC group-detection schemes is also 

evaluated and plotted.  
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Figure  7.31: Convergence behavior of the RC-CL-LGSIC detector. 
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Their behavior is not far from that in a synchronous CDMA AWGN channel. Only the RC-CL-LPIC-

SIC detector takes a very large number of stages to converge (> 25 stages). This is due mainly to the 

fact that the linear PIC detector is used without a weighting factor that ensures its convergence in an 

asynchronous CDMA multipath fading channel. Hence, if fast convergence is required, the linear PIC 

detector should be replaced with a linear weighted PIC detector. 

In the sequel, we simulate the computational complexity of different interference cancellation 

detectors. We plot the expressions developed in Section  7.13 for two cases: in the first case (a) we 

assume that the number of stages needed for convergence is P = (WK)/2 whereas in the second case (b) 

we assume that the number of stages needed for convergence is P = (WK)/4.  This is reasonable since 

from the simulations above, it can be seen that for all of the interference cancellation detectors the 

convergence is achieved for less than P = (WK)/2. 

In Figure  7.32, the computational complexity in terms of flops per sliding window is plotted 

versus the number of effective users, that is, WK.  
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Figure  7.32: Computational complexity of different symbol-level/chip-level LSIC detectors. 

 

It is clear that the computational complexity of the decorrelator detector is much higher than that of the 

IC detectors. The computational complexity of the CL-LSIC detector is comparable to that of the SL-
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LSIC detector for P = (WK)/2, however, for P = (WK)/4 the computational complexity of the CL-LSIC 

detector is less than that of the SL-LSIC detector. On the other hand, the computational complexity of 

the RC-CL-LSIC detector is less that of SL-LSIC/ CL-LSIC detectors for both cases (a) and (b). 

As for the symbol-level/chip-level LSIC detectors, the computational complexity of the SL-

GDEC-SIC/RC-CL-GDEC-SIC detectors is depicted in Figure  7.33. It is easy to notice that the RC-

CL-GDEC-SIC detector has less computational complexity than that of the SL-GDEC-SIC detector for 

both cases (a) and (b). Again, the computational complexity of the decorrelator detector is much higher 

than that of the IC detectors.  

In Figure  7.34, the computational complexity of both the symbol-level and chip-level LPIC 

detectors is plotted versus the number of effective users KW. Here as well, it is obvious that the CL-

LPIC detector exhibits less computational complexity than its symbol-level counterpart (SL-LPIC 

detector). Hence for most practical cases, all the chip-level linear IC detectors perform better than 

symbol-level linear IC detectors in terms of computational complexity. 
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Figure  7.33: Computational complexity of the SL-LGDEC-SIC/RC-CL-LGDEC-SIC detectors. 

 

 



 Chapter 7  Linear Interference Cancellation Structures 

 167

 

5 10 15 20 25 30 35
0

2

4

6

8

10

12

14
x 10

6 case of P=(WK)/2

Number of Users (K)
(a)                

N
um

be
r o

f F
lo

ps

5 10 15 20 25 30 35
0

2

4

6

8

10

12

14
x 10

6 case of P=(WK)/4

Number of Users (K)
(b)                

N
um

be
r o

f F
lo

ps

SL-LPIC detector
CL-LPIC detector
Decorrelator detector

SL-LPIC detector
CL-LPIC detector
Decorrelator detector

 

Figure  7.34: Computational complexity of different symbol-level/chip-level LPIC detectors. 

 

7.15 Conclusion 

In this chapter, we detailed different chip-level linear IC structures existing in the literature and their 

symbol-level counterparts. We studied these structures in terms of convergence behavior and 

computational complexity. We showed that some structures suffer from serious convergence issues 

such as the CL-LPIC, RC-CL-LGMF-SIC and the RC-CL-LGPIC-SIC structures. Furthermore, some 

structures converging for the case of the CDMA AWGN channel are diverging for the case of CDMA 

multipath fading channel. Hence the principle of under-relaxation is used to introduce new relaxation 

IC structures that exhibit relatively less computational complexity than those that do not use this 

principle. 
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8.2 Introduction 

According to our knowledge, all chip-level linear SIC structures proposed in the literature converge to 

the decorrelator detector. Since the Linear Minimum Mean Square (LMMSE) detector outperforms the 

decorrelator detector, particularly for low and medium signal-to-noise ratios, it is very important to 

develop a chip-level linear SIC structure that can converge not only to the decorrelator detector as in 

 [121] and  [117] but also to the LMMSE detector. 

In this section, a chip-level linear weighted SIC (CL-LWSIC) multi-user detection scheme is 

proposed. This scheme is computationally suitable for current long-code systems because it does not 

rely on the computation of the cross-correlation matrix but instead makes a direct use of the spreading 

codes. Moreover, and as shown later, this scheme converges to the decorrelator/LMMSE detector for 

two distinct values of the weighting factor.  
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Furthermore, the CL-LWSIC structure is extended to the chip-level linear weighted group-wise 

SIC (CL-LWGSIC) multi-user detection structure, where group of users are processed instead of single 

users. This reduces significantly the detection delay of the CL-LWSIC scheme. Unlike the structure 

suggested in  [124], that converges only to the decorrelator detector if it does at all, the CL-LWGSIC 

structure proposed here can converge not only to the decorrelator detector but also to the LMMSE 

detector. 

8.3 The Chip-Level Linear Weighted SIC (CL-LWSIC) Structure 

The proposed linear CL-LWSIC detector consists of ICU’s arranged in a multistage structure of P 

stages as illustrated in Figure  7.8. The basic linear ICU is shown in Figure  8.1 . The multiple access 

interference (MAI) termed ( ), effp kI due to the kth effective user at the pth-stage is obtained by 

spreading the decision variable ( ), effy p k , through the operation ( ) ( ) ( ), ,eff eff eff effp k k y p k=I s , 

and then subtracting ( ), effp kI  from the composite signal ( ) ( )( ), 1,eff effp k p k+ −e I  to get a cleaned 

version of the residual signal for the next ICU, that is ( ), 1effp k +e . 

Here, the decision variable ( ), effy p k  is obtained by despreading the residual signal ( ), effp ke , 

and then multiplying the result by a weighting factor, 
effkµ , thus obtaining 

( ) ( ) ( ), ,
eff

T
eff k eff eff effy p k k p kµ= s e .  This process is repeated in a multistage structure as shown in 

Figure  7.8.   

 

Figure  8.1: pth stage, kth effective user’s CL-LWSIC unit (ICU) 
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8.3.1 Convergence Behavior  

Let e(1,1) = q, at the pth stage. The decision variable of the kth effective user of the CL-LWSIC detector 

can be shown to be expressed as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1

, ,

1, ,     for   1,2,..., .

eff

eff eff

eff

eff

k
T T

eff k eff eff k eff eff eff
j

WK
T

k eff eff eff eff
j k

y p k k k j y p j

k j y p j k WK

µ µ

µ

−

=

= +

= − −

− =

∑

∑

s q s s

s s
  ( 8-1)

At convergence, however, we have: ( ) ( ) ( ), 1, ,eff eff effy p k y p k y k= − = ∞  and therefore ( 8-1) 

becomes:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1

, ,

, ,     for   1,2,..., .

eff

eff eff

eff

eff

k
T T

eff k eff eff k eff eff eff
j

WK
T

k eff eff eff eff
j k

y k k k j y j

k j y j k WK

µ µ

µ

−

=

= +

∞ = − ∞ −

∞ =

∑

∑

s q s s

s s
  ( 8-2)

Subtracting ( ) ( ) ( ),
eff

T
k eff eff eff eff effk k y kµ ∞s s from both sides of ( 8-2) and taking into consideration 

the fact that ( ) ( ) 1T
eff eff eff effk k =s s , yields: 

( )
( ) ( ) ( ) ( ) ( )

1

1
, ,  

    for   1,2,..., .

eff

eff

WK
k T T

eff eff eff eff eff eff
jk

eff

y k k k j y j

k WK

µ

µ =

−
∞ = − ∞

=

∑s q s s
  ( 8-3)

Equation ( 8-3) can be written in matrix form as: 

( ) ( ) ,T
eff eff∞ = − ∞Θy S q R y   ( 8-4)

where ( ) ( ) ( ) ( )1 2

1 2

11 1 1
, , , , ,eff

eff

k WK

k WK

diag
µµ µ µ

µ µ µ µ

⎛ ⎞−− − −⎜ ⎟=
⎜ ⎟
⎝ ⎠

Θ  and T
eff eff eff=R S S  is the positive 

definite cross-correlation matrix. Note that the spreading codes are assumed here to be linearly 

independent. Finally, ( 8-4) can be written as: 

( ) ( ) 1 T
eff eff

−
∞ = +y Θ R S q   ( 8-5)

Consequently, two cases of paramount importance are worth investigating: 

• If 1
effkµ =  for all keff = 1, 2, …, WK, the proposed detector converges to the decorrelator detector. 
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• If 
( )2 2

1
1 ,effk

eff eff effk k
µ

σ −=
+ A

 for all keff = 1, 2, …, WK, the proposed detector converges to the 

LMMSE detector. 

Depending on the choice of 
effkµ , the resulting CL-LWSIC detector can either converge or 

diverge. Hence, it is important to study the region of convergence for the proposed scheme. This is the 

subject of the next section.  

8.3.2 Conditions of Convergence 

Before determining the condition for convergence, let us first establish the analogy between the 

proposed scheme and the corresponding iterative method used to solve a set of linear equations which 

is known as the Gauss-Seidel iterative method  [80]. 

The matrix effR  can be decomposed into three parts, that is: T
eff = − −R I L L , where the 

identity matrix I provides the diagonal elements of effR , and L and LT are the remaining lower-left 

and upper-right parts of effR , respectively. Ultimately ( 8-1) can be written in a matrix form as follows: 

( ) ( ) ( )1  ,T T
effp p p= + + −Dy S q Ly L y   ( 8-6)

where 
1 2

1 1 1 1, , , , ,  
effk WK

diag
µ µ µ µ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
D . Consequently: 

( ) ( ) ( )1  1T T
effp p− ⎡ ⎤= − − +⎣ ⎦y D L L y S q   ( 8-7)

Note that ( 8-7) is exactly the Gauss-Seidel iterative method for inverting the matrix D – L – LT = 

effR + Θ. For the convergence analysis of ( 8-7), we invoke Keller’s theorem  [81]. In order to apply 

Keller’s theorem, we first set the following:  

• R = D – L – LH = effR + Θ, since effR is hermitian and Θ is a diagonal matrix then R is also 

hermitian. 

• M = D – L which is nonsingular if all the elements of the diagonal matrix D are nonzero and 

therefore det(M) = det(D – L) = det(D) ≠ 0 and hence: 
effkµ ≠ ∞  for all keff = 1, 2, …, WK. 

• LH = M – R and T
eff=x S q  
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• M + MT – R = MT + (M – R) = (D – L)T + L = D, and since D is a diagonal matrix then if the 

diagonal elements are nonzero and positive, then D is positive definite. Hence, 0
effkµ >  for all keff 

= 1, 2, …, WK. 

We have R = D – L – LH = R + Θ, if Θ is positive semi-definite then the matrix sum (R + Θ) is 

also positive semi-definite. Since Θ is a diagonal matrix, and provided its diagonal elements are all 

positive, then Θ is positive semi-definite. This is equivalent to the following condition: 0 1
effkµ< ≤   

for all keff = 1, 2, …, WK. 

Combining the aforementioned conditions, we get: {
effkµ ≠ ∞ } ∩ { 0

effkµ > } ∩ { 0 1
effkµ< ≤ } 

= { 0 1
effkµ< ≤ } for all keff = 1, 2, …, WK.  Therefore, if { 0 1

effkµ< ≤ } for all keff = 1, 2, …, WK, then 

the proposed scheme is guaranteed to converge.  

For the two cases of interest, namely in which the proposed CL-LWSIC detector converges to 

either the decorrelator or the LMMSE detectors, we have ( ]1 0 1
effkµ = ∈  and 

( ) ( ]2 2

1 0 1
1 ,effk

eff eff effk k
µ

σ −= ∈
+ A

 for all keff = 1, 2, …, WK, respectively. Hence, the proposed 

detector converging to the decorrelator / LMMSE detectors is always convergent. 

8.3.3 Computational Complexity 

In this section, the computational complexity of the proposed linear CL-LWSIC detector is evaluated 

and is given by:  

( ) ( )( )( ) ( ) ( )( )1 1 1 1
6 max max 1 2 max max

k k

k k
l lk K k K k K k K

WKP WN WK WNτ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + + +  ( 8-8)

For the sake of comparison, the computational complexity of the SL-LSIC detector proposed in  [84] is 

evaluated and is given by: 

( ) ( )( )( ) ( ) ( )( )( )

( )

2

1 1 1 1
2 max max 1 2 max max

3 1  

k k

k k
l lk K k K k K k K

WN WK WN WK

WK WKP

τ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + − + + +

+ −
 ( 8-9)

It is clear that the scheme in  [84] has an additional complexity burden of 

( ) ( )( )( ) ( ) ( )( )( )2

1 1 1 1
2 max max 1 2 max max

k k

k k
l lk K k K k K k K

WN WK WN WKτ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + − + + +  flops per sliding 

window, due to the computation of the cross-correlation matrix and the matched filter outputs. This is 

clearly illustrated in the simulation conducted in Section  8.6. 
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8.4 The CL-LWSIC Structure for Multi-Path Fading Channels 

As illustrated in the previous chapter the linear CL-LWSIC detector needs to be modified to 

accommodate with the changes in the cross-correlation matrix (the diagonal entries are not equal to 

one). The modified structure is depicted in Figure  8.2. 

 

 

Figure  8.2: pth stage, kth effective user’s CL-LWSIC unit (ICU) for the case of asynchronous CDMA 

multipath fading channel. 

