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Abstract

The main goal of this dissertation is to investigate linear interference cancellation structures that are
appropriate for long-code CDMA systems. Motivated by the lack of such structures and exploiting the
fact that for long-code CDMA systems, the major computational complexity burden comes from the
frequent calculation of the cross- correlation matrix (it should be calculated each symbol period) and
not from the interference cancellation itself, we examine the possibility of developing interference
cancellation schemes that avoid the calculation of the cross-correlation matrix. Such structures are
known as chip-level (wideband) interference cancellation schemes and they directly make use of the
spreading codes instead of the cross-correlation coefficients, hence the additional burden of the cross-
correlation computation is avoided. Our approach for developing such structures is based on the
equivalence between some of the chip-level linear interference cancellation structures and linear
iterative methods. Such mapping will not only enable the identification of new interference
cancellation schemes that correspond to other iterative methods but will also facilitate the study of the
convergence behavior of these structures based on the rich theory developed within the frame of
iterative methods. In chapter 8, two new chip-level linear weighted SIC/weighted group-wise SIC
structures that can converge not only to the decorrelator detector but also to the LMMSE detector are
derived. They proved to exhibit less computational complexity than their symbol-level counterparts. In
chapter 9, four novel chip-level linear weighted SIC/weighted group-wise SIC structures that are
equivalent to linear SOR/linear BSOR iterative methods are derived. Their convergence behavior is
analyzed and their conditions of convergence are determined using two different methods that lead to
the same result. In chapter 10, using a matrix iterative analysis approach, the chip-level linear group-
wise structure is shown to be equivalent to the linear BSOR iterative method but with a relaxation
matrix rather than a relaxation factor. Establishing such connection allows the proposition of two new
corollaries from which two conditions of convergence are determined. In chapter 11, a new chip-level
linear group-wise PIC detector is proposed. Its inherent parallelism facilitates its implementation in a
parallel multiprocessor structure and reduces considerably the algorithm time complexity. Other by-

product contributions are also obtained in chapters 4, 5 and 7 respectively.
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1.2 Aim of this Work

The main goal of this dissertation is to investigate linear interference cancellation structures that are
appropriate for long-code CDMA systems. Motivated by the lack of such structures and exploiting the
fact that for long-code CDMA systems, the major computational complexity burden comes from the
frequent calculation of the cross- correlation matrix (it should be calculated each symbol period) and
not from the interference cancellation itself, we examine the possibility of developing interference
cancellation schemes that avoid the calculation of the cross-correlation matrix. Such structures are
known as chip-level (wideband) interference cancellation schemes and they directly make use of the
spreading codes instead of the cross-correlation coefficients, hence the additional burden of the cross-
correlation computation is avoided. Our approach for developing such structures is based on the
equivalence between some of the chip-level linear interference cancellation structures and linear
iterative methods. Such mapping will not only enable the identification of new interference
cancellation schemes that correspond to other iterative methods but will also facilitate the study of the
convergence behavior of these structures based on the rich theory developed within the frame of

iterative methods.

1.3 Thesis Organization

The dissertation is divided into many chapters that can be roughly partitioned into introductory
chapters and contributive chapters. This splitting is coarse, in the sense that some of the introductory

chapters contain contributions, however, they can be considered as minor contributions.
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Chapter 1 describes the aim of the dissertation and its contribution to the literature.

Chapter 2 introduces the cellular concept and discusses different generations of cellular systems.
Moreover, it describes the spread spectrum technique, its advantages and disadvantages and finally
it discusses different spreading codes used in CDMA systems and the advantages and
disadvantages of both short-code and long-code spreading codes.

Chapter 3 introduces different fading mechanisms arising in a wireless fading CDMA channel.
Then, it proposes the channel model used for all simulations in the subsequent chapters. The power
delay profile used in all simulations conducted in different chapters is then discussed. Finally, an
enhanced Jakes model which is used to generate the Rayleigh fading complex coefficients is
implemented and simulated.

Chapter 4 develops CDMA models for both the synchronous CDMA AWGN and the
asynchronous CDMA multi-path fading channels. Moreover, it proposes a new CDMA model for
the asynchronous CDMA multi-path fading channel that allows the development of new multiuser
detectors.

Chapter 5 reviews various iterative methods covered in the literature. It details different point and
block iterative methods, study their convergence behavior and determine their conditions of
convergence. Two new iterative methods are developed and studied in detail. The latter will be
used in the subsequent chapters to identify some chip-level linear interference cancellation
structures. Finally, all the aforementioned iterative methods are simulated and compared together.
Chapter 6 reviews and studies some basic multiuser detectors such as the matched filter detector,
the optimal multiuser detector, the decorrelator detector and the LMMSE detector for both a
synchronous CDMA AWGN channel and an asynchronous CDMA multipath fading channel.
These detectors are assessed in terms of many performance metrics such as the probability of error,
asymptotic multiuser efficiency, near-far resistance and the computational complexity.

Chapter 7 introduces the two main categories of linear interference cancellation structures, namely
the symbol-level and chip-level schemes. Different structures covered in the literature are restudied
here and furthermore three new structures using the principle of under-relaxation are developed for
the case of an asynchronous CDMA multipath fading channel. Finally, the computational
complexity of both symbol-level and chip-level linear interference cancellation structures are
compared and commented.

Chapter 8 presents a chip-level linear weighted SIC structure that can converge to either the

decorrelator detector or the LMMSE detector. Another new structure is obtained by extending the
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previous scheme to group-wise SIC detection. The convergence behavior of these two novel
structures is analyzed and conditions of convergence are determined. Finally, simulation results
supporting the theoretical findings are obtained.

e Chapter 9 proposes two novel chip-level linear weighted SIC structures that are equivalent to the
successive over-relaxation iterative method. These structures are then extended to group-wise SIC
detection. Convergence analysis is performed using two different methods that lead to the same
result. Finally, simulation of the previous structures is performed to validate the theoretical
derivations.

e Chapter 10 shows how the rich theory of iterative methods can be used for the analysis of existing
interference cancellation structures in the literature. First we prove that the group-wise SIC
structure is in fact equivalent to a BSOR iterative method but with a relaxation matrix instead of a
relaxation factor. By using such approach, two new corollaries that result in two new conditions of
convergence are derived. Finally simulations are conducted to substantiate the theoretical results.

e Chapter 11 introduces a chip-level linear group-wise PIC detector. Four different group-detection
schemes are derived. The proposed structure is analyzed and conditions of convergence are
determined. Finally, simulation results that corroborate the theoretical findings are obtained.

e Chapter 12 concludes this work by summarizing the most important results and contributions

gained throughout this dissertation and points out possible future extensions.

1.4 Thesis Contribution

The thesis’s contributions can be summarized into the following points:

e In chapter 4, a new model for the asynchronous CDMA multi-path fading channel is developed.
The latter permits the derivation of new multiuser detectors.

e In chapter 5, two new iterative methods are derived, their convergence behavior is investigated and
their conditions of convergence are determined. These methods will show to be useful in the
identification of some existing chip-level linear SIC and group-wise SIC detectors. Moreover, they
will help in deriving three new chip-level linear SIC and group-wise SIC structures for the case of
an asynchronous CDMA multi-path fading channel.

e In chapter 7, three new chip-level linear weighted SIC and weighted group-wise SIC structures
suitable for the case of an asynchronous CDMA multi-path fading channel are derived using the

principle of under-relaxation.
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In chapter 8, two new chip-level linear weighted SIC/weighted group-wise SIC structures that can
converge not only to the decorrelator detector but also to the LMMSE detector are derived. They
proved to exhibit less computational complexity than their symbol-level counterparts. Moreover,
conditions of convergence are determined and their performance is evaluated and verified through
simulations.

In chapter 9, four novel chip-level linear weighted SIC/weighted group-wise SIC structures that are
equivalent to linear SOR/linear BSOR iterative methods are derived. Their convergence behavior
is analyzed and their conditions of convergence are determined using two different methods that
lead to the same result. Computational complexity of these detectors is shown to be less than that
of their symbol-level counterparts.

In chapter 10, using a matrix iterative analysis approach, the chip-level linear group-wise structure
is shown to be equivalent to the linear BSOR iterative method but with a relaxation matrix rather
than a relaxation factor. Establishing such connection allows the proposition of two new corollaries
from which two conditions of convergence are determined.

In chapter 11, a new chip-level linear group-wise PIC detector is proposed. Its inherent parallelism
facilitates its implementation in a parallel multiprocessor structure and reduces considerably the
algorithm time complexity. Four different group-detection schemes are derived and investigated in
terms of convergence speed and behavior. Furthermore, and in order to ensure convergence, a
chip-level linear weighted group-wise PIC detector is suggested. Conditions of convergence for

this structure are determined.
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2.2 Cellular Concept

In order to understand the underlying principle behind the cellular concept, let us imagine that the
frequency spectrum available for mobile communications is infinite and that regulatory authorities set
no limit on the power transmitted within that frequency band. In this case, the simplest wireless system
will have a centralized base station serving a large area with all the users in that area communicating

directly with the base station. Such a system is unpractical for two main reasons. First, the users that
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are far away from the base station have to transmit at very high power levels; this will eventually
decrease the battery life of their mobile phones very fast. Second, the total bandwidth utilized in an
area increases with the number of users communicating in that area, hence if a single base station is
used to cover the entire geographical area and serve all the users, the total bandwidth required would
be huge.

As regulatory authorities assign frequency bands for different communication applications, the
number of users, in a given area, that can be accommodated without exceeding the frequency
limitations is limited. Additionally, a single base station covering the entire area would require
transmission at high power levels to communicate with distant users. However, this is not permitted by
the regulatory authorities in order to avoid interference with other applications. Thus, in practical
systems, power and bandwidth factors are constraining the service areas to be in the vicinity of the base
stations.

Cellular communication consists of partitioning a large geographical area into smaller sized
areas known as cells. The fundamental concept for such a system has emerged and evolved in 1970’s
as a result of extensive research in wireless communications [1]-[7]. It involves using many low-power
base stations placed within cells at approximately their centers rather than using one high-power
transmitter for the entire area to be covered [8]. Using this cellular concept, the allocated frequency
band can be reused by cells that are separated sufficiently.

Dividing a certain geographical region into cells “cellularization” includes the determination of
the size of different cells which is primarily dependent on the population density or subscriber density.

Moreover, the size of the cell is controlled by the following factors [9]:

e Power transmitted by the base station belonging to the cell.
e Terrain within the region of the cell.

e Presence of man-made features such as buildings and other structures.

These factors also determine the shape of the cell, which is rarely regular [10]. The different cell
sizes and their applications are illustrated in Table 2.1 [9].

The communication link from the base station to the mobile user is known as the downlink
(forward channel) while that from the mobile user to the base station is known as the uplink (reverse
channel). In cellular systems, a user belonging to a particular cell communicates with the base station

of that cell while all other base stations neglect the signal received from this user. The process in which
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a user moves from one cell to another and establishes a communication link with the base station in the

new cell is called handoff [11].

Table 2.1: Sizes of cells and associated uses

Application Average cell diameter Name
Sub-urban 1-10 km Macro-cell
Urban 1 km Mini-cell
Street 100 m Micro-cell
Office <10m Pico-cell

In a cellular system, as the one shown in Figure 2.1, users typically communicate with base stations by

means of handsets.

Taaae Station (§TS)

) Base Station (BTS)
it

)

Mablle Usar

Figure 2.1: A typical cellular system.




Chapter 2 Cellular and CDMA Concepts

The base stations not only offer a communication link to and from the handset, but also provide
connectivity to the public switched telephone network (PSTN) through the mobile telephone switching
office (MTSO) which serves as a link between the wired and wireless networks.

Use of the same frequencies for communications within different cells is known as firequency
reuse. The frequency reuse factor is the rate at which the same frequency can be used in the network. It
iS 1/N_es where N,y is the number of cells which cannot use the same frequency for transmission. A
cluster is defined as a group of cells in which frequencies are not reused (N..;). For example, the
number of cells in an FDMA cluster varies, with 3 and 7 as the typical values ([12] and [13]).
However, in a single cell clusters such as the CDMA system, the same frequency band is reused in
every cell. Frequency reuse is one of the major benefits of cellular systems as it significantly increases
the capacity of the system while using only a limited number of frequencies ([3] and [12]). An

illustration of the frequency reuse factor of 1/7 is shown in Figure 2.2.

Figure 2.2: An illustration of the cellular frequency reuse concept.
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2.3 Different Generations of Cellular Systems

2.3.1 First Generation Cellular Systems

The first generation cellular systems generally employ analog Frequency Modulation (FM) techniques.
The Advanced Mobile Phone System (AMPS) was the most dominant first generation system. AMPS
was developed by the Bell Telephone System. It uses FM technology for voice transmission and digital

signaling for control information. Other first generation systems include [14]:

e Narrowband AMPS (NAMPS).
e Total Access Cellular System (TACS).
e Nordic Mobile Telephone System (NMT-900).

2.3.2 Second Generation Cellular Systems

The rapid growth in the number of subscribers was the main reason behind the evolution towards
second generation cellular systems. Second generation systems took advantage of compression and
coding techniques associated with digital technology. All second generation systems employ digital
modulation schemes. Multiple access techniques like Time Division Multiple Access (TDMA) and
Code Division Multiple Access (CDMA) are used along with FDMA in the second generation systems.

Second generation cellular systems include [12]:

e United States Digital Cellular (USDC) standards 1S-54 and IS-136.
e Global System for Mobile communications (GSM).

e Pacific Digital Cellular (PDC).

e cdmaOne (IS-95).

2.3.3 Third Generation Cellular Systems

Research efforts have been ongoing for more than a decade to introduce multimedia capabilities into
mobile communications. Third generation cellular systems emerged to satisfy the ever-increasing need
for wideband services like high speed internet access, video and high quality image transmission. The

primary requirements of the next generation cellular systems are [15]:

e Voice quality comparable to Public Switched Telephone Network (PSTN).
e Support of high data rate. Table 2.2 details the data rate requirement of the 3G systems:
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Table 2.2: 3G Data Rate Requirements.

Mobility Needs Minimum Data Rate
Vehicular 144 kbps
Outdoor to indoor and 384 kbps
pedestrian
Indoor Office 2 Mbps

e Support of both packet-switched and circuit-switched data services.

e More efficient usage of the available radio spectrum.

e Support of a wide variety of mobile equipments.

e Backward Compatibility with pre-existing networks and flexible introduction of new services and
technology.

e An adaptive radio interface suited to the highly asymmetric nature of most Internet

communications: a much greater bandwidth for the downlink than the uplink.
Third generation cellular systems include:

e WCDMA or UTRAN in Japan and Europe
e (CDMA2000 in the United States

2.4 CDMA History

The spread spectrum technology has been originally used in the military field where it has been
developed to counteract intentional jamming. In this section we highlight the milestones for CDMA
evolvement starting from the 1950s after the appearance of Shannon’s theorem [16]. A thorough
overview of spread spectrum history is provided in [17]. The CDMA era can be roughly divided into
three periods, as shown in Table 2.3: the pioneer CDMA era, the narrowband CDMA era, and the
wideband CDMA era [22].

In 1949, John Pierce wrote a technical memorandum where he detailed a multiplexing system in
which a common medium carries coded asynchronous signals. This system can be classified as a time
hopping spread spectrum multiple access system [17]. Claude Shannon and Robert Pierce introduced
the basic ideas of CDMA in 1949 where they described the interference averaging effect and showed
the graceful degradation of CDMA systems [18].

10
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Table 2.3: CDMA evolution.

Pioneer Era
1949 John Pierce: time hopping spread spectrum.
1949 Claude Shannon and Robert Pierce: basic ideas of CDMA.
1950 De Rosa-Rogoff: direct sequence spread spectrum.
1956 Price and Green: antimultipath “RAKE” patent.
1961 Magnuski: near-far problem.
1970s: Several developments for military field and navigation systems.

Narrowband CDMA Era

1978 Cooper and Nettleton: cellular application of spread spectrum.
1980s: Investigation of narrowband CDMA techniques for cellular applications.
1986 Verdu: Formulation of optimum multiuser detection.

1993: IS-95 standard.

Wideband CDMA Era
1995 Europe: FRAMES and FMA2.

Japan: Core-A and WCDMA.

USA: cdma2000.

Korea: TTA I and TTA 1.

2000s: Commercialization of wideband CDMA systems.

In 1950, De Rosa-Rogoff suggested a direct sequence spread spectrum system [17]. In 1956,
Price and Green introduced the anti-multi-path “RAKE” receiver [17]. They showed that signals
arriving over different propagation paths can be resolved by a wideband spread spectrum signal and
combined by the RAKE receiver. The near-far problem (i.e., a high-power interference overwhelming
a weaker spread spectrum signal) was first mentioned in 1961 by Magnuski [17]. Introducing spread
spectrum techniques into the cellular world was suggested by Cooper and Nettleton in 1978 [19].
During the 1980s Qualcomm examined the possible use of DS-CDMA techniques in cellular systems,
which finally led to the commercialization of the narrowband CDMA IS-95 standard in July 1993.
Commercial operation of I1S-95 systems started in 1996. Multiuser detection (MUD) attracted a lot of

11
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attention and has been a subject of extensive research since 1986 when Verdu formulated the optimum
multiuser detection for the additive white Gaussian noise (AWGN) channel [20].

During the 1990s, wideband CDMA techniques with a bandwidth of 5 MHz or more have been
studied extensively throughout the world, and several trial systems have been built and tested [21].
These include FRAMES Multiple Access (FRAMES FMAZ2) in Europe, Core-A in Japan, the
European/Japanese WCDMA scheme, cdma2000 in the United States, and the Telecommunication
Technology Association I and II (TTA I and TTA II) schemes in Korea.

2.5 Spread Spectrum Technique

The recent fast growth in the number of subscribers and the emergence of a wide range of mobile
applications has increased the need for developing more spectrally efficient schemes that can enable
more users to share the same spectrum but still maintain a satisfactory quality of service. The most
promising technology that offers such possibility which is known as CDMA relies on the principle of
spread spectrum technique.

By definition, spread spectrum refers to any digital transmission technique where the data signal
occupies a bandwidth much larger than the minimum bandwidth required for its transmission. Even
though spread spectrum is not a Bandwidth-conserving modulation technique, it has been implemented
in a wide range of applications. The main reason behind this is that it solves two key problems in
communication: the unauthorized interception problem and the jamming problem [23]-[25]. Both of
these problems are very critical in military communications, and this explains why this technology
started and evolved within the military field.

The mitigation of the first problem is achieved by lowering the probability of unauthorized
interception. In spread spectrum, this is possible due to the spreading process which lowers the power
spectral density of the desired signal to a level that is below the thermal noise level of the interceptor.
This means that any hostile receiver will perceive the spread spectrum signal as noise. The mitigation
of this problem is shown in Figure 2.3.

The second problem is alleviated through the despreading process where all signals of undesired
users, including narrow-band jamming, are spread and therefore their power spectral density within the
bandwidth of the despread narrow-band desired signal is low compared to that of the desired signal.

The mitigation of this problem is shown in Figure 2.4.

12
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Figure 2.3: Low probability of interception capability of the spread spectrum technique.

Many types of spread spectrum technologies exist such as: direct sequence, frequency hopping,

time hopping and other hybrids. Since most of the cellular standards (IS-95, UMTS, ...) use the direct

sequence spread spectrum technique, we restrict our discussion to this technique only which will be
detailed in the following section.

13



Chapter 2 Cellular and CDMA Concepts

Jamiming narrow-

Power Spectral
Density (WiHz) band signal
Spread Spectrum
Slgnal
-
Frequency (Hz)
(a) Before
Despraading
Power Spectral Spread Spectrum
Density (WIHz) Signal
Jamiming Narrow-
band signal
Frequency (Hz)
(b) After
Despreading

Figure 2.4: Anti-jamming capability of the spread spectrum technique.

2.6 Direct Sequence Spread Spectrum

In direct sequence spread spectrum, the data signal with period 7 is multiplied by a spreading code
with period 7. that is very small compared to 7 [26]. This process results in the expansion of the
signal’s bandwidth as shown in Figure 2.5.

If we assume that the total power of the spread spectrum signal is the same as that of the original

narrowband signal, then the power spectral density P of the spread spectrum signal is expressed as

B . . . .
[25]: P, =P (B“ ], where P; is the power spectral density of the narrowband data signal, B is the

RAY
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bandwidth of the narrowband data signal and B, is the bandwidth of the spread spectrum signal. The

SS

B T
ratio =—= is known as the processing gain of the system [25].
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Figure 2.5: Spreading process.

For most practical systems, this parameter ranges from 10 to 30 dB which means that the
bandwidth of the narrowband data signal is expanded by a factor of 10 to 1000 times and its power

spectral density is reduced by the same factor [25].

2.7 Radio-Channel Access Schemes

Multiple access techniques are used to allow many mobile users to share simultaneously a common
bandwidth. Frequency division multiple access (FDMA), time division multiple access (TDMA) and
Code division multiple access (CDMA) are the major access techniques used to share the available

bandwidth in a mobile radio communication system. These techniques are detailed in next sections.

15



Chapter 2 Cellular and CDMA Concepts

2.7.1 Frequency Division Multiple Access

Frequency division multiple access allocates individual channels (frequency bands) to individual users.
As it can be seen from Figure 2.6, each user is assigned a unique frequency band on demand. During
the period of the call, no other user can share the same frequency band. If an FDMA channel is not in
use (for example, during pauses in telephone conversation) it stays idle and cannot be used by any
other user for the purpose of increasing the system capacity. FDMA was the multiple access scheme

used in most first generation standards such as AMPS (Advanced Mobile Phone System).

Time
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Figure 2.6: Frequency division multiple access.

2.7.2 Time Division Multiple Access

Time division multiple access systems, however, divide the transmission time into time slots where one
user is allowed to either transmit or receive in it. As it can be seen from Figure 2.7, each user occupies
cyclically repeating slots, so a channel may be thought of as a particular time slot that reoccurs
periodically in every frame. Unlike in FDMA systems, which can accommodate analog frequency
modulation (FM), digital data and digital modulation schemes, are used with TDMA.

TDMA shares a single carrier frequency with several users, where each user makes use of non-
overlapping time slots. Analogously to FDMA, if a channel is not in use, then the corresponding time
slots sit idle and cannot be used by other users. TDMA compared to FDMA needs stringent

synchronization requirements and, in addition, guard slots are necessary to separate users. Generally,
16
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the complexity of TDMA mobile systems is higher compared to that of FDMA systems. TDMA is
usually combined with FDMA as in the widely used European standard GSM. Thus GSM is a hybrid
TDMA/FDMA system [14].
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Figure 2.7: Time division multiple access.

2.7.3 Code Division Multiple Access

Each user of a multiple access system, based on the FDMA or the TDMA principle, is supplied with
certain resources, such as frequency or time slots, or both, which are disjoint from those of any other

user. Viterbi [26] pointed out that these multiple access schemes suffer from three weaknesses:

e The first weakness is that these schemes assume that all users transmit continuously. However, in a
two-person conversation, the percentage of time where a speaker is active, that is, talking, ranges
from 35% to 50%. In TDMA or FDMA systems, reallocation of the channel for such brief periods
requires rapid circuit switching between the two users, which is practically impossible.

e The second weakness is the relatively small frequency reuse factor of FDMA and TDMA, which is
proportional to the user capacity. Actual systems, such as GSM, employ a reuse factor of 1/7.

e The third weakness, which is common to all multiple access systems but it is more serious for
FDMA and TDMA, is multipath fading. Multipath fading is caused by interference between two or

more versions of the transmitted signal that arrive at the receiver at slightly different times. This
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phenomenon is particularly severe when each channel is allocated a narrow bandwidth, as in the

case of FDMA systems.

A completely different approach, realized in CDMA systems, does not attempt to allocate
disjoint frequency or time resources to each user. Instead the system assigns all resources to all active
users.

In direct sequence DS-CDMA systems, the narrowband message signal is spread by a very
large-bandwidth signal called the spreading signal. As shown in Figure 2.8, all users in a DS-CDMA
system use the same carrier frequency and transmit simultaneously. Each user has a unique spreading
code, which is approximately orthogonal to the spreading codes of the rest of the users. The receiver
performs a correlation operation to detect the data signal of the desired user. For detecting the data

signal, the receiver requires the spreading code used by the desired user.
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Figure 2.8: Code division multiple access.

Theoretically, CDMA systems provide a larger user capacity than FDMA and TDMA systems
[27]. This is due to the fact that the CDMA system distinguishes different users by their spreading
codes; the same spectrum can be used in all cells. Hence the frequency reuse factor is one.

Besides this, two other important feature of CDMA systems are worth mentioning, the first is
privacy and the second is its ability to combat multi-path fading. Privacy is realized by virtue of the
fact that the data signal of a certain user can be recovered only if its spreading code is known.

Knowledge of such codes is a difficult task and this difficulty increases proportionally to the length of
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the spreading code. The ability of CDMA systems to combat multi-path fading is largely due to the fact
that the CDMA signal is a wideband signal and it is larger than the coherence bandwidth [28] of the
wireless channel. Hence, the different frequency components of the CDMA signal are affected
differently by the multi-path fading channel. All multi-paths with delays larger than 7. are resolved,
processed and combined in an optimal way using what is known in the literature as the Rake receiver.
This is a form of diversity that can help the receiver in improving its bit error rate (BER) performance.

Despite all the advantages the CDMA system offers, its performance is limited by two major
problems, namely: the multiple access interference (MAI) and the near-far problem which are
interrelated and are usually treated together.

The MAI, caused by the cross-correlation between spreading codes of active users, is the
dominant factor that leads to reduction of user capacity in CDMA systems. The undesirable impact of
the MAI becomes more remarkable and sometimes disastrous when the number of active users
becomes large or when the power level of certain users is significantly higher than that of others. In
this case, weak users may lose communication because of the overwhelming MAI. This phenomenon is
known as the near-far effect and needs what is known as power control [29]. Hence, unlike TDMA
and FDMA systems that are bandwidth limited, CDMA systems are interference limited. Thus,
increasing the capacity of the system translates directly to decreasing the amount of MAI. This process

is usually referred as interference cancellation or multiuser detection (MUD) [30].

2.8 Spreading Codes

In all spread spectrum systems the desired signal is spread prior to transmission using one or more
spreading codes. Selection of spreading codes for a certain application depends on the working
environment and on the specific properties desired for the spreading codes. For single user
communications in a multi-path environment, the most important thing is the ability to resolve multi-
paths. To perform this successfully, the spreading codes must have excellent autocorrelation properties,
ideally a delta function. However, for a multiuser system in a non-multi-path environment, the most
important issue in selecting the spreading codes is the capability to minimize MAI. This can be
achieved if the spreading codes are selected such that the maximum value of the cross-correlation is
minimized ([30] and [31]). In practice, commercial CDMA systems are multiuser systems in multi-
path environment, consequently, the selection of spreading codes for CDMA systems should take into
account both the autocorrelation and cross-correlation properties. Furthermore, CDMA systems are

cellular and require separation of intra-cell as well as inter-cell users. This imposes two levels of
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spreading, which can be accomplished by combining two spreading codes, known as channelization
codes (to distinguish between different users of the same cell) and scrambling codes (to distinguish
users of different cells). Multiple spreading is described in detail in [32]. Two broad categories of
spreading codes, namely orthogonal codes and pseudo-noise (PN) codes, are discussed in the

subsequent subsections.

2.8.1 Orthogonal Codes

As their name indicates, these codes, known as Walsh-Hadamard codes [32], are mutually orthogonal;
hence the cross-correlation between each synchronous pair is theoretically zero. However, if they are
asynchronous, their cross-correlation is very much dependent on the particular pair of codes used;
some will have a zero cross-correlation while others will have a very high correlation. In WCDMA,
they are known as variable orthogonal spreading factor (OVSF) codes and they are used for

channelization in both uplink and downlink channels [32].

2.8.2 Pseudo-Random Noise (PN) Codes

A Pseudo-random Noise (PN) code is a sequence of binary numbers, e.g., +1, which appears to be
random; but is in fact perfectly deterministic. The sequence appears to be random in the sense that the
binary values occur in the sequence in the same proportion they would if the sequence were being
generated based on a fair "coin tossing" experiment. In such an experiment, each head could result in
one binary value and a tail the other value. The PN code appears to have been generated from such an
experiment. A software or hardware device designed to produce a PN code is called a PN generator
([33] and [34)).

The reason behind the use of PN codes is that if the code sequences were deterministic, then
everybody could access the channel. If the code sequences were truly random on the other hand, then
nobody, including the intended receiver, would be able to access the channel. Thus, using a pseudo-
random sequence makes the signal look like random noise to everybody except to the transmitter and

the intended receiver [31]. The most used PN codes are:

e Maximal Length codes: The maximum-length shift-register code, or m-code for short, is probably
the most widely known PN code. It has a length of 2" -1 bits and is generated by using a linear
feedback shift register with m taps. The m-codes have excellent autocorrelation properties but their
cross-correlation properties do not follow any particular rules ([33] and [34]) and typically exhibit

undesirably high values [31]. Furthermore, the number of m-codes for a given number of registers
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in a linear feedback shift register is limited. m-codes are used in IS-95 for scrambling for both
uplink and downlink channels [32].

¢ Gold codes: Gold codes tackle the problems associated with m-codes. They are derived by
combining m-codes from two linear feedback shift registers ([35] and [36]). In comparison to m-
codes, Gold codes provide larger sets of codes and exhibit better cross-correlation properties ([31]
and [33]). Gold codes are used in WCDMA for scrambling in the downlink channel [32].

o Kasami codes: Kasami codes also solve the two undesirable properties of the m-codes: smaller sets
of codes and high cross-correlation values. Kasami codes can be generated either as a small set or
as a large set. The small set has better cross-correlation properties, while the large set provides
more codes to choose from. Generation of Kasami codes involves a method similar to the one used
to generate the Gold codes. Kasami codes are used in WCDMA for scrambling in the uplink
channel [32].

2.9 Short-Code versus Long-Code CDMA Systems

The selection of spreading codes is critical for the system designer. The choice between a short-code
and a long-code CDMA system has been subject to a long debate. However, this depends heavily on
the target of the application. As such, one has clearly to set the targets and main features of the
application. Nevertheless, the targets are in many cases conflicting and this may explain why the
debate, which system is better, is not resolved until now. Another factor that adds more ambiguity to
this issue is that many studies have ended up with conflicting results. For example, vembu and viterbi
[37] state that the long-code system outperforms its counterpart the short-code system in terms of user
capacity and robustness while Kérkkéinen et a/ [38] state that the short-code system outperforms the
long-code system in terms of average BER performance (average of users).

In order to get a clear picture of the scene, it is better to emphasize on the features of both
systems and discuss the benefits and shortcomings of each system. In the following we compare long-

code and short-code systems:

e Historically the choice of a long-code system was motivated by the requirement for a low
probability of inference of the spreading code, and hence interception of the transmitted data, since
the over-riding requirement was security [39]. This prompted the desire for very long codes which
could be generated easily by co-operating parties but which at the same time, were difficult for

interfering, or eavesdropping parties to infer. However, the advent of the implementation of spread
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spectrum techniques for multiple access communications has shifted the emphasis somewhat away
from such security issues to maximizing the number of subscribers who are able to access a system
simultaneously [39], while maintaining a reasonable error performance. One way of maximizing
the user capacity is the use of advanced signal processing techniques such as multiuser detection.
Most of the MUD schemes assume cyclostationary interference which motivated the need for
periodic short-code CDMA systems.

In a long code system, the correlation between the users changes from symbol to symbol and the
MALI therefore appears to be random in time, causing the average performance for different users to
be identical and determined by the average interference level [40]. Short codes, on the other hand,
have cross-correlations that remain unchanged over time, and there is a fear that an unfortunate
user might be trapped in an inferior performance scenario due to non time-varying cross-
correlations. The capacity is therefore ruled by the distribution of the interference rather than
solely by its mean. To overcome the shortcoming of the short-code system, the author in [41]
proposed a code-hoping technique to reduce the variability of users’ performance within the
system.

In terms of complexity of multiuser detectors, short-code systems are specially introduced to make
MUD possible, e.g., it is set as an option in the UMTS standard [32]. Short-code systems have the
property that codes are periodic with a periodicity equal to the symbol time in contrast to long
codes, which essentially are random. As such, the cross-correlation matrix is fixed and doesn’t
have to be recomputed from one symbol period to another. It should be noted that some
interference suppression and cancellation techniques are applicable to long code systems as well,
but the complexity is often lower in case of short codes due to the cyclostationary interference.
Long-codes provide a large set of codes to choose from, therefore no algorithm for code selection
is needed. This is in contrast to short-codes where the set of codes is limited and hence spreading

codes for different users have to be carefully selected [38].

2.10 Conclusion

In this chapter, we reviewed the basic concept of cellular networks and went through different

generations of cellular systems. The theory behind the spread spectrum technique is provided and

advantages of CDMA over other multiple access techniques are detailed. Finally, different types of

spreading codes that are used in actual standards are discussed and compared.
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3.2 Introduction

Radio waves propagate from a transmitting antenna, and travel through free space undergoing
absorption, reflection and scattering. They are greatly affected by the ground terrain, the atmosphere,
and the objects in their path, like buildings, bridges, hills, trees, etc. These multiple physical
phenomena are responsible for most of the characteristic features of the received signal.

In most of the mobile or cellular systems, the height of the mobile antenna may be smaller than
the surrounding structures. Thus, the existence of a direct or /ine-of-sight path between the transmitter
and the receiver is highly unlikely. In such a case, propagation is mainly due to reflection and
scattering from the buildings. So, in practice, the transmitted signal arrives at the receiver via several
paths with different time delays creating a multipath situation as in Figure 3.1.

At the receiver, these multipath waves with randomly distributed amplitudes and phases
combine to give a resultant signal that fluctuates in time and space. Therefore, a receiver at one
location may have a signal that is much different from the signal at another location, only a short
distance away, because of the change in the phase relationship among the incoming radio waves. This
causes significant fluctuations in the signal’s amplitude. This phenomenon of random fluctuations in

the received signal level is termed as fading.
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Figure 3.1: Wave propagation mechanisms

The propagation factors that affect the strength of the received signals in wireless
communication systems, excellently introduced in [42], are the path loss, large-scale fading and small-

scale fading. These are depicted in Figure 3.2 and explained briefly below:

e The path loss is basically a drop in signal power as a function of distance. When a mobile receiver
moves away from the base station, i.e., when the distance increases, the signal will become weaker
because of power loss in the transmission medium. For free-space propagation, the signal strength
is inversely proportional to the distance squared (i.e., 1/&°, where d is the distance between the
transmitter and receiver). The path loss has the lowest rate of change of the three factors and the
attenuation normally reaches 100-120 dB in the coverage area [43].

e The large-scale fading varies faster than path loss and is normally described as a log-normal
distributed stochastic process around the mean of the path loss. This type of fading is introduced
because of the shadowing from buildings and other structures in the environment. The large-scale
fading introduces attenuations of about 6-10 dB [43].

e The small-scale fading is, as the name implies, the fastest varying mechanism. It is introduced as a

consequence of the multipath propagation together with the time-varying nature of the channel.
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The small-scale fading attenuates the signal with up to 40 dB, when the mobile moves as short as

half a wavelength [43].

Path loss
----2-2-- Srall scale fading
--<-- Large scale fading

Y

Distance

Figure 3.2: Fading mechanisms.

The path loss and large-scale fading can be mitigated by the use of power control, for example.
Small-scale fading, on the other hand, introduces the need for an equalizer that is capable of removing
the time-varying intersymbol interference (I1S]) introduced by the multipath propagation. The multipath
propagation arises from the fact that the transmitted signal is reflected from objects such as buildings
or mountains and scattered from smaller objects such as lamp posts, for example [44]. Hence, the
signal will reach the receiver from different directions, as shown in Figure 3.1. Each path may have
different delay, introducing a spread in time (Delay spread) of the received signals, indicating that the
channel may be characterized by an impulse response, where each impulse represents signal path with
a certain delay. Depending on the maximum time difference between the first and last received signals,
the maximum excess delay T,, and the symbol period T, the channel may be classified as frequency
selective or flat. The channel is said to be frequency selective when 7, > T (the mobile radio channel

has a constant gain and linear phase response over a bandwidth, known as coherence bandwidth,
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smaller than that of the transmitted signal), because different frequencies of the transmitted signal will
experience different amount of attenuation. This leads to time dispersion of the transmitted symbols
within the channel arising from these different time delays, and hence resulting in inter-symbol
interference [45].

On the other hand, if 7; < T,, (the mobile radio channel has a coherence bandwidth larger than
the bandwidth of the transmitted signal) then the channel is said to be flat since all frequencies of the
transmitted signal would experience essentially the same amount of attenuation.

For wireless systems, the channel is time-variant because of the relative motion between the
transmitter and the receiver or by movements of objects within the channel, which results in
propagation changes (i.e., variations in the signal’s amplitude and phase).

Another important physical mechanism that affects the signal is the Doppler effect. Doppler
spread is introduced in the received signal spectrum, causing frequency dispersion. If the Doppler
spread is significant relative to the bandwidth of the transmitted signal, the received signal is said to
undergo fast fading. This form of fading typically occurs for very low data rates. On the other hand, if
the Doppler spread of the channel is much less than the bandwidth of the baseband signal, the signal is
said to undergo slow fading. This is the case for most 3G wideband systems [46].

If we assume that (i) the propagation of the waves takes place in the two dimensional
(horizontal) plane, (ii) that there is isotropic scattering (uniformly in all directions) around the receiver,
(iii) that the channel is flat, (iv) uniform distribution of signals arriving from all angles throughout the
range [0, 2z] and that (v) the receiving antenna is omni-directional (radiates power uniformly in all
directions), then it is possible to show that, when there is a great number of waves received at the
antenna, a transmitted signal will be multiplied with a time-varying signal with a power spectral
density often called Jake’s power spectral density, Clarke’s power spectral density or the classical
Doppler spectrum. Interested readers are referred to [47] for full details regarding the derivation of
Jake’s PSD. It can also be shown that the signal has a complex Gaussian distribution, which implies
that the magnitude of the signal will have a Rayleigh distribution, in the case of no line-of-sight. When
a line-of-sight component is present, the distribution will be Rician instead. A nice presentation on this
topic can be found in [28].

The final model of the channel is a time-varying impulse response, where each coefficient in the
response models a certain multipath; i.e., each coefficient will have the classical Doppler spectrum and

either a Rayleigh or Rician distribution.
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For the Rayleigh and Rician processes, it is possible to derive a number of useful statistical
properties ([28] and [48]), such as the average fade duration (AFD), the level crossing rate (LCR) and
the autocorrelation function.

The AFD is a measure of the average time the amplitude of the signal is below a certain
threshold level. The AFD is inversely proportional to the Doppler frequency, that is, the higher the
Doppler frequency, the shorter the fades will be on the average. The LCR is a measure of how often a
certain amplitude level is passed by the signal. The LCR is proportional to the Doppler frequency, that
is, for a higher Doppler frequency, the rate of crossing a certain level is higher. The autocorrelation
function specifies the extent to which there is correlation between the channel’s impulse response at
time ¢, and at time #,. The time dependence goes down (i.e., less correlation) as Doppler frequency goes

higher. An excellent overview on this topic and other channel modeling techniques is presented in [49].

3.3 Channel Model

The time-varying channel impulse response is given by the following expression [50]:

L

g(t,r):Zh,c, (t)o(z-7,) (3-1)

I=1
where:
L: is the number of paths.
h;: is the given path amplitude satisfying the power normalization condition: i(h ; )2 =1. This
=
requirement allows the channel to be scaled by the transmit power in the simulation.
72 is the time delay of the path relative to the first path; usually 7; = 0 is assumed.
ci(t): the fading coefficient of the /-path and can be Rayleigh or Rician distributed.
d(t): is the delta function
A typical realization of the time-varying channel impulse response given by equation (3-1) is
shown in Figure 3.3. A practical implementation of the time-varying channel in an uplink

asynchronous CDMA system is shown in Figure 3.4 and 3.5. Here, the received signal is given by:
K
r(t)=2r (=" )+n(t) (3-2)
k=1

where:

Ly
7, (t)z ;ﬂhlkq‘ (t -7, )bk (t -7, )a,{ (t -7, )sk (t -7, ) (3-3)
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Figure 3.3: Time-varying channel impulse response.
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Figure 3.4: Uplink asynchronous CDMA system.
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and n(z) is an AWGN noise sample at time ¢ with variance ¢° , moreover, by(1), ax(?), and si(?) are the
transmitted symbol value, amplitude value and spreading code value at time ¢ of the k" user,
respectively.

The amplitude of each path £, is usually obtained from the power delay profile whereas the

fading coefficients ¢, (l) are generated from a fading coefficients generation model. The power delay

profile and the fading coefficients generation model are the subject of the next sections.

bolrla (2l (r)

Figure 3.5: Time-varying fading channel for the k" user.

3.4 Power-Delay Profile

Channel measurements are often summarized in terms of power-delay profiles. A Power-delay profile

P(z) (> 0) can be interpreted as a density, normalized such that IP (r)d 7 =1with P(r)dr denoting the
0
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fraction of power in taps with delays in the interval [z, © + dz]. The mean value and the standard
deviation for this density are known as the mean excess delay and rms delay spread, respectively. If we
sample this density function at the sampling rate F; we obtain L samples that represent the number of

lth

multi-paths. If the amplitude of the /” multi-path is 4, and its delay is 7, then the mean excess delay is

defined as:
_ h )2 T
! /
and the rms delay spread is given by:

— hir?
where: 77 = /L )
1 Zlhlz

The power-delay profile includes the power distribution and the associated delay of a multipath

Y (3-5)

channel, so that it captures the frequency selectivity of the channel. For a simulation to be useful,
power-delay profiles used should be representative for the given topographical environment, such as
those summarized in documents of different standard development organizations (ITU, 3GPP, 3GPP2)
([51] and [52]). These models are based on extensive measurements of the time-varying channel

impulse response and are usually summarized in tables as in Table 3.1, 3.2 and 3.3 ([53] and [51]):

Table 3.1: Indoor channel power delay profile (SKm/h).

Relative Delay (ns) | Avg. Power (dB) | Avg. Power
0 0 1
50 -3 0.7079
110 -10 0.3162
170 -18 0.1259
290 -26 0.0501
310 -32 0.0251
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Table 3.2: Indoor to outdoor channel power delay profile (SKm/h).

Relative Delay (ns) | Avg. Power (dB) | Avg. Power
0 0 1
110 -9.7 0.3273
190 -19.2 0.1096
410 -22.8 0.0724

Table 3.3: Vehicular A outdoor channel power delay profile (120Km/h).

Relative Delay (ns) | Avg. Power (dB) | Avg. Power
0 0 1
310 -1 0.8913
710 -9 0.3548
1090 -10 0.3162
1730 -15 0.1778
2510 -20 0.1000

The models given by multi-path channel profiles in tables 3.1, 3.2 and 3.3 should be converted to the
time resolution of the simulation model (For UMTS we have the chip rate is: 3.84 Mchips/s therefore,
the time duration of one chip is 1/3.84 = 260.4 ns). The ideal way to do this is to perform an
interpolation with a sinc(.) function (sin(x)/x), however, this will result in a large number of additional
paths which will increase the simulation time considerably. Simpler interpolation methods that give
approximately the same number of paths are discussed in [54].

In our case, we implement the method known as constant mean delay spread due to its
simplicity [54]. In this method, each ray is split into two rays, one to the left of the sample and one to
the right of the sample. The power of these new rays is such that the sum is equal to the original power,
and the power of each of the new rays is inversely proportional to the distance of the original ray. The
power of all the rays on one sample are added and then normalized. This is graphically demonstrated in
Figure 3.6.

After applying the proposed interpolation method and taking into consideration that we are using
amplitudes in our simulation model instead of powers (average amplitude = ./average power ) we get

the following equivalent amplitude delay profiles:
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Figure 3.6: Equivalent Channel Model.

Table 3.4: Equivalent indoor channel amplitude delay profile of Table 3.1 at chip rate using the

proposed interpolation method.

Relative Delay (ns) | Normalized Avg. Power | Avg. Amplitude

0 0.8082 0.8990
260.4 0.1871 0.4326
520.8 0.0047 0.0686

Table 3.5: Equivalent indoor to outdoor channel amplitude delay profile of Table 3.2 at chip rate using
the proposed interpolation method.

Relative Delay (ns) | Normalized Avg. Power | Avg. Amplitude

0 0.8074 0.8986
2604 0.1650 0.4062
520.8 0.0276 0.1661
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Table 3.6: Equivalent vehicular A outdoor channel amplitude delay profile of Table 3.3 at chip rate

using the proposed interpolation method.

Relative Delay (ns) | Normalized Avg. Power | Avg. Amplitude

0 0.3521 0.5934

260.4 0.2540 0.5040

520.8 0.0939 0.3064

781.2 0.1361 0.3689

1302 0.0772 0.2778

1822.8 0.0557 0.2360

2604 0.0310 0.1761

3.5 Generation of Rayleigh Complex Channel Coefficients

Since the introduction of the Jakes model in 1974 [55], many improved models have been developed
and accessed to generate the Rayleigh complex channel coefficients with correct statistical properties
[56]-[59]. Generating Rayleigh complex coefficients for the case of multiple independent fading
channels was also proposed in [60]-[63].

In this dissertation, we use the improved Jakes model recently introduced in [64]. By sampling at
frequency F (in our case, it is equal to chip-rate), the discrete form of the normalized discrete lowpass

Rayleigh fading signal is given below:

¢, [n]=c/ e [n]+ jef e [n] (3-6)
where:
e 2 M @,
et ] Scon{, Yoo L, )+ o
and:
quadrature 2 S : a)d
c [n] =ﬁ;sm(l/lw, )cos Fscos(amwl )+¢, (3-8)
. 2 -
with: «,, ZMZTZH@’ wq = 2nfg andf, :‘;—fc .
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Here, ¢,,4,,v, , are random variables that are statistically independent and uniformly

distributed over [-n, «] for all m, and [, n is the discrete time index, / is the I" path and M , 1s the

number of oscillators used to approximate the complex fading signal, f; (w, = 2= f;) is the maximum
Doppler frequency of the signal, f; is the carrier frequency, v is the mobile speed, ¢ is the speed of light

and F; is the sampling frequency. When M _ approaches infinity, the envelope

|c ; | = \/ (c jrphase )2 + (c guadranire )2 is Rayleigh distributed with PDF:

li

CZ

fi(e)=ce' 77, ex0, (3-9)
quadrature
and the phase G)(c ; ) = arctan[cl e j is uniformly distributed over [-n , 1] with PDF:
¢
1
Soe) ()= 0. e[, 7] (3-10)

The autocorrelation and cross-correlation functions of the inphase and quadrature components

are given by:

L Gy—— (7)=J,(e,7) (3-11)
R gt guin () =75 (@47 (3-12)
L — (3-13)

L —— (3-14)

where J) 1s the zero-order Bessel function of the first kind. The width of the channel autocorrelation
function is equal to the channel coherence time, denoted by 7., The coherence time satisfies 7, =
1/f;. The channel is said to be slowly fading if 7T,,, >> T or f;T,<<1, and fast fading if T,,, < T or f,T
> 1. For UMTS system, the complex fading coefficients are generated at the chip rate which is
3.84Mchips/sec and Doppler shift for practical mobile speeds ranges from 0 to 200 Hz, therefore, £;7.
<< 1 and hence the mobile channel for UMTS can be considered as a slow fading channel.

In the following, we simulate the improved Jakes model [64] and test some of its properties,
where the following parameters are used: F, = 1kHz, f; = 100Hz. The second order statistics such as the

autocorrelation and the cross-correlation of both the inphase and the quadrature components are shown
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in Figure 3.7, 3.8, 3.9 and 3.10. We test two cases for M, = 10 and for M, = 100. We note that M, =10
is enough to approximate the theoretical models.

Autocorrelation of the inphase

—— Simulation
—— Theoretical

—— Simulation
—— Theoretical

1
-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 3.7: The simulated and theoretical autocorrelation of the inphase and quadrature components of

the Rayleigh fading signal ¢(?) for M, = 10.

Autocorrelation of the inphase
1 T

Simulation
— Theoretical

.5
-100  -80 -60 -40 -20 0 20 40 60 80 100

Autocorrelation of the Quadrature

Simulation
— Theoretical

0.5

-100  -80 -60 -40 -20 0 20 40 60 80 100

Figure 3.8: The simulated and theoretical autocorrelation of the inphase and quadrature components of

the Rayleigh fading signal ¢(?) for M, = 100.
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Figure 3.9: The simulated and theoretical crosscorrelation of the inphase and quadrature components of

the Rayleigh fading signal ¢(?) for M, = 10.
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Figure 3.10: The simulated and theoretical cross-correlation of the in-phase and quadrature components

of the Rayleigh fading signal ¢(?) for M, = 100.
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In order to check that different multi-paths generated using the improved jakes model are not correlated
as it should be, we plot the simulated and theoretical cross-correlation of the in-phase components of
two paths of the Rayleigh fading signal c(?) and the simulated and theoretical cross-correlation of the
quadrature components of two paths of the same signal.

It is clear from Figure 3.11, that the cross-correlation between the in-phase components and the

quadrature components of the two Rayleigh fading paths is very small.

Crosscorrelation of the inpahse of path one and two

L
RNk
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x 10°  Crosscorrelation of the Quadrature of path one and two
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o

Figure 3.11: The simulated and theoretical cross-correlation of the in-phase components of two paths
of the Rayleigh fading signal ¢(?) and simulated and theoretical cross-correlation of the quadrature

components of two paths of the Rayleigh fading signal ¢(?) for M, = 10.

In Figure 3.12, the probability density functions of the envelope and the phase of the signal ¢(?) are
simulated. It is clear that the probability density function of the envelope is Rayleigh with mean one,
and probability density function of the phase is uniform between —r and 7.

In Figure 3.13, a realization of fast and slow fading signals which are controlled through the

parameter f; is plotted: for f; = 10Hz (slow fading) and for f; = 100Hz (fast fading).
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Figure 3.12: The simulated probability density function (PDF) of envelope and phase of the Rayleigh
fading signal c(?).
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Figure 3.13: The envelope of the Rayleigh fading signal ¢(?): slow versus fast fading.
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3.6 Conclusion

In this chapter, the multipath Rayleigh fading channel that will be used in simulation for all subsequent
chapters is detailed. The channel model consists of basically two parts: the power delay profile and the
complex Rayleigh fading channel coefficients. The WCDMA power delay profile and improved Jakes
model were selected for implementation. Finally, different properties of the Jakes model such as the

autocorrelation and cross-correlation were simulated and commented.
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4.2 Introduction

Due to the complex nature of CDMA systems, there have been many different formulations for the
CDMA uplink channel model. Several linear models have been developed starting from the simplest
synchronous CDMA AWGN channel to the multiple antennas over multi-path fading channels. [65]-
[67].

As the CDMA channel introduces MAI/ISI, different techniques of mitigating the effect of MAI,
ISI or both result in different multiuser structures. The development of such structures depends on the
CDMA channel model adopted. This is the main reason for having a variety of formulations of the
CDMA channel model. Structures removing both ISI and MAI are introduced in [67]. Structures
removing only MAI but not ISI are introduced in [68]. Both multiuser detector structures are based on

the following model [67]:
r=SHAb +n 4-1)

where:

S: is the matrix of the spreading codes.

H: is the matrix of the channel coefficients.

A is the matrix of received amplitudes.

b: is the vector of BPSK symbols.

n: is the vector of independently, identically distributed additive white Gaussian noise with zero-mean
and variance o’

Another model proposed in [65] is given by:
r =HSAb+n (4-2)

where H, S, A, b and n are the same as those defined in (4-1). The multiuser detector structures
derived from this model can remove both ISI and MAI. However, if the effect of MAI is not severe, an
interesting and useful structure that can be derived is a structure that will be able to remove ISI but not
MALI. Furthermore, the remaining MAI can be due to either a synchronous CDMA channel or an
asynchronous CDMA channel. The remaining MAI using this model is due to an asynchronous CDMA
channel.

In the following, we introduce a new CDMA channel model that results in a multiuser detector

structure that is able to:

e Either remove both ISI and MAI,
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e Or remove ISI but not MAI where the remaining MAI is due to a synchronous CDMA channel.

Hence, if the spreading codes are orthogonal then the MALI is also automatically removed.

Another advantage of the proposed CDMA channel model is its suitability for simulation,
particularly in MATLAB, due its matrix formulation and the use of circular shifting operators.

In a multiuser CDMA system, there are two levels of asynchronism. In a symbol asynchronous
system, symbols are not aligned but chips are and thus the delay is a multiple of the chip period. In a
chip asynchronous system, chips are not aligned and thus symbols are not aligned as well. Usually in
this case the chip period is sampled at a certain frequency. Hence, the delay is not a multiple of the
chip period but a multiple of the sample period. In the subsequent sections, asynchronism refers to

symbol asynchronism and hence all delays are multiple of the chip period.

4.3 Matrix Form of the Asynchronous CDMA AWGN Channel

Before starting the derivation of the matrix form of the asynchronous CDMA AWGN channel, let us
define the following parameters:

M: is the number of BPSK symbols.

N: is the processing gain.

K: is the number of active users in the system

7"+ is the relative delay of the £” user.

k: is the user index.

n: is the chip index.

m: is the symbol index.

T is a circular shift operator, it shifts the rows/elements of a matrix/vector clockwise (from up to
down) ¢ rows/elements.

s, : is the {N -by-1} spreading code of the K" user.

A: is the {K -by-K} matrix of received amplitudes.

The received signal obtained at the output of the asynchronous AWGN channel is expressed in matrix

form as:
r=SAb+n (4-3)
where:

S :is the {(MN + max (Tk ) )-by-MK} matrix of the spreading codes.
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A : is the {MK-by-MK} matrix of received amplitudes.
b : is the {MK-by-1} vector of BPSK symbols.

=|

. is the {(NM+ max (z’k ) )-by-1} vector of independent, identically distributed (i.i.d) additive white

Gaussian noise with zero-mean and variance ¢°. The matrices S and A, and vector b are derived in

the following subsections.

4.3.1 Matrix of the Spreading Codes S

The following steps are required to construct the spreading matrix S :

s
e Define the vector §, of length {(N+ max (z’" ))—by-]} as §, = { 5} where 0 is a {F% (Tk )—by—]}

ZEero vector.

e Construct the matrix S of length {(N+ ma§(rk ) )-by-K} and shown in Figure 4.1 as

S=[s77 s o577 5T

4 = 5
N#+maxi?')

Sk

Figure 4.1: The matrix S .

e Define § of length {NM+ max (Tk )-by—K} as §= {ﬂ , where 0is a {N(M-1) -by-K} zero matrix.
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e Finally the matrix S of length /NM+ max (rk )-by—MK}, shown in Figure 4.2 is obtained as:
1<k <K

§=[§T° STV .. ST §74MMN}_

MK

N=max(t')

fm-J N

MN+maxidh

Figure 4.2: The matrix S .

4.3.2 Matrix of Received Amplitudes A

The following steps are required to construct the matrix A :

~ - A
e Define the matrix A of length {MK-by-K} as Az{o} where A is a {K-by-K}! matrix of the

received amplitudes and 0 is a {(M-1)K-by-K} zero matrix.
e Finally the matrix A of length {MK-by-MK} and shown in Figure 4.3 is constructed as follows:

K:[ATO ATE . ATUK L AT(M—»K]
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WK

(-4

A MK

Figure 4.3: The matrix A .

4.3.3 Vector of BPSK Symbols b
The vector b of length (MK-by-1}, shown in Figure 4.4, is constructed as follows:

b=[b, b, - b, - b, ]T where b, is a {1-by-K} vector of the m” BPSK symbols of K users.

m

i |
5

WE

1

|__| 5 |__|

Figure 4.4: The vector b .

45



Chapter 4 CDMA Channel Model

4.3.4 Determining the Matrix of Effective Spreading Codes §eﬂ.

Before proceeding further let us define the following symbols:

W: is the number of symbols within the processing window (the length of the processing window
counted in terms of BPSK symbols).

ug: 1s the user index within the g" group.

w: is the symbol index of the symbols detected within one processing window interval.

b: is the block index.

B: is the number of blocks in a data packet.

PW: length of the processing window counted in terms of chips.

In a purely asynchronous CDMA system, the number of BPSK symbols M within one data
packet is very large. Actually, each user activates and deactivates its terminal independently from each
other. Thus, it is not practical to assume that the whole received signal r would be processed in a
receiver. Therefore, a finite sliding processing (observation) window model will be developed. The

received signal will be processed using a sliding window of length PW chips and overlap ¥ chips

where PW and V are defined as: PW = WN + max (rk ) and V' = max (rk ) This is shown in Figure

1<k <K 1<k <K

4.5.

P

N +maxft')

Figure 4.5: The vector r and the sliding window of length PW chips and overlap V chips.
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In doing so, it 1is  better to buffer the received signal r in a matrix
Q=[q, q, -~ q, - q,] of dimension {PW-by-B} where q, is a {PW-by-1} column of Q as

shown in Figure 4.6:

L I — = - — = qu

Figure 4.6: The matrix Q.
The effective spreading codes are defined as: §ejf =[§T° §TN §T(W71)N §T(W 71)NJ

where § is defined in Section 4.3.1. The structure of §eff is shown in

Figure 4.7.
WK
T T T f
| [ | |
N
— § 1 I I I
W eyt I | | |
[ |
I :r'.r-f.'.".' I
§ [ | |
| | |
| | |
| | |
.
| 1 , | | |
| 1 A | | |
== | | |
| [ [ [
[
L o |
| 1 | — W& —mpre)
1 | &
I | g I ¥
| 1 |
| I . I
| 1 \ |
I | [ I |
| [ (I
| [ (ER
| 1 I |
Lo T &
| 1 [ |
| 1 | |

Figure 4.7: The matrix §W .
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S, can be decomposed as: Seﬂ.z[geﬂ.(l) S, (2) -« S, (w) - Seff(W)] and
§efi'(w)=[§ef/(w’1) S (w.2) o s wk) e sy, (W’K)] where 5, (w.k) is the w'

symbol k" user effective spreading code vector. The structure of §eﬁ, (w ) is shown in Figure 4.8.

w1 A

Ntmaxit'] L

Wx+maxit )

(w.1)

Ty (v k)
Ty lw. X )

Ty (v,2]

Ry

Figure 4.8: The matrix S, (w ).

The output of the bank of matched filters for the whole data packet is given by: y,, =S’ r while

the output of the bank of matched filters detector of the »” block is given by: y’ . =§:ﬂ. q, . This is

shown in Figure 4.9:
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Figure 4.9: The vectors y,,,. (left) and y’,,. (right).

The cross-correlation matrix between the codes of active users for the whole data packet is given
by: R=S"S, while the cross-correlation matrix between the codes of active users for the »” block is

givenby: R, =S!, S . This is shown in Figure 4.10.

eff “eff
S,
In order to show the relation between R and l_le/f let us arrange the matrix S as: S=[S" |,
S+

where S”is of length {(N— max (z’k ))—by-K}, S*and S~ are both of length {lnza)lg(rk )—by-K}. Define

also R* as: R’ (g*)T (S*), R* as li*z(@)T(S’) and R~ as ﬁ’z(g’)r (@), hence

R™ =(l~2+ )T .R* =(§*)T S is the dashed matrix, R =(§‘ )T S* is the vertically dashed matrix and

R" =(S+ )T S~ is the horizontally dashed matrix. It is clear that the MAI is not removed completely

because of some cross-correlation elements that reside outside the sliding window. This effect is

known as the finite word effect and therefore is a systematic error.
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Figure 4.10: The matrices R and l_leﬂ. for the asynchronous CDMA AWGN channel.

4.3.5 Determining the Matrix of Effective Received Amplitudes KW

The matrix Zeﬁ of length {WK-by-WK}, as shown in Figure 4.11, is constructed as follows:

A, =[AT° ATK . ATWDE o ATW _1)K],where the matrix A is defined in Section

4.3.2:
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WE

A X
Lk II.I ILI

Figure 4.11: The matrix qu .

4.3.6 Determining the Vector of the Effective BPSK Symbols b’
The block b of BPSK symbols b”, shown in Figure 4.12, is obtained by arranging the vector b of

length  /MK-by-1}  into  blocks as  follows: 52[51 b’ - b* - Db* ]T where

b’ =[Bf’ b, - b. - b ]T . b” is shown in Figure 4.12 and can be decomposed by itself as

follows: b] =[5‘i (1) b)(2) - B (k) - b, (K )T , where b’ (k) is the w" BPSK symbol

of the 5™ block of the k™ user.
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Figure 4.12: The vectors b” and b’

4.4 Matrix Form of the Asynchronous CDMA Multi-Path Fading Channel

Before starting the development of the matrix form of the asynchronous CDMA multi-path fading
channel, let us define the following parameters:

Ly: is the number of paths for the K" user.

li: is the path index for the K" user.

7, :is the delay of the /* path of the k" user.
h, : is the average amplitude of the I" path of the k" user’s channel impulse response (obtained from

the power delay profile).
The received signal obtained at the output of the asynchronous multi-path fading channel is

expressed in matrix form as:

r = HSAD +7i = SAb + 7 (4-4)
where:

H is {(NM + max (T]k )+ max (Tk ) )-by-NMK} matrix of the channel coefficients.

1<l <L, 1<k <K
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wn

is {NMK -by-MK} matrix of spreading codes.

g

is {MK -by-MK} matrix of the received amplitudes.

=g

is {MK -by-1} vector of BPSK symbols.

is {(NM + max (le )+max (Tk ) )-by-1} vector of independent, identically distributed additive

1<l, <L, 1<k <K

=|

white Gaussian noise with zero-mean and variance equals ¢ and S = HS .

The matrices H and S and A and vector b are derived in the following subsections.

4.4.1 Matrix of the Channel Coefficients H

Let us define the following:

C, =[CL c - c o...ocr ] is the {L;-by-NM} matrix of the complex channel coefficients
(generated using the improved Jakes model of Section 3.4) of the k" user for the data packet of length

M.

C'is {L;-by-N} matrix of the complex channel coefficients of the &” user for the m" symbol period.

C, could also be decomposed as: C, = , where ¢, is the /, row of the matrix C, .

The following steps are required to construct the spreading matrix H :

e Define a new variabler, =0,1,..., max (le )

1<, <L,

e Define C of length {( max (rlk)JrI)—by-N} where CJ (7, +L,n) is given by:

1<l <L,
m o —
C; (l,(,n)xhlA , if 7, =7,

(o (7, +1,n)={0

, elsewhere
e Note that if C] is constant during one symbol period then, the elements of each row are constant,
and C; can be reduced to the wvector ¢;of length {L;-by-1}, that is:

¢ (I, )xh, , ifr, =7,

0 , elsewhere .

(o (7, +1,n):{
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k

e Define ¢ (n) ={ (En )} where &' (n) is the " column of the matrix C; and 0 is a {(N -1)-by-

1} zero vector.

e Construct H} of length H{(N +1£1]12?L< (le ) )-by-N} as:

Hy =[&/ ()T & (7' - & (n)r"t o (NP

m

~ ~ H
e Define H] of length {(N + max (rlk)+max (rk ))-by—N} as HY ={ 0"} where 0 is an

1<, <L, 1<k <K

k .
{ max (T ) -by-N} zero matrix.

e Construct the matrix IEI"’z[I:I;”TT1 I:I;”T’2 I:IZ’T’k I:II’ZTTK} of length {(N

+ max (le )+ max (rk ))—by—NK}.

1<l <L, 1<k <K

rym

o Define H” of length {(NM + max (rl )+ max (r" ))-by—NK} as H"” :{H
‘ 0

1<l <L, 1<k <K

} where 0 is an {(M-

I)N -by-NK} zero matrix.

e Finally, construct the matrix ﬁz[HlTO Hrv ... HT" .. opMT™ 71)N} of length

{(NM + max (le )+ max (Tk ))—by-NMK}.

1<l <L, 1<k <K

The matrices H , H" and H} are depicted in Figure 4.13, 4.14 and 4.15, respectively.
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Figure 4.13: The matrix H .
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Figure 4.14: The matrix fI’” .
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Figure 4.15: The matrix H' .

4.4.2 Matrix of the Spreading Codes S

The following steps are required to construct the spreading matrix S :

s
e First, define the vector §, of length {NK-by-1} as §, :Lﬂ where 0 is an {N(K-1) -by-1} zero
vector.
SK

e Second, construct the matrix S=[§IT° §TY oo TEY g T(’H)N] of length {NK -

by-K}.

e Third, define S of length {NMK -by-K} as § = E} where 0 is an {N(M-1)K -by-K} zero matrix.

e Finally, the  matrix S of  length {NMK  -by-MK} is obtained  as:

§=[§TO §TNK §T(m*1)NK §T(M—1)NK:|‘

The matrices S and S are depicted in Figure 4.16 and 4.17, respectively.
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Figure 4.17: The matrix S.
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4.4.3 Matrix of the Spreading Codes S

The matrix S is obtained from S =HS . This is shown in Figure 4.18, where S(m ) is given by

S(m)= H”S and it is shown in Figure 4.19. Here §(m,k )is the non-zero part of ¥ column of S(m).

MK
I I I I
. { *} [ | | [
+max | ¢ = A I I I
S01) [ | [ |
+mm{[r‘*] [ | | |
| | [
"’ IM' |
E | (FEAL N
S(2) | | |
| | [
| | [
| | [
| | [
[ | | | [
| 1Ny L
[ o | [
! o | J’l-ﬂ'ar+max{r*]
[ | [
[ [ [
| | E | +max{-rk]
I [ (m] I
I I  —
[ [ =
[ [ | A
| | | it
[ | | [
[ ([ B It
= | (DR -
LI 12| o |
[ | | |
o (B
[ | | |
[ | | |
| [ | |
K

Figure 4.18: The matrix S.
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Figure 4.19: The matrix S(m ) .

4.4.4 Matrix of the Received Amplitudes A

The following steps are required to construct the spreading matrix A :

~ ~ | A
e Define the matrix A as A= { 0} where 0 is an {(M-1)K-by-K} zero matrix.

e Construct the matrix A of length {MK-by-MK}, as shown in Figure 4.20, as follows:

K=[1~&T° ATE . ATUE L AT(M—I)K:|.
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MK

s I

Figure 4.20: The matrix A .

4.4.5 Vector of the BPSK Symbols b
The vector b of length /MK-by-1}, as shown in Figure 4.21, is constructed as follows:

b=[b, b, - b, - b, ]T , where b is the {1-by-K} vector of the m” BPSK symbols of K

1
h;
|
|

by
|
|

by

Figure 4.21: The vector b .
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4.4.6 Determining the Effective Spreading Code Sﬁjﬂ.

As depicted in Figure 4.22, the received signal will be processed using a sliding window of length PW

chips and overlap V chips of dimensions PW =WN + max (T,A)erax (Tk) and V =

1</, <L, 1<k <K

max (z’,‘ )+max (rk ), respectively.  Again, the received signal r is buffered in a matrix
1<l <L, ¢ 1<k <K

Q=[q, 4, - q, --- q,]ofdimension {PW-by-B} where qy is a {PW-by-1} column of Q.

The matrix of effective spreading codes is defined as: §é’,f =H’ xS, , where:
TG =[ﬁ1+W (b=t 0 I?12+W e-vpy IfIw W= =N ﬁW W (b=t (¥ —1)N:| and is shown in
Figure 4.23. Note taht H" "¢ is the same as H” defined in Section 4.4.1, only m is changed with

w+W(b-1) and it is shown in Figure 4.24, and H}, " ¢ s the same as H] defined in 4.4.1, only m is

changed with w+W(b-1) and it is shown in Figure 4.25.

"

MW +max ()

+max|:':' :|

Figure 4.22: The vector r and the sliding window of length PW chips and overlap V chips.
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Figure 4.25: The matrix H, ™ ™.

Moreover, & "™ (n) is the n” column of the matrix C;” "™ and C; """ (7, +1,n) is

;"N (1 n)xh, , ifr, =1,

givenby: C; " (z, +1,n)= :
0 , elsewhere

Note that C; ™" =) is the same as C/ defined above, only m is changed with w+W(b-1). On the other

hand, §W =[§TO §TN §T(W71)N §T(W 71)N} where § is defined in Section 4.4.2, and it

shown in Figure 4.26.
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Figure 4.26: The matrix §eﬂ. .

Hence, the matrix §fff has the following form as shown in Figure 4.27. In this case, S’ (w ), of length

{(N + max (71 )-I- max( ) )-by-K}, is given by S ( ) e ¢S | where Sis defined in Section

1<l <L, 1<k <K
44.2. Sbf can be decomposed as: S [Ssz (1) §fﬂ (2) - Sfff (w) - Sfff w )} , moreover
§:ﬂ (w) can be written as: §fo (w) [ i (w 1) S (w 2) Lff (w k) e/f (w K)]

where ), (w,k ) is the ()" symbol (k)" user effective spreading code vector and § (w ,k ) is the non-

zero part of & column of S’ (w ) . This is depicted in Figure 4.28.
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The output of the bank of the maximum ratio combining (MRC) rake receivers for the whole

data packet is given by: y,,, =S” r while the output of the bank of the MRC rake receivers for the b"
= H
block is given by: y’ .. = (Ssz ) q, - This is shown in Figure 4.9.

The cross-correlation matrix between the codes of active users for the whole data packet is given

by: R =S"S while the cross-correlation matrix between the codes of active users for the 5" block is
= = H = — = H —

given by: R, = (Sfﬂ. ) S, , where R}, (w )= (Sfo (w )) S, (w) is the cross-correlation matrix of

the w"” symbol in the ™ block.

In order to show the relation between R and l_lfff , let us divide the matrix S(m) as:

S (m)
S(m)=|S8"(m) |where S'(m)is of length {(N+ max (r,k)Jrrnax(rk ))-by—K}, S*(m)and

~ 1<I, <L, 1<k <K
S+
S (m)are  both  of  length {( max (rlk ) + max (r" ))—by-K}. Define R*(m)as:

S*(m), R (m)as R'(m)zg"(m)H§+(m—1) and R (m)as
li*(m)zg*(m)H §’(m +1), hence: li*(m)zli’(m +1)H.