 

Following the same approach as in Section  8.3.1, it is easy to show that the vector of the decision 

variables at convergence is obtained as:  

( ) ( ) ( )1 H
b b
eff eff

−

∞ = +y Θ R S q   ( 8-10)

where 

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

( )
( ) ( )( )

1 2
1 1

1 2

1 1

1 1
, , ,

1 1 2 2

1 1
, ,eff

eff

H H
eff eff eff eff

k WK

H H
eff eff eff eff k eff eff WK

diag

k k WK WK

µ µ

µ µ

µ µ

µ µ

− −

− −

⎛ ⎞− −
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟− −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

s s s s
Θ

s s s s

. Consequently, two 

cases of paramount importance are worth investigating: 

• If 1
effkµ =  for all keff = 1, 2, …, WK, the proposed detector converges to the decorrelator detector. 
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• If 
( ) ( )( ) ( )

1
2 2

1

1 ,
effk H

eff eff eff eff eff eff effk k k k
µ

σ
−

−
=

+ s s A
 for all keff = 1, 2, …, WK, the proposed 

detector converges to the LMMSE detector. 

For the conditions of convergence, and following the same approach as in Section  8.3.2, it is 

easy to show that the convergence of the scheme is guaranteed if { 0 1
effkµ< ≤ } for all keff = 1, 2, …, 

WK. For the two cases of interest, namely in which the proposed detector converges to either the 

decorrelator or the LMMSE detectors, we have ( ]1 0 1
effkµ = ∈  and 

( ) ( )( ) ( )
( ]1

2 2

1 0 1
1 ,

effk H
eff eff eff eff eff eff effk k k k

µ
σ

−
−

= ∈
+ s s A

 for all keff = 1, 2, …, WK, respectively. 

Hence, the proposed detector converging to the decorrelator/LMMSE detectors is always convergent. 

8.5 The Chip-Level Linear Weighted Group-Wise SIC (CL-LWGSIC) Structure 

The proposed CL-LWGSIC detector consists of group interference cancellation units (GICU) arranged 

in a multistage structure of P stages as illustrated in Figure  8.3. The basic GICU is shown in Figure 

 8.4. The multiple access interference (MAI) ( ), effp gI due to the gth effective group of users at the pth 

stage, is obtained by spreading the vector of decision variables ( ), effp gy that is: 

( ) ( ) ( ), ,eff eff eff effp g g p g=I S y , this MAI is subtracted from the composite signal 

( ) ( )( ), 1,eff effp g p g+ −e I  to get a cleaned version of the residual signal, ( ), 1effp g +e , of the next 

group of users. Here, the vector of decision variables ( ), effp gy  is obtained by despreading the 

residual signal ( ), effp ge , and then multiplying the result by the group-detection matrix F(geff), that is: 

( ) ( ) ( ) ( )( ), , 1,T
eff eff eff eff effp g g p g p g= + −y F S e I . 

Note that for the case of a multi-path fading channel, for all derivations below one has to 

substitute  effS by b
effS , effR by b

effR  and the transpose operator (T) by the hermitian operator (H). 
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Figure  8.3: Multistage structure of the CL-LWGSIC detector 

 

Figure  8.4: pth 
stage, gth 

effective GICU.  

8.5.1 Convergence Behavior 

Let e(1,1) = q be the input to the first stage, first effective GICU of the CL-LWGSIC detector. Then by 

following the same approach as in  [117], the vector of decision variables at the pth stage of the gth 

effective group of the linear GSIC detector is expressed as: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

1

, , ,

, 1,      for   1,2,...,

eff

eff

g
T

eff eff eff eff eff eff eff
j

WG

eff eff eff eff
j g

p g g g g g j p j

g g j p j g WG

−

=

= +

= − −

− =

∑

∑

y F S q F R y

F R y
  ( 8-11)

At convergence, we have: ( ) ( ) ( ), 1, ,eff eff effp g p g g= − = ∞y y y , therefore ( 8-11) is equivalent to: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

, , ,

, ,      for   1,2,...,

WG
T

eff eff eff eff eff eff eff
j

eff eff eff eff eff eff

g g g g g j j

g g g g g WG
=

∞ = − ∞

+ ∞ =

∑y F S q F R y

F R y
  ( 8-12)

Subtracting ( ) ( ) ( ), ,eff eff eff eff effg g g g∞F R y from both sides of equation ( 8-12) and left multiplying 

by ( ) 1
effg −F , one obtains: 

( ) ( ) ( )( ) ( ) ( )

( ) ( )

1

1

, ,

, ,     for   1,2,...,

T
eff eff eff eff eff eff eff eff

WG

eff eff
j

g g g g g g

g j j g G

−

=

− ∞ = −

∞ =∑

F I F R y S q

R y
  ( 8-13)

Equation ( 8-13) can be written in matrix form as: 

( ) ( )T
eff eff∞ = − ∞Qy S q R y   ( 8-14)

where 
( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1

1 1

1 1 1,1 , 2 2 2,2 , ,

, , , ,

eff eff

eff eff eff eff eff eff

diag
g g g g GW GW GW GW

− −

− −

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟− −⎝ ⎠

F I F R F I F R
Q

F I F R F I F R
. 

Finally, ( 8-14) can be written as: 

( ) ( ) 1 T
eff eff

−
∞ = +y Q R S q   ( 8-15)

Depending on the choice of ( )effgF , the proposed CL-LWGSIC can converge to either the 

decorrelator or the LMMSE detector, that is: 

• If ( ) ( ) 1,eff eff eff effg g g −=F R for geff = 1,2,…,WG, the CL-LWGSIC converges to the decorrelator 

detector. 

• If ( ) ( ) ( )( ) 12 2, ,eff eff eff eff eff eff effg g g g gσ
−−= +F R A  for geff = 1,2,…,WG, the CL-LWGSIC 

converges to the LMMSE detector. 
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8.5.2 Conditions of Convergence   

Let us first establish the analogy between the proposed scheme and the corresponding iterative method 

used to solve a set of linear equations, which is known as the block Gauss-Seidel iterative method  [80]. 

The matrix effR can be decomposed into three parts: effR = D – L – LT, where D is the block diagonal 

part of effR : ( ) ( ) ( ) ( )( )1,1 , 2,2 , , , , , ,  eff eff eff eff eff effdiag g g GW GW=D R R R R , and L and LT 

are the remaining lower-left and upper-right block triangular parts of effR , respectively. Equation 

( 8-11) can be written in matrix form as: 

( ) ( ) ( )1 T T
effp p p− = + +F y S q Ly L y   ( 8-16)

where ( ) ( ) ( ) ( )( )1 , 2 , , , ,  effdiag g GW=F F F F F . Hence: 

( ) ( ) ( )( )11 1T T
effp p

−−= − − +y F L L y S q   ( 8-17)

Notice that the iteration in ( 8-17) is exactly the block Gauss-Seidel iteration for the inversion of the 

matrix F-1 – L – LT = effR + Q. For the convergence of the proposed scheme, we use Keller’s theorem 

 [81]: 

If we put R = F-1 – L – LT, M = F-1 –L and LT = M – R, we get:  

( )

( )
( )
( )

1

1

1

+

                   = 

                   = 

                   = 

T T

T T

T T T

T

−

−

−

− = + −

− +

− +

M M R M M R

F L L

F L L

F

  ( 8-18)

Therefore, if ( ) 1
effg −F  is positive definite, for all geff, the proposed CL-LWGSIC is convergent if R is 

positive semi-definite. We have R = F-1 – L – LT = Q + effR , thus if Q is semi-definite, then R is also 

semi-definite (since effR is already semi-definite). Unlike the case for the LMMSE-based linear chip-

level SIC structure, it is difficult to obtain a general condition of convergence for any transformation 

matrix F. Fortunately, for the two cases of interest, namely, the CL-LWGSIC detector converging to 

the decorrelator detector and the CL-LWGSIC detector converging to the LMMSE detector, we can 

state the following: 
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• If ( ) ( ) 1,eff eff eff effg g g −=F R (CL-LWGSIC detector converges to the decorrelator detector), then 

( ) 1
effg −F  is positive definite and hence R is semi-definite. 

• If ( ) ( ) ( )( ) 12 2, ,eff eff eff eff eff eff effg g g g gσ
−−= +F R A , (CL-LWGSIC converges to the LMMSE 

detector), then ( ) 1
effg −F  is positive definite and hence R is semi-definite (because effR is positive 

definite and so is ( )2 2 ,eff eff effg gσ −A ). 

8.5.3 Computational Complexity 

In this section, the computational complexity of the proposed CL-LWGSIC detector is evaluated and is 

given by:  

( ) ( ) ( )( ) ( )

( ) ( )( )( )
( ) ( )( )
( ) ( )( ) ( )

1 k 11 1

1 k 1 1

G
3 2

1 k 1 g = 1

G 2

1 1 g = 1

2 1 max max 2 1

max max 1

33 max max 11
2

2 max max

k

k

k

k

G G
k

g g l gK k Kg g

G
k

l gK k K g

k
l g g gK k K

k
l gk K k K

U U WN U
PW

WN U

PG WN W U U U

W WN U

τ τ

τ τ

τ τ

τ τ

≤ ≤ ≤ ≤= =

≤ ≤ ≤ ≤
=

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⎛ ⎞
− + + + − +⎜ ⎟

⎜ ⎟ +
⎜ ⎟

+ + −⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞+ + + + + +⎜ ⎟
⎝ ⎠

+ +

∑ ∑

∑

∑

∑

 
( 8-19)

For the sake of comparison, we compare its complexity to its symbol-level counterpart, that is, the SL-

LGSIC. The computational complexity of the latter is given by: 

( ) ( )( ) ( ) ( )( )( ) ( )

( ) ( )

2 2

1 k 1 1 1

G G G
2 2 3 2

1 1 j = 1 g = 1 g = 1

2 WN+ max max WK+2 max max WK

3PW 2 1 11 PW 1
2

k k

k k
l lK k K k K k K

G G

g g j g g g g g
g g

WN WK

W U U U W U U U U U

τ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

= =

+ + + +

⎛ ⎞− + − + + + + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑
 ( 8-20)

8.6 Simulation Results 

In this section the performance of the proposed structures converging to either the decorrelator detector 

or the LMMSE detector in terms of convergence behavior and computational complexity is evaluated.  

We start by the proposed CL-LWSIC detector. First, the impact of changing the weighting factor 

in the region of convergence (0, 1], on the average BER (over all users) of the proposed scheme is 

depicted in Figure  8.5 . The SNR is set to 8 dB, P = 4, K = 20, N = 31 (Gold codes) and perfect power 

control is assumed. It can be seen that if 1
effkµ =  for all keff= 1, 2, …, WK (CL-LWSIC detector  
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Decorrelator Detector), then the proposed scheme converges to the decorrelator detector; however, if 

( )2 2

1 0.9
1 ,effk

eff eff effk k
µ

σ −=
+ A

 (CL-LWSIC detector  LMMSE Detector) for all keff = 1, 2, …, 

WK, then the proposed scheme converges to the LMMSE detector. Note also that for 1
effkµ >  for all 

keff= 1, 2, …, WK, the proposed scheme diverges which corroborates with our theoretical results 

detailed above. 
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Figure  8.5: Impact of the weighting factor on the average BER of the proposed CL-LWSIC detector. 

 

Second, the convergence behavior of the proposed scheme is evaluated by varying the number of 

CL-LWSIC stages between 1 and 15 and depicted in Figure  8.6. Here the SNR is set to 6 dB, K = 20, N 

= 31 (Gold codes) and perfect power control is assumed. It is clear that both the proposed structure 

converging to the LMMSE detector and the one converging to the Decorrelator detector needs less than 

6 SIC stages to settle around their final average BER levels. Hence, by properly setting the weighting 

factors it is possible to determine the final average BER level for the proposed scheme. 
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Figure  8.6: Convergence behavior of the proposed CL-LWSIC detector, converging to the 

Decorrelator/LMMSE detector. 

 

The CL-LWGSIC detector is evaluated in terms of convergence behavior. We choose the matrix 

F such that the CL-LWGSIC detector converges to the decorrelator (DEC) or the LMMSE detectors, 

that is:  ( ) ( ) 1,eff eff eff effg g g −=F R  (CL-LWGSIC detector  Decorrelator detector) and 

( ) ( ) ( )( ) 12 2, ,eff eff eff eff eff eff effg g g g gσ
−−= +F R A  (CL-LWGSIC detector  LMMSE detector) for geff 

= 1, 2,…,WG, respectively. The parameters used in the simulation are: SNR = 6 dB, K = 20, N = 31 

(Gold codes) and perfect power control is assumed. We divide the users into two groups, 10 users each 

( 1 2 10U U= = ). From Figure  8.7, we notice that the proposed scheme can converge to the LMMSE 

detector within two stages whereas it needs 4 stages to converge to the decorrelator detector. In 

addition, the detection delay for the CL-LWSIC detector converging to the LMMSE detector is now 

PG = 4 rather than PK = 40 for the CL-LWSIC detector. This represents a significant reduction in the 

detection delay time. 
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Figure  8.7: Convergence behavior of the proposed CL-LGWSIC detector, converging to the 

Decorrelator/LMMSE detector. 

 

 

The convergence behavior of the proposed CL-LWSIC/CL-LWGSIC structures for the multi-path 

fading channel are simulated and depicted in Figure  8.8 and 8.9. The simulation parameters are W = 5, 

K = 10, N = 31 (Gold codes), SNR = 6dB, ( ) ( )
1 1
max max

k

k
lk K k K

Nτ τ
≤ ≤ ≤ ≤

+ ≤ and finally a Vehicular A outdoor 

Channel power delay profile for WCDMA is used. The 10 users are partitioned into two equally sized 

groups. 

Simulation results confirm the results obtained for the synchronous CDMA AWGN channel and 

show clearly that the CL-LWSIC/CL-LGWSIC detector can be configured to converge to the either the 

decorrelator or the LMMSE detectors depending on the weighting factor/matrix. 
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Figure  8.8: Convergence behavior of the proposed CL-LWSIC detector, converging to the 

Decorrelator/LMMSE detector. 
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Figure  8.9: Convergence behavior of the proposed CL-LGWSIC detector, converging to the 

Decorrelator/LMMSE detector. 

 



 Chapter 8  LMMSE-based Chip-level Linear SIC/GSIC Multiuser Detectors 

 183

In the following, the computational complexity of the proposed CL-LWSIC detector is 

compared to its symbol-level counterpart (SL-LSIC). Two cases are considered; in case (a), the number 

of stages needed for the CL-LWSIC/SL-LSIC to converge to the decorrelator/LMMSE detectors is 

assumed to be P = (WK)/2 whereas for case (b), the number of stages needed for the CL-LWSIC/SL-

LSIC to converge to the decorrelator/LMMSE detectors is assumed to be P = (WK)/4. 

It is apparent from Figure  8.10 that for P ≤ (WK)/2 the computational complexity of the CL-

LWSIC detector is less than that of SL-LSIC detector. This condition is satisfied in most practical 

cases, e.g., for Figure  8.6 and 8.7 and for K = 20 users, less than 4 stages are needed to achieve 

convergence.   
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Figure  8.10: Computational complexity of the proposed CL-LWSIC structure versus that of the SL-

LSIC structure. 

 

In Figure  8.11, the computational complexity of the proposed CL-LWGSIC and that of SL-

LGSIC structures is plotted versus the number of users K. It is clear that the computational complexity 

of the proposed structure is inferior to that of its symbol-level counterpart for both cases (a) and (b).  

This represents a significant reduction in computational complexity.     
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Figure  8.11: Computational complexity of the proposed CL-LWGSIC structure versus that of the SL-

LGSIC structure. 

 

8.7 Conclusion 

In this chapter, we introduced two new chip-level structures that can converge to either the decorrelator 

or the LMMSE detector. The structures make use of a weighting factor/weighting matrix to determine 

to which average BER level the proposed structure converges to. Both convergence analysis and 

simulation results indicate that the proposed detectors converging to the decorrelator/LMMSE 

detectors are always convergent. Moreover, computational complexity analysis and simulation results 

shows important reduction in computational complexity compared to their symbol-level counterparts. 
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9.2 Introduction 

The symbol-level linear SIC detector equivalent to the SOR iterative method was implemented in  [84], 

however, symbol-level multiuser detectors are not suitable for long-code CDMA systems because they 

require the recomputation of the cross-correlation matrix every symbol interval. Therefore, a chip-level 

linear SIC detector that uses directly the spreading codes and avoids the recomputation of the cross-

correlation matrix is necessary. 

First, a new chip-level linear SIC multi-user detection scheme that is equivalent to the SOR 

iterative (we call it chip-level linear SOR-SIC for simplicity) method is introduced. Second, the 

detection delay of this structure is reduced by introducing a new chip-level linear GSIC multiuser 

detector that is equivalent to the BSOR iterative method (we call it chip-level linear BSOR-GSIC for 

simplicity). Third, we show that a reduced-complexity chip-level linear SOR-SIC can be obtained by 

introducing a weighting factor within the linear SIC structure proposed in  [121]. Fourth, and as for the 

chip-level linear BSOR-GSIC, a reduced-complexity chip-level linear BSOR-GSIC is introduced to 

reduce the detection delay of the reduced-complexity chip-level linear SOR-SIC structure. The 

proposed structure is obtained by proving that the scheme proposed in  [124] is in fact equivalent to the 

block Gauss-Seidel iterative method if the group detection scheme is the decorrelator detector. Then, 

by inserting a weighting factor within the structure, we show that the resultant scheme is equivalent to 

the BSOR iterative method, which is well known to outperform the conventional block Gauss-Seidel 

method by an order of magnitude in terms of convergence speed.  

Finally, and for all schemes converging to the decorrelator detector developed earlier, we use a 

matrix algebraic approach to describe the chip-level linear SOR-SIC/BSOR-GSIC schemes as linear 

matrix filtering. We derive closed-form expressions for the residual signal vector and the vector of the 

decision variables. This allows obtaining an analytical expression for both the BER and the AME. We 

show as well, using two different approaches that the scheme converges if the weighting factor (known 

also as relaxation factor) is between 0 and 2.  

9.3 Chip-Level Linear Successive Over-Relaxation SIC (CL-LSOR-SIC) Structure 

The CL-LSOR-SIC detector consists of ICU arranged in a multistage structure as illustrated in Figure 

 7.8. The basic interference cancellation unit is shown in Figure  9.1. The combined signal 
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( ) ( )( ), 1,eff effp k p kω + −e I  at the input of the pth stage, kth effective user ICU is first despreaded to 

estimate the decision variable ( ), effy p k , that is, ( ) ( ) ( ) ( )( ), , 1,T
eff eff eff eff effy p k k p k p kω= + −s e I . 

The MAI ( ), effp kI  is obtained by spreading the decision variable ( ), effy p k , that is: 

( ) ( ) ( ), ,eff eff eff effp k k y p k=I s , the sum of the latter and the weighted residual signal 

( ) ( )1 , effp kω− e  is subtracted from the combined signal ( ) ( )( ), 1,eff effp k p kω + −e I  to get a cleaner 

version of the residual signal ( ), 1effp k +e  for the next ICU. This process is repeated in a multistage 

structure as it is shown in Figure  7.8. 

 

 

Figure  9.1: Basic interference cancellation unit (ICU). 

 

9.3.1 Matrix Algebraic Approach to the CL-LSOR-SIC Detector 

The residual signal at the input of the first ICU at the first stage is defined as ( )1,1 =e q  and the 

corresponding decision variable is given by ( ) ( ) ( ) ( )( ) ( )1,1 1 1,1 0,1 1T T
eff effy ω ω= + =s e I s q . Moving 

to the input of the second ICU at the first stage, the received signal vector is obtained by estimating the 

MAI due to the first user and then subtracting it from the received signal that is 

( ) ( ) ( ) ( ) ( ) ( )( )1,2 1,1 0,1 1,1 1 1 T
eff effω= + − = −e e I I I s s q . The corresponding decision variable is 

expressed as ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1,2 2 1,2 0,2 2 2 2T T T
eff eff eff effy ω ω ω= + = −s e I s I s s q . Proceeding in 



 Chapter 9  Chip-level Linear SOR-SIC and BSOR-GSIC Multiuser Detectors  

 188

the same way, we can express the residual signal at the output of the kth effective ICU unit at the first 

stage as: ( ) ( ) ( )( )
1

1
1

1,
eff

eff

T
eff eff eff k

j k

k j jω −
= −

= − =e I s s q Φ q , where indicates product of 

matrices with decreasing indices, and the corresponding decision variable is given by: 

( ) ( ) ( ) ( ) 11, 1,
eff

T T
eff eff ff eff eff ff ky k k k kω ω −= =s e s Φ q . 

The residual signal at the output of the last CL-LSOR-SIC unit at the first stage is: 

( ) ( ) ( )( )
1

1, 1 T
eff eff WK

j WK

WK j jω
=

+ = − =e I s s q Φ q . This residual signal will be directed to the input 

of the first ICU unit at the second stage, therefore, ( ) ( )2,1 1, 1 WKWK= + =e e Φ q . Taking in 

consideration that ( ) ( ) 1T
eff eff eff effk k =s s , the corresponding decision variable is expressed as: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1

2,1 1 2,1 1,1

           1 2,1 1 1 1,1

           1 1

           1

T
eff

T T
eff eff eff

T T
eff WK eff

T
eff WK

y

y

ω

ω

ω ω

ω

=

= +

= +

= +

= +

s e I

s e s s

s Φ q s q

s Φ I q

 

For the second ICU unit we have: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( )

1

2,2 2,1 1,1 2,1

          2,1 1,1 1 1 2,1 1,1

          2,1 1 1,1 1 1 2,1 1 1 1 1,1

          1 1 2,1

          1 1

T
eff eff

T T
eff eff eff eff eff eff

T
eff eff

T
eff eff WK

y y

ω

ω

ω

ω

=

= + −

= + − +

= + − −

= − −

= − −

e e I I

e I s s e I

e s s s e s s s

I s s e

I s s Φ q

 

and: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )( )

1

2,2 2 2,2 1,2

           2 2,2 2 2 1,2

           2 1 1 2 1 1

           2 1 1

T
eff

T T
eff eff eff

T T T T
eff eff eff WK eff eff eff

T T
eff eff eff WK

y

y

ω

ω

ω ω ω ω

ω ω

=

= +

= +

= − + −

= − +

s e I

s e s s

s I s s Φ q s I s s q

s I s s Φ I q
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Following the same procedure, we can obtain the general expression for the residual signal 

vector and the decision variable of the kth effective ICU unit at the pth stage, respectively, as: 

( ) 1
1,

ff

p
eff k WKp k −

−=e Φ (Φ ) q  ( 9-1)

and: 

( ) ( )
1

1 ,
0

,
eff eff

p
T i T

eff eff eff k WK p k
i

y p k kω
−

−
=

= =∑s Φ (Φ ) q g q  ( 9-2)

where: ( ) ( )( )
1

eff

eff

T
k eff eff

j k

j jω
=

= −Φ I s s . Collecting the decision variables of all users in one matrix 

we get: 

( ) T
pp =y G q  ( 9-3)

where: ,1 ,2 , ,effp p p p k p WK⎡ ⎤= ⎣ ⎦G g g g g  . Hence, the CL-LSOR-SIC detector can be 

described as linear matrix filtering of the received chip-matched signal vector. Using the same 

approach as for the matched filter detector, the BER of the kth effective user at the pth stage can be 

expressed as: 

( )
( )

,
,

all , ,1

eff

eff

eff eff
eff

T
p k eff eff

p k WK 1 T
p k p kk

1P Q
2

σ
σ

−

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
b

b

g S A b

g g
 ( 9-4)

where Q(.) is the Q-function. As for the BER, the asymptotic multiuser efficiency for the kth effective 

user at the pth stage is given by: 

( ) ( )
( ) ( )2

, , ,
1, ,

,
max 0,

,eff eff eff

eff eff
eff

WK
effT T

p k p k eff eff p k effT
jp k p k eff eff eff
j k

A j j1 k j
A k k

η
=
≠

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑g s g s
g g

 ( 9-5)

9.3.2 Convergence Analysis 

Let ( )1,1 =e q be the input signal to the CL-LSOR-SIC scheme. At the pth stage, the decision variable 

of the kth effective user of the CL-LSOR-SIC detector is derived as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1
, ,

1, 1, ,     for   1,2,..., .

eff

eff

k
T T

eff eff eff eff eff eff
j

WK
T

eff eff eff eff eff
j k

y p k k k j y p j

k j y p j y p k k WK

ω ω

ω

−

=

=

= − −

− + − =

∑

∑

s q s s

s s
  ( 9-6)
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At convergence, we have: ( ) ( ) ( ), 1, ,eff eff effy p k y p k y k= − = ∞  therefore ( 9-6) is equivalent to: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1
, ,

, , ,         1,2,..., .

eff

eff

k
T T

eff eff eff eff eff eff
j

WK
T

eff eff eff eff
j k

y k k k j y j

s k s j y j y j for k WK

ω ω

ω

−

=

=

∞ = − ∞ −

∞ + ∞ =

∑

∑

s q s s
  ( 9-7)

Equation ( 9-7) is equivalent to: 

( ) ( ) ( ) ( )
1

, ,         1,2,..., .
WK

T T
eff eff eff eff eff eff

j

s k s j y j k for k WKω ω
=

∞ = =∑ s q   ( 9-8)

Equation ( 9-8) could be written in matrix form as: 

( )T T
eff eff eff∞ =S S y S q   ( 9-9)

Finally, ( 9-9) could be written as: 

( ) 1 T
eff eff
−∞ =y R S q   ( 9-10)

Hence, if the proposed scheme converges it converges to the decorrelator detector.   

9.3.3 Conditions of Convergence   

For the conditions of convergence of the proposed scheme we propose two different approaches that 

lead to the same result. 

9.3.3.1 First Approach 

This beauty of this approach is that it allows the identification of the proposed scheme as the SOR 

method. This permits the straightforward determination of the condition of convergence using the rich 

theory of the SOR iterative method.  

Let’s first establish the analogy between the proposed scheme and the corresponding iterative 

method used to solve a set of linear equations which is known basically as the SOR method. The 

matrix effR  could be decomposed into three parts, that is: H
eff = − −R I L L , where the identity matrix 

I is the diagonal part of effR , and L and U are the remaining lower-left and upper-right parts of effR , 

respectively. After some manipulations, equation ( 9-6) could be written in matrix form as: 

( ) ( ) ( ) ( )( ) ( )1 1 1 1T
effp pω ω ω ω ω− −= − + − − + −y I L S q I L I U y   ( 9-11)

which is exactly the SOR iteration. Note that if ω = 1, the iteration in ( 9-11) reduces to the Gauss-

Seidel iteration. For the convergence of ( 9-11), we use Kahan’s theorem  [135]: 
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Theorem  9-1 

A necessary condition for the SOR method to converge is |ω – 1| < 1. 

Thus, for ω real, the iteration in ( 9-11) converges if ( )0,2ω∈ . Nevertheless, one should set ω within 

the interval (1,2) which corresponds to over-relaxation (acceleration) since the interval (0, 1) 

corresponds to under-relaxation (deceleration) and it is basically used to ensure convergence of the 

Gauss-seidel iteration if it is not convergent. The calculation of the optimum value of ω for which the 

convergence is maximum, depends on the maximum eigenvalue of the iteration matrix 

( ) ( )( )1 1ω ω ω−− − +I L I U , which is complex to compute. However, one can get a cheap estimate of 

the optimum value of ω based on an upper bound on the maximum eigenvalue of the iteration matrix 

as in  [84] and it is given by equation ( 7-2). 

9.3.3.2 Second Approach 

This approach was used in  [121] to prove that the linear SIC detector is always convergent. Here, we 

adopt this approach to determine the condition of convergence for the CL-LSOR-SIC detector. We 

show that the condition obtained here is the same as that of the SOR iterative method. From Figure  9.1, 

we have: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

, , 1,

                , 1,

                , 1, .