A typical example of the matrix R=S"S for the asynchronous CDMA multi-path fading
channel is depicted in Figure 4.29. It is clear that the MAI+ISI is not removed completely here as well

because of some cross-correlation elements that reside outside the sliding processing window, which is

known as the finite word effect.

Here R’, has the same structure as R, only the subscript m is changed with w+7(b-1). The dashed
matrix is defined as: R (w +# (b ~1))=8"(w + (6 -1))" §'(w +I (b -1)), the vertically dashed
matrix is defined as: R (w +1 (b-1))=8(w +# (b-1))" §"(w +W (b ~1)~1) and finally the
horizontally dashed matrix is defined as:

R (w + (b-1))=(8" (w + (5 -1)))" (5 (w + (b-1)+1)), hence:

R (w + (b-1))=R(w +W (b-1)+1)" .
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Figure 4.29: Structure of the matrix R and lzlf_,_’[f for the asynchronous CDMA multipath fading channel.

4.4.7 Determining the Matrix of Effective Received Amplitudes Kpﬁ.

The matrix chf of length {WK-by-WK}, as shown in Figure 4.30, is constructed as follows:

A A 0 ATK
A, =[Ar" AT

4.4.4.

AT (w-1)K

AT (W’I)KJ, where the matrix Ais defined in Section
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Figure 4.30: The matrix A .

4.4.8 Determining the Vector of Effective BPSK Symbols b’

The block b of BPSK symbols b’ is constructed by dividing the vector b of length {MK-by-1} into
blocks as follows: B:[Bl b> -~ b* - b’ ]T where b’ =[Bf b, - b, - b, ]T .
Furthermore, b’ can be decomposed as b =[Bﬁ, (1) b’ (2) - b (k) - b’ (K )]T, where

b) (k) is the w" BPSK symbol of the b” block of the k" user. This is depicted in Figure 4.12.

4.5 Conclusion

In this chapter we introduced a new linear CDMA model for the uplink asynchronous CDMA multi-
path fading channel. Using this model, new multiuser detection structures can be derived. Of particular
interest is the one which is able to remove ISI and leave a synchronous-type of MAI. The latter can be

simply removed if orthogonal codes are used.
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5.2 Introduction

As many scientific and engineering problems lead to the requirement to solve systems of linear
equations, researchers and scientists are showing increasing interest in developing low-complexity,
efficient and reliable methods for solving such systems. The latter enter at some stage in almost every
engineering problem, and moreover, it often represents the dominating part of the solution to the
problem. Even for nonlinear problems, their solution is usually obtained by solving a sequence of
linear equations, e.g., by Newton’s methods.

Two different categories of methods for solving systems of linear equations exist: direct
methods and iterative methods [69]. In direct methods, such as Gaussian elimination, the system is
transformed by a sequence of elementary transformations to a system of simpler form, e.g., diagonal or
triangular form, which can be solved in an elementary way, e.g., forward or backward substitution. On
the other hand, iterative methods refer to a wide range of techniques that compute a sequence of
approximate solutions, which in the limit converges to the exact solution of the linear system.

Iterative methods date back to Gauss (1823) but have been subject to intensive development
since 1950 when the computers replaced desk calculators. A thorough historical review can be found in
[70]. Iterative methods are often used to solve large linear systems where direct methods exhibit high

computational complexity [69].

5.3 General Concepts

Consider the following linear system:

Rb (5-1

I
<
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where R is the coefficient matrix, y is the right-hand side vector and b is the vector of unknowns. Most
of the classical iterative methods such as Jacobi, Gauss—Seidel, and successive over-relaxation (SOR)

are based on splitting R into [71]:
R=M-N (5-2)

where M is a nonsingular matrix known as the splitting matrix and it is constructed so that it is easily

invertible . Then Rb =y is converted to the fixed-point iteration defined by the following recurrence:
b,=M'Nb,,+M'y (5-3)

The matrix B = M"'N is known as the iteration matrix and it controls the convergence behavior of the

iteration defined by equation (5-3). The iteration above can also be formulated as:

b,=b,;+M'e,; =b,;+ &, (5-4)

where €, =M"ep_1 =M" (y—Rbp_l) is the correction term applied to the current approximate

solution b, and e, is the residual vector. This form (5-4) is commonly used in correction methods [71]
and [72].

Iterative methods of the form in (5-3) belong to a special class of iterative methods which are
known as stationary iterative methods because the transition matrix is independent of the iteration
index p. To study different stationary iterative methods, we begin by the following decomposition of

the coefficient matrix R, that is [71]:
R=D-L-U (5-5)

where D is the diagonal/block-diagonal of R, and L and U are the remaining lower-left and upper-right
parts of R, respectively. We always assume that diagonal entries of R are nonzero.
All iterative methods determine the i element of the next approximation of the solution vector

b, so as to annihilate the /"

element of the residual vector (y — Rb,.;). Basically two different
approaches exist and are used to determine or update the i” element of the next approximation of the
solution vector ([71] and [73]). In the first approach, the i element is determined in a complete
asynchronous way, that is, the determination of one element is independent of the others, while in the

second approach, the "

element is determined in a complete synchronous way, that is, the
determination of one element depends on the calculation of the previous one in a given order. Both
approaches have advantages and disadvantages. The first approach is inherently parallel which enables

its implementation on a multiprocessor system, however, since it doesn’t use the most recent updates
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its convergence is slow. The second approach is inherently sequential, and thus cannot be implemented
on a multiprocessor system; however, since it uses the most recent updates its convergence is usually

faster.

5.4 Iterative Methods
5.4.1 Point Iterative Methods:

5.4.1.1 Point Richardson lteration

The point Richardson iteration is given by [74]:

K
b,;,k =(1—rk,k )bp_l’k +Zrk,jbp—l,j +y, k=1...,K (5-6)

Jj=1
Jj#k

This is element-wise implementation of the Richardson iteration, if all elements are grouped into
vectors and matrices, then the matrix form of the Richardson iteration is given by:

b, =(I—R)bp_1+y (5-7)
Another formulation of the equation above which is most suitable for correction methods is given by:

b,=b, +(y-Rb,_) (5-8)

For all subsequent iterative methods, it can be shown easily that they are equivalent to solving a
preconditioned system M'Rb = My using the Richardson iterative method. Hence, the splitting
matrix M can be regarded as a left preconditioning matrix applied to the system Rb =y. In general the

preconditioning matrix is chosen to satisfy the following two properties [75]:

e Misclose to R in some sense, for example |M — R||,.

e M'is easy to compute.

As such, and since preconditioned systems usually have faster convergence speed, it is expected
that the convergence speed of iterative systems depends on the closeness of the splitting matrix to the

matrix R.

5.4.1.2 Point Jacobi lteration

The point Jacobi iteration is given by [71]:
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1 K
b,, =—|», _Zrk,jbpfl’j k=1..K (5-9)
Ty k j=l
J#k
This is in fact an element-wise implementation of the Jacobi iteration. The matrix form of the Jacobi
iteration is given by:

b,=D"(L+U)b,, +D"y

5-10
=(I-D'R)b, , +Dy 10
The equation above can be reformulated to be suitable for correction methods as:
b,=b, ,+D"(y-Rb, ) (5-11)
5.4.1.3 Point Gauss-Seidel Iteration
The point Gauss-Seidel iteration is given by [71]:
1 k-1 K
b,y =—|yi=2nb,, = > b, | k=L..K (5-12)
T k j=l Jj=k+1
The matrix form of the Gauss-Seidel iteration is given by:
-1 -1
b,=(D-L) Ub, , +(D-L) y (5-13)

An alternative formulation of the equation above, which is appropriate for correction methods, is given

by:

b,=b,,+(D-L) (y-Rb, ) (5-14)

P

5.4.1.4 Modified Point Gauss-Seidel Iteration

In this section, we introduce a new iterative method which can be considered as the complement of the
Richardson iterative method. The method is in fact a modified Gauss-Seidel method where the splitting
matrix M = D — L for Gauss-Seidel is replaced by: M = I — L where I is the identity matrix, the
modified point Gauss-Seidel iteration is given by:
k-1 K
by =y +(1=r )b, w =2 or b, = 2 by, k=1..,K (5-15)
j=l1 j=k+l1

The matrix form of the proposed modified Gauss-Seidel iteration is given by:

b,=(I-L) (I-D+U)b,_ +(I-L) 'y (5-16)
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A different arrangement of the equation above, that is suitable for correction methods, is given by:
-1
b,=b, ,+(I-L) (y-Rb,_) (5-17)

As for the Richardson method, the element-wise implementation of the proposed modified Gauss-

Seidel iteration doesn’t require any division, which reduces the computational complexity.

5.4.2 Point Iterative Relaxation Methods

The correction term b, — b,_; = M(y - Rb,;) is usually either too large and thus results in divergence
or too small and thus the iteration exhibits slow convergence behavior. To overcome this problem, the
correction term is modified by allowing the splitting matrix M to incorporate a weighting factor which
is known as the relaxation parameter or relaxation factor and it is used to control the convergence rate.

Relaxation methods are based on splitting the matrix R into [74]:
oR =M(w) — N(w) (5-18)
Rb =Yy is then converted to the fixed-point iteration defined by the following recurrence:
b, = M(w) 'N(@)b,; + M(w)'y (5-19)
where the iteration matrix is given by B = M(w) 'N(w), the iteration above can also be formulated as:

b,=b,;+M(@)'e,;=b,,;+ &, (5-20)

where ép_le(a))flep_l=M(a))71 (y—Rbp_l) is the correction term applied to the current

approximate solution b,_; and e, ; is the residual vector . Hence, it is clear that the correction term is
controlled by the relaxation parameter . The general form for the point relaxation iterative methods is

given by:
b, = b,.; + M(@)"(y - Rb,..) (5-21)

where w is a real number. Usually, if @ < 1, the iteration above is known as point under-relaxation
iterative method, however if @ > 1, the iteration above is known as point over-relaxation iterative
method. The under-relaxation principle is often used to ensure the convergence of some non-stable
iterative methods such as the point Jacobi iterative method. On the other hand the over-relaxation
principle is often used to accelerate the convergence of some stable iterative methods such as the point

Gauss-Seidel method.
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As for the point Jacobi and point Gauss-Seidel methods, relaxed versions can be obtained and

are discussed below.
5.4.2.1 Point Richardson Relaxation Iteration
The point Richardson relaxation iteration is given by [71]:

K
by =(1—or Vb, +o| X1 b, +y, | k=1..K (5-22)

Jj=1
Jj#k

This is an element-wise implementation of the Richardson relaxation iteration, the matrix form of the
Richardson relaxation iteration is given by:

b, =(I-wR)b,_ +wy (5-23)
For correction methods, the equation above is rearranged and given by:

b, =b,,+o(y-Rb, ) (5-24)

5.4.2.2 Point Jacobi Relaxation Iteration

The point Jacobi method is known to suffer from serious convergence issues, to overcome this problem
a relaxation factor is inserted and adjusted so that the convergence of the original point Jacobi method

is guaranteed. The point Jacobi relaxation iteration [76] is given by:

) K
b, =—/|yi=2r,b, ., |t(1-®)b, , k=1..K (5-25)
Tk i
The matrix form of the point Jacobi relaxation iteration is given by:
b,=wD” (L+U)b,  +(1-w)b,  +wD"y

5-26
=(I-wD 'R)b, , + oDy (520

Another possible arrangement of the equation above, which is suitable for correction methods, is given

by:

b,=b, ,+aoD"(y-Rb,) (5-27)

5.4.2.3 Point Successive Over-Relaxation Iteration

The point successive over-relaxation iteration is given by [71]:
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w k-1 K
b, zr_[yk _.Z;rk,jbp.j - Z rk,jbp'J]Jr(l_a’)bpl.k k=L..K (5-28)
k k J=

J=k+1

The matrix form of the successive over-relaxation iteration is given by:

b,=(D-0L)" (oU+(1-®)D)b, , +o(D-aL) 'y (5-29)

p

For correction methods, the equation above is reformulated as:

1 -1
b,=b, +(5D—LJ (y-Rb, ) (5-30)

5.4.2.4 Modified Point Successive Over-Relaxation Iteration

In this section, we present a modified successive over-relaxation method where the splitting matrix

1 . . . 1 .
M =—D-L for successive over-relaxation method is replaced by: M =—I—-L where I is the
@ @

identity matrix. The point modified successive over-relaxation iteration is given by:

k-1 K
b,, =0y, +(1—a)rk,k )bp_l,k —a)[Zrk,jbp,/. - rk,.,b,,_l,‘,j k=1,...K (5-31)
j=1 j=k+1

The matrix form of the proposed modified successive over-relaxation iteration is given by:
b,=(I-wL) ((I-oD)+wU)b, , +a(I-aL) 'y (5-32)
Another possible arrangement of the equation above, which is most suitable for correction methods, is

given by:

1 -1
b, =b, +(;I—L] (y-Rb,_,) (5-33)

As for the Richardson method, the element-wise implementation of the proposed modified successive

over-relaxation iteration doesn’t require any division, which reduces the computational complexity.

5.4.3 Block Iterative Methods

Block or line iterative methods are generalization of point iterative methods as they update a block of
elements at a time instead of individual elements. This leads to a slightly different decomposition

imposed on the coefficient matrix R, that is, [77]:

R=D-L-U (5-34)
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where D is a block diagonal matrix D =diag (RIJ,RZ’Z,n-,RGG ) ,and L and U are the remaining

lower-left and upper-right block triangular parts of R, respectively. We assume that the sub-

matricesR, |,R,,,---,R; ; , forg=1,...,G, are nonsingular.

5.4.3.1 Block Richardson Iteration

The block Richardson iteration is given by:
G
b,,=(I-R,, )b, + ZRg,jbpfl,j +y, g=L...G (5-35)
=
g

This is the block-wise version of the block Richardson iteration, if all blocks are grouped together, then
the matrix form of the block Richardson iteration is given by:
b, =(I-R)b,_ +y (5-36)
For correction methods, the equation above is rearranged as:
b,=b, +(y—-Rb, ) (5-37)

Note that both matrix forms of the block Richardson iteration and the point Richardson iteration are
equivalent, however, the advantage of the block Richardson iteration is that if it is implemented in a

parallel multiprocessor structure, blocks of variables can be assigned to different processors.

5.4.3.2 Block Jacobi Iteration

The block Jacobi iteration is given by [71]:

G
b,. :Rzg Y, _;Rg,/’bp—l,f g=L...G (5-38)
%
This is the block-wise version of the block Jacobi iteration, if all blocks are grouped together, then the

matrix form of the block Jacobi iteration is given by:

b,=D"(L+U)b, , +D"y (5-39)

P
Another possible arrangement of the equation above, which is most suitable for correction methods, is
given by:

b,=b,, +D"(y—Rbp_l) (5-40)
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5.4.3.3 Block Gauss-Seidel Iteration

The block Gauss-Seidel iteration is given by [71]:

Jj=g+1

gl G
bp,g :R;g (yg _Zle,‘/’bp,/ - Z Rg,/'bﬁ—l,/} 8= L...G (5'41)
J=
The matrix form of the block Gauss-Seidel iteration is given by:

b,=(D-L) Ub, +(D-L)y (5-42)

» =
For correction methods, the equation above is reformulated and given by:

b, =b,,+(P-L)"(y-Rb, ) (5-43)

5.4.3.4 Modified Block Gauss-Seidel Iteration

In the following, we propose a modified block Gauss-Seidel method where the splitting matrix M = D
— L for Gauss-Seidel is replaced by: M = I — L where I is the identity matrix. The modified block

Gauss-Seidel iteration is given by:

g-1 G
bp,g =Y. +(I_Rg,g)bp—1,g _Zle,jbp,f - Z Rg,jbp—l,j g=1...6 (5-44)
j=

Jj=g+l

The matrix form of the proposed modified block Gauss-Seidel iteration is given by:
—-1 —-1
b, :(I—L) (I—D+U)bp71+(I—L) y (5-45)
Another arrangement of the equation above, that is appropriate for correction methods, is given by:
-1
b,=b, ,+(I-L) (y-Rb,) (5-46)
As for the Richardson method, the group-wise implementation of the proposed modified block Gauss-

Seidel iteration doesn’t require any matrix inversion, which reduces the computational complexity.

5.4.4 Block Iterative Relaxation Methods

As for the point iterative relaxation methods, relaxed versions of the previous block iterative methods

are obtained and discussed below.

5.4.4.1 Block Richardson Relaxation Iteration

The block Richardson relaxation iteration is given by:
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b, =(I-wR_ )b, +o ZRM b tY, | g=L..G (5-47)

J #g
This is in fact a block-wise implementation of the Richardson relaxation iteration, if all blocks are
grouped into vectors and matrices, then the matrix form of the Richardson relaxation iteration is given
by:
b, =(I-wR)b,_ +wy (5-48)

This equation can be rearranged to suit correction methods as:

b,=b, +o(y-Rb,_) (5-49)

5.4.4.2 Block Jacobi Relaxation Iteration

The block Jacobi method is also known to suffer from a severe convergence problem. To overcome
this drawback a relaxation factor is inserted and adjusted so that the convergence of the original block

Jacobi method is guaranteed. The block Jacobi relaxation is given by [71]:

bp,g :a)R_1 (yg ZR’ N ljj 1 a))bp—l,g g = 1’_”’G (5_50)

The matrix form of the block Jacobi relaxation iteration is given by:

b,=wD” (L+U)b,  +(1-w)b,  +wD"y

5-51
=(I-wD 'R)b, , + oDy G-=D
For correction methods, the equation above is reformulated as:
b,=b, , +oD" (y-Rb, ) (5-52)
5.4.4.3 Block Successive Over-Relaxation Iteration
The block successive over-relaxation iteration is given by [71]:
bp,g :wR; (yg ZRg/ P Zle/bp l/J—i_(l_w)bp—l,g g=l,...,G (5'53)
Jj=g+
The matrix form of the block successive over-relaxation iteration is given by:
b,=(D-0L)" (oU+(1-®)D)b, , +o(D-aL) 'y (5-54)
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Another possible arrangement of the equation above, which is most suitable for correction methods, is

given by:

-1
1
b,=b, +(5D—L] (y-Rb, ) (5-55)

5.4.4.4 Modified Block Successive Over-Relaxation Iteration

In this section, we introduce a modified block relaxation iterative method. The method is in fact a

modified block successive over-relaxation method where the splitting matrix leD—Lfor
1)

successive over-relaxation method is replaced by: M =—I—-L where I is the identity matrix. The
@

block modified block successive over-relaxation iteration is given by:

Jj=g+l

gl G
b,,=oy, +(I-oR, )b, —a)[Z‘Rg,jbp,j -y Rg,jbpl,jJ g=1....G (5-56)
=
The matrix form of the proposed modified block successive over-relaxation iteration is given by:
b,=(I-wL) ((I-@D)+wU)b,  +a(I-aL) 'y (5-57)

For correction methods, the equation above is reformulated as:

1 -1
b, =b, +[;I—Lj (y-Rb, ) (5-58)

As for the Richardson method, the block-wise implementation of the proposed modified block
successive over-relaxation iteration doesn’t require any matrix inversion, this reduces the
computational complexity.

In Table 5.1, we present the different splitting and iteration matrices for the point iterative

methods discussed before. For the line or block iterative methods, the table above should be the same,

however, D is a block diagonal matrix D =diag (Rsz,zv""Rc p ) ,and L and U are the remaining

lower-left and upper-right block triangular parts of R, respectively.
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Table 5.1: Splitting and iteration matrices of different iterative methods

Iterative method M N B
Point Richardson I I-R I-R
iteration
Point Jacobi iteration D (L + U) D! (L + U)
Point Gauss-Seidel (1) - L) U (D _ L)-l U
iteration
Modified point Gauss- (I—L) (I—D+U) (I—L)fl(I—D+U)
Seidel iteration
Point Richard _
oint Richardson lI (ll ~ Rj (I a)R)
relaxation iteration @ @
Point Jacobi relaxation — D!
X 1p (lD—Rj (1- @D 'R)
iteration @ [
Point successive over- -1
HEEESIVE O Ip-L | L(1-e)p+ev) | (P-oL) (0U+(1-0)D)
relaxation iteration @ @
Modified point =1
P Lice | L(a-op)+ov) | (I-el) ((1-wD)+wU)
successive over- 2 w
relaxation iteration

5.5 Convergence Issues

To study the convergence behavior of different iterative methods detailed above, we should first
determine the properties and characteristics of the coefficient matrix. The coefficient matrix is a cross-
correlation matrix, that is, Hermitian and positive semidefinite [45]. In the following, we assume that
the cross-correlation matrix is positive definite (all eigenvalues of the cross-correlation are positive),
that is, positive semidefinite and nonsingular. Non-singularity can be guaranteed in the case of the
synchronous/asynchronous AWGN channel by ensuring that the spreading codes from all K users are
linearly independent, that is the cross-correlation matrix is full-rank.

For the synchronous/asynchronous Rayleigh fading multipath channel the cross-correlation
matrix becomes singular if the product KL is large in comparison to the processing gain of a DS-

CDMA system [78]. It has been observed that the number of users and multipath components up to KL
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~ 3N can be tolerated in asynchronous DS-CDMA systems so that the cross-correlation matrix is still
nonsingular [78]. Since R is a Hermitian matrix, it must have an eigenvalue decomposition [79] as R =
UAU", where U is a unitary matrix satisfying UU" = I that contains the eigenvectors of R while A is a

diagonal matrix formed by the K eigenvalues of R as: A = diag(\i, Ay, ..., A).

5.5.1 General Convergence Results

All the iterative methods discussed above are of the form:
b,=M'Nb, +M'y=Bb, +f (5-59)

where f = My. The following theorem [71] determines the condition of convergence for any

stationary iterative method:
Theorem 5.1

Let B be a square matrix such that p(B) < 1, then I — B is nonsingular and the iteration of (5-59)
converges for any f and b,. Conversely, if the iteration of (5-59) converges for any f and b, then p(B)
<1

From this theorem, it is straightforward to deduce that the convergence of all iterative methods
discussed before depends on the spectral radius of the iteration matrix B. However, the calculation of
the spectral radius is quit complex and thus other alternatives should be used. One alternative is to use

the inequality p(B) < ||B||, for any norm, that is [71]:
Corollary 5.1

Let B be a square matrix such that ||B|| < 1, for some matrix norm ||.||, then I — B is nonsingular and
the iteration of (5-59) converges for any f and b,.

Another alternative to Corollary 5.1 is to replace the norm by the trace since the trace of a matrix is
also an upper bound of the spectral radius. More relaxed conditions of convergence can be obtained if
properties of the cross-correlation matrix are taken into consideration. The cross-correlation matrix is
hermitian, semi-definite and under most practical conditions positive definite. It is also in some cases

diagonally dominant.

5.5.2 Convergence Results for Hermitian Positive Definite Matrices

Let us first consider the case where the cross-correlation matrix is hermitian and positive definite, that

is, R=D—-L—-U=D-E — E"” where E = L = U”, Ostrowski [80] proved that the successive over-
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relaxation iterative method is convergent if and only if the coefficient matrix is positive definite and

the relaxation factor is between 0 and 2. This is given by the following theorem:
Theorem 5.2

Let R = D — E — E" be a K-by-K hermitian matrix, where D is positive definite, and D — oE is
nonsingular for 0 < @ < 2. Then, the successive over-relaxation iteration is convergent if and only if R
is positive definite and 0 < o < 2.

Since Gauss-Seidel is a special case of the successive over-relaxation iteration (w = 1), then it is
evident from the theorem above that the Gauss-Seidel iteration is convergent if and only if R is

positive definite, this is detailed in the following corollary [80]:
Corollary 5.2

Let R = D — E — E” be an K-by-K hermitian matrix, where D is hermitian and positive definite, and D
— E is nonsingular. Then, the Gauss-Seidel iteration is convergent if and only if R is positive definite.
Ostrowski’s theorem is also extended to both block successive over-relaxation and block Gauss-Seidel

iterative methods through the following two corollaries [80]:
Corollary 5.3

Let R be an K-by-K hermitian matrix and R = D — E — E”, where D is block diagonal matrix, and E
and E" are the remaining lower-left and upper-right block triangular parts of R. If D is positive
definite, then the block successive over-relaxation method is convergent for all y, if and only if 0 <

< 2 and R is positive definite.
Corollary 5.4

Let R be an K-by-K hermitian matrix and R = D — E — E”, where D is block diagonal matrix, and E
and E" are the remaining lower-left and upper-right block triangular parts of R. If D is positive
definite, then the block Gauss-Seidel method is convergent for all y, if and only if R is positive definite.

Another theorem that is used to prove the convergence of the Gauss-Seidel and the block Gauss-Seidel
iterative method is the Keller theorem [81]. This is a very important theorem, which we need later on

for the subsequent chapters.
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Theorem 5.3

Let R be a hermitian matrix and let M be a nonsingular matrix such that ((M+MH ) - R) is positive

definite. Then the iteration b, =M (M—B)bp_1 +M'y is convergent if and only if R is positive

semidefinite.
In order to apply Keller’s theorem in our case we set the following: R =D — E — E", M = D —E which
is nonsingular because det(M) = det(D —E) = det(D) # 0 E" = M — R, hence we get:
M+M" -R=M" +(M-R)

= (D-E)" +E" (-0
Hence: M+M” —R=D", and since the matrix D is also hermitian and positive definite then the
Gauss-Seidel/block Gauss-Seidel iteration matrix is convergent.

For the modified point/block Gauss-Seidel iterative methods, we obtain the necessary conditions
of convergence by simply considering the modified point/block Successive over-relaxation iterative

methods with the relaxation factor set to one. This is detailed in the subsequent sections.

5.5.3 Convergence Results for Strictly Diagonal Dominant Matrices

If we consider the case of a diagonally dominant matrix then both Jacobi and Gauss-Seidel iterative

methods are convergent, this is clear from the following theorem [71]:
Theorem 5.4

If R is a strictly diagonally dominant, then the associated Jacobi and Gauss-Seidel iterations
converges for any b,.
For the Richardson, block Richardson, the proposed modified Gauss-Seidel and the proposed block
modified Gauss-Seidel iterations more conditions need to be set in order to guarantee convergence as
they are not always convergent for either hermitian positive definite or diagonally dominant matrices.
Let us start by the Richardson and block Richardson iterations, since their iteration matrix is the
same then they should have the same condition of convergence. The iteration matrix of both the
Richardson and block Richardson iterations is given by: B =1 — R, hence for convergence |[A,.x(I — R)|
< 1 which implies that: 0 < A,x(R) < 2. If the matrix is strictly diagonal dominant then a sufficient

condition is given by the following proposition:
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Proposition 5.1

If R is a strictly diagonally dominant matrix and D <1 (ry, < 1 for all k = 1,2...K), then the associated
Richardson/block Richardson iteration converges for any b,.
Proof:

Using the Gershgorin circle theorem [82], which states that all eigenvalues of an arbitrary i—rowed

square matrix R= {r,.’ ; } lie within i circles. Each center of the i circles corresponds to exactly one of

the i-diagonal elements of the matrix. The radius of each circle is given by summing up the magnitudes
of the remaining i-/ elements of each row'. We obtain the following upper bound for the largest

eigenvalue:

K
A (R) < g}gﬁ(;\n,,g (5-61)

It is clear from Gershgorin circle theorem that if we can limit the distance between the origin and the
centers of these disks to be less than one then due to the diagonal dominancy of the matrix R, the radii
of these disks are also less than one. Hence, the union of all these disks in which all eiegevalues of
matrix R lie should be contained within a disk centered at one and with radius one. This ensures that

the maximum eigenvalue of the matrix R is between 0 and 2.

5.5.4 Convergence Results for Iterative Relaxation Methods

For the relaxation schemes, their iteration matrix depends on the relaxation parameter and therefore
their convergence behavior and region of convergence depend on the relaxation parameter as well.

For the Successive over-relaxation and block successive over-relaxation, it is clear from the
Ostrowski’s theorem, Corollary 5.3 and 5.4, that these two iterative methods converge if and only if 0
< w < 2. The optimum value of the relaxation factor that results in the highest asymptotic convergence
rate is the one that minimizes the spectral radius of the iteration matrix.

Unfortunately, the determination of such factor requires the calculation of the maximum
eigenvalue of the iteration matrix which is prohibitively complex. A closed form of the optimum
relaxation factor is obtained for a class of matrices with a special property (consistently ordered

matrices) [83]. Unfortunately, the cross-correlation matrix doesn’t possess this property and therefore

"It could also be applied column-wise but since the crosscorrelation matrix R is symmetric we would obtain the
same results
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one has to look for an estimate of the optimum relaxation factor based on some upper bound on the
maximum eigenvalue of the iteration matrix as in [84].

For the point/block Jacobi over-relaxation, the iteration matrix is given by:
@D (L+U)+(1-®)I=1-wD 'Rand thus this iterative method is convergent if [Apu(I- @D'R)| <
1, which implies that: 0 < @ < 2/ Amax(D'R).

For the Richardson relaxation iteration, the iteration matrix is given by: (I - a)R) and hence this

iterative method is convergent if [Ay.(I- @R)| <1 which implies that: 0 <@ < 2/ Apnx(R).

Note that for the synchronous/asynchronous CDMA AWGN channel, the diagonal D of the
cross-correlation matrix R is the identity matrix. Therefore, D" = D =I and the Richardson and Jacobi
iterations become the same. The optimal relaxation factor for the point/block Jacobi relaxation iteration
is given by [85]:

2
) (D7R)+4

‘max ‘min

(D—IR) (5-62)

As for the Jacobi relaxation iteration, the optimal relaxation factor for the Richardson iteration is given
by [71]:
o 2
o (R)+ 4 (R) (5-63)

‘max ‘min

For the modified successive over-relaxation iteration, we use the same approach that is used to prove

the Ostrowski theorem [80]. Lets first state the following propositions:
Proposition 5.2

Let R be a K-by-K hermitian positive definite matrix and R = D — E — E”, where D is the diagonal part
of R and E and E" are the remaining lower-left and upper-right triangular parts of R. The modified

successive over-relaxation method is convergent for any initial solution y, if and only if

0 _—
ses max(D)

Proof:
The iteration matrix of the modified successive over-relaxation iterative method is given by:

H=(I-0E) ((I-oD)+oE" ) (5-64)

Using the determinant operator on the iteration matrix one obtains:
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det[H] = det[ (1-wE) " ((1- oD) + wE" )|

= —det[I o] det [(I — D)+ wE" ]

= Gl ]det[ (1-wD)] (5-65)

= det[ I- a)D)]

K
ZH(I_CO’”k,k)
k=1
Since we have: det[H] Hl )< (A (H))K where 4, (H)’s are the eigenvalues of H. For

A

max

convergence we should have

(H)| <1 and therefore

(A (H))K‘<1. Thus we get |det[H]|<1

K

H(l—a)rk’k)

k=1

and hence

<1. If one can ensure that |1—a)rk’k | <1 for all £, then

ﬁ(l or, ) <1

Finally, one gets: 2 > >0 for all k, which can be written as 0 <w <

. As a special case,
Tk max (D)

the modified Gauss-Seidel iterative method is convergent if: 0 < D <2. For the modfied block

successive over-relaxation iterative method we propose the following corollary:
Corollary 5.5

Let R be an K-by-K hermitian matrix and R = D — E — E", where D is the block diagonal part of R,
and E and E" are the remaining lower-left and upper-right block triangular parts of R. The modified

block successive over-relaxation iterative method is convergent for any initial solution y, if and only if

—1<det [I - a)D] <1 and R is positive definite.

Proof:

The iteration matrix of the modified block successive over-relaxation iterative method is given by:

H=(I-oL) ((I-®D)+aU) (5-66)

Using the determinant operator on the iteration matrix one obtains:
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det[H] = det| (1-wL)" ((1-wD) + 0U) |

1
_ dalli ol det[(1-wD)+wU | (5-67)
- det1 1] deli-em)
=det [I - a)D]

K
Since we have: det[H]|=[]4 (H)<(4,, (H))K where 4, (H)’s are the eigenvalues of H. For
k=1

convergence we should have

A (H)| <1 and therefore

(A (H))K‘<1. Thus we get |det[H]|<1

and hence|det[I —a)D]| <1. Finally, one gets: —1<det[I-®D]<1 which determines the condition of
convergence for the modified block successive over-relaxation iterative method.
Corollary 5.6

A more restrictive condition for the modified block successive over-relaxation iterative method to

converge is that 0 < @ <

2
ﬂ’max (D) ’
Proof:

The condition above can be obtained by noticing that

max

K
det[I—a)D]:H}Lk (I—a)D)S(/lm (I—a)D))K . Thus if we can ensure that:
k=1

A (I—a)D)| <1 then

|det [I - a)D]| < 1. Finally, this results in the condition of convergence: 0 < @ < m .

Finally by setting the relaxation factor to one, we obtain the conditions of convergence for the

modified block Successive over-relaxation iterative method as: —1< det[I - D] <1. A more restrictive

condition is: 0< A (D)<2. All the conditions of convergence are summarized and presented in

max

Table 5.2.
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Table 5.2: Conditions of convergence for different iterative methods

Iterative method Type of Matrix Condition of convergence
Point Richardson R is strictly diagonal dominant. D<1
iteration
Point Jacobi iteration R is strictly diagonal dominant Always convergent
Point Gauss-Seidel R is hermitian and positive definite. Always convergent
iteration
Modified Point Gauss- R is hermitian, positive definite. 0<D<2
Seidel iteration
Point Richardson Any matrix 0<w <2/ Anax(R)
relaxation iteration
Point Jacobi relaxation Any matrix O<w<2/ kmaX(D'lR)
iteration
Point successive over- R is hermitian, positive definite. 0<w<2
relaxation iteration
Modified point R is hermitian, positive definite. 0< o<
successive over- max (D)
relaxation iteration
Block Richardson R is strictly diagonal dominant. D<1
iteration
Block Jacobi iteration R is strictly diagonal dominant Always convergent
Block Gauss-Seidel R is hermitian and positive definite. Always convergent
iteration
Modified block Gauss- R is hermitian, positive definite. —1<det[I-D]<1 or
Seidel iteration 0<4, (D)<2
Block Richardson Any matrix 0<w <2/ Anax(R)
relaxation iteration
Block Jacobi relaxation Any matrix 0 < < 2/ hpa(D'R)
iteration
Block successive over- R is hermitian, positive definite. 0<w<2
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relaxation iteration

Modified block R is hermitian, positive definite. |det[I _ a)D]| <1 @i
successive over-
relaxation iteration O<w< ﬁ

The optimal relaxation factors for the relaxation methods detailed above are given in Table 5.3:

Table 5.3: Optimal relaxation factors for different iterative methods

Iterative method Condition on the matrix Optimal factor
Point/Block Richardson R is strictly diagonal dominant. B 2

relaxation iteration D<1 o7 e (R)+ A, (R)

Point/Block Jacobi R is strictly diagonal dominant _ 2

relaxation iteration “7 Arnax (D_IR) + Asin (D_IR)
Point/Block successive R is hermitian, positive definite. No analytical expression

over-relaxation iteration

Modified point/block R is hermitian, positive definite. No analytical expression
successive over-

relaxation iteration

5.5.5 Rate of Convergence
Often, we are interested not only in the conditions of convergence but also in the rate of convergence.