T
eff eff eff eff eff

T T
eff eff eff eff eff eff eff eff

T
eff eff eff eff

y p k k p k p k

k p k k k y p k

k p k y p k

α

ω

ω
=

= + −

= + −

= + −

s e I

s e s s

s e

 ( 9-12)

For convergence we have: 

( ) ( )( ) ( ) ( )( )lim , 1, lim , 0T
eff eff eff eff effp p

y p k y p k k p kω
→∞ →∞

− − = =s e  ( 9-13)

However, we can write ( ), effp ke as: 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

1

1 2 1 1

, , 1 1 1 , 1

               , 1

               1,

               1,

eff

eff eff eff eff

eff

T
eff eff eff eff eff eff eff

k eff

k k WK k k eff

k eff

p k p k k k p k

p k

p k

p k

ω

−

− − +

= − − − − −

= −

= −

= −

e e s s e

B e

B B B B B B e

Ω e

 ( 9-14) 

where ( ) ( )( )eff

T
k eff eff eff effk kω= −B I s s . Therefore, equation ( 9-14) is equivalent to: 
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( ) ( )( ) ( ) ( )( )1
lim , lim 1, lim 1,

eff eff

p

eff k eff k effp p p
p k p k k

−

→∞ →∞ →∞
= − = =e Ω e Ω e 0  ( 9-15)

Therefore the CL-LSOR-SIC converges if: 

( )max 1
effkλ <Ω  ( 9-16)

Since for square matrices X and Y with the same dimensions, the matrices XY and YX have the same 

eigenvalues, all the , 1
effk effk WK≤ ≤Ω have the same eigenvalues. Thus we consider the case where 

keff = WK. 

Consequently, the CL-LSOR-SIC converges if: 

( )max 1WKλ <Ω  ( 9-17)

In the following, we consider the following lemma  [124]: 

Lemma  9-1 

( ) ( )max max
1

eff

eff

WK

WK k
k

λ λ
=

≤ ∏Ω B  

Thus, if ( )max , 1k k Kλ ≤ ≤B is less than one, then the condition in equation ( 9-17) is satisfied and 

the CL-LSOR-SIC is guaranteed to converge. We have:  

( )( )max1
max 1

eff
eff

kk WK
λ

≤ ≤
<B   

thus 

( ) ( )( )( )max1
max 1

eff

T
eff eff eff effk WK

k kλ ω
≤ ≤

− <I s s  

Consequently 

( ) ( )( )( )max1
max 1 1

eff

T
eff eff eff effk WK

k kωλ
≤ ≤

− <s s  

 but since ( ) ( )( ) ( ) ( )( ) 1T T
eff eff eff eff eff eff eff effk k k kλ λ= =s s s s  for 1 ≤ keff ≤ WK, we get |1- ω| < 1  

and hence  0 < ω < 2, which is the same condition as for the SOR iterative method. 

9.3.4 Computational Complexity 

The number of floating point operations (flops) per processing window required by the proposed CL-

LSOR-SIC detector is: 
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( ) ( )( ) ( ) ( )( )1 1 1 1
8 max max 2 max max

k k

k k
l lk K k K k K k K

WKP WN WK WNτ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + +  ( 9-18)

while the SL-LSOR-SIC detector proposed in  [84] requires: 

( ) ( )( ) ( ) ( )( )( )

( )

2

1 1 1 1
2 max max 2 max max

3 4  
k k

k k
l lk K k K k K k K

WN WK WN WK

WK WKP

τ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + +

+ +
 ( 9-19)

and the decorrelator detectors requires at least (lower bound)  [78]: 

( ) ( ) ( ) ( )( )( )

( ) ( )( )

3 2 2

1 1

1 1

311 2 max max
2

2 max max

k

k

k
lk K k K

k
lk K k K

KW KW KW WN WK

WN WK

τ τ

τ τ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

+ + + + +

+ + +
  ( 9-20)

9.4 Chip-Level Linear Block Successive Over-Relaxation Group-Wise SIC (CL-
LBSOR-GSIC) Structure 

The proposed CL-LBSOR-GSIC detector consists of group interference cancellation units (GICU) 

arranged in a multistage structure of P stages as illustrated in Figure  8.3. The basic linear GICU is 

shown in Figure  9.2.  In the ensuing, the following notations are used:  ( ), effp ge  is the residual signal 

of the pth stage, gth group of users GICU, ( ), effp gI  is the MAI due the pth stage, gth group GICU and 

finally ( ), effp gy  is the vector of decision variables of the pth stage, gth group GICU.  

The combined signal ( ) ( )( ), 1,eff effp g p gω + −e I  at the input of the ph stage, gth group GICU is 

first despreaded to estimate the vector of decision variables ( ), effp gy , that is, 

( ) ( ) ( ) ( ) ( )( )1, , , 1,T
eff eff eff eff eff eff eff effp g g g g p g p gω−= + −y R S e I . The MAI ( ), effp gI  is 

obtained by spreading the vector of decision variables ( ), effp gy , that is: 

( ) ( ) ( ), ,eff eff eff effp g g p g=I S y , the sum of the latter and the weighted residual signal 

( ) ( )1 , effp gω− e  is subtracted from the combined signal ( ) ( )( ), 1,eff effp g p gω + −e I  to get a 

cleaned version of the residual signal ( ), 1effp g +e  for the next group of users, that is g+1.  

This process is repeated in a multistage structure as it is shown in Figure  8.3; more insight is 

given in the next section where a matrix-algebraic approach is used to describe the CL-LBSOR-GSIC 

detector. 
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Figure  9.2: Basic group interference cancellation unit (GICU) 

 

9.4.1 Matrix Algebraic Approach to the Chip-Level Linear BSOR-GSIC Detector 

Following the same procedure used for the CL-LBSOR-GSIC detector, we can obtain the general 

expression for the residual signal vector of the gth effective GICU at the pth stage as: 

( ) ( ) 1
1,

eff

p
eff g WG bp g −

−=e Φ Φ q  ( 9-21)

and similarly, the vector of decision variables of the gth effective GICU at the pth stage can be 

expressed as: 

( ) ( ) ( ) ( )
1

1
1 ,

0
, ,

eff eff

p
T i T

eff eff eff eff eff eff g WG p g
i

p g g g gω
−

−
−

=

= =∑y R S Φ Φ q G q  ( 9-22)

where: ( ) ( ) ( )( )
1

1,
eff

eff

T
g eff eff eff

j g

j j j jω −

=

= −Φ I S R S . 

Collecting the decision variables of all groups in one matrix we get: 

( ) T
pp =y G q  . 

where 

,1 ,2 , ,effp p p p g p WG⎡ ⎤= ⎣ ⎦G G G G G . 

and 

, , ,1 , ,2 , , , ,eff eff eff eff g eff geff effp g p g p g p g u p g U
⎡ ⎤= ⎣ ⎦G g g g g . 
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The matrix Gp can also be written as: ,1 ,2 , ,effp p p p k p WK⎡ ⎤= ⎣ ⎦G g g g g . Therefore the CL-

LBSOR-GSIC structure can be described as matrix filtering of the received chip-matched signal vector. 

Using the same method as for the matched filter detector, the BER of the kth effective user at the pth 

stage can be evaluated as: 

( )
( )

,
, 1

all , ,1

1
2

eff

eff

eff eff
eff

T
p k eff eff

p k WK T
p k p kk

P Qσ
σ

−

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
b

b

g S A b

g g
 ( 9-23)

where Q(.) is the Q-function. The asymptotic multiuser efficiency for the kth effective user of the gth 

effective group at the pth stage is given by: 

( ) ( ) ( )
( ) ( )2

, ,
1, ,

,
, max 0,

,eff eff

eff eff
eff

WK
effT T

eff p k eff eff p k effT
jp k p k eff eff eff
j k

A j j1p k k j
A k k

η
=
≠

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑g s g s
g g

 ( 9-24)

9.4.2 Convergence Analysis 

Let e(1,1) = q, at the pth stage. The vector of decision variables of the gth effective group of users of the 

CL-LBSOR-GSIC detector is derived as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1

1 1
1

1

, , ,

, , 1,

1, ,     for   1,2,..., .

eff

eff

T T
eff eff eff eff eff eff eff eff eff eff eff

g WG
T

eff eff eff eff eff eff eff
j j g

eff eff

p g g g g g g g

j p j g g g j p j

p g g WG

ω ω

ω

− −

− −
−

= =

= −

− −

+ − =

∑ ∑

y R S q R S

S y R S S y

y

  ( 9-25)

At convergence we have: ( ) ( ) ( ), 1, ,eff eff effp g p g g= − = ∞y y y  therefore ( 9-25) is equivalent to: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1

1 1
1

1

, , ,

, , ,

, ,     for   1,2,..., .

eff

eff

T T
eff eff eff eff eff eff eff eff eff eff eff

g WG
T

eff eff eff eff eff eff eff
j j g

eff eff

g g g g g g g

j j g g g j j

g g WG

ω ω

ω

− −

− −
−

= =

∞ = −

∞ − ∞

+ ∞ =

∑ ∑

y R S q R S

S y R S S y

y

  ( 9-26)

Equation ( 9-26) is equivalent to: 

( ) ( ) ( ) ( ) ( ) ( )
1

1 1

1
, , ,  

 for   1,2,..., .

WG
T T

eff eff eff eff eff eff eff eff eff eff eff
j

eff

g g g j j g g g

g WG

ω ω
−

− −

=

∞ =

=

∑R S S y R S q
  ( 9-27)

Since ( ),eff eff effg gR  is nonsingular, equation ( 9-27) could be written in matrix form as: 
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( )T T
eff eff eff∞ =S S y S q   ( 9-28)

Finally, ( 9-28) could be written as: 

( ) 1 T
eff eff
−∞ =y R S q   ( 9-29)

The expression above looks exactly like that of the decorrelator detector, therefore, if the proposed 

scheme converges, it converges to the decorrelator detector.  

9.4.3 Conditions of Convergence   

For the conditions of convergence of the proposed scheme, we propose two different approaches that 

lead to the same result. These two approaches are detailed in the ensuing analysis. 

9.4.3.1 First Approach 

This approach allows the identification of the proposed scheme as the BSOR iterative method; this 

facilitates the determination of the condition of convergence. Let’s first establish the equivalence 

between the proposed scheme and the corresponding iterative method used to solve a set of linear 

equations which is known as the BSOR method. 

The matrix effR could be decomposed into three parts, that is, T
eff = − −R D L L where D is the 

block diagonal part of the matrix effR , that is: 

( ) ( ) ( ) ( )( )1,1 , 2,2 , , , , , ,eff eff eff eff eff effdiag g g WG WG=D R R R R , and L and LT are the remaining 

lower-left and upper-right block triangular parts of effR , respectively. After some manipulations, 

equation ( 9-25) could be written in matrix form as: 

( ) ( ) ( ) ( )( ) ( )1 1 1 1  T
effp pω ω ω ω ω− −= − + − − + −y D L S q D L D U y   ( 9-30)

which is exactly the BSOR iteration. Note that if ω = 1 (this is the case for the scheme proposed in 

 [124] where the group detection scheme is the decorrelator detector), the iteration in ( 9-30) reduces to 

the block Gauss-Seidel iteration. For the convergence of ( 9-30), we use the following corollary  [80]: 

Corollary  9-1 

Let R be an K-by-K hermitian matrix and R = D – L – LH, where D is block diagonal matrix, and L 

and LT are the remaining lower-left and upper-right block triangular parts of R. If D is positive 

definite, then the block successive over-relaxation method is convergent for all y(0) if and only if 0 < ω 

< 2 and R is positive definite. 
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Thus, for ω real, the iteration in ( 9-30) converges if ( )0,2ω∈ . Nevertheless, one should set ω within 

the interval (1, 2) which corresponds to over-relaxation (acceleration) since the interval (0, 1) 

corresponds to under-relaxation (deceleration) and it is basically used to ensure convergence of the 

block Gauss-seidel iteration if it is not convergent. The calculation of the optimum value of ω for 

which the convergence is maximum, depends on the maximum eigenvalue of the iteration matrix 

( ) ( )( )1 1 Tω ω ω−− − +D L D L , which is complex to compute. However, one can get a cheap fairly-

accurate estimate of the optimum value of ω based on some upper bound on the maximum eigenvalue 

of the iteration matrix as in  [84] and it is given by equation ( 7-2). 

9.4.3.2 Second Approach 

Here, the approach used in  [124] is adopted to determine the condition of convergence for the proposed 

scheme. As it can be seen from Figure  9.2, we have: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

1

, , , 1,

               , ,

                 , 1,

               

T
eff eff eff eff eff eff eff eff

T
eff eff eff eff eff eff

T
eff eff eff eff eff eff eff eff

eff ef

p g g g g p g p g

g g g p g

g g g g p g

g

ω

ω

ω

−

−

−

=

= + −

=

+ −

=

I

y R S e I

R S e

R S S y

R ( ) ( ) ( ) ( )1, , 1,T
f eff eff eff eff effg g p g p g− + −S e y

 ( 9-31)

At convergence, we have: 

( ) ( )( ) ( ) ( ) ( )( )1lim , 1, lim , ,

                                                 

T
eff eff eff eff eff eff eff effp p

p g p g g g g p g−

→∞ →∞
− − =

=

y y R S e

0
 ( 9-32)

However, we can write ( ), effp ge as: 

( ) ( ) ( ) ( )
( ) ( )
( )

( ) ( )

1

1

1 2 1 1

, , 1 1 1, 1

                    1 , 1

               , 1

               1,

               

eff

eff eff eff eff

eff

eff eff eff eff eff eff eff

T
eff eff eff

g eff

g g WG g g eff

g

p g p g g g g

g p g

p g

p g

ω −

−

− − +

= − − − − −

− −

= −

= −

=

e e S R

S e

B e

B B B B B B e

Ω e( )1, effp g−

 ( 9-33)

where ( ) ( ) ( )( )1,
eff

T
g eff eff eff eff eff eff effg g g gω −= −B I S R S . Therefore, equation ( 9-32) is equivalent 

to: 
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( ) ( )( ) ( ) ( )( )1
lim , lim 1, lim 1,

eff eff

p

eff g eff g effp p p
p g p g g

−

→∞ →∞ →∞
= − = =e Ω e Ω e 0  ( 9-34)

Therefore the CL-LBSOR-GSIC converges if: 

( )max 1
effgλ <Ω  ( 9-35)

Since for square matrices X and Y with the same dimensions, the matrices XY and YX have the same 

eigenvalues, then all the ' , 1
effg effs g WG≤ ≤Ω  have the same eigenvalues. Thus we consider the case 

where geff = WG. Consequently, the CL-LBSOR-GSIC converges if: 

( )max 1WGλ <Ω  ( 9-36)

In the ensuing, we state the following lemma  [124]: 

Lemma  9-2 

( )max max
1

( )
eff

eff

WG

WG g
g

λ λ
=

≤ ∏Ω B  

Thus, if ( )max , 1 ,
effg effg WGλ ≤ ≤B is less than one, then the condition in equation ( 9-36) is satisfied 

and the CL-LBSOR-GSIC detector is guaranteed to converge. That is: 

( )( )max1
max 1

eff
eff

gg WG
λ

≤ ≤
<B  

 thus: 

 ( ) ( ) ( )( )( )1
max1

max , 1
eff

T
eff eff eff eff eff eff effg WG

g g g gλ ω −

≤ ≤
− <I S R S  

consequently: ( ) ( ) ( )( )( )1
max1

max 1 , 1
eff

T
eff eff eff eff eff eff effg WG

g g g gωλ −

≤ ≤
− <S R S . 

Hence: 

 
( ) ( ) ( )( )1

max

20
, T

eff eff eff eff eff eff effg g g g
ω

λ −
< <

S R S
. Since ( ) ( ) ( )1, T

eff eff eff eff eff eff effg g g g−S R S  is 

a projection matrix then ( ) ( ) ( )( )1
max , 1T

eff eff eff eff eff eff effg g g gλ − =S R S  and consequently 0 < ω < 2, 

which is identical to that of the BSOR method. 
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9.4.4 Computational Complexity 

In this section, the computational complexity of the proposed scheme is addressed. First, the 

computational complexity of the proposed detector requires:  

( ) ( ) ( )( ) ( )

( ) ( )( )( )
( ) ( )( )
( ) ( )( ) ( )

1 k 11 1

1 k 1 1

G
3 2

1 k 1 g = 1

G 2

1 1 g = 1

2 1 max max 2 1

2 max max 1

36 max max 11
2
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g g l gK k Kg g
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l gK k K g
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l g g gK k K
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PW

WN U
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W WN U

τ τ

τ τ

τ τ
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≤ ≤ ≤ ≤= =
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⎝ ⎠

⎛ ⎞+ + + + + +⎜ ⎟
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+ +

∑ ∑

∑

∑

∑
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Second, the computational complexity of the SL-LBSOR-GSIC detector is:  

( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )

2

1 1 1 1

G G
2 2 2

g = 1 1 j = 1 1

G G
3 2 2

g = 1 g = 1
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2 PW 2 1 PW 2 1
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∑ ∑
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Finally the decorrelator detector needs at least (lower bound)  [78]:  

( ) ( ) ( ) ( )( )( )

( ) ( )( )

3 2 2

1 1

1 1

311 2 max max
2

2 max max

k

k

k
lk K k K

k
lk K k K

KW KW KW WN WK

WN WK

τ τ

τ τ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

+ + + + +

+ + +
  ( 9-39)

9.5 Reduced-Complexity Chip-Level Linear Successive Over-Relaxation (RC-
CL-LSOR-SIC) Structure 

The RC-CL-LSOR-SIC detector consists of interference cancellation units (ICU) arranged in a 

multistage structure of P stages as illustrated in Figure  7.10. The basic linear ICU is shown in Figure 

 9.3. The partial decision variable of the kth effective user at the pth-stage ( )' , effy p k is obtained by 

dispreading the residual signal ( ), effp ke  and multiplying it with the relaxation factor ω that is, 

( ) ( ) ( )' , ,T
eff eff eff effy p k k p kω= s e . The decision variable ( ), effy p k  is obtained by adding the 

partial decision variable ( )' , effy p k to the decision variable of the previous stage ( )1, effy p k− , that 
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is, ( ) ( ) ( ), ' , 1,eff eff effy p k y p k y p k= + − . The residual signal for the next ICU is obtained by 

spreading the partial decision variable and subtracting it from the residual signal, that is, 

( ) ( ) ( ) ( ), 1 , ' ,eff eff eff eff effp k p k k y p k+ = −e e s .  This process is repeated in a multistage structure as 

it is shown in Figure  7.10.  

 

 

Figure  9.3: pth stage, kth effective user RC-CL-LSOR-SIC’s ICU. 

 

Following the same procedure as in  [121], we can obtain similar expressions to those of ( 9-1) and ( 9-2) 

for the residual signal vector and the decision variable of the kth effective user’s ICU unit at the pth 

stage, respectively. 

Hence, the RC-CL-LSOR-SIC detector can be described as matrix filtering of the received chip-

matched signal vector. Using the same method as for the CL-LSOR-SIC detector, one can obtain the 

same BER and AME expressions as those in ( 9-4) and ( 9-5), respectively.  

9.5.1 Convergence Behavior and Conditions of Convergence 

Following the same procedure as in Section  9.3.2 and  9.3.3, it is easy to show that if the structure 

converges it converges to the decorrelator detector. Moreover, the structure converges to the 

decorrelator detector if ( )0,2ω∈ . 

9.5.2 Computational Complexity 

The number of flops required by the proposed RC-CL-LSOR-SIC detector is: 
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( ) ( )( )( ) ( ) ( )( )1 1 1 1
4 max max 2 2 max max

k k

k k
l lk K k K k K k K

WKP WN WK WNτ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + + +  ( 9-40)

while the SL-LSOR-SIC detector proposed in   [84] requires: 

( ) ( )( ) ( ) ( )( )( )

( )

2

1 1 1 1
2 max max 2 max max

3 4  
k k

k k
l lk K k K k K k K

WN WK WN WK

WK WKP

τ τ τ τ
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

+ + + + +

+ +
 ( 9-41)

and the decorrelator detectors requires at least (lower bound)  [78]: 

( ) ( ) ( ) ( )( )( )

( ) ( )( )

3 2 2

1 1

1 1

311 2 max max
2

2 max max

k

k

k
lk K k K

k
lk K k K

KW KW KW WN WK

WN WK

τ τ

τ τ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

+ + + + +

+ + +
  ( 9-42)

These expressions are plotted and compared in Section  9.7.  

9.6 Reduced-Complexity Chip-Level Linear Block Successive Over-Relaxation 
Group-Wise SIC (RC-CL-LBSOR-GSIC) Structure 

The proposed RC-CL-LBSOR-GSIC detector consists of group interference cancellation units (GICU) 

arranged in a multistage structure of P stages as illustrated in Figure  7.12. The basic linear GICU is 

shown in Figure  9.4. The residual signal ( ), effp ge  at the input of the pth-stage, gth effective group 

GICU is first despreaded, multiplied by a transformation matrix ( ) 1,eff effg g −R and then by a 

relaxation factor ω to estimate the vector of the partial decision variables ( )' , effp gy of users of the gth 

effective group at the pth-stage that is ( ) ( ) ( ) ( )1' , , ,T
eff eff eff eff eff effp g g g g p gω −=y R S e . The vector 

of the decision variables of the users of the gth effective group at the pth-stage is obtained by summing 

up the vector of decision variables of the previous stage ( )1, effp g−y and the vector of partial decision 

variables of the current stage ( )' , effp gy , that is, ( ) ( ) ( ), ' , 1,eff eff effp g p g p g= + −y y y . 

The residual signal for the next GICU is obtained by spreading the vector of the partial decision 

variables ( )' , effp gy and subtracting it from the residual signal of the current GICU ( ), effp ge , that is, 

( ) ( ) ( ) ( ), 1 , ' ,eff eff eff eff effp g p g g p g+ = −e e S y . 

Following the same procedure as in Section  9.4.1, we can obtain similar expressions to those of 

( 9-21) and ( 9-22) for the residual signal vector and the vector of decision variables of the gth effective 

group’s ICU unit at the pth stage, respectively. 
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Hence, the RC-CL-LBSOR-GSIC can be described as matrix filtering of the received chip-matched 

signal vector. Using the same approach as for the CL-LBSOR-GSIC detector, one can obtain the same 

BER and AME expressions as those in ( 9-23) and ( 9-24), respectively. 

 

( )Teff effgS

( )eff effgS

( ) 1,eff eff effg g −R

 

Figure  9.4: pth stage, gth effective group RC-CL-LBSOR-GSIC’s GICU  

  

9.6.1 Convergence Analysis and Conditions of Convergence 

Following the same procedure as in Section  9.4.2 and  9.4.3, it is easy to show that if the structure 

converges it converges to the decorrelator detector. Moreover, the structure converges to the 

decorrelator detector if ( )0,2ω∈ . 

9.6.2 Computational Complexity 

The computational complexity of the proposed detector requires:  
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where the computational complexity of the SL-LBSOR-GSIC detector is: 
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Finally, the decorrelator detector needs at least (lower bound)  [78]: 

( ) ( ) ( ) ( )( )( )
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  ( 9-45)

These expressions are plotted and compared in Section  9.7.  

9.7 Simulation Results 

In this section, we simulate the proposed schemes in two different scenarios; in the first one a 

synchronous CDMA AWGN channel is considered while in the second one an asynchronous CDMA 

multi-path fading channel is considered. The average BER (average of all users) is evaluated versus the 

value of the relaxation factor and depicted in Figure  9.5.  
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Figure  9.5: Average BER performance versus the relaxation factor of the proposed CL-LSOR-SIC 

detector for the case of a synchronous CDMA AWGN channel. 
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The aim of doing so is first to confirm that the CL-LSOR-SIC and CL-LBSOR-GSIC detectors 

converges if the relaxation factor is within the interval (0,2) as predicted by theory and second to verify 

that the minimum average BER is within the interval [1,2), which corresponds to over-relaxation. The 

SNR is set to 9dB, K = 24, N = 31 (Gold codes), P = 2 and perfect power control is assumed.  

It is clear from Figure  9.5 that the average BER of the proposed CL-LSOR-SIC detector 

achieves its minimum value for a relaxation factor of 1.3, which is within the interval [1,2) (over-

relaxation). Hence, this confirms the theoretical findings concerning the CL-LSOR-SIC detector. 

The convergence speed is now investigated by plotting the average BER versus the number of 

CL-LSOR-SIC stages for different relaxation factor values. The number of the CL-LSOR-SIC stages is 

varied between 1 and 15 and the average BER performance of the proposed detector is evaluated for ω 

= 1, 1.1, 1.3, 1.5 and 1.8. The simulation results are plotted in Figure  9.6.  
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Figure  9.6: Convergence behavior of the proposed CL-LSOR-SIC detector for different relaxation 

factor values for the case of a synchronous CDMA AWGN channel. 

 

It is clear that the CL-LSOR-SIC detector with ω = 1.3 results in the fastest convergence speed (2 

stages are enough to converge to the decorrelator’s detector average BER performance). One can 
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notice also that for ω = 1.8 the average BER performance of the proposed detector exhibits an 

oscillating behavior which is expected because we are close to the region of divergence (2, +∞). 

As for the CL-LSOR-SIC detector, the performance of the CL-LBSOR-GSIC detector is now 

investigated. First, for the same simulation parameters of Figure  9.5, the average BER level is plotted 

versus the relaxation factor value and depicted in Figure  9.7. Here as well, it is evident that the 

minimum achievable average BER is for a relaxation factor of around 1.1 which is within [1,2) (over-

relaxation). Note that the average BER performance is different from one grouping to another, this is 

mainly because the iteration matrix ( ) ( )( )1 1ω ω ω−− − +D L D U , on which the convergence behavior 

relies on, depends on grouping through the block diagonal matrix D. 
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Figure  9.7: Average BER performance versus the relaxation factor of the proposed CL-LBSOR-GSIC 

detector for the case of a synchronous CDMA AWGN channel. 

 

Next, the convergence speed is now investigated by plotting the average BER versus the number 

of CL-LBSOR-GSIC stages for different relaxation factor values. Simulation results are depicted in 

Figure  9.8.  It is obvious that the CL-LBSOR-GSIC detector with ω = 1.1 results in the fastest 

convergence speed (2 stages are enough to converge to the decorrelator’s detector average BER 

performance). However, its performance is indistinguishable from that of the CL-LGDEC-SIC detector 
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(ω = 1). Hence, the over-relaxation didn’t add much to the convergence speed of the proposed detector. 

One can notice also that for ω = 1.8 the average BER performance of the proposed detector exhibits an 

oscillating behavior which is expected because we are close to the region of divergence (2, +∞). 
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Figure  9.8: Convergence behavior of the proposed CL-LBSOR-GSIC detector for different relaxation 

factor values for the case of a synchronous CDMA AWGN channel. 

 

In the following, we assess the average BER performance of the proposed CL-LSOR-SIC/CL-

LBSOR-GSIC detectors versus the relaxation factor for the case of an asynchronous CDMA multipath 

fading channel. We use the following simulation parameters: W = 5, K = 20, N = 31 (Gold codes), SNR 

= 4dB, vehicular A outdoor channel power delay profile for WCDMA is used and 

( ) ( )
1 1
max max

k

k
lk K k K

Nτ τ
≤ ≤ ≤ ≤

+ ≤ . For the CL-LBSOR-GSIC detector, the users are divided into two equally 

sized groups, that is, U1 = U2 = 10. 

As expected the region of convergence of both detectors is between 0 and 2. However, the 

unexpected, is that the minimum achievable average BER is attained for a relaxation factor between 0 

and 1 (under-relaxation) where it was expected that the minimum achievable average BER should be 

attained for a relaxation factor between 1 and 2 (over-relaxation). It is difficult to justify this since 

there is no closed form expression for the optimum relaxation factor in our case. However, a careful 

inspection of equation ( 7-2) shows that the relaxation factor is dependent on the diagonal/block 
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diagonal D of the cross-correlation matrix. And since the matrix D is not the same for the case of 

CDMA AWGN and CDMA multipath fading channels, this may cause the discrepancy noted above. 