Let’s define the error between the exact solution y*and the approximate solution at iteration p to the

equation Rb=yas g, =y’ —y,, we have:

g, =Bg, =B’g, (5-68)

since the initial error vector is not a null vector, then the error vector at p+1, €,.,, converges to the null
vector as the number of iterations tends to infinity only if the matrix B” converges to a null matrix as

the number of iterations p tends to infinity, this is detailed in the following theory [71]:
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Theorem 5.5
For any R eC"* we have lim R? =0 p(R)<1.
Taking in consideration the following inequality: |B’ ] <|B?|[e]. where |+ is any norm, hence, we
can write:
e ][ < [B” o < 1B e (5-69)
Thus, in order to reduce the norm of the error with a factor less than one, that is, % <5<1, we
0
~In§

where

should have ”B” HS5 . Taking the logarithm of the two sides we obtain: pZR
V4

R,(B)= —%lnHB” H and R, (B)is the average convergence rate.

By using the following theorem [71]:

Theorem 5.6

K ,K . K ,K
on C*" and any matrixBe C*" we have:

For any submultiplicative matrix norm

timf |- = p(B)

We define the asymptotic convergence rate as [71]:

Definition 5.1

If the iterative method is convergent, then for any matrix norm we define the average rate of

convergence as:
1
R,(B)= —;mHBP H
and the asymptotic rate of convergence as:
R, (B) =limR, (B) = —lnp(B)
po®

Hence, for a sufficient large number of iterations the convergence rate is dominated by the largest

eigenvalue of the iteration matrix.
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5.6 Simulation Results

In the following we simulate the previously discussed iterative methods by focusing on the following

points:

e Convergence speed of different point and block iterative methods.
e Region of convergence and optimal relaxation factors for different point and block relaxation

iterative methods.

In the first case we simulate the convergence speed of the four point iterative methods, namely:
the point Richardson iterative method, the point Jacobi iterative method, the modified point Gauss-

Seidel iterative method and finally the point Gauss-Seidel iterative method. The normalized residual

b, b, o, )
”bl _b0”2 HM_I (y ~Rb, )Hz

defined as: = for different point iterative methods is evaluated for

increasing number of stages till it goes below a certain tolerance threshold (t0/) which is set in our
simulation to to/ = 0.001. In all figures the vertical scale (normalized residual) is a logarithmic scale.

Even though, the performance of most iterative methods depends on the test matrices, their
average performance is well known and usually serial (synchronous) methods are faster than parallel
(asynchronous) methods.

The test matrix is a cross-correlation matrix obtained by using Gold codes of length 31 where the
number of users is set to 20 users. In order to distinguish between the Richardson iteration and the
Jacobi iteration which are equal if the diagonal elements of the cross-correlation matrix are ones, we
set the diagonal elements of our test matrix to 0.9. Hence the test matrix is symmetric and diagonal
dominant. Moreover, the diagonal part of the matrix D = 0.9 <1, therefore, all point iterative methods
are expected to converge unconditionally including the point Richardson iteration.

Simulation results are depicted in Figure 5.1. The latter illustrates that the fastest iterative
method is the Gauss-Seidel (11 iterations) followed by the Modified Gauss-Seidel (14 iterations) and
then followed by Jacobi (19 iterations) and finally by the Richardson method (22 iterations). This

agrees well with theory.
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Figure 5.1: Convergence behavior of different point iterative methods.

The same test matrix is used to test the block versions of the previously discussed iterative methods,

that is: the block Richardson iterative method, the block Jacobi iterative method, the modified block

Gauss-Seidel iterative method and finally the block Gauss-Seidel iterative method.

Simulation results depicted in Figure 5.2 indicates that the performance of both the block Jacobi

(16 iterations) and the block Gauss-Seidel (11 iterations) have improved compared to their point

counterparts. This agrees well with the theory [71].

However, for the modified block Gauss-Seidel (16 iterations) it is clear that it convergence speed

worsened compared to its point counterpart. This is due to the fact that the splitting matrix of the

modified Gauss-Seidel iterative method is closer to R than that of the modified block Gauss-Seidel

iterative method.

Finally for the convergence speed of the block Richardson iteration is similar to that of the point

Richardson iteration (22 iterations). This is expected because the two iterations are equivalent in the

sense that they have the same iteration matrix, hence they exhibit the same convergence behavior.
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Figure 5.2: Convergence behavior of different block iterative methods.

For the point and block relaxation iterative methods we evaluate the normalized residual defined above
for different values of the relaxation factor. The same test matrix above is also used here and the
number of iterations is set to 5 iterations for all iterative methods. From Figure 5.2, one can notice the

following:

e For the point Gauss-Seidel relaxation iterative method the minimum value of the residual is within
the interval (0, 2), which agrees well with theory (Table 5.2).

e For the modified successive over-relaxation iterative method the minimum value of the residual is
within the interval (0,2/max(D)), which agrees well with theory (Table 5.2).

e For the point Richardson relaxation iterative method, the theoretical optimum value is given in
Table 5.3 and found to be in our case equal to 1.64. Hence it is very close to the value of the
relaxation factor for which the residual is minimum in our simulation.

e For the point Jacobi relaxation iterative method, the theoretical optimum value is given in Table
5.3 and found to be in our case equal to 1.47. Therefore, it is very close to the value of the

relaxation factor for which the residual is minimum in our simulation.
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Figure 5.3: Convergence behavior of different point relaxation iterative methods versus the relaxation

factor.

All the above comments for the point iterative relaxation methods are also true for the results obtained

for their block counterparts as illustrated in Figure 5.4, that is:

e For the block Gauss-Seidel relaxation iterative method the minimum value of the residual is within
the interval (0, 2), which agrees well with theory (Table 5.2).

e For the modified block successive over-relaxation iterative method the minimum value of the
residual is within the interval (0,2/Amax (D)), which agrees well with theory (Table 5.2).

e For the block Richardson relaxation iterative method, the theoretical optimum value is given in
Table 5.3 and found to be in our case equal to 1.64. Hence it is very close to the value of the
relaxation factor for which the residual is minimum in our simulation.

e For the block Jacobi relaxation iterative method, the theoretical optimum value is given in Table
5.3 and found to be in our case equal to 1.47. Therefore, it is very close to the value of the

relaxation factor for which the residual is minimum in our simulation.

95



Chapter 5 Iterative Methods for Matrix Inversion

1
10 —
FZ i —+ - Block Richardson Relaxation Iteration

F-t
o Block Jacobi Relaxation lteration -
o
- T
|
|

—#— - Modified Block Successive Ower-relaxation lteration |~~~
—=- - Block Successive Ower-relaxation Iteration

log(Normalized Norm of the Residual)

Relaxation Factor

Figure 5.4: Convergence behavior of different block relaxation iterative methods versus the relaxation

factor.

5.7 Conclusion

In this chapter, we reviewed the basic linear point and block iterative methods. Their corresponding
relaxation schemes are also introduced. Two new iterative methods are introduced and studied in
detail. The convergence behavior of these methods is studied and their conditions of convergence are

determined. Finally, these methods are simulated and the results accessed and commented.

96



Chapter 6 Multiuser Detection in CDMA
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6.2 Introduction

In CDMA, the term Multi-User Detection (MUD) or Joint Detection is any method or technique that
exploits the knowledge of the spreading codes of users other than the desired user to enhance the
quality of its data estimates. In general, we are not interested in the data estimates of only one user, but
of all of them. As such, the detector considers the effects of all users on all other users, and attempts to
improve the data estimates for all of them, thus resulting in a multiple-input multiple-output system.

In a pure flat fading synchronous channel, where all users' signals arrive synchronously at the
base station, there is no need for MUD. For such systems, the best performance is obtained if
orthogonal spreading codes are used along with a bank of conventional Matched Filter detectors. The
performance of such systems reduces to that of the single user detector and provides an upper bound on
the performance of all multi-user systems.

In practice, however, most CDMA systems are asynchronous and channels frequently exhibit
dispersive multipath. Together, these factors are sufficient to destroy the orthogonality of the system
and hence MALI is generated. In this situation, MUD techniques can be used to notably reduce the
effect of MAI and to improve the performance so that it is closer to that of an orthogonal system.

In the ensuing, we set the following conventions in order to facilitate the study of different
multiuser  detectors:  y?,. (ko )2y (w.k), b (ko )=b, (k), i; (ko )éif}f (w,k) and
5, (k )= 5, (w,k ) where ks an index that takes values from 1 to WK and it is related to k and w

as follows: k,; = (w — I)K+k. If kyy is provided instead, then w and k are determined from k. as

follows: w = {_IL(L—‘ where |_ -| is the ceiling operator and k = k. — (w — 1)K. This index will be used

interchangeably with (k,w) here and and in the subsequent chapters.

6.3 Performance Metrics and Computational Complexity

There are many criteria that can be used to quantify the performance of a multiuser detector. In this
section, we list a number of important performance measures that will help in comparing different
multiuser detection techniques. Mainly, we are interested in the Bit Error Rate (BER), the Asymptotic

Multiuser Efficiency (AME), Near-Far Resistance (NFR), and finally the computational complexity.
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6.3.1 Bit Error Rate (BER)

It is the figure of merit of most communication systems. It is defined as the number of incorrectly
detected bits relative to the total number of detected bits. For some multiuser detectors it is possible to
derive an analytical expression for the bit-error-rate, however, for many other systems this is often not
straightforward and in some cases it is not possible at all (e.g. a closed form expression can not be
obtained for the optimum multiuser detector that minimizes the probability of bit error). The only way

to acquire a bit-error-rate for these detection schemes is through simulation.

6.3.2 Asymptotic Multiuser Efficiency and Near-Far Resistance

The need for other performance measures that are easier to derive is vital. One of them is the multiuser

efficiency [30]. In this performance measure, assume that the BER of a certain multiuser detector

working under a background noise of variance o” for user kis P, . (o), the effective energy e ky (o)

is defined as the energy that is required for a single user detector to achieve P, (o), that is:

e, ()

o

P, (O') =Q , hence: e, (O') =c’ (Q - (P,w (0)))2 .

Since the multiuser error probability is lower bounded by the single user error probability

P (Ke[f (keff,kqﬁ),a) (assuming the same background noise with variance 02), we have:

P, (o)zP, (KW. (Ko ok oy ),a) thus  Q e,{+(0') >0 {Mj and  hence

\€k,, (o)< Kfz/f (ks »k, ). The ratio Sy () -€[0,1] is known as the multiuser efficiency

Aeff (keﬁ’ ’keff )

and it quantifies the BER performance loss due to the existence of other users’ signals in the channel.

e, (o)

eff (keff ’kL’ff )2

The asymptotic multiuser efficiency (AME) is defined as: T, =lim and

o0 K
measures the slope with which P, (0) goes to zero (in logarithmic scale) in the high SNR region
[30].

Another definition for the AME provided by Verdu and is useful for our analysis in the
subsequent chapters is given by [30]:
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1;,, =Sup 0<r< lzlirr% _Pk*" (a) <400 p=— 2 5 lirr(1)<)'2 log[%D (0)]
" 0 [\/;A’W (ke/] ’ke// )] A‘f’ff' (kef/ ’keff ) 7 keg
o
C e . . . Pke/, (0) .
which is read as: “AME is the largest value of 7 in [0,1] for which — < +o0 in the
Q [\/;AE.[Y (keiff ’keiff' )J
o

limit as ¢ vanishes to zero ”.
The worst-case AME, taken over all possible interference power profiles, characterizes a
detector’s robustness to the near-far problem and is known as the near-far resistance. The latter is

givenby: 7, =_inf n
b Ry ()0 "
J#key

o

Intuitively, near-far resistance provides an indication of the worst-case performance loss due to

interference for any individual user over all possible other-user transmit power profiles.

6.3.3 Computational Complexity

Another criterion that is commonly used to compare multiuser detection structures is the computational
complexity. This factor is of paramount importance, since it determines whether the multiuser detector
can be implemented in practice or not. One way to quantify the computational load is with the notation
of a flop where a flop stands for floating point operation [86]. Throughout this dissertation, operations
such as multiply, add, subtract, divide and compare are considered as one flop. The computational load
is primarily a function of the number of users, K, and the number of bits within the sliding window .
Algorithm execution time is another important factor that determines the efficiency of any
algorithm. It is defined as the amount of time an algorithm takes on a specific machine. Its importance
resides in the fact that if the algorithm is parallelizable, then one can benefit from parallel processors or
machines to reduce the algorithm’s execution time. In general the computational complexity in terms

of flops is roughly equal to the algorithm’s execution time if no parallelism is considered.

6.4 Classification of Multiuser Detectors

A variety of multiuser detectors have been proposed in the literature [87]-[90]. Depending on the
criterion selected, such as linearity, complexity..., multiuser detectors can be classified into several

categories. Linear multiuser detectors are structures that perform only linear transformations to the
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received signal or the matched filter/Rake receiver outputs [91]-[93]. As such, interference cancellation
detectors, usually considered as nonlinear multiuser detectors, are linear if the function used to estimate
the MAI to be cancelled at each stage is linear. Typical examples of such detectors are the decorrelator
and LMMSE detectors. Nonlinear multiuser detectors [94], on the other side, perform nonlinear
transformations to the received signal or the matched filter/Rake receiver outputs. Usually, these
detectors perform better in terms of BER than their linear counterpart at the expense of increased
computational complexity. = Moreover, these detectors usually require estimation of channel
coefficients, noise level ,..., thus if the estimation of these parameters is not accurate, due for example
to fast time-varying channel conditions, then the performance of such detectors is poor.

Another classification of multiuser detectors is whether they are adaptive or fixed [89]. If the
channel conditions are slowly varying, then an effective way (in terms of computational complexity) to
implement the LMMSE detector is to use adaptive filters [45]. During the training period, the latter
usually employ some adaptive algorithms such as the LMS, RLS, ... to adjust the filter’s taps such that
the adaptive filter’s performance converge to the that of the LMMSE detector. Non-adaptive detectors
are also known as fixed detectors [89].

Blind multiuser detection ([95] and [96]) in the context of multiuser detection usually refers to
the situation where the knowledge of the spreading codes of all interferers is not available at the
receiver. This situation is common at the downlink channel. Such detectors are usually adaptive and
derived to optimize a certain criterion such the minimum output energy criterion ([95]-[97]) and the
constant modulus criterion [98]. If all the spreading codes of all interferers are available and are also
used by the receiver, then the latter are non-blind multiuser detectors.

Another classification, which is very important in the context of our work, is based on which
level the multiuser detection operations are performed, at chip-level or symbol-level ([87], [89], and
[99]). Chip-level multiuser detectors (known as wideband) perform all operations at chip-level and thus
are computationally intensive whereas symbol-level multiuser detectors (known as narrowband)
performs all operations at symbol-level and thus exhibits less computational complexity compared to
the chip-level detectors. Usually, chip-level detectors act directly on the received signal while the
symbol-level detectors act on the matched filter/Rake receiver outputs.

Depending on whether Rake combining is performed before or after multiuser detection most
multiuser detectors can be classified as either pre-combining detectors or post-combining detectors [67]

and [93]. The latter have better BER performance but restricted to slow channel conditions where the
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pre-combining detector exhibits acceptable BER performance but is not sensitive to channel conditions
and therefore can be implemented in fast-varying channel environments.

The last classification is whether the multiuser detector uses a deterministic approach to obtain
the final outputs or not. If so, then the detector is known as a deterministic multiuser detector, however,
if the detector incorporates some random tunable parameters then this detector is known as a heuristic
multiuser detector ([100] and [101]). The latter is usually used to approximate the optimal multiuser

detector.

6.5 Multiuser Detection Structures for Asynchronous CDMA AWGN Channel

The transformation 7, which is applied to either the received chip-matched signal q, or to the vector of

the matched filter outputs y’,,. , determines the type of the multi-user detector as shown in Figure 6.1

and 6.2.
]
| Matched filter | % (1] Bo(1)
» . - —
| Matched filter Vw2 5*(2)
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Figure 6.1: Multi-user detection Receiver acting on the vector of matched filters outputs

It is important to mention that usually, multiuser detectors acting on the vector of matched filter

outputs make use of the cross-correlation coefficients and consequently the cross-correlation matrix
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needs to be calculated. Finally, note that no restrictions are put on the transformation 7, therefore it can

be any transformation, e.g., linear or nonlinear.

(], —— Multiuser

Detection
Transformation
T B (&
(5 )
:
1
1
1
1
1
1
1
i
A EE’K :l
.

Figure 6.2: Multi-user detection acting on the received chip-matched signal.

6.5.1 The Conventional Matched Filter Detector

This is the simplest multiuser detector in terms of computational complexity but also the less effective
in terms of performance. It consists of a bank of matched filters, where each filter is matched to the
spreading code of the desired user. The conventional receiver is illustrated in Figure 6.3. For its proper
operation, the conventional receiver needs the knowledge of the spreading codes, and accurate
synchronization with the received signal.

The vector of the matched filters’ outputs can be expressed as:

b S ST (S X ¥b L =b 5 Th o, =b
Yir =Sir @, =Sy (S Ay b+, ) =R, A, b +7, (6-1)
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Matched filter y i}F (1) _ | Decision blb (1)
1 device

\ 4
A

Matched filter J’fw(z) _ | Decision b/ (2)
2 device

\ 4
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qp =

b — b

Matched filter | V jw (k of ) Decision b (k of )
> . —>

kg device

Matched filter| Vur WK )| Decision | 0" (WK)
WK | device

\ 4

Figure 6.3: Bank of matched filter detectors

where S b’ are defined in Chapter 4, n is the 5" block of the vector n defined in Chapter

of > ef/ ’

4, with dimensions {(NW+ max (z’k ) )-by-1} and Egbﬁ, is the vector of additive colored Gaussian noise
1<k <K -
samples with a covariance matrix equal to:

[(ngf n, )(ngf n,, )T J £ [gﬂrf/ n (_Z/f )T §‘?f" }
QT Q (6-2)

One can see that the elements of the data vector b’are correlated (coupled) through the cross-
correlation matrix R o - To see the impact of coupling the data bits of different users let us assume for

simplicity a synchronous channel and hence k., = k and W = 1. The matched filter output of the b"

block, k™ user is:
yf/”: (k ) :Eﬁ;_ (k )q ZEZ‘ (k)(seffAcff bh +nff )

k.,k)b ZR k,i)A, (k)b (k)+3y (k)al,
\—{_'/

i k additive colored
Gaussian Noise

= A (

MAI from other users
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It is clear that the MAI resulting from the interfering users degrades the reliability of the matched
filter detector output. The MAI is controlled by two factors, the cross-correlation coefficients between
active users and the received amplitudes of different active users. The second factor is mainly due to
the spread of users over a large area which results in a wide discrepancy in the received amplitudes of
active users’ signals. If strict power control in not used then weak users may lose communication
because of the overwhelming MAI. This phenomenon is known as the near-far effect.

The conventional matched filter detector is optimum under white Gaussian noise conditions.
Due to the well built structure of the MAI this assumption is not true, especially for short-code CDMA
systems, and as such, the optimality of the conventional matched filter detector is lost. Moreover, its
performance degrades greatly when the received powers of the interfering users are much greater than
those of the desired users.

Verdu’s pioneer work [30] showed that the near-far problem is not inherent to the CDMA
system. In fact, it is due to the detection schemes. This reformulation of the problem launched a
tremendous research, which is still active, to develop detection schemes that are able to combat
shortcomings of the conventional receiver.

Before ending this section, let us go through a number of performance indicators of the

conventional matched filter detector. The most important, which is the BER is given by [30]:

1 5. (k, )R, A_b
Pkm( ) Z Q ff( /f) off ~ elf j

g)= KT £ o (6-3)
b(kL,/, ):l
On the other hand, the multiuser efficiency is given by [30]:
WK K ) ( j ]) _
2 eff > ;
M, =max”10,1—- D, = |R€/f (J ko )| (6-4)
! i Ay (ke/J Koy )
#k

WK

It is obvious that if 1_&6[, (k . ) < 1_&4/ ( J.J )|l_1€ﬁ. ( Jokyy )| then T, =0. Hence, the near-far

resistance of the matched filter detector is given by:

771%// =0 (6-5)
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6.5.2 The Optimum Multiuser Detector

As mentioned earlier, the most important performance measure for communication systems is the
BER. The multiuser detector that minimizes the BER is known as the maximum a posteriori (MAP)

detector. It minimizes the following objective function [30]:

b* =argmin{-2b" Ay}, +b A, R, A b} (6-6)

bel-11)"*
For the matched filter output y’,. of each block b, the optimal detector performs an exhaustive search

over all possible transmitted data sequences b constrained to the set {~7,1}"* to find the data sequence
that minimizes the above objective function. This technique is the same as that used for single user
systems with ISI, where the number of bits spanned by ISI is replaced in our case by the number of
users. The number of possible sequences in an asynchronous CDMA system with a processing window
of length W bits is 2%, and hence the search space consists of 2"* possibilities.

It has been shown that this problem is an NP-hard [102], which means that there is no algorithm
with a polynomial time complexity that can solve the above optimization problem. Therefore, the
optimum detector is far too complex for practical implementation even for a moderate number of users.

The exponential complexity of the MAP detection has inspired a considerable effort over the
past decade in the development of suboptimum receivers with low complexity and which are robust to
the near-far problem. It is not possible to derive a closed-form analytical expression for the bit-error-
rate or the multiuser efficiency of the optimum multiuser detector, however it is possible to derive a
closed form expression for the near-far resistance and it is given by [30]:

1

e Ry (ko k) (&7

6.5.3 The Decorrelator Detector

This approach operates to eliminate MAI in the same manner analogous to the way the zero forcing

equalizer mitigates ISI. The linear transformation applied is the inverse of the effective cross-
correlation matrix 7=V = 1_2;; . The decorrelator detector’s output is given by:
b D-! b A Wb p-! b
Yoee = Reﬂ Yur = Aeﬁ b” + Re/f Z, (6-8)

From an optimization point of view, the decorrelator detector is the least square solution to the

maximum likelihood sequence detection if the constraint on the vector b is relaxed to span all values in

R"® [30], that is:
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b ~argmin {(Y’A}F ~R,A,b) R (Y ~R,A, b)} “
or equivalently:
b" =argmin {qu Sy Ay b“z}

beR"X

which reduces to:

b" =argmin {—2bT Kejf Yo +b A o l_leff A o b} (6-10)

b ERWK

By taking the derivative of the above objective function and equating it to zero, we get:

A A A b
2A¢17 Reff Ae?ﬁ’ b= ZAe/f Yur

and finally we obtain:

« _ x-lp-l b
b - A‘f//‘ Re/f YMF (6 1 1)
—R v -
where the term K;/} is omitted due to the fact that it is a positive scaling diagonal matrix and doesn’t

affect the decision statistics. The decorrelating detector eliminates MAI completely; however, the
receiver considerably enhances the noise in the system. This can be verified by examining the

covariance matrix of the noise vector at the output of the decorrelator detector, that is:

S-1=b \(p-1=b \ |_ 5-1=b (=b \V -1
E |:(R2.tf Zyy )(Reiff Zyy ) J =E [Reff Zyy (Zefff ) R, }
"R o’R R 6-12
- Re/f = R‘?/f Re/f ( )

and since the cross-correlation elements are less than one, then R’} (k

o k,; ) is larger than 1 [103]

off >
hence the decorrelator detector enhances noise. Consequently the probability of error of the

decorrelator detector of the k" effective user is [30]:

;‘eff (koy Kooy ) (6-13)

P, (O') = —
! ‘7\/ R, (ky .k )

The AME of the decorrelator detector is given by [30]:
1

T TR (kK

(6-14)
of ( of > eff )

which does not depend on the amplitudes of the interfering signals, and thus the near-far resistance

equals the asymptotic multiuser efficiency and it is given by:
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1

FEETIR (6-15)
e/f (keff ’kEIf)

ﬁkeﬂ -
The decorrelating detector has several desirable features. It does not require the knowledge of signals’
amplitudes of active users, and thus its performance is independent of the amplitudes of the interfering
users. In addition, since the decorrelator detector is near-far resistant it is well suited for the near-far

environment ([91], [104]).

6.5.4 The Linear Minimum Mean Square Error (LMMSE) Detector

The decorrelator detector works on the principle of channel inversion and, consequently, leads to poor
BER performance at low SNRs [31]. This is because the decorrelator simply eliminates MAI without
taking in consideration the AWGN, which results in noise enhancement in the detector’s output.
Minimizing the mean square error is another approach to linear multiuser detection. The resultant
detector, which is known as the LMMSE multiuser detector, performs better than the decorrelator at

low and moderate SNRs because it accounts for AWGN [105].
The LMMSE transformation is given by: T =V=(l_leﬂ. +0’ A )71. It was shown that the

LMMSE detector is the solution of the following optimization problem [30]:

b - vy, | } (6-16)

arg min {

IRWK WK

Unlike the decorrelator detector, the LMMSE detector requires the estimation of the SNR of each user,

thus adding some computational complexity. If (R +0'2Aeﬁ) (, j)is the j” column of the

— — -1
transformation matrix (Re/f + GZA;;-) (we are using matlab notation for the column of a matrix),

then the bit error probability of the LMMSE detector for £” effective user is given by [30]:

~ T
((R +0Ae_;) (ko )) R,

R, +0°A} )_1(:,k€l,.))T R, (R, +o°A})

> |

efff b

(6-17)

-1

(k)

For the AME and near-far resistance, since the LMMSE detector reduces to the decorrelator detector

b(k gy )=1

qu,» ST D, 0
A

when the noise level vanishes to zero, then the LMMSE detector exhibits the same AME and near-far

resistance as the decorrelator detector, that is, the AME of the LMMSE detector is given by [30]:

108



Chapter 6 Multiuser Detection in CDMA

1
M, =300 (6-18)

eff (keif.’f' ’kE.t'f)

which does not depend on the amplitudes of the interfering signals thus the near-far resistance equals
the asymptotic multiuser efficiency and it is given by [30]:

1

77;{3 =g (6-19)
! Ref]f (keif.’f' ’ke.zf)

Since the LMMSE detector enjoys the same interference rejection capabilities as the decorrelator
detector (they have the same near-far resistance), the LMMSE detector is also suitable for near-far

environments.

6.6 Multiuser Detection Structures for Asynchronous CDMA Multipath Fading
Channel

As for the case of AWGN channel, the transformation 7 applied to either the received chip-matched
signal q, (Figure 6.4) or to the vector of Rake receivers’ outputs y?,.. (Figure 6.5) can be linear,

nonlinear...

. | ke receiver | 2 o Iiljl__ Ly
» I L E—
Rake roceiver | 7 ume [ 2) B2
> ; > I
_ i
! i !
1 I 1
[T pp— H i Multivser ]
H : Detection .
: C Transformatio '
| Rake receiver | ¥ un [Fg ) a8 B[Ry )
- - ————
L .
- o B R
Rake receiver | ¥ e (X
> WK [ —

Figure 6.4: Multi-user detection Receiver acting on the vector of Rake receivers outputs.
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Finally, here as well, multiuser detectors acting on the vector of matched filter outputs usually make
use of the cross-correlation coefficients and consequently the cross-correlation matrix needs to be

calculated.

|

2]

Multiuser
Detection
Transformation

P B k)

L 4

B WE

Figure 6.5: Multi-user detection acting on the received signal.

6.6.1 The Conventional Rake Receiver

Diversity is a powerful technique for alleviating the effects of fading environments. Diversity
techniques make use of multiple, independent signal paths between the transmitter and the receiver to
improve the detector’s performance. Most common forms of diversity reception are spatial (using
multiple antennas), temporal (data interleaving with coding), and frequency (DS or FH spread
spectrum).

DS-CDMA systems are well-matched for diversity reception because for frequency selective
fading, the signal bandwidth is much greater than the coherence bandwidth of the channel. As such,
multi-path components with delays greater than one chip period are resolvable and independent of each
other. In fact, multi-path resolution and combining is one of the major advantages of DS-CDMA

system over other multi-access wireless communication systems.

110



Chapter 6 Multiuser Detection in CDMA

The most prominent diversity combining scheme is known as the RAKE receiver and was first
introduced by Price and Green in 1958 [106]. The RAKE receiver is composed of several fingers each
of which consists of a matched filter detector. The matched filter detectors’ outputs are weighted and
combined to form a single decision statistic. In order to constructively add these components, the phase
must be known. The resolution of the RAKE (i.e., its ability to resolve separate multi-paths) is
dependent on the chip rate of the system. To be resolved by the Rake receiver, the multi-path
components should be separated by at least one chip period. Figure 6.6 shows a generic RAKE receiver
and Figure 6.7 shows a bank of Rake receivers for a multiuser environment. It is important to mention
that the Rake receiver exploits frequency diversity provided by the system but it doesn’t remove ISI,
therefore if the latter is significant the performance of the Rake receiver degrades considerably and an
equalizer should be used instead.

There are several methods for choosing the combining weights [107]: The maximal ratio
combining technique (MRC) phase shifts and weights each multi-path component according to its
relative SNR before coherent signal combining. This method is most appropriate in situations where
phase changes of individual multi-path components vary slowly enough to be accurately estimated and
tracked. In terms of implementation complexity, MRC requires a data path (finger) for each multi-path
component, channel estimation blocks, and signal combining blocks. The equal gain combining (EGC)
technique on the other hand, weights all multi-path components equally. Yet it is a simpler, though
suboptimal combining alternative. In a selection diversity system, the receiver simply selects the
strongest multi-path component, and uses it for signal detection. A major benefit of this approach is
that multiple data paths are not required although additional hardware is required to distinguish the
strongest path.

Unlike the simple matched filter detector in the AWGN channel, the implementation of the
RAKE receiver requires channel coefficient estimation, which leads to additional computational
complexity burden.

In our work, the Rake (MRC) receiver is easily implemented by despreading the received signal

using the matrix of effective spreading codes developed in Chapter 4, that is:
Yire = (Sfo ) a4 = (Sfo ) (Sff]' Ayb" +1;, ) =Ry A, b +7, (6-20)

where S’ | A is the " block of the vector n defined in Chapter

- . —
o7 » Ay » D are defined in Chapter 4, n

eff

4, with dimension {(NW+ max (z’k )+ max (le ) )-by-1}.

1<k <K 1<, <L,
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Figure 6.6: MRC Rake receiver

)H n, J((gi’)ff )H n, )H =k [(gfﬁ )H n; (ﬁ:ff )H gff/ }

2 (b
=0 (Seff

5[5

)H S (6-21)

25
=0 Reff

Consequently, the probability of error of the MRC Rake receiver for the K™ effective user conditioned
= H= . .
on se;f' (keﬂ ) SZ/]- is given by:
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1 ?b (kEff) § Zetf

P H S (0) = Z Q = = (6_22)
i, \S ( . ) s, WK -1
off o ) Seff 2 Zl(lkl;/ - o \/m
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Figure 6.7: Conventional bank of Rake receivers.

Taking the expectation over possible values of the vector sy, (k,, )’ S, results in:

k” ‘([-([ '([pdf (s” ) ) pdf ( (WK) Sﬁff )Pkaff Sy (ko )" Sty (O-)

d( Syrr (1) Sb ) ~d (Eetf (WK) Sﬁff)
where pdf'stands for probability density function.

The evaluation of this WK multiple integral expression is very intensive and can be assessed
only numerically. For this reason, the probability of error will be evaluated only by simulation. Since
the multiuser efficiency depends on the BER in its derivation, it is also not straightforward to
determine a closed form expression for the AME of the MRC Rake receiver. Hence, we refer to

simulation to assess the performance of the MRC rake receiver. As for the matched filter detector, the
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Rake receiver treats MAI as additive white Gaussian noise (AWGN), which is not the optimal
approach since its structure is well defined through the cross-correlation matrix, and therefore can be
exploited to achieve better performance results. Hence, the Rake receiver suffers from the same

shortcomings of the matched filter detector, such as the near-far problem.

6.6.2 The Optimal Multiuser Detector

As for the AWGN channel, the optimum multiuser detector is the solution to the following objective

function:

b* =argmin {—ZERe(bTKeﬂ.yLRC ) + bTKeﬁ.lleﬁ.Keﬂb} (6-23)
bef-11}"* v

where y’ . is the vector of the Rake receivers’ outputs. The complexity of such detector is also of the

order of 2", where K is the number of users and W is the number of bits within the sliding detection
window. Hence it is an NP-hard problem [102].

As for the asynchronous CDMA AWGN channel, there is no analytical closed-form expression
for the BER of the optimal multiuser detector. And since the AME relies on the derivation of the BER,
it is difficult to obtain a closed form expression for the AME and hence we asses it through simulation

only.

6.6.3 The Decorrelator Detector

The linear transformation applied is the inverse of the effective cross-correlation matrix 7 =V =

®

-1
o ) . The decorrelator’s outputs are given by:

= -1 —_ = -1
Yoee = (Rsz ) Yir = Ay b’ +(R[e.)ff') Zyy (6-24)
The decorrelating detector eliminates MAI+ISI within the detection window completely; nevertheless

the receiver significantly enhances the noise in the system [103]. The probability of error of the

-1
decorrelator detector of the k" effective user conditioned on (RZ,, ) (k o Koy ) is:

P O.) :Q Aeff (keff ’keff ) (6'25)

keff (ﬁah‘ff’ )71(1%17 "kaf/ ) =b -1
G\/(Reﬂ.) (ko ko)
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Taking the expectation of the previous expression over all possible values of ( o ) (keff ,k‘ff)

yields:

pdf( R, ) (k, .k, ) | o
Pk » (O-):E P _ ; (o_) JOO ( off ) ( off efff ) // \(R,/) (k o ’k(f//)( )
off ko \(RZ// ) (kL,// Koy ) 0 . _

d (Rcff ) (ko Koy )

The probability density function (pdf) of ( o )7 (ke// ok )is not straightforward to evaluate and

hence we refer to simulation to evaluate the BER of the decorrelator detector.

6.6.4 The Linear Minimum Mean Square Error (LMMSE) Detector

= — -1
The LMMSE transformation is given by: T =V = (szf +0°A; ) . Following the same approach as

for the matched filter detector, the probability of bit error of the LMMSE detector for k" effective user

o T _
conditioned on ((Rb +02Ae,f) (s k,, )j R}, is given by:

1
P C (6)=——x
ky \[(Rl,mxf,)"(;,km,)) ﬁg”,( ) WK
b ey =, -
(Reff to Acff) (’keff) Ry AyD (6-26)

2. 0 -

a J[(Rh o) k)| R (R - 23] (o1,

1 1
where: (R +0o Aqf ) ( ] )1s the /” column of the transformation matrix (R +0o Aqf ) . Taking

-1 r —
the expectation over possible values of the vector ((R +0%A2 o ) (:,keff )j Rfff results in:
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m#(@ﬁ;4iy;;)}dﬂrﬁ%Jm

pdf[[(ﬁi’f/+02K¢f§)_l(:,WK))T R, Jp (o)

T
L% ‘((RZ// +a*Ag ) (keg )] Ry,

d(((ﬁi’ +o’A, )_1(:,1)jT lzli}fj---d(((ﬁg vo'AZ )_1(:,WK)jT ﬁgﬁJ

The evaluation of this WK multiple integral expression is very intensive and can be assessed only

Pk(,,, (O-) =

o —38
S 38
O";oS

numerically. For this reason, the probability of error will be evaluated only by simulation.