Nevertheless, more investigation and studies need to be carried out to justify the results above. 
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Figure  9.9: Average BER performance versus the relaxation factor of the proposed CL-LSOR-SIC/CL-

LBSOR-GSIC detectors for the case of an asynchronous CDMA multipath fading channel. 

 

In the following, we simulate the computational complexity of the four proposed chip-level 

schemes that are equivalent to the SOR/BSOR iterative methods. As depicted in Figure  9.10, two cases 

are considered; in case (a), the number of stages needed for the SL-LSOR-SIC/CL-LSOR-SIC/RC-CL-

LSOR-SIC detectors to converge to the decorrelator detector is assumed to be P = (WK)/2 whereas for 

case (b), the number of stages needed for the SL-LSOR-SIC/CL-LSOR-SIC/RC-CL-LSOR-SIC 

detectors to converge to the decorrelator detector is assumed to be P = (WK)/4. 

It is easy to notice that the CL-LSOR-SIC detector exhibits less computational complexity than 

the SL-LSOR-SIC detector only for case (b), however, the RC-CL-LSOR-SIC detector exhibits less 

computational complexity for both cases (a) and (b). This represents a significant reduction in 

computational complexity. 
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As for the SL-LSOR-SIC/CL-LSOR-SIC/RC-CL-LSOR-SIC detectors, the computational 

complexity of the SL-LBSOR-GSIC/CL-LBSOR-GSIC/RC-CL-LBSOR-GSIC detectors s simulated 

and depicted in Figure  9.11. Again, two cases (a) and (b) are considered. The number of groups is fixed 

to four groups. 
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Figure  9.10: Computational complexity of the proposed CL-LSOR-SIC/RC-CL-LSOR-SIC structures 

versus that of the SL-LSOR-SIC structure. 

 

 

Surprisingly, the proposed RC-CL-LBSOR-GSIC structure doesn’t introduce any reduction in 

computational complexity compared to the CL-LBSOR-GSIC structure. However, both structures 

exhibit less computational complexity than the SL-LBSOR-GSIC scheme for both cases (a) and (b). 

Hence, both chip-level group-wise structures presented in this chapter have less computational 

complexity that their symbol-level counterparts. 
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Figure  9.11: Computational complexity of the proposed CL-LBSOR-GSIC/RC-CL-LBSOR-GSIC 

structures versus that of the SL-LBSOR-GSIC structure. 

 

9.8 Conclusion 

In this chapter, we proposed four SIC/GSIC structures that are equivalent to the SOR/BSOR iterative 

methods, respectively. We studied the convergence behavior of the proposed schemes using two 

different approaches that lead to the same result. We determined the conditions of convergence and we 

proved that these structures converge if the relaxation factor is within the interval (0,2). Simulation 

results indicated that an important reduction in computational complexity can be gained by using the 

proposed chip-level structures compared to their symbol-level counterparts. 
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Chapter 10 
Analysis of the Reduced-Complexity Chip-level Linear GSIC Multi-

user Detector Using a Matrix Iterative Approach   
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10.2 Introduction 

In order to reduce the long detection delay time of the linear SIC, the linear group-wise successive 

interference cancellation (GSIC) detector was proposed  [124]. The authors in  [124] suggested a chip-

level linear GSIC detection scheme and showed that if the proposed structure converges it converges to 

the decorrelator detector. Four group detection schemes were identified in  [124], namely: the RC-CL-

LGDEC-SIC detector, the RC-CL-LGMMSE-SIC detector, the RC-CL-LGPIC-SIC detector and 

finally the RC-CL-LGMF-SIC detector. It has been shown that only the RC-CL-LGDEC-SIC detector 

is always stable, while there is no guarantee of convergence for the other detectors. It was shown in 

 [136] that the RC-CL-LGMF-SIC is in fact a hybrid SIC/PIC detector that can extract both advantages 

of the SIC and PIC detectors. In  [124], it was illustrated through simulations that the RC-CL-LGMF-

SIC detector is not always stable especially for small number of groups. For this reason and in order to 

overcome this drawback, a weighted RC-CL-LGMF-SIC (RC-CL-LGWMF-SIC) detector was 

proposed and a condition of convergence was derived. In  [127], a more relaxed condition of 

convergence for the RC-CL-LGWMF-SIC detector was derived.   

In this work, we show, by using a matrix iterative analysis approach, that the RC-CL-LGSIC 

scheme proposed in  [124] is in fact equivalent to a modified block successive over-relaxation iterative 

method where the relaxation factor is a matrix instead of a scalar. Up to our knowledge, no proof for 
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the convergence of such scheme exists in the literature and thus we propose two new corollaries that 

extend the work of Kahan  [80] to the case where the relaxation factor is a matrix instead of a scalar. By 

using the new corollaries we derive two new conditions of convergence for the RC-CL-LGSIC detector 

and we show as well that the conditions of convergence obtained in  [124] and  [127] can also be 

obtained by using our approach.  

10.3 Convergence Behavior and Conditions of Convergence 

It was shown in Section  7.10.2 that if the RC-CL-LGSIC detector converges, it converges to the 

decorrelator detector. In this section we propose a new approach that is based on matrix iterative 

analysis and allows us to identify the RC-CL-LGSIC scheme as a BSOR iterative method but with a 

relaxation matrix rather than a relaxation scalar. This facilitates the determination of the conditions of 

convergence.  

Recall that the vector of decision variables of the gth effective group of users at the pth stage of 

the RC-CL-LGSIC detector is derived as: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1

1

,

, 1,

1,    for   1,2,...,

eff

eff

T

eff eff eff eff

g WGT

eff eff eff eff eff
j j g

eff eff

p g g g

g g j p j j p j

p g g WG

−

= =

=

⎛ ⎞
− + −⎜ ⎟⎜ ⎟

⎝ ⎠

+ − =

∑ ∑

y F S q

F S S y S y

y

  ( 10-1)

In the ensuing analysis, we establish the analogy between the proposed scheme and the corresponding 

iterative method used to solve a set of linear equations which is known as the BSOR method. The 

cross-correlation matrix effR  can be decomposed into three parts, that is: T
eff = − −R D L L , where D 

is block diagonal matrix, that is 

( ) ( ) ( ) ( )( )1,1 , 2,2 , , , , , ,eff eff eff eff eff effdiag g g WG WG=D R R R R , L and LH are the remaining 

lower-left and upper-right block triangular parts of effR , respectively. After some manipulations, 

equation ( 9-30) can be setup into the following matrix form: 

( ) [ ] ( ) ( )( ) ( )1 1  
T T

eff effp g p− ⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦
y D DFL DFS q D I DF DFL y   ( 10-2)

where 

( ) ( ) ( ) ( ) ( ),1 ,2 , ,
T

effp p p p g p WG= ⎡ ⎤⎣ ⎦y y y y y   ( 10-3)
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and: 

( ) ( ) ( ) ( )1 , 2 , , , ,effdiag g WG= ⎡ ⎤⎣ ⎦F F F F F   ( 10-4)

On the other hand, the matrix form of the BSOR iteration is given by  [80]:  

( ) [ ] ( ) ( )( ) ( )1 1 1  
T T

eff effp g pω ω ω ω− ⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦
y D L S q D L y   ( 10-5)

where ω is a relaxation parameter. By comparing ( 10-2) to ( 10-5), one can immediately deduce that 

( 10-2) is exactly the same as ( 10-5) except that instead of the relaxation scalar, ω, we have a relaxation 

matrix DF.  

All the theory we have at hand, regarding the conditions of convergence, deals with the 

conventional BSOR iterative method where the relaxation factor is a scalar. Up to our knowledge no 

theorem deals with the case we have in this work. Therefore, in order to determine the conditions of 

convergence of the linear GSIC detector, an extension of Kahan’s theorem  [80] to the case where the 

relaxation factor is a matrix is necessary.  

Corollary  10-1 

Let R be a K-by-K hermitian matrix and R = D – L – U, where D is block diagonal matrix, and L and 

U are the remaining lower-left and upper-right block triangular parts of R. If D is positive definite, 

then the block successive over-relaxation method with a relaxation matrix Ω is convergent for any 

initial solution y(0) if and only if [ ]1 det 1− < − <I Ω  and R is positive definite. 

Proof: 

The iteration matrix of the BSOR iterative method in case of a relaxation matrix is given by:  

[ ] ( )1 T− ⎡ ⎤= − − +⎣ ⎦B D ΩL D I Ω ΩL   ( 10-6)

where: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1,1 , 2 2,2 , , , ,
 

, ,
eff eff eff eff eff eff

eff

g g g
diag

WG WG WG

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

F R F R F R
Ω

F R
  ( 10-7)

Taking the determinant of both sides of ( 10-6), one obtains: 
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[ ] ( ) ( )( )

[ ] ( )

[ ] ( )

[ ]

1det det

1           det
det

1           det
det

           det

T

T

−⎡ ⎤= − − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦−

= ⎡ − ⎤⎣ ⎦

= −

B D ΩL D I Ω ΩL

D I Ω ΩL
D ΩL

D I Ω
D

I Ω

  ( 10-8)

Since we have [ ] ( ) ( )
1

det
eff

eff

WK WK
k max

k

λ λ
=

= ≤ ⎡ ⎤⎣ ⎦∏B B B where ( )
effkλ B ’s are the eigenvalues of B. For 

convergence we should have ( ) 1maxλ <B  and consequently ( ) 1
WK

maxλ⎡ ⎤ <⎣ ⎦B . Thus we get 

[ ]det 1<B  and hence [ ]det 1− <I Ω . Finally, one gets: [ ]1 det 1− < − <I Ω  which determines the 

condition of convergence for the BSOR iterative method with a relaxation matrix Ω.  

Corollary  10-2 

A more restrictive condition for the BSOR iterative method with a relaxation matrix Ω to converge is 

that ( )0 2maxλ< <Ω . 

Proof: 

The condition above can be obtained by noticing that [ ] ( ) ( )
1

det
eff

eff

WK WK
k max

k

λ λ
=

− = − ≤ ⎡ − ⎤⎣ ⎦∏I Ω I Ω I Ω . 

Thus if we can ensure that: ( ) 1maxλ − <I Ω  then [ ]det 1− <I Ω . Finally, this results in the condition 

of convergence ( )0 2maxλ< <Ω . 

Two special cases can be distinguished:  

• In case of the RC-CL-LGDEC-SIC detector we have F = D-1, which results in Ω = I.  Therefore we 

get [ ] [ ] [ ]det det det 0 1− = − = = <I Ω I I 0  which is always true. Hence, the RC-CL-LGDEC-SIC 

(which is equivalent to the block Gauss-Seidel iterative method) detector is always convergent. 

This agrees with the condition reported in  [124] that was obtained using a different approach than 

the one developed here. 

• In case of the RC-CL-LGMF-SIC detector we have F = I which results in Ω = D and thus from 

corollary 1 we get [ ] [ ]det det 1− = − <I Ω I D . Since (I – D) is block diagonal, then the above 
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condition can be expressed as: 

( ) ( ) ( )
( )

1 det 1,1 det 2,2 det ,

det , 1
eff eff eff eff eff

eff

g g

WG WG

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− < − × − × × − ×⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤× − <⎣ ⎦

I R I R I R

I R
. Note that noticing 

that ( ) ( ) ( )( )
1

det , , ,
geff

geff

geff
geff

U
U

eff eff eff u eff eff eff max eff eff eff
u

g g g g g gλ λ
=

⎡ ⎤⎡ ⎤ ⎡ ⎤− = − ≤ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∏I R I R I R , 

thus, if we can ensure that ( )( )
1

max , 1
eff

max eff eff effg WG
g gλ

≤ ≤
⎡ ⎤− <⎣ ⎦I R , then [ ]det 1− <I D . 

Ultimately, for the RC-CL-LGMF-SIC detector to converge, the following condition of 

convergence ( )( )
1

0 max , 2
eff

max eff eff effg WG
g gλ

≤ ≤
⎡ ⎤< <⎣ ⎦R  is required.   

It can be seen from the condition obtained from the second corollary, that only the RC-CL-LGDEC-

SIC detector is always convergent because ( ) 1maxλ =Ω . However for the other group detectors, the 

condition may be violated and as an example: the RC-CL-LGMF-SIC detector may diverge if 

( )( )( )
1

max , 2
eff

max eff eff effg WG
g gλ

≤ ≤
>R .  

For this reason, and as suggested in  [125] for the RC-CL-LGMF-SIC detector, we use a 

weighting factor ω to stabilize the detectors that are not guaranteed to converge. Following the same 

procedure as we did before, it easy to show that one obtains the following condition of convergence: 

( )
20

max

ω
λ

< <
Ω

.  

Again two special cases are worth exploring:  

• In case of the RC-CL-LGDEC-SIC detector we have F = D-1, which results in Ω = I.  Therefore we 

get 0 < ω < 2 which is the same condition as for the conventional BSOR iterative method  [80].  

• In case of the RC-CL-LGMF-SIC detector we have F = I, which results in Ω = D and thus we 

obtain the following condition of convergence 
( )( )

1

20
max ,

eff
max eff eff effg WG

g g
ω

λ
≤ ≤

< <
⎡ ⎤⎣ ⎦R

. Note that 

this is the same condition of convergence that the authors in  [127] obtained by using a different 

approach than the one devised here.  

Finally, Table  10.1 summarizes the conditions of convergence for different group detection schemes. 
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Table  10.1: Conditions of convergence for different group detection schemes. 

RC-CL-LGSIC  

Detector 
( )effgF  1st Condition  

of convergence 

2nd Condition  

of convergence 

RC-CL-LGMF-SIC  

detector 

I [ ]det 1− <I D  ( )( )( )
1

0 max , 2
eff

max eff eff effg WG
g gλ

≤ ≤
< <R

RC-CL-LGDEC-SIC  

detector 
( ) 1,eff eff effg g −R Always   

Converging 

Always Converging 

RC-CL-LGWMF-SIC 

 detector 

ωI [ ]det 1ω− <I D
( )( )( )

1

20
max ,

eff
max eff eff effg WG

g g
ω

λ
≤ ≤

< <
R

RC-CL-LGWDEC-SIC

detector 
( ) 1,eff eff effg gω −R 0 < ω < 2 0 < ω < 2 

 

10.4 Simulation Results 

In the following, we simulate the convergence behavior of the RC-CL-LGSIC multiuser detector in an 

AWGN channel.  For all simulations conducted here, Gold codes are used and thus the cross-

correlation between users is equal. This removes any effect of certain grouping or order of cancellation. 