6.7 The Linear Transformation of the Received Signal

In this section we derive the BER, AME and near-far resistance of a general linear detector applied to
the received signal q,.
6.7.1 The Linear Transformation of the Received Signal for AWGN Channel
Suppose that q, is multiplied by a linear transformation matrix V' of dimension {(WN + max (r" ) )-by-
WK. The output of this detector is given by:
=V'q, =V'S, A, b +V'0, (6-27)

The noise vector now is an additive colored Gaussian noise with covariance matrix:

E|(Via, (V7w ) =E| Ve () V) 625)

=c’'V'V
Thus the BER of the general linear detector applied to the received signal q, for the & effective user is

given by:
1 V(.k, Se A i
Pk{,,»/ (O-) = WK1 VK- z ( 4 ) . (6'29)
a” b O-\/V keitf )
where V(:/) is the /" column of the matrix V. The multiuser efficiency is given by:
1 0.V (k) 5y (Ko )
2 WK e . .

M =5 Vv - M‘V b Y 5 () (6-30)

V(-:kg// ) V(',kg/f ) ?% ef/ (szf ’kqf ) ( > eff ) cff (j)

E eff

where V(:,j) is the /" column of the matrix V.
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The near-far resistance of general linear detector applied to the received signal q, for the k" effective
user is given by:
0 if LmV'S, =I

771(4, = 1 ; TQ
if  lmV'S, =1
V (kg )T V(iky ) o

(6-31)

The derivation of the BER and AME is detailed in Appendices A and B, respectively.

6.7.2 The Linear Transformation of the Received Signal for Multipath Fading Channel
Suppose that q, is multiplied by a linear transformation matrix V” of dimension {(WN

+ max (le ) + max (rk ) )-by-WK}. The output of this detector is given by:

1<l <L, 1<k <K
v, =V'q,=V"S" &b+ V&, (6-32)
The noise vector now is additive colored Gaussian noise with covariance matrix:
H—b H=b \I H=b (=b \
[(V e// )(V e//) :| |:V e/j ( ef/) V} (6—33)
=o’V'V
Hence, the BER of the & user at the w” bit of the 5" block at the output of the transformation matrix

.. . b
conditioned on the vector V (:,k ) S, is

ob
eff ) Sc/f Acf/ b

(:.k

V(uk,

P]ﬂ,ﬁ.\v(:,kw )H§S/f (6):2WK -1 Z Q G\/V

(6-34)

Eff eff )

Obtaining the average BER and AME requires taking the expectation over all possible values of the

VectorV(:,k )H §fﬁ . This results in a WK multiple integral expression, which is very intensive and

elf
can be evaluated only numerically. For this reason, the BER and the AME will be evaluated only by

simulation.

6.8 The Linear Transformation of the Matched Filters/Rake Receivers’ Outputs

In this section, we derive the BER, AME and near-far resistance of the general linear detector applied

to the matched filters/Rake receivers’ outputs y’,,. /¥, e -
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6.8.1 The Linear Transformation of the Matched Filters’ Outputs

Suppose that nyF is multiplied by a linear transformation matrix V' of dimension {(WK-by-WK}. The

output of this detector is given by:
b T ..b T D Wb T —=b
Y =V ¥ur =V R, Aeﬂb +V'z, (6-35)
The noise vector now is additive colored Gaussian noise with covariance matrix:

E[(VS,®, (VS ®, | |=£[ VS, ®, (%, ) S,V |

2v/T D
=o’V'R,, V

(6-36)

Consequently, the BER of the general linear detector applied to the bank of matched filters’ outputs for

the k™ effective user is given by:

F—
1 R, A,b
Ky (O') 2WK -1 ) = = (6-37)
b b - O'\/ V(ky, ) R,V (k)
where V(:,j) is the / column of the matrix V. The multiuser efficiency is given by:
| 0,V (: ke// ) l_le//. ()
M, = o < _AyUed) Vb, ) Ry (2 (6-38)
V(. k R.V Z V(.,ke..) Re..(.,])
( eff ) eff ( eff 4 Lff ( kcff , kff ) eff eff

#k off
where l_leff (:, j)is the /” column of the matrix l_leff . The near-far resistance of the general linear
detector is given by:
0 if limV'S, =I

Moy = ! if limV'S,, =1
V(:’kEff) ReffV( keff') ”

(6-39)

The detailed derivation of the BER and AME can be found in Appendices A and B, respectively.

6.8.2 The Linear Transformation of the Rake Receivers’ Outputs

Suppose that y’,.. is multiplied by a linear transformation matrix V" of dimension {(WK-by-WK}.

The output of this detector is given by:

y, =V7'y e :Vlelé’/fK b’ +V'7’

z', (6-40)

eff

The noise vector now is additive colored Gaussian noise with covariance matrix:
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B [(V” (5 ) v s ) o ) } ~£| V' (S, ) ®, (7, )5, V]

_ _2x/HDb
=0°'V'R,,V

(6-41)

Thus, the BER of the k" effective user at the output of the transformation matrix conditioned on the

vector V(:,k )H l=1’e’/, is:

1 V:,ke‘le{i A b
B Nk V'R, (a)=WmZ 0 ] (. z )H == (6-42)
bk )t W7 V(ky ) Ry V(sk,, )

As for the case of the linear transformation matrix applied to the received signal, getting the average

BER and AME requires taking the expectation over all possible values of the vector
V(:,keff )H Izifff which results in a WK multiple integral expression, which is very intensive and can be

assessed only numerically. For this reason, the BER and the AME will be evaluated only by

simulation.

6.9 Computational Complexity

In this section, we evaluate the computational complexity of the aforementioned multiuser detectors.
The simplest multiuser detector which is the conventional matched filter detector consists basically of a

correlation operation and it has the following computational complexity:

Z(WN + max (7* ))WK (6-43)

1<k <K
In a multi-path environment, a Rake receiver is the conventional multiuser detector. It consists
basically of a convolution operation to obtain the effective spreading code and a correlation operation

for matched filtering. The computational complexity of the Rake receiver is given by:

((2Lk +1WN +(L; +1)max (r* )+ (L, —1)max ))WK (6-44)

1<k <K 1<k <K
The computational complexity of the optimal multiuser detector is exponential in both the number of
users and the number of bits within the sliding window. Hence we will not give any expression for its
computational complexity since it is not comparable with any of the subsequent multiuser detectors.
The computational complexity of both the decorrelator detector and the LMMSE detector is due
mainly to matrix inversion and the calculation of the cross-correlation matrix. All these operations cost

at least (lower bound) [78]:
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3
(KW ) +S(KW ) + KW + 2N + max ()| (WK )+ 2(WN + max ()& (6-45)
for an asynchronous CDMA AWGN channel and:
3
) (KW )+ KW + 2(WN +max (¢ )+ max (=, ))(WK y s

+2(WN + max (z’" )+ max (le ))WK

1<k <K 1<k <K

for an asynchronous CDMA multi-path fading channel.

6.10 Simulation Results

In this part, we simulate the previously discussed multiuser detectors except the optimum multiuser
detector which is not included here due to its exhaustive computational complexity. All these detectors
are simulated in two different scenarios; the first is a synchronous CDMA AWGN channel whereas the
second is an asynchronous CDMA multipath Rayleigh fading channel. The simulation parameters are

summarized in Table 6.1:

Table 6.1: Simulation parameters.

Synchronous CDMA AWGN channel Asynchronous CDMA

multipath Rayleigh fading

channel
Average BER versus | Average BER versus | Average BER versus | Average BER versus SNR
SNR performance number of users near-far ratio performance
performance performance
K=20,N=31, SNR = 6dB, N =31 SNR = 5dB, K =20; W=5,K=10,N=31

W =1, (Gold codes),

perfect power control

(Gold codes), W =1,

perfect power control

N =31 (Gold codes);
w=1.

(Gold codes),
Vehicular A outdoor
Channel power delay profile
for WCDMA is used,

max(rk)erax(z'l )SN .
1<k <K ISk<K \ 'k
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In Figure 6.8, the average BER (average BER of all users) versus the SNR is depicted. As expected,
the LMMSE detector achieves the best performance while the matched filter detector achieves the
worst performance. The reason is that the matched filter detector performs no MAI reduction while the
LMMSE reduces MAI but at the same time reduces the noise enhancement effect. The performance of
the decorrelator detector is close to that of the LMMSE detector however it is slightly worse due to
noise enhancement effect.

In Figure 6.9, the system capacity in terms of number of users expressed as the average BER
(average BER of all users) versus the number of users is depicted. As expected, the LMMSE detector
can support more users than both the matched filter detector and the decorrelator detector. The
decorrelator detector in general can support more users than the matched filter detector, however, for
highly loaded systems the converse is true. This is due to the fact that at high loads the noise
enhancement effect becomes more severe and thus the benefit gained from interference cancellation is
overwhelmed by the noise enhancement effect. Hence, in this situation leaving the interference is better

than canceling it using the decorrelator detector.

10° : :

—v— MF detector 1
—4— Decorrelator detector | ]
—F— LMMSE detector 1

10‘5 I I I I I
(o] 2 4 6 8 10 12

SNR (dB)

Figure 6.8: Average BER versus SNR performance of different multiuser detectors in a synchronous

CDMA AWGN channel.
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Figure 6.9: Average BER versus the number of users’ performance of different multiuser detectors in a

synchronous CDMA AWGN channel.

In Figure 6.10, the near-far resistance expressed as the average BER (average BER of all users)
versus the near-far ratio is depicted. For the near-far ratio, we fix the amplitude of the first user and
vary the amplitude of the other users from one to 3 times that of first user. From a theoretical point of
view, the LMMSE detector and decorrelator detector have the same near-far resistance which is better
than that of the matched filter detector. However, because the noise level here is not zero (SNR = 5dB),
slightly different results are obtained. First, the LMMSE detector performs better than the decorrelator
detector because it cancels interference but at the same time it does not enhance the background noise.
Second, the decorrelator detector is really near-far resistant sine its near-far resistance is constant and
does not change with the near-far ratio. Finally, the matched filter detector performs worse than the
decorrelator and the LMMSE detectors, but not for all near-far ratios. Specifically, for small near-far
ratios, the matched filter detector performs better than the decorrelator detector. This is due again to the
noise enhancement effect which overwhelms the gain obtained from interference cancellation. Hence,
for near-far ratios under a certain threshold, it is better to leave the interference than removing it using
a decorrelator detector.

In Figure 6.11, the average BER (average BER of all users) versus the SNR in an asynchronous

CDMA multipth Rayleigh fading channel is depicted.
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Figure 6.10: Average BER versus near-far ratio performance of different multiuser detectors in a

10°

10

synchronous CDMA AWGN channel.

—v— MRC Rake receiver
—4— Decorrelator detector
—H— LMMSE detector

SNR (dB)

Figure 6.11: Average BER versus SNR performance of different multiuser detectors in an

asynchronous CDMA multipath Rayleigh fading channel.

123



Chapter 6 Multiuser Detection in CDMA

The vehicular A outdoor channel power delay profile for WCDMA is used and

max (rk )+ max (le ) <N so that ISI is negligible. The conclusion deduced for the synchronous

CDMA AWGN channel can be set here as well.

6.11 Conclusion

In this chapter, we introduced the multiuser detection principle and evaluated the performance of
different fundamental multiuser detection techniques for both CDMA AWGN and multipath fading
channels. We detailed the basic performance metrics commonly used in this field such as the BER, the
AME and the near-far resistance. Finally, simulation of the fundamental multiuser detectors is

conducted for both CDMA AWGN and multipath fading channels.
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7.2 Introduction

Linear interference cancellation (IC) structures are based on linear iterative methods and are used to
approximate the decorrelator/LMMSE detector [108]. Depending on the implementation details of
these methods, two different approaches exist ([87], [89] and [99]). The first approach uses the cross-
correlation coefficients and it is suitable for short-code CDMA systems. This approach results in what
is known as symbol-level or narrowband linear IC detectors. The second approach uses the spreading
codes and it is suitable for long-code CDMA systems. This approach results in chip-level or wideband
linear IC detectors. Suitability of these detectors for short-code or long-code systems is determined by
the implementation complexity which is system-dependent through the frequency of computation of
the cross-correlation matrix. This frequency is very low for a short-code system whereas it is very high
for a long-code system.

Since we are interested in developing linear IC detectors for long-code CDMA systems, chip-
level linear IC detectors are the best candidates in terms of computational complexity since they make
use of the spreading codes directly and not the cross-correlation coefficients and hence the computation
of the cross-correlation matrix is not necessary. This reduces considerably the total computational
complexity of multiuser detectors.

In this chapter, we study different chip-level linear IC detectors detailed in the literature in terms

of convergence behavior and computational complexity. These detectors are compared to their symbol-
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level counterparts. Moreover, we extend some structures which are suitable for CDMA AWGN

channels only to CDMA multipath fading channels.

7.3 Symbol-level Linear SIC (SL-LSIC) Structure

This structure is based on direct implementation of the Gauss-Seidel iterative method for the inversion
of the cross-correlation matrix l_leff . It was implemented for the case of synchronous CDMA AWGN
channel in [84] and for the asynchronous CDMA AWGN channel, in both [109] and [108]. For the
case of synchronous CDMA multipath fading channel, this structure was proposed in [110].

Using the linear CDMA channel model presented in Chapter 4, we implement this structure. The

basic building block for the k" effective user is shown in Figure 7.1.

4 ™

wpl)
w2
Wpkae1)
M ko)
wp-t gt
W=, WKy —

o /

Figure 7.1: SL-LSIC unit of the " effective user

The decision variable of the k" effective user is given by:
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WK

y (l’keff' )_ Z ﬁeﬂ' (keff' ,j)y (p _l’j)

1 kg +1

v(pky)== (7-1)

R, (k, .k, )| "&'=
eff eff > eff . ;
- i Reff (keff"] )y (p’J)
j=l
which is clearly the Gauss-Seidel iteration that is used for the inversion of the matrix l_leff . Hence it is

an iterative implementation of the decorrelator detector.

7.4 Symbol-Level Linear SOR-SIC (SL-LSOR-SIC) Structure

As discussed in Chapter 5, the SOR method is an enhanced variant of the SIC method based on the
relaxation principle. It has been proven in [80] that the SOR method converges faster than the SIC
method by an order of magnitude if an optimal weighting factor is used. The direct implementation of
this iterative method was presented in [84] for the synchronous CDMA AWGN channel. Furthermore,

an approximate optimal acceleration (weighting) factor was obtained and is given by [84]:
\//1 : (D’%ﬁ f, D )/1 (D’%ﬁ ff D’%) -1

Ao (D’%E,,D’%)ﬂ (D’%E,,D’%)—l

0, =2 (7-2)

where A,;, and 4, denote the minimum and maximum eigenvalues, respectively, and D is the diagonal
part of the matrix l_leﬂ . Upper bounds for 4,, and lower bounds for Ay, can be obtained using
theorems like the Gershgorin theorem [82] or the shifted matrix power method [111]. Here also we
present a more general structure for the SIC based on the SOR iterative method. The latter is based on
the linear asynchronous CDMA multi-path fading channel model presented in Chapter 4. The basic

building block for the k" effective user is shown in Figure 7.2.

The decision variable of the k" effective user is given by:

[0}
,k = 1_—— _lak)
v(poky) ( R, (k, k, )Jy (p g )t

cfﬁ’( eff >
WK
y (Lkeﬁ )- Z R, (ke/j‘"j)y (p-1j) (7-3)
J=key +1

I EEaE—— k-1
Ref/‘ (keff:ke/f) _t ﬁq/f (ke].,j)y (p,j)
I
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Figure 7.2: SL-LSOR-SIC unit of the k" effective user

which is indeed the SOR iteration used for the inversion of the matrix l_leﬂ. . A Symbol-level SIC that
can implement iteratively the LMMSE multiuser detector was proposed in [84] for the synchronous

CDMA AWGN channel and it can be obtained simply by replacing R o 0y l_leff + 0'2&;92, .

7.5 Symbol-Level Linear Group-Wise SIC (SL-LGSIC) Structure

In the symbol-level linear group-wise SIC structure, the K users are partitioned into G disjoint groups

where the g” group consists of U, users such that K =U,+U, +---+U, +---+U, . This yields a bank

of detectors; each detects the information symbols of users in each group. In a parallel group detection
scheme these group-detectors operate independently in order to cancel interference, whereas in a
sequential scheme, also known as group-wise successive interference cancellation (GSIC) scheme,

each group-detector uses the decisions of the previous stage of group-detectors to successively cancel
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the interference. These methods are based on block iterative methods such as the block Gauss-Seidel
and block successive over-relaxation methods. Before detailing this structure it is of paramount
importance to introduce the following indices and variables to simplify different expressions obtained
during the analysis of this and all subsequent structures. Let us define a new index g.;= 1,2,....,GW. It

is related to g and w as follows: g.; = (W—1)G+g. If g,y is provided then w and g are determined from

goy as follows: w :{%ﬁ—‘ where |_ -| is the ceiling operator and g = g, — (w-1)G. Hence,

WK =U +U, +--+U, +--+Uy; where: U, =U however, if U, ~ is provided then U,

(w —I)G +g

is determined as: U  =U "

where w = {&’L—‘ )
G

gl 8y 71
In addition, both k and k4 are related to u, and u oy 35 k = ZU ; tugand k= 2 U, +u, ,

i=l

respectively. However, if k& anf k, are given, then u, and u o, Are obtained as follows:

i g-1 i
g=sup{1£iSG:ZUj<k}, ug:k—ZUl. and geﬂ.=sup{1SiSWG:ZUj<keﬂ},

J=l ~
g -1
Ug,, =k, — 2 U, , respectively.
i=l1

The index g, will be used interchangeably with (g,w) whenever needed in this and subsequent
chapters.

The decision vector of the g” effective group of users is given by:

GWw

Y(Ley )= 2. Ry (gy.i)y(p-1J)

J=8yr +1

(P8 ) =Ry (808 )71 oyl
- 2 R, (8y-7)¥(P.))
J=

(7-4)

For the special case where the group size is one, that is, G = W, we obtain the symbol-level linear
block-wise SIC (SL-LBSIC) detectors. In this structure, the interference due to users in one bit period
is cancelled in parallel whereas the interference due to users of different bit intervals is cancelled in
series. Such detectors are presented in [112] and [113]. The basic building block of the SL-LBSIC

detector is shown in Figure 7.4.
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Figure 7.3: SL-LGSIC unit of the g” effective group of users

where R, (i,/) is the /" row, /" column submatrix of the matrix R, .The decision vector of the w”

block of users is given by:

Y(p,W ) = Rtﬂ (W W )7] - ‘ (7-5)

Here, the inverse of the submatrix R o (w W ) in the SL-LBSIC unit of Figure 7.4 is obtained

by direct inversion, however, if the number of users is large then iterative methods can be used
resulting in the inner-outer iterative methods, nested iterative methods or two-stage block iterative

methods [114]-[116].
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Figure 7.4: SL-LBSIC unit of the w” block of users.

7.6 Symbol-Level Linear Block SOR Group-Wise SIC (SL-LBSOR-GSIC)
Structure
A symbol-level linear block SOR group-wise SIC structure can also be obtained by modifying the

SOR-SIC structure to process a group of users instead of single users. The SL-LBSOR-GSIC structure

is shown in Figure 7.5. The decision vector of the g” effective group of users is given by:

¥(P.g ) =(1-0R,; (2,58, ) )y (P L2,y )+

y(lw)= 2 Ry (gy.7)y(P-1J) (7-6)

J =8 +1

OR (880 ) eyt
SRy (g )¥(p)
=
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Figure 7.5: SL-LBSOR-GSIC unit of the g” effective group of users.

As for the SL-LGSIC detector, the SL-LBSOR-GSIC structure can be extended to obtain the symbol-
level linear block-wise SOR-SIC detector by simply letting G = W. The new structure is shown in
Figure 7.6.

The decision vector of the w” block of users is given by:

y(pw )= (1 oR,; (ww ) )y(p—1w)+
5 - ngﬁe// - ljj ) (7'7)

133



Chapter 7 Linear Interference Cancellation Structures

~
o LT

— i)

yip, 2]

p— (-1}

yip-1,w) »  Vipw

v "

1 oot IRTEL o —

¥ H) e

- A

Figure 7.6: SL-LBSOR-GSIC unit of the w"” block of users.

All the previously detailed structures are easily extended to approximate the LMMSE detector
by simply changing I_{eff to I_{eff + 02;;_ . As mentioned earlier, all symbol-level detectors make use

of the cross-correlation coefficients and consequently the cross-correlation matrix needs to be
computed. If working in a long-code CDMA system where the cross-correlation matrix is changing
randomly from one symbol period to another, these detectors become computationally inefficient
because the computation of the cross-correlation matrix which costs 2NK” is more intensive than the
interference cancellation itself. Hence, this category is suitable for CDMA systems implementing

short-codes (periodic) only.

7.7 Symbol-Level Linear PIC/Weighted PIC (SL-LPIC/SL-LWPIC) Structure

This structure was proposed in [84], and was shown to be a direct implementation of the linear Jacobi

iterative method. Because of the well known convergence problems of the linear PIC, where it
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converges for only less than 17% of the loading factor [84] (K}Aigw(K%V) with K%V =cst ), the

LWPIC structure was proposed to ensure convergence. It was shown also that this scheme is equivalent

to the point relaxation Jacobi iterative method. The SL-LWPIC structure is shown in Figure 7.7:
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Figure 7.7: SL-LPIC/SL-LWPIC unit of the k" effective user.

The decision variable of the k" effective user is given by:

WK
; R, (ky i)y (p=1J) |+
#k

off

4]

eff (keff' > keff

(l—a))y (p —l,kéﬂ ), ke,f =1...WK

ko)==
y(p /f) R (7-8)
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which is clearly the point Jacobi relaxation iteration that is used for the inversion of the matrix R of -

Hence it is an iterative implementation of the decorrelator detector. Note that the SL-LPIC detector is

obtained by setting the relaxation factor w to one.

7.8 Chip-Level Linear SIC (CL-LSIC) Structure

Unlike the SL-LSIC structure, its counterpart the CL-LSIC structure acts directly on the received chip-
matched signal. Furthermore, it makes use of the spreading codes and not the cross-correlation
coefficients and consequently the calculation of the cross-correlation matrix is not required. This is
very suitable for long-code (aperiodic) systems where the cross-correlation matrix is changing every
symbol period. This structure is well covered in the literature for both synchronous/asynchronous
CDMA AWGN channel and synchronous/asynchronous CDMA multipath fading channel, for example
see [117]-[120].

In this sequel, we implement the CL-LSIC structure using the linear CDMA model proposed in
Chapter 4. The CL-LSIC consists of interference cancellation units (ICU) arranged in a multistage

th

structure as illustrated in Figure 7.8. The interference cancellation unit of p” stage, k” effective user is

shown in Figure 7.9. The composite signal y (p,ke/f ) =e(p,keff )+I(p,k¢ff ) at the input of the p”

stage, k" effective user ICU, is first despreaded to estimate the decision variable y (p.k,, ), that is:

v (poky ) =5, (ky )T (e(P’keff )+X(p.k ))

The MAI I( Dk )due the p” stage, k" effective user, is obtained by spreading the decision
variable y (p.k,, ), thatis: 1(p,k, )=3, (k. )y (p.k, ), which in turn is subtracted out from the
residual signal e( Pk )+ I( Dok ) to get a cleaned version of the residual signal e( Dok + 1) . This

process is repeated in a multistage structure as it is shown in Figure 7.8.
It was shown in [118] and [119], that the general expression for the residual signal vector and the
decision variable of the " effective user’s ICU unit at the p” stage, respectively, can be written as:

1

e(p?kq/f ) = (I)k‘,/, -1 ((I)WK )p_ q, (7-9)

and:

p-1

Y (p’ki’ﬂ ):Eeﬂ (keff )T q)ke// *IZ(;((I)WK )i qb = gzl;»ke// qb (7-10)

i=
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Figure 7.9: p” stage, k" effective user’s CL-LSIC unit (ICU)
Collecting the decision variables of all users in one matrix we get:
T
y(r)=Ga, (7-11)
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where: G, =[gp’1 82 " Zu, 7 Spwx ] Hence, the CL-LSIC could be described as linear

matrix filtering of the received chip-matched signal vector. Using the same method as for the matched

filter detector, the BER of the k" effective user at the p™ stage can be shown to be:

b

S_ A
P >0 LAVEYLYA) (7-12)
p.k,, SWK-T
2 leb y oa/gp,w gk,

ke
where Q(.) is the O-function. The asymptotic multiuser efficiency for the k" effective user at the p”
stage is given by:

WK
np,k(‘/f max 0 gp Ky e/f 0// Z —egk k_|g,,7 ke _(3[7 (j >| (7-13)
;1 eff

=77
8ok, 8ok, oK)

J
J

7.8.1 Convergence Behavior

It was demonstrated in [118] and [119] that if the CL-LSIC detector converges, it converges to the

decorrelator detector. Hence:
y()=R; S q, (7-14)

_ — =
where R, =S, S

off is the positive definite cross-correlation matrix (the spreading codes are linearly

independent).

7.8.2 Conditions of Convergence

It was shown also in [118] and [119] that the CL-LSIC detector is always convergent. At intermediate
stages where the residual received vector gets close to estimating the noise vector correctly, it is

possible that the CL-LSIC performs better in terms of BER than at convergence.

7.9 Reduced Complexity Chip-Level Linear SIC (RC-CL-LSIC) Structure

A RC-CL-LSIC structure was proposed initially in [121] for the case of synchronous CDMA AWGN
channel, it was extended to the case of asynchronous CDMA multipath fading channel in both [122]
and [123]. In fact, the RC-CL-LSIC structure can be considered as a hybrid chip-level symbol-level
SIC structure, in the sense that not all the computations are performed at chip-level since some of them
are performed at symbol-level. Nevertheless, this scheme still doesn’t make use of the cross-correlation
coefficients and hence it is considered as a chip-level SIC detector. Because of performing some of the

computations at symbol-level, this structure exhibits a reduction in computational complexity of about
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33% compared to that of the conventional chip-level linear SIC structure. This will become clear later
on when we discuss the computational complexity of different SIC structures.
The RC-CL-LSIC structure consists of ICU’s arranged in a multistage structure as illustrated in

Figure 7.10. The ICU of the p” stage, " effective user is shown in Figure 7.11. The residual signal

e( Dok ) at the input of the p™ stage, k" effective user ICU is first despreaded to estimate the partial

decision  variable y '( Pk ) of the p" stage, K" effective user, that is:

y'(p.ky)=5s, (k, )T e(p,k,, ). The residual signal of the next user (ky+/) is obtained as:

e(p,keff +1) :e(p,k‘,ff )—§(,ff (kgﬁ, )(y (p,keff )—y (p -Lk,, )) where:

v (p.ky)=y'(p.k, )+y (p—Lk, ). This process is repeated in a multistage structure as it is

shown in Figure 7.10.
As shown in [121], it is easy to show that after some manipulations the general expression for
the residual signal vector and the decision variable of the " effective user’s ICU unit at the p” stage,

respectively, can be obtained as:
e(p.ky, )=®, (®) g, (7-15)

and:

y (p, keff ):§ef/’ (keﬁ’ k,, 712((1)W1<) q, = gp ko Db (7-16)

where:

@, = H( S ()8 (J')T) (7-17)

J=kyy

Collecting the decision variables of all users in one matrix we get:
y(r)=G,aq, (7-18)
where: G, = [gp,l 8,2 " 8u, 7 8wk ] Hence, the RC-CL-LSIC detector can be described

as matrix filtering of the received chip-matched signal vector.
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Figure 7.10: Multistage structure of the RC-CL-LSIC detector.
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Figure 7.11: p” stage, k" effective user’s RC-CL-LSIC unit (ICU).

Using the same method as for the conventional detector, the BER of the k" effective user at the p”

stage can be expressed as:
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;= =
1 8y Ser Aoy P
Pp’ke// (G) = 2WK—1 Z Q el

(7-19)
allb O'\/m

bkd/ =1
where Q(,) is the Q-function. As for the BER, the asymptotic multiuser efficiency for the " effective
user at the p” stage is given by:
3 ‘4_47' (/./)

max’| 0,g" . s, (k, )— =
B, S (k) oL A (koy Kooy )

Y
J# gy

g S, () (7-20)

np,kg,,- =77
8ok, 8ok,

7.9.1 Convergence Behavior

As for the case of the CL-LSIC structure, it can be shown that if the RC-CL-LSIC detector converges it

converges to the decorrelator detector [121], that is,

y(»)=RS;q, (7-21)

where I_{W =§fo S, 1s the positive definite cross-correlation matrix (the spreading codes are linearly

independent).

7.9.2 Conditions of Convergence

As for the case of the CL-LSIC detector, it can be shown that the RC-CL-LSIC structure is always
convergent for any positive definite symmetric matrix [121]. Here also and at intermediate stages
where the residual received vector gets close to estimating the noise vector correctly, it is possible that

the linear SIC performs better in terms of BER than at convergence.

7.10 Reduced Complexity Chip-Level Linear Group-Wise SIC (RC-CL-LGSIC)

Structure

This scheme was first introduced in [124]. As for the SL-LGSIC detector, the users are partitioned into
groups; the interference due to users within the same group is cancelled in parallel while the mutual
interference between groups is cancelled in series. Additionally, this scheme reduces the detection
delay with a factor of G/K.

Even though this scheme is considered as a chip-level structure, its classification in fact is
dependent on the group-detection scheme. For example, if the group-detection scheme is the CL-LPIC
detector or the matched filter detector, then the resultant structure is a pure chip-level linear group-wise

SIC structure. However, if the group-detection scheme is the decorrelator detector or the LMMSE
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detector, then the resultant structure is in reality a hybrid chip-level symbol-level linear group-wise
SIC structure. The RC-CL-LGSIC detector consists of group interference cancellation units (GICU)

arranged in a multistage structure as illustrated in Figure 7.12. The basic interference cancellation unit
of the p™ stage, g™ effective group of users is shown in Figure 7.13. The residual signal e( P,8, ) at the

input of the p” stage, g” effective GICU is first despreaded to estimate the partial decision variable

y'(p,geff ) of the p" stage, g effective group, that is: y'(p.gy )= §¢f;- (g )T e(p.g.)-

q e2,1] el 1) el 10
GIC GICT GICT GICL .
» I — I E— e (7,1}
wy [Ton 0| @b en ™ e oo Y oen [
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Figure 7.12: Multistage structure of the RC-CL-LGSIC detector.

The residual signal of the mnext group of users (ggt1) 1s obtained as:
e(p g +1)=¢(P805 )= Sr (20 (¥ (Po8r ) =¥ (P~ 1.2 )) where:
Y(P.gy )=Y'(p.&gy )+¥(p —1.g,, ). This process is repeated in a multistage structure as it is shown

in Figure 7.12
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Figure 7.13: p” stage, g” effective group RC-CL-LGSIC unit (GICU).

It was demonstrated in [124] that the general expression for the residual signal vector of the g”

effective GICU at the p” stage can be obtained as:

e(p’ggff ) = (Dgw -1 (q)WG )p_l q, (7-22)

and similarly, the vector of decision variables of the g” effective GICU at the p” stage can be
expressed as:

p-1

y(p,g off ): F(g off )geff' (g off )T @, —IZ((DWG )i q, = G;,ge,, q, (7-23)

i=0

1

where: @, = [T (1-8,, (/)F(/)S, () )-

J=8er

Collecting the decision variables of all groups in one matrix we get:

y(r)=Ga,

where

G,=[G,; G, = G, Gl

and

The matrix G, can also be written as: Gp:[gp,1 2,0 v Cu, gp,WK]‘ Therefore the RC-

CL-LGSIC can be described as a matrix filtering of the received chip-matched signal vector. Using the
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same method as for the matched filter detector, the BER of the k" effective user at the p” stage can be

evaluated as:

b

g k Seff off
Por, (0)= 2WK1 P (7-24)
Z.llb:1 (o2 gpk/, gpA

keff
where () is the O-function. On the other hand, the asymptotic multiuser efficiency for the A"
effective user at the p” stage is given by:
4,

- (/.J
#kp vy S (J )| (7-25)

max”| 0 gpk S (kg )- (
= Ay (kg k)

Mok, = g;kw g . :
7.10.1 Group Detection Schemes

Depending on the transformation matrix F(g.), several group detection schemes can be obtained. Four
linear group detection schemes were considered in [124], namely the reduced-complexity chip-level
linear group matched filter successive interference cancellation detector (RC-CL-LGMF-SIC), the
reduced-complexity chip-level linear group parallel interference cancellation successive interference
cancellation detector (RC-CL-LGPIC-SIC), the reduced-complexity chip-level linear group
decorrelator successive interference cancellation detector (RC-CL-LGDEC-SIC) and finally the
reduced-complexity chip-level linear group minimum mean square error successive interference
cancellation detector (RC-CL-LGMMSE-SIC). All these group detection schemes are detailed in the

next section.

7.10.1.1 The RC-CL-LGMF-SIC Detector
It is the simplest scheme, and it is obtained by letting:

F(gqﬁ, )=1 (7-26)
where 1 is an (U e -by -U - ) identity matrix. This can be seen as a generalization of the

conventional SIC where more than one user is considered in each cancellation.

7.10.1.2 The RC-CL-LGPIC-SIC Detector

We can generalize the concept of the RC-CL-LGMF-SIC if we let the group detector to be a linear

N, -stage PIC detector. Thus the linear transformation is given by:
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i
N pic

F(g, )= 4 (I_geff (84 ) S (8 )) (7-27)

i=

o

7.10.1.3 The RC-CL-LGDEC-SIC Detector

For this detector, the linear transformation is given by:

F(g,)=(S (g ) S (2)) (7-28)

Note that if the group size is equal to one, we obtain the conventional linear RC-CL-LSIC detector.

7.10.1.4 The RC-CL-LGMMSE-SIC Detector
For the RC-CL-LGMMSE-SIC detector, the linear transformation is given by:

_ _ _ -l
F(g, )= (Seff (84 )T Sy (8o )+ 0" Ay (8 -8y ) 2) (7-29)

where o is the variance of the AWGN. Note that when the noise level is low the linear transformation
F(g.s) approaches the one for the RC-CL-LGDEC-SIC detector but, if the noise level is high F(g.)
approaches a scaled identity matrix, which corresponds to the RC-CL-LGMF-SIC detector.

7.10.2 Convergence Behavior

It was shown in [124] that if F(g.) is invertible for all g.,;= 1,2,...,WG. and I_{e/f is also invertible (all

spreading codes are linearly independent) than the RC-CL-LGSIC scheme converges to the

decorrelator detector if it converges. Hence:

v(»)=(5,8,) §,q, (7-30)

7.10.3 Conditions of Convergence

It was demonstrated in [124] that only the RC-CL-LGDEC-SIC is always convergent. For the other
group detection schemes, the convergence is not always guaranteed. Nevertheless, their convergence
can be ensured by inserting a weighting parameter that forces all the eigenvalues of the transition

matrix to be less than one as in [125]-[127].

7.11 Case of CDMA Multi-Path Fading Channel

The cross-correlation matrix for the case of a CDMA multi-path fading channel is different than that of

a CDMA AWGN channel because the main diagonal is not equal to the identity matrix. This causes the
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previously detailed chip-level linear SIC structures to diverge. Hence, a modification to these schemes
is necessary for their proper functioning in a CDMA multi-path fading channel. All the convergence
analysis detailed above for the chip-level linear SIC/GSIC structure operating in a CDMA AWGN
channel holds here as well. The CL-LSIC unit is modified as follows:

= H = H — -l
ewha) Gy ey ) (T (k) T (b))
Y+ i
Lp-1.k.q) :t{j 2 (p-fg )
T ()
* > 1(ph)
e(p k1)

Figure 7.14: The CL-LSIC unit for the CDMA multi-path fading channel

whereas the reduced-complexity chip-level linear successive interference cancellation unit is modified

as follows:

elphg) 5 (kg ) [

epfitl)

Figure 7.15: RC-CL-LSIC unit for the CDMA multi-path fading channel

Finally, the RC-CL-LGMF-SIC unit is modified as follows:
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Figure 7.16: RC-CL-LGMF-SIC unit for the CDMA multi-path fading channel

The under-relaxation principle is generally used to ensure the convergence of divergent iterative
methods. It was used in [125]-[127] to ensure the convergence of the divergent schemes introduced in
[124]. In the following, the under-relaxation principle is used to ensure the convergence of the
structures that are convergent for the CDMA AWGN channel but not for the CDMA multipath fading
channel. The structures developed using this principle (Figure 7.17, 7.18 and 7.19) exhibit minor
reduction in computational complexity compared to their counterparts in (Figure 7.14, 7.15 and 7.16)
in the sense that these detectors avoid the inversion of the matrix D.

At the p" stage, the residual signal due to the &” effective user of the CL-LSIC/RC-CL-LSIC

detectors is derived as [117]:

ke —1 WK
e(pky)=a,~ 3.5, ())y(pi)- . 5, ()y(p-1j) fork, = L2..J7K. (7-31)
j=1 J =k

Hence, the decision variable is given by:

ko —1
y (p’keﬂ' ) =S, (ke/J )T q, — Sy (ke//' )T 2 Sy (J)y(p.J)
=

. WK ' (7-32)
Sy (k) 2 8, (U)y(p-Lj) fork, =12..WK.

j:ke[/ +1
Also, from Figure 7.13, the residual signal due to the k" effective user of the RC-CL-LGMF-SIC

detector is derived as we have:

¥(p.2y) =Sy () (P2 ) +¥(P-Lgs) (7-33)
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where e( D&y ) can be written in terms of the decision variables as:

wG

o(pg) =0~ £ 8, ()¥(pi)= X 8, (1)v(p 1)) -39

J=8qr
A careful look to the equations above can easily show that CL-LSIC/RC-CL-LSIC and RC-CL-LGMF-
SIC detectors are equivalent to the modified point Gauss-Seidel and modified block Gauss-seidel
iterative methods, respectively, detailed in Chapter 5. These methods were proven to converge if, in
addition to the symmetry and positive definitiveness of the coefficient matrix, the maximum
eigenvalue of the diagonal/block diagonal part of the coefficient matrix is between 0 and 2. This can be
ensured by inserting a relaxation factor as for the case of modified point successive over-relaxation

method and modified block successive over-relaxation method. These two methods are convergent if

O<w<
max (D) which can be replaced by some upper bound of the maximum eigenvalue of the

matrix D, e.g. trace(D).

_ _ -1
Therefore Figure 7.14 and 7.15 are modified by replacing (Eej’ (ke/f )H §;/ (kef]' )) by w.

However, for Figure 7.13 the group detection matrix F(g.;) = I (for the case of RC-CL-LGMF-SIC

detection scheme) is replaced by F(g.;) = wl. The resulting figures are shown below:

e(p.Ker) E:}' (kg :'H I

+€9‘ > I':f:'-."l"-l'n'.".'

e(phat i)

Figure 7.17: CL-LSIC unit for the CDMA multi-path fading channel using the under-relaxation

principle
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Figure 7.18: RC-CL-LSIC unit for the CDMA multi-path fading channel using the under-relaxation

principle.
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Figure 7.19: RC-CL-LGMF-SIC unit for the CDMA multi-path fading channel using the under-

relaxation principle.

7.12 Chip-Level Linear PIC/Weighted PIC (CL-LPIC/CL-LWPIC) Structure

This scheme was proposed in [128]-[134]. It uses directly the spreading codes instead of the cross-
correlation matrix coefficients in the detection process. In this section, the CL-LWPIC detector

presented in [128] and extended here to the case of multipath fading scenario, consists of ICU’s
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arranged in a multistage structure as shown in Figure 7.20. The internal structure of each ICU is
illustrated in Figure 7.21.
The vector of decision variables of the (p-1)" stage, k" user Y(p-1,kep) is first despreaded added

to the decision variables of the other users to form the interference due to all users at the (p-1)" stage ,

Kw
that is, I(p —1)=>_5,, (/v (p —1,j ) The latter is subtracted out from the received signal q to obtain
ja

a purified received signal (q — I(p-1)) where all users exhibit less mutual interference. The decision
variable of the p” stage, k" user Y(p.key) 1s obtained by despreading the purified signal, multiplying the
result by a weighting factor and finally adding the result to the decision variable of the previous stage,

that is:

s, (k )T
v(poky )=
Sy (ke// )T S (ke/f)

This process is repeated in a multistage structure as shown in Figure 7.20.

(a-1(p-1)+y (p-Lk,) (7-35)

q
L A L 4 L 4 L J
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Figure 7.20: Multi-stage structure of the CL-LWPIC detector.
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Figure 7.21: The p” stage interference cancellation unit of the CL-LWPIC detector.

It was shown in [128] using an algebraic approach that the CL-LWPIC detector is equivalent to matrix
filtering of the received chip-matched signal. This enables the determination of analytical expressions

for the BER and AME of the proposed detector. Equation (7-35) can be written in matrix form as:
¥(p)=D"S}, (a=S,¥(p-1))+¥(p-1) (7-36)

where D is the diagonal part of the cross-correlation matrix l_leﬂ =S’ S

o Sy - Taking in consideration

that y(p) = 0, it can be shown as in [128] that (7-36) is equivalent to:
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P .
=Y (I-oD'S” S ) DS q
;( 17 Deff ) 5 (7-37)

T
qu

where G,,z[gp,1 g0 7 Bpk, ngK]-

Therefore, the CL-LWPIC can be described as matrix filtering of the received chip-matched signal
vector. Thus, if the spreading codes and grouping of all users are available, the decision variables of all
users could be obtained without explicitly performing parallel interference cancellation.

Using the same method as for the matched filter detector, the BER of the k" effective user at the

p™ stage can be evaluated as:

A, b
k Lff eff

pk”( ) 2WK —1 Z Q p = (7'38)
Zil: -1 0\' gp k., gp,kw

where Q(,) is the O-function. Additionally, the AME for the " effective user at the p” stage is given
by:

1 - & A, () _
M, (0)== max’| 0,8}, S, (ko )= D %km S (/)| (7-39)

gps/fef/ gpak«//‘ j’j{ ” €// ( off 2 é)‘)‘

Before discussing the convergence behavior of the proposed scheme let us develop the relation

between the latter and the Jacobi iterative method. Equation (7-35) can be written as:

— (k )T
y (pakej] )=_ Eff & q (1 CO) (p_la.])
Sy (ko ) Sefr (keff ) (7-40)
o8 (ky )T 5

fof 1)

§E.ff( eff )T Serr (keff /]

which is exactly the linear point Jacobi relaxation iteration used for matrix inversion.

7.12.1 Convergence Behavior

From (7-36), it easy to show that as the number of stages tends to infinity the vector of decision

variables tend to that of the decorrelator detector, that is,
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P - _
limy(p)=limw) (1-oD"'S, S, ) DS q
pPo® po® o A : e

= w(eD 'S8, ) DS q (7-41)

or o \lar
= (Scfff Sy ) Sy 4
which is the decorrelator detector. Therefore, if the CL-LWPIC detector converges, it converges to the

decorrelator detector.

7.12.2 Conditions of Convergence

The parallel interference cancellation detector is well known to suffer from severe convergence issues

([128], [129] and [134]). By observing that the iteration matrix of the proposed detector is given by:
B=(I-0D'SS, ) (7-42)

It is easy to determine the condition of convergence of the proposed scheme, that is:

O<w< 2
i ( = (7-43)

-1QT
DS, S, )

7.13 Computational Complexity

In order to conduct a fair comparison between different SIC structures one has first to specify the
CDMA system whether it is a short-code CDMA system or a long-code system. This is very important,
since many multiuser detectors with low-computational complexity in a short-code system exhibit
high-computational complexity in a long-code system and vice versa.

In all parts of this dissertation, we focus on developing linear interference cancellation structures
that are suitable for long-code CDMA systems. Thus, if not stated otherwise, the CDMA system
considered here is a long-code system. The computational complexity considered here is expressed in
terms of number of flops per sliding window. If the computational complexity in terms of number of
flops per bit is required instead, one can determine it simply by dividing the computational complexity

in terms of number of flops per sliding window by the number of bits within a sliding window W.

7.13.1 Computational Complexity of the SL-LSIC Structure

The computational complexity of symbol-level linear interference cancellation structures consists of

three steps:

e Computation of the matched filter outputs.
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e Computation of the cross-correlation coefficients (because we are considering a long-code CDMA
system).

e Computation of the symbol-level linear interference cancellation structure decision variables.

While the first two steps are common to all symbol-level linear interference cancellation
structures, the third step distinguishes between different structures in terms of computational

complexity.

The matched filter is given by: Z(WN + max (rk )+ max (rlA ))WK and the complexity required for

1<k <K 1<k <K

the computation of the cross-correlation matrix is 2(WN + max (z”‘ )+max(r,k ))(WK )2. The
1<k <K 1<k <K

computational complexity of the SL-LSIC structure is given by: (3W- K - 1)WKP. Thus the total

computational complexity of the SL-LSIC structure is given by:

1<k <K 1<k <K 1<k <K 1<k <K

(Z(WN + max (7 ) + max (7, ))—1)WK n 2(WN + max (7 )+ max (7, ))(WK y o
+(WK —1)WKP

7.13.2 Computational Complexity of the SL-LSOR-SIC Structure
The computational complexity of the SL-LSOR-SIC structure is higher than that of the SL-LSIC

structure since it comprises the estimation of the optimal relaxation factor. In view of the fact that
different estimation algorithms for the relaxation factor lead to different computational complexities, it
is desirable to exclude the computation of the relaxation factor when comparing different linear LSOR-
SIC schemes and focus on the structure instead. However, if one whishes to compare a LSOR-SIC
structure with another multiuser structure then the computation of the relaxation factor should be
included.
The total computational complexity of the SL-LSOR-SIC structure (excluding the estimation of
the relaxation factor) is:
2(WN + max (rk )+ max (le ))WK + 2(WN + max (z’" )+ max (r,k ))(WK )2

I<k <K 1<k <K I<k <K 1<k <K

(7-45)
+(IK +4)WKP
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7.13.3 Computational Complexity of the SL-LGSIC Structure

The computational complexity of the SL-LGSIC structure is obviously higher than that of the
conventional SL-LSIC structure since it acts on a group of users rather than one user. Moreover, it
comprises the inversion of a set of cross-correlation sub-matrices.

Here we are assuming that the inversion of these sub-matrices is implemented using direct
methods [78]. This is reasonable if the size of these sub-matrices is relatively small, that is, the number
of users within each group is small. Otherwise, one has to refer to iterative methods again. The total

computational complexity of the SL-LGSIC structure is:

2(WN+max(z'k )+ max(r,k ))WK+2(WN + max (rk )+ max(rlk ))(WK ) +(WK)’

1<k<K 1<k <K 1<k <K 1<k <K

4 ing +sziugi(2u, —1)+W i(llU;’ +%U; +Ug]+PWi(Ug ~1)U,
g=1 g=1 g=1

g=1 ji=1

(7-46)

7.13.4 Computational Complexity of the SL-LBSOR-GSIC Structure

The computational complexity of the SL-LBSOR-GSIC structures is obviously higher than that of the
conventional SL-LSOR-SIC structure since it acts on a group of users rather than individual users.
Here also, we are assuming that the number of users in each group is relatively small such that direct
inversion of the corresponding sub-matrices can be performed using direct methods. As for the
symbol-level linear SOR-SIC structure, the estimation of the relaxation factor is excluded from the
computation complexity calculation. The total computational complexity of the symbol-level linear

group-wise SOR-SIC structure is:

2(WN + max (" )+ max (c, ) K +2(WN + max (c* )+ max(r, )| (7K )’

1<k <K 1<k <K 1<k <K Ik <K

+(WK ) + 2% ing +sziugi(2uj —1)+PWiUg (2u, -1)
g=1 g=1

g=1 j=1

(7-47)
G 3 G
L/ zl(llug +5ng +Ugj+PWZIU§
g= g=
7.13.5 Computational Complexity of the SL-LWPIC Detector

The computation complexity of the SL-LWPIC detector proposed in [84] and illustrated in Figure 7.7

is given as follows:
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(2(WN + max (7" )+ max (z, )) —I)WK +(WK +7WKP

(7-48)
+2(WN + max (rk )+ max (le ))(WK )2

1<k <K 1<k <K

7.13.6 Computational Complexity of the CL-LSIC Structure

Unlike the symbol-level linear SIC structures, the chip-level linear SIC structures doesn’t require the
calculation of the matched filters outputs and the cross-correlation matrix, except the cross-correlation
elements of the main diagonal. This represents a considerable reduction in computational complexity.

Thus, the computational complexity of the CL-LSIC structure is:

OVKP (WN + max (r" )+ max (rlk )) +2WK (WN + max (Tk )+ max (rlk )) (7-49)

1<k <K 1<k <K 1<k <K 1<k <K

7.13.7 Computational Complexity of the RC-CL-LSIC Structure

Since some computations are performed at symbol-level, this structure exhibits lower computational

complexity which is given by:

WKP (4(WN # max (¢ )+ max (s, )+ 1)+ 29K (W + max () + max (7, ) (7-50)

I<k <K 1<k <K 1<k <K 1<k <K

Comparing it with that of the conventional CL-LSIC structure yields a reduction in

computational complexity of about 33%.

7.13.8 Computational Complexity of the RC-CL-LGSIC Structure

The computational complexity of the RC-CL-LGSIC structure is clearly higher than that of the
conventional reduced complexity CL-LSIC structure since it acts on a group of users rather than one
user. The computational complexity of the structure is dependent on the group-detection scheme
implemented. At the first look, it seems that the structure using the matched filter detector has the
lowest computational complexity while the one using the decorrelator or the LMMSE detectors has the
highest computational complexity. However, this maybe misleading because the structure using the
decorrelator detector needs less stages than the structure using the matched filter detector to converge
to the decorrelator detector’s BER performance. Hence, to perform a fair comparison between the CL-
LGSIC structure with different group-detection schemes, it is better to first determine the number of
stages P needed for convergence for each one and then use P for the calculation of the computational

complexity. For proper comparison with the SL-LGSIC structure that uses the decorrelator detector as
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the group-detection scheme, we state only the computational complexity of the CL-LGSIC structure

using the decorrelator detector as the group-detection scheme as well. Hence, it is given by:

G

G
ZUg (ZUg _1)+ 22Ug +(WN + g}é",&(rk )+ e (T’k ))Z(ng _1)+

1

pw | < ¢ ) p= .
(ZWN +2max (¢*)+ 2 max (7, )—1);%

(7-51)
PG (WN +max(rk )+max(rlk ))+W i(llU3 +§U2 +Ugj+

g g
<k< <k<
1<k<K 1<k <K = 2

w (WN + max (z’" )+ max(rlk ))i(Ug )2

1<k <K 1<k <K
g=1

7.13.9 Computational Complexity of the CL-LWPIC Detector

The computation complexity of this structure is given by:

4PWK (WN + max (r" )+ max (T]k ))+(2WK +P)(WN + max (r" )+ max(rlk ))+WK

1<k <K 1<k <K 1<k <K 1<k <K

(7-52)

7.14 Simulation Results

In this section, the abovementioned multiuser detectors are simulated and the results obtained are
commented. We simulate the convergence behavior of the chip-level interference cancellation
detectors and compare their computational complexity to their symbol-level counterparts. Two
different scenarios are considered, a synchronous CDMA AWGN channel and an asynchronous

CDMA multipath Rayleigh fading channel. The simulation parameters are depicted in Table 7.1:

Table 7.1: Simulation parameters

Channel Synchronous CDMA

AWGN

Asynchronous CDMA
multipath Rayleigh fading

Performance measure

Average BER versus

number of stages

Average BER versus

number of stages

20

10

31

31
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SNR 6dB 4dB
/4 1 5
Spreading codes Gold Gold
Power control Perfect Perfect
Power delay profile Not applicable Vehicular A outdoor Channel
for WCDMA
Length of ISI+MAI 0 max (z’k )+ max (le ) <N

In Figure 7.22, the average BER (average of all users) is plotted versus the number of CL-LSIC/CL-
LSIC stages. As it can be easily seen, the CL-LSIC converges faster than the CL-LPIC detector (4
stages for the CL-LSIC detector and 9 stages for the CL-LPIC detector) which corroborates with the
theory, however, the CL-LPIC detector achieves a lower average BER level than the CL-LSIC
detector. In addition, it is important to notice that lower average BER levels are achieved prior to
convergence, this is more noticeable for highly loaded systems and it has also been reported in other

references such as [121].

g v
10 2.06 B
-2.08
10 - ——— MF detector
—4—— Decorrelator detector
21 —F— LMMSE detector

—<—— CL-LSIC detector
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s}
N
g
Il

104 —a— E—m A —d & —d
f = - i = = = = = = = = = = =l
52 e ]
L L 1 1 L 1 1
2 4 6 8 10 12 14

Number of CL-LSIC/CL-LPIC stages

Figure 7.22: Convergence behavior of the CL-LSIC/CL-LPIC detectors.
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In Figure 7.23, the average BER (average of all users) is plotted versus the number of RC-CL-
LGSIC stages. Different detection schemes are considered. For the RC-CL-LGPIC-SIC detector, a 2-
stage PIC detector is used. It is easy to see that the RC-CL-LGDEC-SIC converges faster than the other
group-detection schemes (it needs only 4 stages whereas the RC-CL-LGPIC-SIC detector needs 6
stages, the RC-CL-LGMMSE-SIC detector needs 7 stages and the RC-CL-LGMF-SIC detector needs 9
stages). However, the linear RC-CL-LGMF-SIC detector achieves the lowest average BER level
among all detection schemes. Moreover, it is important to notice that lower average BER levels are
achieved prior to convergence, this is more noticeable for highly loaded systems and it has also been

reported in other references such as [121].
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—<— RG-CL-LGPIG-SIC detector

Average BER
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N
'Gd/\

L
2 4 6 8 10 12 14
Number of RC-CL-LGSIC stages

Figure 7.23: Convergence behavior of the RC-CL-LGSIC detector.

The effect of grouping is analyzed in depicted in Figure 7.24, 7.25, 7.26 and 7.27.
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Figure 7.24: Convergence behavior of the RC-CL-LGDEC-SIC detector for G =2 and G = 10.
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Figure 7.25: Convergence behavior of the RC-CL-LGMMSE-SIC detector for G =2 and G = 10.
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Figure 7.26: Convergence behavior of the RC-CL-LGPIC-SIC detector for G =2 and G = 10.
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Figure 7.27: Convergence behavior of the RC-CL-LGMF-SIC detector for G =2 and G = 10.

It can be seen that the convergence speed of the linear RC-CL-LGMF-SIC detector increases with
increasing number of groups whereas for the RC-CL-LGDEC-SIC, the RC-CL-LGMMSE-SIC and the
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RC-CL-LGPIC-SIC detector, the opposite is true. However, the average BER difference between
different groupings is small and of theoretical importance only.

To show the instability of some detectors, a set of 10 highly correlated codes are used for
spreading and despreading. The six users are divided into two equally sized groups 3 users each. It can
be seen from Figure 7.28, that while the RC-CL-LGDEC-SIC and the RC-CL-LGMMSE-SIC detectors
are converging to the decorrelator detector’s performance, the RC-CL-LGMF-SIC detector exhibits an
oscillatory convergence behavior while the CL-LPIC/RC-CL-LGPIC-SIC detectors are exhibiting an
oscillatory/smooth divergence behaviors, respectively. Different modes of convergence and divergence
are discussed in detail in [134].

Not only high correlated spreading codes are causing divergence of some multiuser detectors,
grouping is also affecting their convergence behavior. To illustrate this, we divide again the six users
into two groups where the first one contains 2 users and the second one contains 4 users. From Figure
7.29, it easy to notice that not only the RC-CL-LGPIC-SIC and the CL-LPIC detectors is divergent but
also the RC-CL-LGMF-SIC detector is divergent too. Thus, the grouping of users also affects the

convergence/divergence behavior of different CL-LGSIC detection schemes.
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Figure 7.28: Divergence behavior of some chip-level linear interference cancellation detectors due to

highly correlated codes.
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Figure 7.29: Divergence behavior of some chip-level linear interference cancellation detectors due to

grouping.

In the following, we simulate the convergence behavior of the aforementioned multiuser detectors in an
asynchronous CDMA multipath fading channel, the simulation parameters are depicted in Table 7.1.
For the RC-CL-GSIC detector the 10 users are divided into two equally sized groups. In addition, a
two—stage PIC detector is used for the RC-CL-GPIC-SIC detector. Figure 7.30 shows the convergence
behavior of the CL-LPIC and the CL-LSIC detectors. It is straightforward to see that while the CL-
LSIC detector converges within two stages, the CL-LPIC detector diverges. Hence, the principle of

under-relaxation is used here to ensure the convergence of the CL-LPIC detector and results in the CL-
LWPIC detector. The maximum eigenvalue of the matrix D'R o, used to determine the relaxation

factor is estimated using the Gershgorin theorem [82].

The computational complexity of the CL-LSIC detector can be reduced by omitting the
inversion of diagonal elements of the cross-correlation matrix by using the principle of under-
relaxation as in Section 7.11. This results in the CL-LWSIC detector for which the BER performance is
depicted in Figure 7.30. It easy to see that it’s performance is indistinguishable from that of the

conventional CL-LSIC detector. This suggests that it can be used as alternative.
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Figure 7.30: Convergence behavior of the CL-LSIC/CL-LPIC detectors.

In Figure 7.31, the convergence behavior of different RC-CL-LGSIC group-detection schemes is also

evaluated and plotted.
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Figure 7.31: Convergence behavior of the RC-CL-LGSIC detector.
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Their behavior is not far from that in a synchronous CDMA AWGN channel. Only the RC-CL-LPIC-
SIC detector takes a very large number of stages to converge (> 25 stages). This is due mainly to the
fact that the linear PIC detector is used without a weighting factor that ensures its convergence in an
asynchronous CDMA multipath fading channel. Hence, if fast convergence is required, the linear PIC
detector should be replaced with a linear weighted PIC detector.

In the sequel, we simulate the computational complexity of different interference cancellation
detectors. We plot the expressions developed in Section 7.13 for two cases: in the first case (a) we
assume that the number of stages needed for convergence is P = (WK)/2 whereas in the second case (b)
we assume that the number of stages needed for convergence is P = (WK)/4. This is reasonable since
from the simulations above, it can be seen that for all of the interference cancellation detectors the
convergence is achieved for less than P = (WK)/2.

In Figure 7.32, the computational complexity in terms of flops per sliding window is plotted

versus the number of effective users, that is, WK.

x10°  case of P=(WK)/2 x10¢  case of P=(WK)4
14 14
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Figure 7.32: Computational complexity of different symbol-level/chip-level LSIC detectors.

It is clear that the computational complexity of the decorrelator detector is much higher than that of the

IC detectors. The computational complexity of the CL-LSIC detector is comparable to that of the SL-
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LSIC detector for P = (WK)/2, however, for P = (WK)/4 the computational complexity of the CL-LSIC
detector is less than that of the SL-LSIC detector. On the other hand, the computational complexity of
the RC-CL-LSIC detector is less that of SL-LSIC/ CL-LSIC detectors for both cases (a) and (b).

As for the symbol-level/chip-level LSIC detectors, the computational complexity of the SL-
GDEC-SIC/RC-CL-GDEC-SIC detectors is depicted in Figure 7.33. It is easy to notice that the RC-
CL-GDEC-SIC detector has less computational complexity than that of the SL-GDEC-SIC detector for
both cases (a) and (b). Again, the computational complexity of the decorrelator detector is much higher
than that of the IC detectors.

In Figure 7.34, the computational complexity of both the symbol-level and chip-level LPIC
detectors is plotted versus the number of effective users KW. Here as well, it is obvious that the CL-
LPIC detector exhibits less computational complexity than its symbol-level counterpart (SL-LPIC
detector). Hence for most practical cases, all the chip-level linear IC detectors perform better than

symbol-level linear IC detectors in terms of computational complexity.
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Figure 7.33: Computational complexity of the SL-LGDEC-SIC/RC-CL-LGDEC-SIC detectors.
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Figure 7.34: Computational complexity of different symbol-level/chip-level LPIC detectors.

7.15 Conclusion
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In this chapter, we detailed different chip-level linear IC structures existing in the literature and their

symbol-level counterparts. We studied these structures in terms of convergence behavior and

computational complexity. We showed that some structures suffer from serious convergence issues

such as the CL-LPIC, RC-CL-LGMF-SIC and the RC-CL-LGPIC-SIC structures. Furthermore, some

structures converging for the case of the CDMA AWGN channel are diverging for the case of CDMA

multipath fading channel. Hence the principle of under-relaxation is used to introduce new relaxation

IC structures that exhibit relatively less computational complexity than those that do not use this

principle.
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Chapter 8
LMMSE-based Chip-level Linear SIC/GSIC Multiuser Detectors
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8.2 Introduction

According to our knowledge, all chip-level linear SIC structures proposed in the literature converge to
the decorrelator detector. Since the Linear Minimum Mean Square (LMMSE) detector outperforms the
decorrelator detector, particularly for low and medium signal-to-noise ratios, it is very important to
develop a chip-level linear SIC structure that can converge not only to the decorrelator detector as in
[121] and [117] but also to the LMMSE detector.

In this section, a chip-level linear weighted SIC (CL-LWSIC) multi-user detection scheme is
proposed. This scheme is computationally suitable for current long-code systems because it does not
rely on the computation of the cross-correlation matrix but instead makes a direct use of the spreading
codes. Moreover, and as shown later, this scheme converges to the decorrelator/LMMSE detector for

two distinct values of the weighting factor.
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Furthermore, the CL-LWSIC structure is extended to the chip-level linear weighted group-wise
SIC (CL-LWGSIC) multi-user detection structure, where group of users are processed instead of single
users. This reduces significantly the detection delay of the CL-LWSIC scheme. Unlike the structure
suggested in [124], that converges only to the decorrelator detector if it does at all, the CL-LWGSIC
structure proposed here can converge not only to the decorrelator detector but also to the LMMSE

detector.

8.3 The Chip-Level Linear Weighted SIC (CL-LWSIC) Structure

The proposed linear CL-LWSIC detector consists of ICU’s arranged in a multistage structure of P

stages as illustrated in Figure 7.8. The basic linear ICU is shown in Figure 8.1 . The multiple access

interference (MAI) termed I( Dok )due to the k" effective user at the p™-stage is obtained by
spreading the decision variable y ( Dok ) , through the operation I( Pk ) =%, (keff ) y ( Pk ),
and then subtracting I( Dok ) from the composite signal (e( Dk )+ I( p—Lk, )) to get a cleaned
version of the residual signal for the next ICU, that is e( Pk + 1) .

Here, the decision variable y ( Dok ) is obtained by despreading the residual signale( Dok ) ,

and then multiplying the result by a weighting factor, Ky, > thus  obtaining

Y (poky )=, 5y (ky )T e(p.k,, ). This process is repeated in a multistage structure as shown in
Figure 7.8.

oo k) P V' e

Y 4 i
l(p-Lheg) —>ED) 2 (2:For )

iy (k)

E‘:‘N » Uiphy)

elp kgt i)

Figure 8.1: p™ stage, k™ effective user’s CL-LWSIC unit (ICU)
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8.3.1 Convergence Behavior

Let e(1,1) = q, at the p" stage. The decision variable of the k" effective user of the CL-LWSIC detector

can be shown to be expressed as:

ko -1

y (p’keff):ﬂkwgeff (keff )T q— Sy (keff )T 2 eff( )y (P J)
J

o (8-1)
ﬂke/;gcfﬁ(keff) Z Sy (J)y(p-Lj), fork, =12..0K.

J=key +1

At convergence, however, we have: y (p,k, )=y (p-Lk, )=y (o,k, ) and therefore (8-1)

becomes:
Ky -1
¥ (o0,k ):/lky,, sy (kg )T q— 4, Sy (ko )T - Sy (J)y (0,/)=
_— ' (8-2)
i,y S (ko) Z S (J)y (o)), forky, =12, K.
J=kyy +1

Subtracting 4, s, (ko ) 5, (k, )y (0.k,, ) from both sides of (8-2) and taking into consideration

the fact that 5, (k,; ) 5, (k,, )=1, yields:
(1_'ukf/ ) < U
2ty (w,k,, ) =5, (k,, (k. s,
“. y(oooky ) =5 (ky ) a=5, (ky Z  ( ©,/) (8-3)

for ke/f = 1.2,.WK.

Equation (8-3) can be written in matrix form as:

Oy () =S, 4R, y(). (8-4)

_ — 1- — _ . _
where O =diag (1 'ul),(l #2),“',( ,Uke”b),"',(l IUWK) and R, zssz'seff

Hy Hy M, Hyk

is the positive

definite cross-correlation matrix. Note that the spreading codes are assumed here to be linearly

independent. Finally, (8-4) can be written as:
y(oo)z(®+ﬁeff) Surd (8-5)
Consequently, two cases of paramount importance are worth investigating:

o If My, =1 forall k;=1, 2, ..., WK, the proposed detector converges to the decorrelator detector.

170



Chapter 8 LMMSE-based Chip-level Linear SIC/GSIC Multiuser Detectors

1
o If = = for all k=1, 2, ..., WK, the proposed detector converges to the
ﬂkw 1+ O-ZA;;/ (keitf ’keiff' ) ! prop ¢

LMMSE detector.

Depending on the choice of My, s the resulting CL-LWSIC detector can either converge or

diverge. Hence, it is important to study the region of convergence for the proposed scheme. This is the

subject of the next section.

8.3.2 Conditions of Convergence

Before determining the condition for convergence, let us first establish the analogy between the
proposed scheme and the corresponding iterative method used to solve a set of linear equations which

is known as the Gauss-Seidel iterative method [80].

The matrix l_l%, can be decomposed into three parts, that is: R i =I-L-L', where the

€]

identity matrix I provides the diagonal elements of R , , and L and L” are the remaining lower-left

eff >

and upper-right parts of R . , respectively. Ultimately (8-1) can be written in a matrix form as follows:

ef >

Dy(p)=Sy,a+Ly(p)+Ly(p-1), (8-6)

where D =diag {L,L - ,---,L] . Consequently:

My Hy,, Hyk

—1 —

¥(p)=(D-L)" [L'y(p-1)+5q] (8-7)

Note that (8-7) is exactly the Gauss-Seidel iterative method for inverting the matrix D — L — L' =
l_leff + 0. For the convergence analysis of (8-7), we invoke Keller’s theorem [81]. In order to apply

Keller’s theorem, we first set the following:

e R=D-L-L"= l_leﬂ + O, since l_leﬁ. is hermitian and O is a diagonal matrix then R is also
hermitian.

e M =D — L which is nonsingular if all the elements of the diagonal matrix D are nonzero and

therefore det(M) = det(D — L) = det(D) # 0 and hence: My, # O forall ky=1,2, ..., WK.

e L"=M-Rand ngzﬁ.q
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e M+M —-R=M'+(M-R)=(D-L) +L =D, and since D is a diagonal matrix then if the

diagonal elements are nonzero and positive, then D is positive definite. Hence, g P 0 for all kyy

=1,2

9 Liy o

., WK.
We have R=D — L — L” =R + 0, if @ is positive semi-definite then the matrix sum (R + ©) is
also positive semi-definite. Since @ is a diagonal matrix, and provided its diagonal elements are all

positive, then @ is positive semi-definite. This is equivalent to the following condition: 0< , <1

forall ky=1,2, ..., WK.

Combining the aforementioned conditions, we get: { My, # O } N My, > 0} N{0< Hy, < 1}
= {O<,u,w <1} forall ky=1, 2, ..., WK. Therefore, if{0<,u,w <1} forall k=1, 2, ..., WK, then
the proposed scheme is guaranteed to converge.

For the two cases of interest, namely in which the proposed CL-LWSIC detector converges to

cither the decorrelator or the LMMSE detectors, we have =1€(0 1] and

1

(keff ’keﬁ’ )

My, E(O 1] for all k. = 1, 2, ..., WK, respectively. Hence, the proposed

= 2x 2
1+0°A,;

detector converging to the decorrelator / LMMSE detectors is always convergent.

8.3.3 Computational Complexity

In this section, the computational complexity of the proposed linear CL-LWSIC detector is evaluated

and is given by:

WKP (6(WN + max (Tk )+ max (Tzk )) + 1) +2WK (WN + max (Tk ) + max (le )) (8-8)

1<k <K 1<k <K 1<k <K 1<k <K

For the sake of comparison, the computational complexity of the SL-LSIC detector proposed in [84] is

evaluated and is given by:

(Z(WN + max (r" )+ max (le ))—I)WK - 2(WN + max (rk )+ max (le ))(WK )

(8-9)
+(K ~1)WKP

It is clear that the scheme in [84] has an additional complexity burden of

(Z(WN + max (Tk )+ max (le ))—I)WK + 2(WN + max (rk )+ max (le ))(WK )2 flops per sliding

1<k <K 1<k <K 1<k <K 1<k <K

window, due to the computation of the cross-correlation matrix and the matched filter outputs. This is

clearly illustrated in the simulation conducted in Section 8.6.

172



Chapter 8 LMMSE-based Chip-level Linear SIC/GSIC Multiuser Detectors

8.4 The CL-LWSIC Structure for Multi-Path Fading Channels

As illustrated in the previous chapter the linear CL-LWSIC detector needs to be modified to
accommodate with the changes in the cross-correlation matrix (the diagonal entries are not equal to

one). The modified structure is depicted in Figure 8.2.

Whi Ty g e T le)
Wp-1 k) pﬁli“; ypk)
iy (k)
+E“}( » Lok
¥
elpby+ 1)

Figure 8.2: p™ stage, k" effective user’s CL-LWSIC unit (ICU) for the case of asynchronous CDMA
multipath fading channel.

Following the same approach as in Section 8.3.1, it is easy to show that the vector of the decision

variables at convergence is obtained as:

=, -1 =, H
y(=)=(0+R}, ) (S, ] a (8-10)
(1—#,) (1_/“2)
_ — -1 b — — -1 b 9
(5 )% () 0 (3 ()5, (2) s
where O =diag . Consequently, two
( _’uke//) (I_ﬂWK)
= H = -1 ’ ’ = H = -1
(seiff (ker )" Sy (Ko )) M, (Sef/ WK)" s, (WK )) Hyi

cases of paramount importance are worth investigating:

o If By, = 1 forall ky=1, 2, ..., WK, the proposed detector converges to the decorrelator detector.
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1
o If Ky, = for all k=1, 2, ..., WK, the proposed

— = B A~
1+o° (seff (keit'f )H S (keff )) Ae.t?f (keiff ’keff‘)

detector converges to the LMMSE detector.