As in the case of the conventional BSOR iterative method where the relaxation factor is varied between 

0 and 2, the determinant of the relaxation matrix is varied by changing the weighting factor ω between 

0 and 2 to illustrate its impact on the average BER (average of all users’ BER) of the RC-CL-LGSIC 

detectors (RC-CL-LGMF-SIC and RC-CL-LGDEC-SIC) as shown in Figure  10.1. Here the SNR is set 

to 10 dB, M = 3, K = 24, N = 31, G = 2 (equal size groups) and perfect power control is assumed.  As 

can be seen for Figure  10.1, the average BER is minimum for a determinant of the relaxation matrix 

between 1 and 2. Also, as it can be seen from this Figure  10.1, the RC-CL-LGMF-SIC and RC-CL-

LGDEC-SIC detectors achieve the minimum average BER for a relaxation factor of 1.1 and 1.2, 

respectively. This agrees well with the conventional BSOR theory, which states that the optimal 

relaxation factor that results in maximum convergence speed of the BSOR iterative method is between 

1 and 2  [80]. 
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Figure  10.1: Convergence behavior of the RC-CL-LGSIC detector versus the determinant of the 

relaxation matrix. 

 

10.5 Conclusion 

In this chapter, we used a matrix iterative analysis approach to identify the RC-CL-LGSIC detector 

proposed in  [124] as a linear BSOR iterative method but with a relaxation matrix instead of a 

relaxation factor. This approach allowed us to determine two new conditions of convergence. Finally, 

simulation results were in excellent agreement with our theoretical findings.   
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11.2 Introduction 

Chip-level linear group-wise successive interference cancellation schemes have been studied 

extensively in the literature ( [124]- [127] and  [137]- [139]). Surprisingly, their counterparts, the chip-

level linear group-wise parallel interference cancellation schemes were not investigated till now, 

despite their apparent advantages such as parallelism. Hence if a parallel multiprocessor architecture is 

available, the algorithm execution time can be greatly reduced. In this chapter, a new chip-level linear 
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group-wise parallel interference cancellation (CL-LGPIC) detector is proposed. Four different group-

detection schemes are derived, namely, the chip-level linear group matched filter PIC (CL-LGMF-PIC) 

detector, the chip-level linear group decorrelator PIC (CL-LGDEC-PIC) detector, the chip-level linear 

group minimum mean square error PIC (CL-LGMMSE-PIC) detector and the chip-level linear group 

parallel interference cancellation PIC (CL-LGPIC-PIC) detector. The convergence behavior of the 

proposed scheme is analyzed and conditions of convergence are derived. As for the CL-LPIC detector, 

the convergence of the proposed structure is ensured by the use of a weighting factor (relaxation 

factor). Finally, the computational complexity of the proposed detector is compared to that of its 

symbol-level counterpart. Simulation results conducted are in excellent agreement with the theory. 

11.3 Structure of the Chip-Level Linear Group-Wise Parallel Interference 
Cancellation (CL-LGPIC) Detector  

The CL-LGPIC detector consists of interference cancellation units arranged in a multistage structure as 

shown in Figure  11.1.  

 

 

Figure  11.1: Multi-stage structure of the CL-LGPIC detector. 
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The internal structure of each interference cancellation unit is illustrated in Figure  11.2. 

 

 

Figure  11.2: The pth stage interference cancellation unit of the CL-LGPIC detector.  

 

 The vector of decision variables of the (p-1)th stage, gth group y(p-1,geff) is first despreaded added to 

the vectors of decision variables of the other groups to form the interference due to all users at the (p-

1)th stage , that is, ( ) ( ) ( )
1

1 1,
GW

eff
j

p j p j
=

− = −∑I S y . The latter is subtracted from the received signal q 

to obtain a purified received signal [q – I(p)] where all users exhibit less mutual interference. The 

vector of decision variables of the pth stage, gth group y(p,geff) is obtained by despreading the purified 

signal, multiplying the result by a transformation matrix and finally adding the result to the vector of 

decision variables of the previous stage, that is: 



 Chapter 11  Chip-level Linear GPIC Detectors 

 220

( ) ( ) ( ) ( )( ) ( ), 1 1,T
eff eff eff eff effp g g g p p g= − − + −y F S q I y   ( 11-1)

This process is repeated in a multistage structure as shown in Figure  11.1 

Note that the structure for the CDMA multipath fading channel is the same as the one shown 

here except ( )eff effgS  should be replaced by ( )b
eff effgS  and the transpose operator (T) should be 

replaced by the hermitian operator (H). 

11.4 Algebraic Approach to the CL-LGPIC Detector 

In this section, we show using an algebraic approach that the CL-LGPIC detector is equivalent to 

matrix filtering of the received chip-matched signal. This enables the determination of analytical 

expressions for the BER and AME of the proposed detector. 

The vector of decision variables at the pth stage, gth group y(p,geff) in equation ( 11-1) can be 

written in matrix form as: 

( ) ( )( ) ( )1 1T
eff effp p p= − − + −y FS q S y y   ( 11-2)

where ( ) ( ) ( ) ( )1 , 2 , , , ,effdiag g WG= ⎡ ⎤⎣ ⎦F F F F F . Hence ( 7-36) is equivalent to: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )
( )

2

1 1

        1

        2

        2

        

T T
eff eff eff

T T
eff eff eff

T T T T
eff eff eff eff eff eff

T T T T
eff eff eff eff eff eff

T T
eff eff eff

p p p

p

p

p

= − − + −

= − − −

= − − − − −

= − − + − −

= − −

y FS q FS S y y

FS q I FS S y

FS q I FS S FS q I FS S y

FS q I FS S FS q I FS S y

FS q I FS S F

( ) ( ) ( )( )
( )

( ) ( ) ( )

2

2 3

            3

        

            3

T
eff

T T T
eff eff eff eff eff

T T T
eff eff eff eff

T T T
eff eff eff eff eff

p

p

+ − − − −

= − −

+ − + − −

S q

I FS S FS q I FS S y

FS q I FS S FS q

I FS S FS q I FS S y

  ( 11-3)

Proceeding in the same way and taking in consideration that y(p) = 0, we obtain: 

 
( ) ( ) 1

1

        

p iT T
eff eff eff

i
T
p

p
−

=

= −

=

∑y I FS S FS q

G q
  ( 11-4)

where  ,1 ,2 , ,effp p p p g p WG⎡ ⎤= ⎣ ⎦G G G G G ,  
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and , , ,1 , ,2 , , , ,eff eff eff eff g eff geff effp g p g p g p g u p g U
⎡ ⎤= ⎣ ⎦G g g g g . The matrix Gp can also be written as: 

,1 ,2 , ,effp p p p k p WK⎡ ⎤= ⎣ ⎦G g g g g . Therefore, the CL-LGPIC can be described as a matrix 

filtering of the received chip-matched signal vector. Thus, if the spreading codes and grouping of all 

users are available, the decision variables of all users could be obtained without explicitly performing 

parallel interference cancellation. 

Using the same method as for the matched filter detector, the BER of the kth effective user at the 

pth stage can be shown to be: 

( )
( )

,
, 1

all , ,1

1
2

eff

eff

eff eff
eff

T
p k eff eff

p k WK T
p k p kk

P Qσ
σ

−

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
b

b

g S A b

g g
 ( 11-5)

where Q(.) is the Q-function. Moreover, the asymptotic multiuser efficiency for the kth effective user at 

the pth stage can be shown to be given by: 

( ) ( )
( ) ( )2

, , ,
1, ,

,
max 0,

,eff eff eff

eff eff
eff

WK
effT T

p k p k eff eff p k effT
jp k p k eff eff eff
j k

A j j1 k j
A k k

η
=
≠

⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

∑g s g s
g g

 ( 11-6)

Before discussing the convergence behavior of the proposed scheme let us develop the relation 

between the latter and the Jacobi/block Jacobi iterative method. Equation ( 11-1) can be shown to be 

setup into: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )
1

, 1,

                   + 1,

T T
eff eff eff eff eff eff eff eff eff

GW
T

eff eff eff eff
j
j g

p g g g g g g p j

g g j p j
=
≠

= + − −

−∑

y F S q I F S S y

F S S y
  ( 11-7)

It is easy to notice that depending on the transformation matrix (group detection scheme) F, different 

group detection schemes can be obtained, namely: the CL-LGMF-PIC, CL-LGDEC-PIC, CL-LGPIC-

PIC and finally CL-LGMMSE-PIC detectors. 

11.4.1 The CL-LGMF-PIC Detector 

It is the simplest scheme, and it is obtained by letting: 

( )effg =F I  ( 11-8)

where I is an (
eff effg gU by U− − ) identity matrix. It can be shown that this in fact is the conventional 

chip-level linear PIC detector.  
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11.4.2 The CL-LGDEC-PIC Detector 

For this detector, the linear transformation is given by: 

( ) ( ) ( )
1T

eff eff eff eff effg g g
−

⎡ ⎤= ⎣ ⎦F S S  ( 11-9)

Note that if the group size is equal to one, we obtain the conventional chip-level linear PIC detector. 

11.4.3 The CL-LGMMSE-PIC Detector 

For this detector, the linear transformation is given by: 

( ) ( ) ( ) ( )
122 ,T

eff eff eff eff eff eff eff effg g g g gσ
−−⎡ ⎤= +⎣ ⎦F S S A  ( 11-10)

11.4.4 The CL-LGPIC-PIC Detector 

The linear transformation is given by: 

( ) ( ) ( )
0

PICN iT
eff eff eff eff eff

i
g g g

=

⎡ ⎤= −⎣ ⎦∑F I S S  ( 11-11) 

Where NPIC denotes the number stages of the PIC detector. The matrix effR can be decomposed into 

three parts, that is: effR = D – L – LT, where D is block diagonal matrix, that is 

( ) ( ) ( ) ( )1,1 , 2,2 , , , , , ,  eff eff eff eff eff effdiag g g GW GW⎡ ⎤= ⎣ ⎦D R R R R , and L and LT are the 

remaining lower-left and upper-right block triangular parts of effR , respectively. Recall from  Chapter 

5 that the block Jacobi iterative method is given by:  

( ) ( ) ( )11 1effp p p− ⎡ ⎤= − + − −⎣ ⎦y y D y R y  ( 11-12)

By comparing ( 11-12) and ( 7-36), it easy to notice that if ( ) ( ) ( )
1T

eff eff eff eff effg g g
−

⎡ ⎤= ⎣ ⎦F S S  (CL-

LGDEC-PIC), then the CL-LGPIC detector is in fact a realization of the block Jacobi iterative method. 

On the other hand, if ( )effg =F I  (CL-LGMF-PIC), then the CL-LGPIC detector is in fact a realization 

of the Jacobi iterative method.  

11.5 Convergence Behavior and Conditions of Convergence 

From ( 7-37), it easy to show that as the number of stages tends to infinity the vector of decision 

variables tends to that of the decorrelator detector, that is: 
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( ) ( )

( )
( )

1

1
1

1 1

lim lim

               

               

p iT T
eff eff effp p i

T T
eff eff eff

T T
eff eff eff

p
−

→∞ →∞
=

−

− −

= −

=

=

∑y I FS S FS q

FS S FS q

S S F FS q

  ( 11-13)

Hence if the matrix F is nonsingular then, ( 7-41) is equivalent to: 

( ) ( ) 1
lim T T

eff eff effp
p

−

→∞
=y S S S q   ( 11-14)

This is in fact the decorrelator detector. Therefore, if the proposed CL-LGPIC detector converges, it 

converges to the decorrelator detector.  

The parallel interference cancellation detector is well known to suffer from severe convergence 

issues ( [129] and  [134]). By observing the iteration matrix, B, of the proposed detector: 

( )T
eff eff= −B I FS S   ( 11-15)

It is easy to show that determine the condition of convergence of the proposed scheme is given by: 

( )max0 2T
eff effλ< <FS S   ( 11-16)

This is not always satisfied and hence the convergence problem of the CL-LGPIC scheme. To 

overcome this problem, a relaxation scheme is introduced to ensure convergence of this detector. This 

is the subject of the next section. 

11.6 The Chip-Level Linear Weighted Group-Wise PIC (CL-LWGPIC) Detector 

The interference cancellation unit of the CL-LWGPIC scheme is modified by inserting a weighting 

factor. The proposed weighted scheme is shown in Figure  11.3. 

Following the same procedure as for the CL-LGPIC, it is easy to show that the vector of decision 

variables at the pth stage is given by: 

( ) ( ) 1

1

p iT T
eff eff eff

i
p ω ω

−

=

= −∑y I FS S FS q   ( 11-17)

However, it can be shown that if the proposed structure converges it converges to the decorrelator 

detector only if the following condition is satisfied: 

( )max

20
T
eff eff

ω
λ

< <
FS S

  ( 11-18)
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Figure  11.3: The pth stage interference cancellation unit of the CL-LWGPIC detector. 

 

11.7 The CL-LGPIC Detector for the Case of an Asynchronous CDMA Multi-Path 
Fading Channel 

For the case of multipath fading, the diagonal of the cross-correlation matrix is not an identity matrix, 

hence the CL-LGMF-PIC and CL-LGPIC-PIC group-detection schemes detailed before are changed to 

the following expressions: 

11.7.1 The CL-LGMF-PIC Detector 

It is the simplest scheme, and it is obtained by letting: 
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( ) ( ) ( )
1Hb b

eff eff eff eff effg diag g g
−

⎡ ⎤= ⎣ ⎦F S S  ( 11-19)

where I is an (
eff effg gU by U− − ) identity matrix. It can be shown that this in fact is the conventional 

chip-level linear PIC detector.  