For the conditions of convergence, and following the same approach as in Section 8.3.2, it is

easy to show that the convergence of the scheme is guaranteed if {0 < My, <1} forall ky=1, 2, ...,

WK. For the two cases of interest, namely in which the proposed detector converges to either the

decorrelator or the LMMSE detectors, we have My, = le (O l] and

e(0 1] forall kyy=1, 2, ..., WK, respectively.

1
= H =

——
1+0” (Seff (ky )" 5 (ko )) A (ko oky)

Hence, the proposed detector converging to the decorrelator/LMMSE detectors is always convergent.

’u"e// -

8.5 The Chip-Level Linear Weighted Group-Wise SIC (CL-LWGSIC) Structure

The proposed CL-LWGSIC detector consists of group interference cancellation units (GICU) arranged

in a multistage structure of P stages as illustrated in Figure 8.3. The basic GICU is shown in Figure

8.4. The multiple access interference (MAI) I( D&y ) due to the g” effective group of users at the p”
stage, is obtained by spreading the vector of decision variables y( P8y )that is:
I( D&y ) =§eff ( o )y( D&y ), this MAI is subtracted from the composite signal
(e(p,geff )+1(p -Lg,, )) to get a cleaned version of the residual signal, e(p,g,, +1), of the next
group of users. Here, the vector of decision variables y( D, ge/f) is obtained by despreading the
residual signale( D&y ) , and then multiplying the result by the group-detection matrix F(g.s), that is:
Y

¥(P.8y ) =F (g, )y (e(Pogy )+ 1(P L2y ).

Note that for the case of a multi-path fading channel, for all derivations below one has to

substitute §eff by S l_le[f by lzlfff and the transpose operator (") by the hermitian operator ().

eff 2
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Figure 8.3: Multistage structure of the CL-LWGSIC detector
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Figure 8.4: p” stage, g" effective GICU.

ce Behavior

Let e(1,1) = q be the input to the first stage, first effective GICU of the CL-LWGSIC detector. Then by

following the same approach as in [117], the vector of decision variables at the p™ stage of the g”

effective group of the linear GSIC detector is expressed as:
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— Ser T _
y(p’geff):F(geff )S:ﬁ’ (geff )q_F(geff) Z R, (ge_f,j)y(p,j)—
v " (8-11)
F(gef/‘) Z R, (geff’j)y(p_l’j) forg,, =12,. WG

J =8y +1

At convergence, we have: y(p,ge/f ) = y(p -lLg, ) =y (oo,géﬁ ) , therefore (8-11) is equivalent to:

y(oo’gEff ):F(geff )ng/ (gei/f )q_F(geff )ZlReff (gef/ J)y(0, /) (8-12)
J= -

+F(geaff)§e.zf (gef/’geff')y(oo’geff') forg, =12,. WG

Subtracting F( Sor )l_leff ( Sy 18 )y(oo, o )from both sides of equation (8-12) and left multiplying
by F(g., )71 , one obtains:

F(g,, )71 (I_F(geiff )ﬁeeff (8 -84 ))y(oo’geitf )=§fo (g )a-

we _ (8-13)
2Ry (8y7)y(wj) forg =12,..G
j=1

Equation (8-13) can be written in matrix form as:

Qy(»)=S;,a-R,; y(») (8-14)

F(l)il (I_F(l) eff (1 1)) (2)71 (I_F(Z)ﬁeff (2 2)) '
F(gy ) ( F(g, )R o (8o 8oy )) ~F(Gm ) ( _F(GW )ﬁe//' (Gw.Gw ))

Finally, (8-14) can be written as:

where Q =diag

- 1 —
y(oo):(Q+Ref]') Surd (8-15)
Depending on the choice of F(gef].), the proposed CL-LWGSIC can converge to either the

decorrelator or the LMMSE detector, that is:

e IfF(g,)=R, (g,.8., )_1 for gy = 1,2,...,WG, the CL-LWGSIC converges to the decorrelator
detector.
-1

o If F(g,)=(R, (g,.85)+0°A, (8.8 )) for gy = 1.2,...WG, the CL-LWGSIC

converges to the LMMSE detector.
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8.5.2 Conditions of Convergence
Let us first establish the analogy between the proposed scheme and the corresponding iterative method
used to solve a set of linear equations, which is known as the block Gauss-Seidel iterative method [80].

The matrix l_leff can be decomposed into three parts: l_leff =D — L — L, where D is the block diagonal
part of l_leﬂ. : D= dzag( g (L 1) g (2.2),.R,, (gef/ & )» Ry (GW ,GW )) , and L and L"

are the remaining lower-left and upper-right block triangular parts of R . , respectively. Equation

eff

(8-11) can be written in matrix form as:
F'y(p)=S,a+Ly(p)+Ly(r) (8-16)

where F =diag (F(1),F(2),--,F(g,; )., F(GW)) . Hence:

¥(p)=(F'~L) (y(p-1)+S,q) (8-17)
Notice that the iteration in (8-17) is exactly the block Gauss-Seidel iteration for the inversion of the
matrix F' -L-L" = l_leff + Q. For the convergence of the proposed scheme, we use Keller’s theorem
[81]:
Ifweput R=F'-L-L’  M=F'-Land L"=M - R, we get:
M+M" -R=M" +(M-R)
—(F'-L) +L

= (F') - +L (-18)

Therefore, if F( g )71 is positive definite, for all g,z the proposed CL-LWGSIC is convergent if R is
positive semi-definite. We have R=F'—-L-L"'=Q+R o » thus if Q is semi-definite, then R is also

semi-definite (since R, is already semi-definite). Unlike the case for the LMMSE-based linear chip-

eff

level SIC structure, it is difficult to obtain a general condition of convergence for any transformation
matrix F. Fortunately, for the two cases of interest, namely, the CL-LWGSIC detector converging to
the decorrelator detector and the CL-LWGSIC detector converging to the LMMSE detector, we can

state the following:
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e IfF(g,)=R, (g, .84 )_1 (CL-LWGSIC detector converges to the decorrelator detector), then
F( o )_l is positive definite and hence R is semi-definite.
— T -1
o If F(geﬂ )= (Reﬂ. (gef./. - )+ oA (geﬂ - )) , (CL-LWGSIC converges to the LMMSE

detector), then F( 8o )7l is positive definite and hence R is semi-definite (because l_leﬂ. is positive

. . 2% -2
definite and so is 0°A_; (g, .8, ))-

8.5.3 Computational Complexity

In this section, the computational complexity of the proposed CL-LWGSIC detector is evaluated and is

given by:

Su, (w, ~1)+ (7N + max () + max(, ))i(zug 1)+

PW P 1<k<K 1<k <K P N
G
((WN + 1131}1(2);(1’{ )+ g§§ (le ))—1)2Ug
. (8-19)
3PG (WN +1132)I§(rk )+£&5§ (le ))+W gzl(llUg +§U§ +Ugj+
G

W (WN + E}i’é (z’" )+1r£111§>[§(rlk ))Z(Ug )2

g=1
For the sake of comparison, we compare its complexity to its symbol-level counterpart, that is, the SL-

LGSIC. The computational complexity of the latter is given by:

2(WN+max (74 ) + max (z, )| WK2(WN + max (¢ ) + max (=, ) VK )’ +(WK)

I<k<K 1<k <K 1<k <K Ik <K
G G G G 3 G (8-20)
WY UI+PW YU, D (U, -1)+W Z(IIU; +3U: +Ugj+PWZ(Ug -1)U,
g=1 g=1 ji=1 g=1 g=1

8.6 Simulation Results

In this section the performance of the proposed structures converging to either the decorrelator detector
or the LMMSE detector in terms of convergence behavior and computational complexity is evaluated.
We start by the proposed CL-LWSIC detector. First, the impact of changing the weighting factor
in the region of convergence (0, 1], on the average BER (over all users) of the proposed scheme is
depicted in Figure 8.5 . The SNR is set to 8 dB, P =4, K =20, N =31 (Gold codes) and perfect power
control is assumed. It can be seen that if My, =1 for all k=1, 2, ..., WK (CL-LWSIC detector =
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Decorrelator Detector), then the proposed scheme converges to the decorrelator detector; however, if

1
B 1+02K;;- (kg/f ’ke/] )

M, =0.9 (CL-LWSIC detector = LMMSE Detector) for all ky =1, 2, ...,
eff

WK, then the proposed scheme converges to the LMMSE detector. Note also that for 4y, >1 for all

k= 1, 2, ..., WK, the proposed scheme diverges which corroborates with our theoretical results

detailed above.

10°
10"} i
% ———— MF detector
a ——4A—— Decorrelator detector
%‘ —H&—— LMMSE detector
5: —6—— CL-LWSIC detector
o w |
o i 5, B B
10’3 | | | | |
0.5 1 15 2 25 3
Weighting factor

Figure 8.5: Impact of the weighting factor on the average BER of the proposed CL-LWSIC detector.

Second, the convergence behavior of the proposed scheme is evaluated by varying the number of
CL-LWSIC stages between 1 and 15 and depicted in Figure 8.6. Here the SNR is set to 6 dB, K =20, N
= 31 (Gold codes) and perfect power control is assumed. It is clear that both the proposed structure
converging to the LMMSE detector and the one converging to the Decorrelator detector needs less than
6 SIC stages to settle around their final average BER levels. Hence, by properly setting the weighting

factors it is possible to determine the final average BER level for the proposed scheme.

179



Chapter 8 LMMSE-based Chip-level Linear SIC/GSIC Multiuser Detectors

00y v v VvV VvV VvV VvV V V V V V V V ¥

10—2.08 | —— MF detector
—4—— Decorrelator detector
—+H— LMMSE detector
x 10'2'1 = —o—— CL-LWSIC detector —> Decorrelator detector
u — © — CL-LWSIC detector — LMMSE detector
o] i
:

‘@\9/6/—'@" P
107 o \% e B E - T T I & I & I & . )
| | I L ! ‘ ‘
2 4 6 8 10 12 14
Number of CL-LWSIC stages

Figure 8.6: Convergence behavior of the proposed CL-LWSIC detector, converging to the
Decorrelator/LMMSE detector.

The CL-LWGSIC detector is evaluated in terms of convergence behavior. We choose the matrix

F such that the CL-LWGSIC detector converges to the decorrelator (DEC) or the LMMSE detectors,

-1

that is:  F(g, )=R, (g,.84) (CL-LWGSIC detector -> Decorrelator detector) and

F(g, )= (RW (8 +805 )+ 0°A (24280 ))'1 (CL-LWGSIC detector > LMMSE detector) for g,

=1, 2,...,WG, respectively. The parameters used in the simulation are: SNR = 6 dB, K = 20, N = 31
(Gold codes) and perfect power control is assumed. We divide the users into two groups, 10 users each
(U,=U, =10). From Figure 8.7, we notice that the proposed scheme can converge to the LMMSE
detector within two stages whereas it needs 4 stages to converge to the decorrelator detector. In
addition, the detection delay for the CL-LWSIC detector converging to the LMMSE detector is now
PG = 4 rather than PK = 40 for the CL-LWSIC detector. This represents a significant reduction in the

detection delay time.
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Figure 8.7: Convergence behavior of the proposed CL-LGWSIC detector, converging to the
Decorrelator/LMMSE detector.

The convergence behavior of the proposed CL-LWSIC/CL-LWGSIC structures for the multi-path

fading channel are simulated and depicted in Figure 8.8 and 8.9. The simulation parameters are W =5,

K =10, N=31 (Gold codes), SNR = 6dB, max (rk )+ max (rlk ) <N and finally a Vehicular A outdoor

1<k <K 1<k <K
Channel power delay profile for WCDMA is used. The 10 users are partitioned into two equally sized
groups.
Simulation results confirm the results obtained for the synchronous CDMA AWGN channel and
show clearly that the CL-LWSIC/CL-LGWSIC detector can be configured to converge to the either the
decorrelator or the LMMSE detectors depending on the weighting factor/matrix.
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Figure 8.8: Convergence behavior of the proposed CL-LWSIC detector, converging to the

Decorrelator/LMMSE detector.
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Figure 8.9: Convergence behavior of the proposed CL-LGWSIC detector, converging to the

Decorrelator/LMMSE detector.
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In the following, the computational complexity of the proposed CL-LWSIC detector is
compared to its symbol-level counterpart (SL-LSIC). Two cases are considered; in case (a), the number
of stages needed for the CL-LWSIC/SL-LSIC to converge to the decorrelator/LMMSE detectors is
assumed to be P = (WK)/2 whereas for case (b), the number of stages needed for the CL-LWSIC/SL-
LSIC to converge to the decorrelator/LMMSE detectors is assumed to be P = (WK)/4.

It is apparent from Figure 8.10 that for P < (WK)/2 the computational complexity of the CL-
LWSIC detector is less than that of SL-LSIC detector. This condition is satisfied in most practical
cases, e.g., for Figure 8.6 and 8.7 and for K = 20 users, less than 4 stages are needed to achieve

convergence.

x10°  case of P=(WK)/2 x10°  case of P=(WK)/4
4 ! 35
—<— SL-LSIC detector —<— SL-LSIC detector
—+— CL-LWSIC detector —+— CL-LWSIC detector
35 /] 3F 4
3 L 4
2.5¢ 1
g_ 250 y 1 g_
s T 2 1
5 5l / 1 ®
g // g 15 B
2 15 / 4 2
b
/ - |
1 / -
05 i 0.5¢ 1
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Number of Users (K) Number of Users (K)
@ ®)

Figure 8.10: Computational complexity of the proposed CL-LWSIC structure versus that of the SL-
LSIC structure.

In Figure 8.11, the computational complexity of the proposed CL-LWGSIC and that of SL-
LGSIC structures is plotted versus the number of users K. It is clear that the computational complexity
of the proposed structure is inferior to that of its symbol-level counterpart for both cases (a) and (b).

This represents a significant reduction in computational complexity.
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Figure 8.11: Computational complexity of the proposed CL-LWGSIC structure versus that of the SL-
LGSIC structure.

8.7 Conclusion

In this chapter, we introduced two new chip-level structures that can converge to either the decorrelator
or the LMMSE detector. The structures make use of a weighting factor/weighting matrix to determine
to which average BER level the proposed structure converges to. Both convergence analysis and
simulation results indicate that the proposed detectors converging to the decorrelator/LMMSE
detectors are always convergent. Moreover, computational complexity analysis and simulation results

shows important reduction in computational complexity compared to their symbol-level counterparts.
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9.2 Introduction

The symbol-level linear SIC detector equivalent to the SOR iterative method was implemented in [84],
however, symbol-level multiuser detectors are not suitable for long-code CDMA systems because they
require the recomputation of the cross-correlation matrix every symbol interval. Therefore, a chip-level
linear SIC detector that uses directly the spreading codes and avoids the recomputation of the cross-
correlation matrix is necessary.

First, a new chip-level linear SIC multi-user detection scheme that is equivalent to the SOR
iterative (we call it chip-level linear SOR-SIC for simplicity) method is introduced. Second, the
detection delay of this structure is reduced by introducing a new chip-level linear GSIC multiuser
detector that is equivalent to the BSOR iterative method (we call it chip-level linear BSOR-GSIC for
simplicity). Third, we show that a reduced-complexity chip-level linear SOR-SIC can be obtained by
introducing a weighting factor within the linear SIC structure proposed in [121]. Fourth, and as for the
chip-level linear BSOR-GSIC, a reduced-complexity chip-level linear BSOR-GSIC is introduced to
reduce the detection delay of the reduced-complexity chip-level linear SOR-SIC structure. The
proposed structure is obtained by proving that the scheme proposed in [124] is in fact equivalent to the
block Gauss-Seidel iterative method if the group detection scheme is the decorrelator detector. Then,
by inserting a weighting factor within the structure, we show that the resultant scheme is equivalent to
the BSOR iterative method, which is well known to outperform the conventional block Gauss-Seidel
method by an order of magnitude in terms of convergence speed.

Finally, and for all schemes converging to the decorrelator detector developed earlier, we use a
matrix algebraic approach to describe the chip-level linear SOR-SIC/BSOR-GSIC schemes as linear
matrix filtering. We derive closed-form expressions for the residual signal vector and the vector of the
decision variables. This allows obtaining an analytical expression for both the BER and the AME. We
show as well, using two different approaches that the scheme converges if the weighting factor (known

also as relaxation factor) is between 0 and 2.

9.3 Chip-Level Linear Successive Over-Relaxation SIC (CL-LSOR-SIC) Structure

The CL-LSOR-SIC detector consists of ICU arranged in a multistage structure as illustrated in Figure

7.8. The basic interference cancellation unit is shown in Figure 9.1. The combined signal
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(coe( Pk )+ 1(p Lk, )) at the input of the p” stage, k¥ effective user ICU is first despreaded to

estimate the decision variable y (p,k,; ), thatis, y (p.k,, )=3, (k) (@e(p.k, )+1(p -1k, )).
The MAI I(p.k, ) is obtained by spreading the decision variable y(p.k, ), that is:
I(p.k, )=3, (k; )y (p.k, ), the sum of the latter and the weighted residual signal
(1-)e(p,k,; ) is subtracted from the combined signal (we(p,k,, )+I(p —1k,, )) to get a cleaner

version of the residual signal e( Dok + 1) for the next ICU. This process is repeated in a multistage

structure as it is shown in Figure 7.8.

el p.k ) Ty (g 3

+ ) (2. k)
1(p-1 ke .:53 l’

+ '
{1-co el k) )g%( > L oph

A
el kot

Figure 9.1: Basic interference cancellation unit (ICU).

9.3.1 Matrix Algebraic Approach to the CL-LSOR-SIC Detector
The residual signal at the input of the first ICU at the first stage is defined as e(l,l)zq and the
corresponding decision variable is given by y (L1)=7, (I)T (we(1,1)+1(0,1)) = WS, (I)T q. Moving

to the input of the second ICU at the first stage, the received signal vector is obtained by estimating the

MAI due to the first user and then subtracting it from the received signal that is

e(1,2)=e(1,1)+I(0,1)—I(1,1)=(I—w§e/f (D)3, (I)T )q. The corresponding decision variable is

expressed as y (1,2)=7, (2) (we(1,2)+1(0,2)) = ws,, (2) (I—w?eff (2)s, (2) )q. Proceeding in
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the same way, we can express the residual signal at the output of the k" effective ICU unit at the first
1
stage as: e(Lk, )= H (I ws, (j)s, (J ) )q ®, q, where I indicates product of
J=keyy -1

matrices with decreasing indices, and the corresponding decision variable is given by:

v (Lky )= a3, (k; )T e(Lk,; )=ws, (k, )T D4

The residual signal at the output of the last CL-LSOR-SIC unit at the first stage is:

1
e(LWK +1)=[] (I @S, (/)8 (J )T )q =®,,. q . This residual signal will be directed to the input

j=WK

of the first ICU unit at the second stage, therefore, e(2,1)=e(LWK +1)=®,, q. Taking in

consideration that §

i (Ko )T s, (k) =1, the corresponding decision variable is expressed as:

y(2.1)=%, (1) (we(2,1)+1(L1))

= 03, (1) e(2,1)+5, (I)T s (1) (L1)

= WSy (1) @y q+a8, o (I)T q
=ws, (1) (@, +1)q
For the second ICU unit we have:
e(2,2)=e(2,1)+1(L,1)-1(2,1)
~e(2.0)+1(L1)=5, (15, (1] (we(21)+1(L1)
=e(2,1)+5, (1)y (L)-os, (1)3, (1) e(2.1)-5, o (1% (1) s, (1)y (L1)

(I —0-3, ()3, (I)T )6(2,1)

~(1-0-%, (%, (1Y )@y

and:
v (2.2)=5, (2) (we(2.2)+1(1,2))
= 0% (2) e(2,2)+5, (2)T s, (2)y (1,2)

s, (2) (I s, (1)3, (I)T) ca+as, (2) (I 8, (13, (1) )q

=5, (2) (I o8 (13, (1) )((I)WK +I)q
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Following the same procedure, we can obtain the general expression for the residual signal

vector and the decision variable of the " effective ICU unit at the p” stage, respectively, as:

e(p.ky )=®, (P, ) 'q (9-1)
and:
p-l )
v(poky)=os, (ky) @ 2 (@) a= g, a (9-2)
i=0

where: (I)km = H (I — S, ( j )EW ( j )T ) Collecting the decision variables of all users in one matrix

J=kyy

we get:
y(r)=G,q 9-3)
where: Gp:[gp’1 80 7 8, ngK] . Hence, the CL-LSOR-SIC detector can be

described as linear matrix filtering of the received chip-matched signal vector. Using the same
approach as for the matched filter detector, the BER of the k" effective user at the p™ stage can be

expressed as:

r —
Ji 84y Ser Ay b

Pp,ke/-, (0):2”/? Z Q % (9'4)
o (V8

where Q(,) is the Q-function. As for the BER, the asymptotic multiuser efficiency for the " effective

user at the p” stage is given by:

_ WK Ze J.j

max’| 0,g), S (ko )~ Z 4, ‘Efk( k) )|g;kw
=
j:tkt,‘

Mok = sy (U )| 9-5)

T
&k Bk or Ko s Koy

9.3.2 Convergence Analysis

Let e(l,l) = q be the input signal to the CL-LSOR-SIC scheme. At the p” stage, the decision variable

of the k" effective user of the CL-LSOR-SIC detector is derived as:
ky

-1
y (P’keff ):“’Eqﬁ (keff )T q-os, (keff )T 2 Sy (J)y(pss)-
=

(9-6)

WK

@S, (kg )T 2 Sy () (p-1j)+y(p-Lky), fork, =12, 0K,

J=kyy
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At convergence, we have: y (p.k, )=y (p -1k, )=y (,k,, ) therefore (9-6) is equivalent to:

ke —1
vk )=0s, (ky ) a-a5, (kY S5, (7)y (.))-

Jj=l

;WK (9-7)
o5y (ky ) D0 5y (J)y (o)) +y (0 )),  fork, =12, 0K,
J=key
Equation (9-7) is equivalent to:
WK
— T — . . — T
o5 (k) Z;Seff (/)y (0.j) =08, (k) a, for k, =12, WK, (9-8)
=
Equation (9-8) could be written in matrix form as:
Ser Ser ¥ () =S54 (9-9)
Finally, (9-9) could be written as:
y(=)=R; S q (9-10)

Hence, if the proposed scheme converges it converges to the decorrelator detector.

9.3.3 Conditions of Convergence

For the conditions of convergence of the proposed scheme we propose two different approaches that

lead to the same result.

9.3.3.1 First Approach

This beauty of this approach is that it allows the identification of the proposed scheme as the SOR
method. This permits the straightforward determination of the condition of convergence using the rich
theory of the SOR iterative method.

Let’s first establish the analogy between the proposed scheme and the corresponding iterative

method used to solve a set of linear equations which is known basically as the SOR method. The

matrix R o could be decomposed into three parts, that is: R g =1-L— L" , where the identity matrix

I is the diagonal part of R, , and L and U are the remaining lower-left and upper-right parts of R of

eff >

respectively. After some manipulations, equation (9-6) could be written in matrix form as:
v(p)=o(I-oL) 'S, q+(I-0L)" ((1-o)1+oU)y(p-1) (9-11)

which is exactly the SOR iteration. Note that if w = 1, the iteration in (9-11) reduces to the Gauss-

Seidel iteration. For the convergence of (9-11), we use Kahan’s theorem [135]:
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Theorem 9-1

A necessary condition for the SOR method to converge is |w — 1] < 1.

Thus, for w real, the iteration in (9-11) converges if w e (0,2) . Nevertheless, one should set @ within

the interval (1,2) which corresponds to over-relaxation (acceleration) since the interval (0, 1)
corresponds to under-relaxation (deceleration) and it is basically used to ensure convergence of the
Gauss-seidel iteration if it is not convergent. The calculation of the optimum value of w for which the

convergence is maximum, depends on the maximum eigenvalue of the iteration matrix
(I- a)L)_1 ((1 —o)I+ a)U) , which is complex to compute. However, one can get a cheap estimate of

the optimum value of w based on an upper bound on the maximum eigenvalue of the iteration matrix

as in [84] and it is given by equation (7-2).

9.3.3.2 Second Approach

This approach was used in [121] to prove that the linear SIC detector is always convergent. Here, we
adopt this approach to determine the condition of convergence for the CL-LSOR-SIC detector. We
show that the condition obtained here is the same as that of the SOR iterative method. From Figure 9.1,

we have:

Y (kg ) =5 (ky )T (ae(p’kefff )+1(p Lk, ))
ws,; (k,, )T e(p.ky )+3, (ky )T S (ko )y (P =Lk ) (9-12)

=1

k o )T e(p.ky )ty (p-Lky )

WS,y (

For convergence we have:
tim (y (poky, )=y (p =Lk, ))=lim (05, (k, )" e(p.k, ))=0 (9-13)

However, we can write e(p,k,, )as:

e(p.ky ) =e(p.k, —1)-ws, (k, -1)5, (k, -1y e(p.ky ~1)
=B, _e(p.k, —1)
=(B,, B, BB, B, B, Je(p-1lk,)
=Q, e(p-Lk,)

(9-14)

where Bkd (I s,

r (Kop )8y (Ko )T ) . Therefore, equation (9-14) is equivalent to:
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llji_rge(p,kqﬁ)—hm( k., e(p lkeff))—hm((ﬂkw )p (1 keff)) (9-15)

—00

Therefore the CL-LSOR-SIC converges if:

T (20, )| <1 9-16)

Since for square matrices X and Y with the same dimensions, the matrices XY and YX have the same

eigenvalues, all the Q, L 1<k, <WK have the same eigenvalues. Thus we consider the case where

ke_,f = WK.
Consequently, the CL-LSOR-SIC converges if:

i (R0 )| <1 (9-17)
In the following, we consider the following lemma [124]:

Lemma 9-1

ma" ( ey )

1<k <K is less than one, then the condition in equation (9-17) is satisfied and

| max WK

k” =1

Thus, if |4, (B, )|,

the CL-LSOR-SIC is guaranteed to converge. We have:

max (/1 (Bk(_,,»/ )‘)<1

Ik, vk \I

thus

max (’1 (I @Sy (Ko ) Sy (keff)T)

1<k, VK

<1
)i

but since A(8; (k)5 (k) )= A(8 (Kyy ) 8 (K )) =1 for 1 < liyy < WK, we get [1- o] < 1

Consequently

1-of,, (getf (kg )8 (Ko )T )

max
1<k VK

and hence 0 < w < 2, which is the same condition as for the SOR iterative method.

9.3.4 Computational Complexity

The number of floating point operations (flops) per processing window required by the proposed CL-

LSOR-SIC detector is:
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SVKP (WN + max (r" )+ max (rlk ))+2WK (WN + max (r" )+ max (rlk )) (9-18)

1<k <K 1<k <K 1<k <K 1<k <K

while the SL-LSOR-SIC detector proposed in [84] requires:

Z(WN + max (z"‘ )+ max (le ))WK + 2(WN + max (Tk )+ max (T,k ))(WK )2

1<k <K 1<k <K 1<k <K 1<k <K (9_19)
+(WK +4WKP
and the decorrelator detectors requires at least (lower bound) [78]:
11(KW )3 +§(KW )2 +KW + 2(WN + max(rk )+ max (r, ))(WK )2
2 1<k <K 1<k <K K (9_20)

+2 (WN + max (rk )+ max (Tzk ))WK

1<k <K 1<k <K

9.4 Chip-Level Linear Block Successive Over-Relaxation Group-Wise SIC (CL-
LBSOR-GSIC) Structure

The proposed CL-LBSOR-GSIC detector consists of group interference cancellation units (GICU)

arranged in a multistage structure of P stages as illustrated in Figure 8.3. The basic linear GICU is

shown in Figure 9.2. In the ensuing, the following notations are used: e( P&y ) is the residual signal
of the p” stage, g” group of users GICU, I(p, g, ) is the MAI due the p™ stage, g” group GICU and
finally y( P8y ) is the vector of decision variables of the p” stage, g” group GICU.

The combined signal (a)e( D&y )+ I ( p-Lg, )) at the input of the p” stage, g” group GICU is

first despreaded to estimate the vector of decision variables y(psgef]’), that is,

Sgﬂ.(ge//-)T(a)e(p,ggﬂ.)+I(p—l,g£,ﬂ.)). The MAI I(p’grsﬂ') is

Y(P-8o ) =Ry (80801 )
obtained by spreading the vector of decision variables y(p.g., ). that is:
(.2, )=S, (g, )Y(pg, )» the sum of the latter and the weighted residual signal
(l—a))e(p,ggﬁ.) is subtracted from the combined signal (we(p.g,, )+I(p-1g, )) to get a

cleaned version of the residual signal e( D&y + 1) for the next group of users, that is g+1/.

This process is repeated in a multistage structure as it is shown in Figure 8.3; more insight is
given in the next section where a matrix-algebraic approach is used to describe the CL-LBSOR-GSIC

detector.
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Figure 9.2: Basic group interference cancellation unit (GICU)

9.4.1 Matrix Algebraic Approach to the Chip-Level Linear BSOR-GSIC Detector

Following the same procedure used for the CL-LBSOR-GSIC detector, we can obtain the general

expression for the residual signal vector of the g” effective GICU at the p” stage as:

e(p.g, )=, (D)) 4, (9-21)

and similarly, the vector of decision variables of the g” effective GICU at the p” stage can be
expressed as:
1= p-l

Sy (24) ®,, 712;,(%(; )a=G,, d (9-22)

i=

y(p’geff )= a)ﬁeff (geff' 8oy )

1

where: @, = H (I a)SLff( )R o (j,j)ilgeff (J )T )

J =8

Collecting the decision variables of all groups in one matrix we get:

_ T
y(r)=Gq
where
G,= [G,, DG, o Gy Gp,WG] .
and
G[”ge// = [gp’gej/ )1 g[’a&l// 2 g/”gu// Moy " gp,ge/, Yy :| ’
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The matrix G, can also be written as: G, :[gp’1 82 " 8B, 7 Sk ] Therefore the CL-

LBSOR-GSIC structure can be described as matrix filtering of the received chip-matched signal vector.
Using the same method as for the matched filter detector, the BER of the k" effective user at the p”

stage can be evaluated as:

1 g K, »§e[f Keff
P, (U)ZW > 0 6””— (9-23)

allb
b(kyy )=1

where Q) is the O-function. The asymptotic multiuser efficiency for the k& effective user of the g”
effective group at the p™ stage is given by:

! A, (j.))
n(pky )= ———max*| 0., 5, (k)= W

p’wgp/w 51 eff > eff

|g71-”k«/7 Efff (j )| (9-24)

9.4.2 Convergence Analysis

Let e(1,1) = q, at the p™ stage. The vector of decision variables of the g” effective group of users of the
CL-LBSOR-GSIC detector is derived as:

y(p’geff’) a)Reff( ey & )71§eff (gaff) q- “’Reff( c/f’gc/f) S,y (geff )T

-1
Sy (J)Y(P J) a)Rcff( cff’geff') cff cff Z Scff J) (9-25)

Jj=1 J =8&eff

+Y(P_1ageff )a fOI‘geff =12,.WG.

'S
3

At convergence we have: y(p,g,, )=y(p —1.8., )=¥(,g,, ) therefore (9-25) is equivalent to:

y(oo’geff) R, (geff’gei{f) Seff (geff )T q_a)ﬁeff (gEf’gEff) §eff (geff )T
1

8¢
t eff ,j )= a)Reff (ge.zf’ge.zf) off geff Z Seff ©, ;) (9-26)

=1 J=8r

+y(oo,geff), forg,, = L2,..J7G.

Equation (9-26) is equivalent to:

[ G [
R, (84851 ) Sur (8) Z or ( ©,j) =Ry (87 >80y )

-1 =

Sy (geff )T q (9-27)

for g 2,.WG.

g =1

Since RLff ( 8o &er ) is nonsingular, equation (9-27) could be written in matrix form as:
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Sor S ¥ () =8, q (9-28)
Finally, (9-28) could be written as:
y()=Ry; S, q (9-29)

The expression above looks exactly like that of the decorrelator detector, therefore, if the proposed

scheme converges, it converges to the decorrelator detector.

9.4.3 Conditions of Convergence

For the conditions of convergence of the proposed scheme, we propose two different approaches that

lead to the same result. These two approaches are detailed in the ensuing analysis.

9.4.3.1 First Approach

This approach allows the identification of the proposed scheme as the BSOR iterative method; this
facilitates the determination of the condition of convergence. Let’s first establish the equivalence
between the proposed scheme and the corresponding iterative method used to solve a set of linear
equations which is known as the BSOR method.

The matrix l_(eﬁ, could be decomposed into three parts, that is, R, =D —L—L" where D is the

efff

block diagonal part of the matrix R that is:

eff >

D =diag (l_leﬂ. (1,1),1_24/. (2,2), -,1_2‘;/]. (Zuy & ) -,l_{;/f wGwG )) ,and L and L” are the remaining

lower-left and upper-right block triangular parts of R respectively. After some manipulations,

eff >

equation (9-25) could be written in matrix form as:
y(p)=o(D-0L)'S) q+(D-oL) ((1-@)D+oU)y(p-1) (9-30)

which is exactly the BSOR iteration. Note that if @ = 1 (this is the case for the scheme proposed in
[124] where the group detection scheme is the decorrelator detector), the iteration in (9-30) reduces to

the block Gauss-Seidel iteration. For the convergence of (9-30), we use the following corollary [80]:
Corollary 9-1

Let R be an K-by-K hermitian matrix and R = D — L — LY where D is block diagonal matrix, and L
and L" are the remaining lower-left and upper-right block triangular parts of R. If D is positive
definite, then the block successive over-relaxation method is convergent for all y(0) if and only if 0 < @

< 2 and R is positive definite.
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Thus, for w real, the iteration in (9-30) converges if @ €(0,2). Nevertheless, one should set ® within

the interval (1, 2) which corresponds to over-relaxation (acceleration) since the interval (0, 1)
corresponds to under-relaxation (deceleration) and it is basically used to ensure convergence of the
block Gauss-seidel iteration if it is not convergent. The calculation of the optimum value of ® for

which the convergence is maximum, depends on the maximum eigenvalue of the iteration matrix
(D—a)L)_1 ((l—a))D+a)LT ), which is complex to compute. However, one can get a cheap fairly-
accurate estimate of the optimum value of ® based on some upper bound on the maximum eigenvalue

of the iteration matrix as in [84] and it is given by equation (7-2).