11.7.2 The CL-LGPIC-PIC Detector 

Thus the linear transformation is given by: 

( ) ( ) ( ) ( ) ( ){ }1

0

PIC
iN

H Hb b b b
eff eff eff eff eff eff eff eff eff

i
g diag g g g g

−

=

⎡ ⎤= − ⎣ ⎦∑F I S S S S  ( 11-20)

Note that all the convergence analysis and conditions of convergence determined previously apply here 

as well.  

11.8 Computational Complexity 

The computational complexity of the proposed detector is given by the following expression: 

It is compared to the computational complexity of the symbol-level linear weighted group-wise PIC 

(SL-LWGPIC) detector which is an extension of the SL-LWPIC detector proposed in  [84] and its 

interference cancellation unit for the gth group of users is shown in Figure  11.4. 

Its computational complexity is given by: 

( ) ( )( ) ( )
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 ( 11-21)
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Figure  11.4: SL-LWGPIC unit of the gth effective group of users. 

 

11.9 Simulation Results 

In this section, the above discussed multiuser detectors are simulated and the results obtained are 

commented. We simulate the convergence behavior of the chip-level interference cancellation 

detectors and compare their computational complexity to their symbol-level counterparts. Two 

different scenarios are considered, a synchronous CDMA AWGN channel and an asynchronous 

CDMA multipath Rayleigh fading channel. The simulation parameters are presented in Table  7.1. 

In Figure  11.5, the average BER (average of all users) is plotted versus the number of chip-level linear 

group-wise PIC stages. 

 

 



 Chapter 11  Chip-level Linear GPIC Detectors 

 227

Table  11.1: Simulation parameters 

Channel Synchronous CDMA AWGN Asynchronous CDMA 

multipath Rayleigh fading 

Performance measure Average BER versus number 

of stages 

Average BER versus number 

of stages 

K 20 10 

N 31 31 

SNR 4dB 4dB 

W 1 5 

Spreading codes Gold Gold 

Power control Perfect Perfect 

Power delay profile Not applicable Vehicular A outdoor Channel 

for WCDMA 

Length of ISI+MAI 0 ( ) ( )
1 1
max max

k

k
lk K k K

Nτ τ
≤ ≤ ≤ ≤

+ ≤  
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Figure  11.5: Convergence behavior of the CL-LGPIC detector. 
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Different detection schemes are considered. For the CL-LGPIC-PIC detector, a 2-stage PIC detector is 

used. It is easy to note that the CL-LGDEC-PIC converges faster than the other group-detection 

schemes, it needs only 7 stages whereas the CL-LGPIC-PIC detector, the CL-LGMMSE-PIC detector 

and the CL-LGMF-PIC detector needs 8 stages, 10 stages and 11 stages, respectively. However, the 

linear CL-LGMF-PIC and the CL-LGMMSE-PIC detectors achieve the lowest average BER level 

among all detection schemes. Moreover, it is important to notice that lower average BER levels are 

achieved prior to convergence, this is more noticeable for highly loaded systems and it has also been 

reported in other works such as  [121]. 

The effect of grouping is analyzed and is depicted in Figure  11.6, 11.7, 11.8 and 11.9.  It can be 

seen that while the convergence speed of the CL-LGDEC-PIC, the CL-LGMMSE-PIC and the CL-

LGPIC-PIC detectors increases with decreasing number of groups, the convergence speed of the CL-

LGMF-PIC detector is independent of grouping and is constant for any grouping. This is because the 

CL-LGMF-PIC detector is equivalent to the conventional linear PIC detector and hence the grouping in 

this case is G = K. However, the average BER difference between different groupings is small and is of 

theoretical importance only.  
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Figure  11.6: Convergence behavior of the CL-LGDEC-PIC detector for G = 2 and G = 10. 
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Figure  11.7: Convergence behavior of the CL-LGMMSE-PIC detector for G = 2 and G = 10. 
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Figure  11.8: Convergence behavior of the CL-LGPIC-PIC detector for G = 2 and G = 10. 
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Figure  11.9: Convergence behavior of the CL-LGMF-PIC detector for G = 2 and G = 10. 

 

To study the instability of some detectors, a set of 10 highly correlated codes are used for spreading 

and despreading. Their cross-correlation matrix is given by: 

1 -0.6 0.2 -0.4 0.6 -0.2
-0.6 1 -0.2 0.4 -0.6 0.2
0.2 -0.2 1 -0.8 0.6 -0.6
-0.4 0.4 -0.8 1 -0.8 0.8
0.6 -0.6 0.6 -0.8 1 -0.6
-0.2 0.2 -0.6 0.8 -0.6 1

eff

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R  

The six users are divided into two equally sized groups of 3 users each. It is evident from Figure  11.10 

that while the CL-LGDEC-PIC and the CL-LGMMSE-PIC detectors are converging to the decorrelator 

detector’s performance, the CL-LGMF-PIC and the CL-LGPIC-PIC detectors are exhibiting an 

oscillatory/smooth divergence behaviors, respectively. Different modes of convergence and divergence 

are discussed in detail in  [134]. 

  It is clear also that even though the CL-LGMF-PIC detector, which is equivalent to the 

conventional linear PIC detector, diverges the CL-LGDEC-PIC and CL-LGMMSE-PIC detectors 

converge. This means that group-wise detection is an alternative to relaxation for stabilizing the 

conventional linear PIC detector. 



 Chapter 11  Chip-level Linear GPIC Detectors 

 231

5 10 15 20 25

10
-1

10
0

Number of CL-LGPIC stages

A
ve

ra
ge

 B
E

R
MF detector
Decorrelator detector
LMMSE detector
CL-LGDEC-PIC detector
CL-LGMF-PIC detector
CL-LGMMSE-PIC detector
CL-LGPIC-PIC detector

 

Figure  11.10: Divergence behavior of some chip-level linear interference cancellation detectors due to 

highly correlated codes. 

 

Another interesting characteristic of the CL-LGPIC detector is its smoothing effect. The ping-pong 

effect of the divergent CL-LGMF-PIC detector is removed in the divergent CL-LGPIC-PIC detector. 

This suggests that group-wise detection is an alternative to relaxation for removing the ping-pong 

effect of the conventional CL-LPIC detector. 

In Figure  11.11, the convergence behavior of different CL-LGPIC detection schemes is 

evaluated in an asynchronous CDMA multipath fading channel. The simulation parameters are 

depicted in Table  7.1. Here, 10 users are divided into two equally sized groups. In addition, a two–

stage PIC detector is used for the CL-LGPIC-PIC detector.  

The figure shows that the CL-LGMF-PIC detector which is equivalent to the CL-LPIC detector 

is divergent. This result is similar to that obtained for the simulation of the CL-LPIC detector in 

Chapter 7.  The CL-LGPIC-PIC detector is also divergent as expected since the group-detection 

scheme used is the linear PIC detector which is already divergent as shown before. The CL-LGDEC-

PIC detector and the CL-LGMMSE-PIC detector on the other hand are convergent and they need only 

few stages to converge to the decorrelator detector’s performance.   
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Figure  11.11: Convergence behavior of the CL-LGPIC detector. 

 

As mentioned earlier, the group-wise detection is an alternative to relaxation for stabilizing the 

conventional linear PIC detector. Here, in Figure  11.11, the CL-LGMF-PIC detector, which is 

equivalent to the conventional linear PIC detector, diverges whereas the CL-LGDEC-PIC and CL-

LGMMSE-PIC detectors converge. Hence, preconditioning (group-wise detection) is an alternative to 

relaxation (both under-relaxation and over-relaxation). 

Finally, the computational complexity of the proposed CL-LPIC detector is compared to its 

symbol-level counterpart (SL-LPIC). Again, two cases are considered and are depicted in Figure  11.12. 

In case of Figure  11.12 (a), the number of stages needed for the SL-LPIC/CL-LPIC to converge to the 

decorrelator detector is assumed to be P = (WK)/2, whereas for case of Figure  11.12 (b), the number of 

stages needed for the SL-LPIC/CL-LPIC to converge to the decorrelator detector is assumed to be P = 

(WK)/4.  

It is clear that the proposed CL-LGPIC structure exhibits less computational complexity that its 

symbol-level counterpart. Hence, for a long-code system, it is preferable to use this scheme.  
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Figure  11.12: Computational complexity of the CL-LGDEC-PIC detector compared to that of the SL-

LGDEC-PIC detector. 

 

11.10 Conclusion 

In this chapter, the principle of group-detection is extended from successive interference cancellation 

to parallel interference cancellation through the introduction of the CL-LGPIC detector. Different 

group-detection schemes were derived and their convergence behavior and conditions of convergence 

were detailed. A weighted version of the CL-LGPIC detector was also derived to ensure the 

convergence of the proposed structure. A very interesting result is obtained and it consists of using the 

preconditioning principle as an alternative to the relaxation principle. Finally, the proposed structure 

was simulated and the results obtained corroborate well with our theoretical findings. 
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12.2 Conclusion  

This dissertation has stepped forward into the direction of making use of mathematical tools in the field 

of engineering. By doing so, new achievements can be accomplished and new results can be obtained. 

This dissertation exploited the close relation between linear interference cancellation and linear 

iterative methods to develop new chip-level linear interference cancellation detectors that are suitable 

for long-code CDMA systems. By noting that symbol-level linear interference cancellation detectors 

are not suitable for actual long-code CDMA systems because they need to use the cross-correlation 

matrix, which is computationally expensive for long-code CDMA systems, many chip-level 

interference cancellation detectors were derived. Some of the chip-level linear structures developed 

here are: 

• SIC/GSIC structures that can converge to either the decorrelator detector or the LMMSE detector. 

• SIC/GSIC structures that are equivalent to the linear SOR/linear BSOR iterative methods. 

• SIC/GSIC structures that are suitable for the case of asynchronous CDMA multipath fading 

channel and they are derived using the under-relaxation principle. 

• GPIC/weighted GPIC structures were derived for the first time. 

Moreover, the convergence behavior analysis and conditions of convergence for all the 

aforementioned structures are derived. Thanks again to the rich theory of linear iterative methods that 

made such analysis easy and efficient. In fact, establishing the connection between interference 

cancellation structures and linear iterative methods makes their convergence analysis straightforward 

and simple. This was particularly illustrated in  Chapter 9 where the conditions of convergence are 
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determined using two different approaches that led to the same result. It was clear that the approach 

using the theory of iterative methods is more tractable and facilitated considerably the convergence 

analysis than the other one.  

Furthermore, establishing the analogy between iterative methods and interference cancellation 

detectors allowed the identification of some of the structures as hybrid or modified linear iterative 

methods. Such a case was illustrated in  Chapter 10 where the chip-level linear group-wise SIC 

structure was identified as a linear BSOR iterative method but with a relaxation matrix instead of a 

relaxation factor. With the help of the iterative methods theory conditions of convergence were 

derived. 

Finally, during the phase of this dissertation some by-product contributions have been made such 

as the development of a new linear asynchronous CDMA multi-path fading channel model, which can 

be in fact used to develop new multiuser detectors. 

12.3 Future Work 

Many new avenues and directions for research have been opened by this dissertation, just to name a 

few:  

• Many new multiuser detection structures can be derived using the novel linear asynchronous 

CDMA multi-path fading channel model proposed in  Chapter 4. 

• Recently, the connection is also established between nonlinear interference cancellation detectors 

and nonlinear iterative methods used within the optimization field, by studying such connection, 

new structures can be developed. 

• In  Chapter 9, simulation results showed that chip-level linear SIC/GSIC structures attain their 

minimum achievable average BER within the region of under-relaxation (0,1) for the case of an 

asynchronous CDMA multi-path fading channel. This is unexpected and needs more investigation.  
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Appendix A: Probability of error of a linear transformation of the 
received chip-matched signal/matched filter output 

 

Recall from section  6.7.1 that the kth effective user’s output of a linear transformation applied to the 

recived signal is given by: 

( ) ( ) ( ):,
eff

T T
eff eff k eff effy k k= = +V q v S A b n  (A-1)

 where n  is a vector of AWGN I.I.D samples of zero mean and variance σ2. By using the total 

probability theorem, we can write: 
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thus: 
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Due to the symmetry of the Gaussian (Normal) function we have: 
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hence: 
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we have: 

( ):, 0T
effE k⎡ ⎤ =⎣ ⎦V n  (A-6)
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and:  
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thus: 
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Conditioning over all interfering bits, the probability of error of the kth effective user can be written as: 
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For a linear transformation applied to the matched filter output, the decision variable is given by 

(section  6.8.1): 
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Following the same procedure above and taking in consideration that: 
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It easy to show that the probability of error of the kth effective user can be written as: 
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Appendix B: Asymptotic multiuser efficiency of a linear 
transformation of the received chip-matched signal/matched filter 

output 

 

Recall from  Appendix A that for kth effective user’s output of a linear transformation applied to the 

recived signal, the probability of error of the is given by: 
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As 0σ → , equation (B-1) is dominated by the smallest argument  [30], that is,: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

10

, :, , :,
1lim ( )

2 :, :,

eff

eff

WKT T

eff eff eff eff eff eff eff eff eff
j
j k

k WK T

eff eff

k k k k j j k j

P Q
k k

σ
σ

σ

=
≠

−→

⎛ ⎞−⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑A V s A V s

V V
 (B-2)

The latter goes to zero as σ goes to zero if and only if the argument of Q-function is positive, that is,: 
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which is known as the open eye condition, hence, for the determination of the AME, two cases exist: 

• Closed eye condition ( ( ) ( ) ( ) ( ) ( ) ( )
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Recall from section  6.3.2, that the AME is defined as: 
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Using the relation  [30]:  
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we obtain:  
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From equation (B-4), we get: 
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By using  [30]:  
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Consequently: 
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Combining both cases of closed and open eye conditions, we obtain the following expression of the 

AME: 
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For the case of a linear transformation applied to the matched filter outputs, we have from  Appendix A: 
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Following the same procedure above and taking in consideration that: 
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It easy to show that the AME of the kth effective user can be written as: 
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where ( ):,eff jR is the jth column of the cross-correlation matrix effR . 
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