9.4.3.2 Second Approach
Here, the approach used in [124] is adopted to determine the condition of convergence for the proposed
scheme. As it can be seen from Figure 9.2, we have:
= -1g T
Y(P:8o ) =Ry (8ur -84 ) Scff () (“)e(p’geﬂ )+1(p -Lgy ))
=R, (8484 ) or (8er ) e(1.8, )
T

= — 9-31
+szf (geff’geff) Sy (gcff) Sy (geff)y(p_l’gcﬂ) ©-31)
=I
OR,; (2,:8, ) Sy (2 ) e(pog8y )+¥(P-Lg,y )
At convergence, we have:
li e )-v(p-Lg.)) =1lim(R, (g ,2.)'S., "e(p,
pl_lllc(y(p 8 )=Y(P~1gy)) pl_I}BC( o (8o 281 ) Suy (8ar ) €(P280y )) (9-32)

=0
However, we can write e(p,g,, ) as:

-1

e(p.g,)=e(p.gyy —1)- “’Soff( Eor _1)ﬁcff( g ~ L&y —1)
Sy (g = 1) e(p.8, —1)
=B, _e(p.g, 1) (9-33)
( sy 1Bg, 2 BiBys B, B, )e(p_l’gef]')
Q, e(p-lg,)

where B, (I a)SLff (27 )Ry (8801

1=

S (g )T ) Therefore, equation (9-32) is equivalent

to:
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. . . p-1
lime(p.g,, )= lim(2,, e(p-1g,))=lm((2,, ) "e(le, )| -0 (9-34)
Therefore the CL-LBSOR-GSIC converges if:
A (24, )‘ <1 (9-35)

Since for square matrices X and Y with the same dimensions, the matrices XY and YX have the same

eigenvalues, then all the Q o 's, 1< g, <WG have the same eigenvalues. Thus we consider the case
where g, = WG. Consequently, the CL-LBSOR-GSIC converges if:

A (@6 )| <1 (9-36)
In the ensuing, we state the following lemma [124]:

Lemma 9-2

wG
s (246 )< T [ B, )|

8yr =1

Thus, if ‘ﬂmax (Bgem )

, 1< g, <WG,is less than one, then the condition in equation (9-36) is satisfied

and the CL-LBSOR-GSIC detector is guaranteed to converge. That is:

1s$a£)vim( Ao (Bg”/f ) ) <1
thus:
— = 1= T
<o oG ( - (I ~ @Sy (87 )Ruy (828 ) Sor (8o ) )‘) <!

L= O, (§e17 (8o )Ry (204805 ) Sy (801 )T)

)t

consequently:  max (
1<gy WG

Hence:

2 . — — -1 = T .
O<w< = — = . Since S, (85 )Ry (8 +8r ) Sep (84 ) 8
= (Seff (8o )Ry (80 -8 ) Sy (8 ) )

a projection matrix then |4 (§eﬁ, (g )l_leff (& 8o )71 §eff (g )T )‘ =1 and consequently 0 < w <2,

which is identical to that of the BSOR method.
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9.4.4 Computational Complexity

In this section, the computational complexity of the proposed scheme is addressed. First, the
computational complexity of the proposed detector requires:
G G
k
DU, (U, 1)+ (N + max(e* )+ max (7, )) Y (v, ~1)+
pw |7 ¢ +

G

(Z(WN +lrgrll(2>1§(z'" )+1Smkel)1§ (T]k ))—I)ZUg

g=l

(9-37)
6PG (WN +max (7" )+ max 7, ))+W i(llU; +%ng +Ugj+

1<k<K 1<k <K —
g=1
G

w (WN + max (rk )+ max (le ))Z(Ug )2

1<k <K 1<k <K b
Second, the computational complexity of the SL-LBSOR-GSIC detector is:

2(WN + max (rk )+ max(r,k ))WK + Z(WN + max(rk )+ max(r,k ))(WK )2 +

1<k <K 1<k <K 1<k <K I<k <K

WK) +2% iug +PW2iUgi(2Uj —1)+PW§:Ug (20, -1)+
g=1 j=1 g=1

g=l

(9-38)
S 1 1 3 3 2 P S 2

w Zl Ug+ U U, |+ WZIUg

g= g=

Finally the decorrelator detector needs at least (lower bound) [78]:

3 3 2 2
(KW ) + (KW )+ KW +2(WN + max (e )+ max (7, ) (WK )

(9-39)
+2 (WN + max (Tk )+ max (le ))WK

1<k <K 1<k <K
9.5 Reduced-Complexity Chip-Level Linear Successive Over-Relaxation (RC-
CL-LSOR-SIC) Structure
The RC-CL-LSOR-SIC detector consists of interference cancellation units (ICU) arranged in a
multistage structure of P stages as illustrated in Figure 7.10. The basic linear ICU is shown in Figure

9.3. The partial decision variable of the k" effective user at the p”-stage y '(p.k,, )is obtained by

dispreading the residual signal e( p.k ) and multiplying it with the relaxation factor w that is,

or
y'(p.ky )=ws, (k, ) e(p.k 4 )- The decision variable y (p,k,, ) is obtained by adding the

partial decision variable y '(p.k,, )to the decision variable of the previous stage y (p -1k, ), that
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is, y (p,kgﬂ )=y '(p,keﬂ )+y (p -Lk, ) The residual signal for the next ICU is obtained by
spreading the partial decision variable and subtracting it from the residual signal, that is,
e(p.k,, +1)=e(p.k, )-3, (k, )y '(p.k, ). This process is repeated in a multistage structure as

it is shown in Figure 7.10.

(o) Eﬂ_ |:.|"I:_ﬂ- :Ii' - _L-b-r-],-'!-..!.'}
4 .kl o L
, Vg =+ o K )
> é é L
. —
S [P )
e bt 1)

Figure 9.3: p” stage, k" effective user RC-CL-LSOR-SIC’s ICU.

Following the same procedure as in [121], we can obtain similar expressions to those of (9-1) and (9-2)
for the residual signal vector and the decision variable of the &” effective user’s ICU unit at the p”
stage, respectively.

Hence, the RC-CL-LSOR-SIC detector can be described as matrix filtering of the received chip-
matched signal vector. Using the same method as for the CL-LSOR-SIC detector, one can obtain the
same BER and AME expressions as those in (9-4) and (9-5), respectively.

9.5.1 Convergence Behavior and Conditions of Convergence

Following the same procedure as in Section 9.3.2 and 9.3.3, it is easy to show that if the structure

converges it converges to the decorrelator detector. Moreover, the structure converges to the

decorrelator detector if e (0,2).

9.5.2 Computational Complexity
The number of flops required by the proposed RC-CL-LSOR-SIC detector is:
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WKP (4(WN + max (rk ) + max (le )) + 2) +2WK (WN + max (z’" )+ max (le )) (9-40)

I<k <K 1<k <K 1<k <K 1<k <K

while the SL-LSOR-SIC detector proposed in [84] requires:

2(WN + max (" )+ max (c, ) K +2(WN + max (c* )+ max (z, ))(7K )

1<k <K 1<k <K 1<k <K 1<k <K (9_4 1)
+ (3W K + 4)WKP
and the decorrelator detectors requires at least (lower bound) [78]:
3 3 2 k 2
(KW ) +2(KW )+ KW +2(WN + max (e )+ max (7, ))(WK )
2 I<k <K Isk<k \ 'k (9-42)

+2 (WN + max (rk )+ max (rlA ))WK

1<k <K 1<k <K

These expressions are plotted and compared in Section 9.7.

9.6 Reduced-Complexity Chip-Level Linear Block Successive Over-Relaxation
Group-Wise SIC (RC-CL-LBSOR-GSIC) Structure

The proposed RC-CL-LBSOR-GSIC detector consists of group interference cancellation units (GICU)
arranged in a multistage structure of P stages as illustrated in Figure 7.12. The basic linear GICU is

shown in Figure 9.4. The residual signal e( D, ge/f) at the input of the p”-stage, g" effective group

GICU is first despreaded, multiplied by a transformation matrix I_{(geff, 8o )71 and then by a

relaxation factor w to estimate the vector of the partial decision variables y'( P8y )of users of the g”

effective group at the p”-stage that is y'(p.g,, )= @R(g.; .2, )71 S, (g ) e(p, 8.y )- The vector

th

of the decision variables of the users of the g” effective group at the p”-stage is obtained by summing

up the vector of decision variables of the previous stage y( p-lg, ) and the vector of partial decision

variables of the current stage y'(p,g,, ). thatis, y(p,g,, )=¥'(P.&; )+¥(P —1.8.; )-
The residual signal for the next GICU is obtained by spreading the vector of the partial decision

variables y '( P8y ) and subtracting it from the residual signal of the current GICU e( p,g ) , that is,

eff

(.8 +1)=€(P.8y )= Suy (8 )Y'(P-84y ) -
Following the same procedure as in Section 9.4.1, we can obtain similar expressions to those of
(9-21) and (9-22) for the residual signal vector and the vector of decision variables of the gth effective

group’s ICU unit at the p” stage, respectively.
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Hence, the RC-CL-LBSOR-GSIC can be described as matrix filtering of the received chip-matched
signal vector. Using the same approach as for the CL-LBSOR-GSIC detector, one can obtain the same
BER and AME expressions as those in (9-23) and (9-24), respectively.

R

) 4 _
69‘ Seff (g eff )

o
Sy (& e/f) Rcff 8y & eff

Figure 9.4: p” stage, g" effectie(%@yggﬁ)CL-LBSOR-GSIC’s GICU

9.6.1 Convergence Analysis and Conditions of Convergence

Following the same procedure as in Section 9.4.2 and 9.4.3, it is easy to show that if the structure

converges it converges to the decorrelator detector. Moreover, the structure converges to the

decorrelator detector if e (0,2).

9.6.2 Computational Complexity
The computational complexity of the proposed detector requires:
+ .
ZU (2w, —1)+3ZU N+ max (e )+ max (7, )) (20, ~1)+
PW o +
(2(WN + max( )+ max (z’,k )) )ZU +G (WN + max(rk )+ max (T,k )) (9-43)

I<k<K 1<k <K I<k<K I<k <K

+WZ(11U +3U +U j+2W(WN+max( )+max(r,k))i(Ug)2

1<k <K 1<k <K

where the computational complexity of the SL- &%MJ )ector is:
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2

2(WN+max(z'k )+ max (le ))WK+2(WN + max (rk )+ max (Tzk ))(WK )" +(WK)

1<k<K 1<k <K 1<k <K 1<k <K
G e G G . 3, G (9-44)
W leg +PW Z;Ug 2(2U-f —1)+W 21(11(/8 +U; +Ug]+PWZ:1(Ug -1)U,
g= g= j= g= g=
Finally, the decorrelator detector needs at least (lower bound) [78]:
3 3 2 k 2
(KW ) +2(KW )+ KW +2(WN + max (e )+ max (7, ) ) (WK )

2 1<k <K I<k<K \ 'k (9_45)

+2 (WN + max (r" )+ max (rlk ))WK

1<k <K 1<k <K

These expressions are plotted and compared in Section 9.7.

9.7 Simulation Results

In this section, we simulate the proposed schemes in two different scenarios; in the first one a
synchronous CDMA AWGN channel is considered while in the second one an asynchronous CDMA
multi-path fading channel is considered. The average BER (average of all users) is evaluated versus the

value of the relaxation factor and depicted in Figure 9.5.

10°

——— MF detector
—&—— Decomelator detector
——H—— LMMSE detector
—©—— CL-LSOR-SIC detector

|
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Relaxation factor

Figure 9.5: Average BER performance versus the relaxation factor of the proposed CL-LSOR-SIC
detector for the case of a synchronous CDMA AWGN channel.
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The aim of doing so is first to confirm that the CL-LSOR-SIC and CL-LBSOR-GSIC detectors

converges if the relaxation factor is within the interval (0,2) as predicted by theory and second to verify
that the minimum average BER is within the interval [1,2), which corresponds to over-relaxation. The
SNR is set to 9dB, K =24, N =31 (Gold codes), P =2 and perfect power control is assumed.

It is clear from Figure 9.5 that the average BER of the proposed CL-LSOR-SIC detector
achieves its minimum value for a relaxation factor of 1.3, which is within the interval [1,2) (over-
relaxation). Hence, this confirms the theoretical findings concerning the CL-LSOR-SIC detector.

The convergence speed is now investigated by plotting the average BER versus the number of
CL-LSOR-SIC stages for different relaxation factor values. The number of the CL-LSOR-SIC stages is
varied between 1 and 15 and the average BER performance of the proposed detector is evaluated for @

=1, 1.1, 1.3, 1.5 and 1.8. The simulation results are plotted in Figure 9.6.

10° : :
—— MF detector
—=— Decorrelator detector
—F— LMMSE detector
10t —6— CLLSORSIC detector =1 | |

—E— OL-LSOR-SIC detector =11 | |
—%— CL-LSOR-SIC detector =13 | ]
——— CL-LSOR-SIC detector =15 | |
—+— CLLSORSIC detector =18 |

2 4 6 8 10 12 14
Number of CL-LSOR-SIC stages

Figure 9.6: Convergence behavior of the proposed CL-LSOR-SIC detector for different relaxation
factor values for the case of a synchronous CDMA AWGN channel.

It is clear that the CL-LSOR-SIC detector with @ = 1.3 results in the fastest convergence speed (2

stages are enough to converge to the decorrelator’s detector average BER performance). One can
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notice also that for @ = 1.8 the average BER performance of the proposed detector exhibits an
oscillating behavior which is expected because we are close to the region of divergence (2, +0).

As for the CL-LSOR-SIC detector, the performance of the CL-LBSOR-GSIC detector is now
investigated. First, for the same simulation parameters of Figure 9.5, the average BER level is plotted
versus the relaxation factor value and depicted in Figure 9.7. Here as well, it is evident that the
minimum achievable average BER is for a relaxation factor of around 1.1 which is within [1,2) (over-

relaxation). Note that the average BER performance is different from one grouping to another, this is
mainly because the iteration matrix (D - a)L)f1 ((l - a))D + a)U) , on which the convergence behavior

relies on, depends on grouping through the block diagonal matrix D.

10°;
E ——— MF detector
[ | —&— Decorrelator detector
[ | —=— LMMSE detector
. | | —&— CL-LBSORGSIC detector (G = 2) &
10 | —— CLLBSORGSIC detector (G = 12) E

|
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Relaxation factor

Figure 9.7: Average BER performance versus the relaxation factor of the proposed CL-LBSOR-GSIC
detector for the case of a synchronous CDMA AWGN channel.

Next, the convergence speed is now investigated by plotting the average BER versus the number
of CL-LBSOR-GSIC stages for different relaxation factor values. Simulation results are depicted in
Figure 9.8. It is obvious that the CL-LBSOR-GSIC detector with @ = 1.1 results in the fastest
convergence speed (2 stages are enough to converge to the decorrelator’s detector average BER

performance). However, its performance is indistinguishable from that of the CL-LGDEC-SIC detector
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(@ =1). Hence, the over-relaxation didn’t add much to the convergence speed of the proposed detector.
One can notice also that for w = 1.8 the average BER performance of the proposed detector exhibits an

oscillating behavior which is expected because we are close to the region of divergence (2, +0).

0

10 T T
—— MF detector
—4— Decorrelator detector
—— LMMSE detector
16, —©— CL-LBSOR-GSIC detector =1 | |

—B— CL-LBSORGSIC detector =11 | ]
—%— CL-LBSORGSIC detector »=1.3 | |
~—#— CLLBSORGSIC detector » =15 |
—+— CL-LBSORGSIC detector »=1.8

10 | | | | |
2 4 6 8 10 12 14

Number of CL-LBSOR-GSIC stages

Figure 9.8: Convergence behavior of the proposed CL-LBSOR-GSIC detector for different relaxation
factor values for the case of a synchronous CDMA AWGN channel.

In the following, we assess the average BER performance of the proposed CL-LSOR-SIC/CL-
LBSOR-GSIC detectors versus the relaxation factor for the case of an asynchronous CDMA multipath
fading channel. We use the following simulation parameters: W =5, K =20, N =31 (Gold codes), SNR
= 4dB, vehicular A outdoor channel power delay profile for WCDMA is used and

max (z-" )+ max (le ) <N . For the CL-LBSOR-GSIC detector, the users are divided into two equally

sized groups, that is, U; = U, = 10.

As expected the region of convergence of both detectors is between 0 and 2. However, the
unexpected, is that the minimum achievable average BER is attained for a relaxation factor between 0
and 1 (under-relaxation) where it was expected that the minimum achievable average BER should be
attained for a relaxation factor between 1 and 2 (over-relaxation). It is difficult to justify this since
there is no closed form expression for the optimum relaxation factor in our case. However, a careful

inspection of equation (7-2) shows that the relaxation factor is dependent on the diagonal/block
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diagonal D of the cross-correlation matrix. And since the matrix D is not the same for the case of
CDMA AWGN and CDMA multipath fading channels, this may cause the discrepancy noted above.

Nevertheless, more investigation and studies need to be carried out to justify the results above.

10"

—7 MF detector

—4— Decorrelator detector
= LMMSE detector

—— CL-LSOR-SIC detector
—o— CL-LBSOR-GSIC detector

il — — — — — - — — — — - — — — — -

10 I I I I I I I I I
0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Relaxation factor

Figure 9.9: Average BER performance versus the relaxation factor of the proposed CL-LSOR-SIC/CL-
LBSOR-GSIC detectors for the case of an asynchronous CDMA multipath fading channel.

In the following, we simulate the computational complexity of the four proposed chip-level
schemes that are equivalent to the SOR/BSOR iterative methods. As depicted in Figure 9.10, two cases
are considered; in case (a), the number of stages needed for the SL-LSOR-SIC/CL-LSOR-SIC/RC-CL-
LSOR-SIC detectors to converge to the decorrelator detector is assumed to be P = (WK)/2 whereas for
case (b), the number of stages needed for the SL-LSOR-SIC/CL-LSOR-SIC/RC-CL-LSOR-SIC
detectors to converge to the decorrelator detector is assumed to be P = (WK)/4.

It is easy to notice that the CL-LSOR-SIC detector exhibits less computational complexity than
the SL-LSOR-SIC detector only for case (b), however, the RC-CL-LSOR-SIC detector exhibits less
computational complexity for both cases (a) and (b). This represents a significant reduction in

computational complexity.
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As for the SL-LSOR-SIC/CL-LSOR-SIC/RC-CL-LSOR-SIC detectors, the computational
complexity of the SL-LBSOR-GSIC/CL-LBSOR-GSIC/RC-CL-LBSOR-GSIC detectors s simulated
and depicted in Figure 9.11. Again, two cases (a) and (b) are considered. The number of groups is fixed

to four groups.

x10°  case of P=(WK)/2 x10°  case of P=(WK)/4
3.5
—<— SL-LSOR-SIC detector —<— SL-LSOR-SIC detector
45 CL-LSORSIC detector CL-LSOR-SIC detector
—H— RG-CL-LSOR-SIC detector 3| —8— RCG-CL-LSOR-SIC detector
4f i
3.5t
g 3
T
E 25)
2
2
15+
l L
0.5
1 Il Il Il Il Il (fi_ Il Il Il Il Il
5 10 15 20 25 30 3B 5 10 15 20 25 30 35

Number of Users (K) Nurmber of Users (K)

Figure 9.10: Computational complexity of the proposed CL-LSOR-SIC/RC-CL-LSOR-SIC structures
versus that of the SL-LSOR-SIC structure.

Surprisingly, the proposed RC-CL-LBSOR-GSIC structure doesn’t introduce any reduction in
computational complexity compared to the CL-LBSOR-GSIC structure. However, both structures
exhibit less computational complexity than the SL-LBSOR-GSIC scheme for both cases (a) and (b).
Hence, both chip-level group-wise structures presented in this chapter have less computational

complexity that their symbol-level counterparts.
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x10°  case of P=(WK)/2 x10°  case of P=(WK)/4
3.5
—<— SL-LBSOR-GSIC detector —<— SL-LBSOR-GSIC detector
CL-LBSOR-GSIC detector CL-LBSOR-GSIC detector
3| —HF— RCG-CL-LBSOR-GSIC detector 25 —&— RCCL-LBSOR-GSIC detector
2.5
T 2
ke] i
g 15
z
1 L
0.5¢ 1
5 10 15 20 25 30 35 5 10 15 20 25 30 35

Number of Users (K) Number of Users (K)

Figure 9.11: Computational complexity of the proposed CL-LBSOR-GSIC/RC-CL-LBSOR-GSIC
structures versus that of the SL-LBSOR-GSIC structure.

9.8 Conclusion

In this chapter, we proposed four SIC/GSIC structures that are equivalent to the SOR/BSOR iterative
methods, respectively. We studied the convergence behavior of the proposed schemes using two
different approaches that lead to the same result. We determined the conditions of convergence and we
proved that these structures converge if the relaxation factor is within the interval (0,2). Simulation
results indicated that an important reduction in computational complexity can be gained by using the

proposed chip-level structures compared to their symbol-level counterparts.
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Chapter 10
Analysis of the Reduced-Complexity Chip-level Linear GSIC Multi-

user Detector Using a Matrix Iterative Approach

10.1 Chapter’s Contents
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10.2 Introduction

In order to reduce the long detection delay time of the linear SIC, the linear group-wise successive
interference cancellation (GSIC) detector was proposed [124]. The authors in [124] suggested a chip-
level linear GSIC detection scheme and showed that if the proposed structure converges it converges to
the decorrelator detector. Four group detection schemes were identified in [124], namely: the RC-CL-
LGDEC-SIC detector, the RC-CL-LGMMSE-SIC detector, the RC-CL-LGPIC-SIC detector and
finally the RC-CL-LGMF-SIC detector. It has been shown that only the RC-CL-LGDEC-SIC detector
is always stable, while there is no guarantee of convergence for the other detectors. It was shown in
[136] that the RC-CL-LGMF-SIC is in fact a hybrid SIC/PIC detector that can extract both advantages
of the SIC and PIC detectors. In [124], it was illustrated through simulations that the RC-CL-LGMF-
SIC detector is not always stable especially for small number of groups. For this reason and in order to
overcome this drawback, a weighted RC-CL-LGMF-SIC (RC-CL-LGWMEF-SIC) detector was
proposed and a condition of convergence was derived. In [127], a more relaxed condition of
convergence for the RC-CL-LGWMF-SIC detector was derived.

In this work, we show, by using a matrix iterative analysis approach, that the RC-CL-LGSIC
scheme proposed in [124] is in fact equivalent to a modified block successive over-relaxation iterative

method where the relaxation factor is a matrix instead of a scalar. Up to our knowledge, no proof for
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the convergence of such scheme exists in the literature and thus we propose two new corollaries that
extend the work of Kahan [80] to the case where the relaxation factor is a matrix instead of a scalar. By
using the new corollaries we derive two new conditions of convergence for the RC-CL-LGSIC detector
and we show as well that the conditions of convergence obtained in [124] and [127] can also be

obtained by using our approach.

10.3 Convergence Behavior and Conditions of Convergence

It was shown in Section 7.10.2 that if the RC-CL-LGSIC detector converges, it converges to the
decorrelator detector. In this section we propose a new approach that is based on matrix iterative
analysis and allows us to identify the RC-CL-LGSIC scheme as a BSOR iterative method but with a
relaxation matrix rather than a relaxation scalar. This facilitates the determination of the conditions of
convergence.

Recall that the vector of decision variables of the g” effective group of users at the p” stage of

the RC-CL-LGSIC detector is derived as:
v(p.8)=F(2,)5, (2,) a
&1 WG
—F(g.,)8, (ge/f) {Z Sy ()y(p.J)+ Z Seff(j)y(l’_l’f)j (10-1)

+y(p-lg,) forg, = 12,..WG
In the ensuing analysis, we establish the analogy between the proposed scheme and the corresponding
iterative method used to solve a set of linear equations which is known as the BSOR method. The
cross-correlation matrix l_leff can be decomposed into three parts, that is: l_(eff =D-L-L", where D
is block diagonal matrix, that is

D= dlag( (1 1) of (2 2) R, (ge/f s & off ), R, (WG /46 )) , L and L” are the remaining

lower-left and upper-right block triangular parts of R respectively. After some manipulations,

ef >

equation (9-30) can be setup into the following matrix form:
v(p)=[D-DFL]" [DFSW (g )T q+(D(I-DF)+DFL' )y(p- 1)} (10-2)
where

=[y(p.)) ¥(p.2) = ¥(p.gy) = ¥(pWG)] (10-3)
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and:
F =diag[F(1),F(2),.--.F(g,, )., F(WG)] (10-4)
On the other hand, the matrix form of the BSOR iteration is given by [80]:
y(p)=[P-oL]"| 68, (g,) a+(D(1-0)+ ol )y(p-1)] (105)

where o is a relaxation parameter. By comparing (10-2) to (10-5), one can immediately deduce that
(10-2) is exactly the same as (10-5) except that instead of the relaxation scalar, w, we have a relaxation
matrix DF.

All the theory we have at hand, regarding the conditions of convergence, deals with the
conventional BSOR iterative method where the relaxation factor is a scalar. Up to our knowledge no
theorem deals with the case we have in this work. Therefore, in order to determine the conditions of
convergence of the linear GSIC detector, an extension of Kahan’s theorem [80] to the case where the

relaxation factor is a matrix is necessary.
Corollary 10-1

Let R be a K-by-K hermitian matrix and R = D — L — U, where D is block diagonal matrix, and L and
U are the remaining lower-left and upper-right block triangular parts of R. If D is positive definite,
then the block successive over-relaxation method with a relaxation matrix £ is convergent for any
initial solution y(0) if and only if —1< det[I - Q] <1 and R is positive definite.

Proof:

The iteration matrix of the BSOR iterative method in case of a relaxation matrix is given by:
B=[D-QL| [D(I-Q)+QL ] (10-6)

where:

Q =diag (F(l)ﬁeff (1’1)’F(2)Reﬂ' (2’2)""’F(geff )ﬁeff (8o -8 ),j (10-7)

- ,FWG)R,, WG WG)

Taking the determinant of both sides of (10-6), one obtains:
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det[B]=det| (D-QL)" (D(1-)+ QL") |
1 r
:Mdet[D(l—Q)JrQLJ os)
= de[D] det| D(I-9)]
=det[I-Q]

(B)JWK where 4, (B)’s are the eigenvalues of B. For

ax

WK
Since we have det[B]=[] 4, (B)S[ﬁm
Ky =1

A

max

convergence we should have

(B)|<1 and consequently ‘[}Lm (B):IWK <1. Thus we get

|det[B]|<l and hence|det[I—Q]|<1. Finally, one gets: —1<det[I-Q]<1 which determines the

condition of convergence for the BSOR iterative method with a relaxation matrix €.
Corollary 10-2

A more restrictive condition for the BSOR iterative method with a relaxation matrix £ to converge is

that 0< A (Q)<2.

max

Proof:

WK
The condition above can be obtained by noticing that det[l - Q] = H /1,%”» (I - Q) < [imm (I - Q)]WK .

kyy =1
Thus if we can ensure that: |/1mr (1 —Q)| <1 then |det[I - Q]| <1. Finally, this results in the condition

of convergence 0 < 4

max

(Q)<2.

Two special cases can be distinguished:

e In case of the RC-CL-LGDEC-SIC detector we have F = D™, which results in Q = I. Therefore we
get |det[1 - Q] =|det[I-1]|=|det[0]| =0 <1 which is always true. Hence, the RC-CL-LGDEC-SIC
(which is equivalent to the block Gauss-Seidel iterative method) detector is always convergent.
This agrees with the condition reported in [124] that was obtained using a different approach than

the one developed here.

e In case of the RC-CL-LGMF-SIC detector we have F = I which results in & = D and thus from

corollary 1 we get |det[I—Q]| =|det[I—D]| <1. Since (I — D) is block diagonal, then the above
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condition can be expressed as:

~1<det[I-R,; (L1)|xdet[ T-R,; (2,2)]x---xdet[ =R, (g, .8, ) | ¥

_ Note that noticing
--xdet[ I-R,, (WG WG)]<I

Uy, _
that det[l_ﬁ‘ﬂ (g"ff ’g"ff )]: ﬁlﬂ““gp/; |:I_RL.’)7 (geff’géff )]S[ﬂmax (I_Reff (g(,_?ff ’geff ))]Ugw 5

Yger =

max [/LW (I_ﬁeff (8or &y ))]

1<g; WG

thus, if we can ensure that <1, then |det[I—D]|<1.

Ultimately, for the RC-CL-LGMF-SIC detector to converge, the following condition of

convergence 0 < max [/1 (l_lq,f (g%, s &or ))] < 2 is required.

max
1<g,; HG

It can be seen from the condition obtained from the second corollary, that only the RC-CL-LGDEC-

SIC detector is always convergent because 4, (Q) =1. However for the other group detectors, the

condition may be violated and as an example: the RC-CL-LGMF-SIC detector may diverge if

max (/1max (Rey (87280 ))) >2.

12g,, WG
For this reason, and as suggested in [125] for the RC-CL-LGMF-SIC detector, we use a
weighting factor w to stabilize the detectors that are not guaranteed to converge. Following the same

procedure as we did before, it easy to show that one obtains the following condition of convergence:

0 —_—.
<co</1 @)

max

Again two special cases are worth exploring:

e In case of the RC-CL-LGDEC-SIC detector we have F = D™, which results in Q = I. Therefore we
get 0 < w < 2 which is the same condition as for the conventional BSOR iterative method [80].
e In case of the RC-CL-LGMF-SIC detector we have F = I, which results in Q = D and thus we

. . .. 2
obtain the following condition of convergence 0< w < — . Note that

max [/LW (Reff (8 -8y ))J

1<g; WG

this is the same condition of convergence that the authors in [127] obtained by using a different

approach than the one devised here.

Finally, Table 10.1 summarizes the conditions of convergence for different group detection schemes.
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Table 10.1: Conditions of convergence for different group detection schemes.

RC-CL-LGSIC F(g, ) 1° Condition 2" Condition
Detector of convergence of convergence
RC-CL-LGMF-SIC I _ R
|det[I D]| <1 0< 153351)5/6 (l,m (Rgff (geff 8o ))) <2
detector
RC-CL-LGDEC-SIC ﬁq/f ( 280 )*1 Always Always Converging
detector Converging
RC-CL-LGWMF-SIC | -
2 |det[I-@D]|<1 | (_ < 2
detector X (R (R (207-8.1))
RC-CL-LGWDEC-SIC 0<w<2 0<w<2

= -1
@R ; (8480 )
detector

10.4 Simulation Results

In the following, we simulate the convergence behavior of the RC-CL-LGSIC multiuser detector in an
AWGN channel. For all simulations conducted here, Gold codes are used and thus the cross-
correlation between users is equal. This removes any effect of certain grouping or order of cancellation.
As in the case of the conventional BSOR iterative method where the relaxation factor is varied between
0 and 2, the determinant of the relaxation matrix is varied by changing the weighting factor @ between
0 and 2 to illustrate its impact on the average BER (average of all users’ BER) of the RC-CL-LGSIC
detectors (RC-CL-LGMF-SIC and RC-CL-LGDEC-SIC) as shown in Figure 10.1. Here the SNR is set
to 10 dB, M =3, K =24, N=31, G = 2 (equal size groups) and perfect power control is assumed. As
can be seen for Figure 10.1, the average BER is minimum for a determinant of the relaxation matrix
between 1 and 2. Also, as it can be seen from this Figure 10.1, the RC-CL-LGMF-SIC and RC-CL-
LGDEC-SIC detectors achieve the minimum average BER for a relaxation factor of 1.1 and 1.2,
respectively. This agrees well with the conventional BSOR theory, which states that the optimal
relaxation factor that results in maximum convergence speed of the BSOR iterative method is between

1 and 2 [80].
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Figure 10.1: Convergence behavior of the RC-CL-LGSIC detector versus the determinant of the

relaxation matrix.

10.5 Conclusion

In this chapter, we used a matrix iterative analysis approach to identify the RC-CL-LGSIC detector
proposed in [124] as a linear BSOR iterative method but with a relaxation matrix instead of a
relaxation factor. This approach allowed us to determine two new conditions of convergence. Finally,

simulation results were in excellent agreement with our theoretical findings.
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11.2 Introduction

Chip-level linear group-wise successive interference cancellation schemes have been studied

extensively in the literature ([124]-[127] and [137]-[139]). Surprisingly, their counterparts, the chip-

level linear group-wise parallel interference cancellation schemes were not investigated till now,

despite their apparent advantages such as parallelism. Hence if a parallel multiprocessor architecture is

available, the algorithm execution time can be greatly reduced. In this chapter, a new chip-level linear
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group-wise parallel interference cancellation (CL-LGPIC) detector is proposed. Four different group-
detection schemes are derived, namely, the chip-level linear group matched filter PIC (CL-LGMF-PIC)
detector, the chip-level linear group decorrelator PIC (CL-LGDEC-PIC) detector, the chip-level linear
group minimum mean square error PIC (CL-LGMMSE-PIC) detector and the chip-level linear group
parallel interference cancellation PIC (CL-LGPIC-PIC) detector. The convergence behavior of the
proposed scheme is analyzed and conditions of convergence are derived. As for the CL-LPIC detector,
the convergence of the proposed structure is ensured by the use of a weighting factor (relaxation
factor). Finally, the computational complexity of the proposed detector is compared to that of its

symbol-level counterpart. Simulation results conducted are in excellent agreement with the theory.

11.3 Structure of the Chip-Level Linear Group-Wise Parallel Interference
Cancellation (CL-LGPIC) Detector

The CL-LGPIC detector consists of interference cancellation units arranged in a multistage structure as

shown in Figure 11.1.

q
Y k. . Y
Y N T T
Vil viZ.d) Yy ¥iP1)
r» - e eeeee — —eeae — S
v, ¥ yig ) viF.2)
l_ > »  —-e-- — - — —
PICU PICU PICU FICU
i : 2 : » : P

P - S e — —
it aragh ¥ 2 Yip gl ¥l

> e aem — —— e nae — —
vi yi2 ) i, W) ¥iP W
NS LS e ST LS

Figure 11.1: Multi-stage structure of the CL-LGPIC detector.
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The internal structure of each interference cancellation unit is illustrated in Figure 11.2.
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Figure 11.2: The p” stage interference cancellation unit of the CL-LGPIC detector.

The vector of decision variables of the (p-1)™ stage, g” group y(p-1 .8e) 15 first despreaded added to

the vectors of decision variables of the other groups to form the interference due to all users at the (p-

Gw _
1)" stage , that is, I(p —1)=>_S,, (j )y(p —1,/ ). The latter is subtracted from the received signal q
=

to obtain a purified received signal [q — I(p)] where all users exhibit less mutual interference. The
vector of decision variables of the p” stage, g” group Y(p.g.p) is obtained by despreading the purified
signal, multiplying the result by a transformation matrix and finally adding the result to the vector of

decision variables of the previous stage, that is:
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Y(P=gexf ) :F(geff )§Eff (geff )T (q_I(P —1))+y(p ~Lgy ) (11-1)

This process is repeated in a multistage structure as shown in Figure 11.1

Note that the structure for the CDMA multipath fading channel is the same as the one shown
here except S,; (g,, ) should be replaced by §fff (g, ) and the transpose operator (") should be

replaced by the hermitian operator (7).

11.4 Algebraic Approach to the CL-LGPIC Detector

In this section, we show using an algebraic approach that the CL-LGPIC detector is equivalent to
matrix filtering of the received chip-matched signal. This enables the determination of analytical
expressions for the BER and AME of the proposed detector.

th

The vector of decision variables at the p” stage, g” group Y(».g2e) in equation (11-1) can be

written in matrix form as:
¥(p)=FS (a-S,y(p-1))+¥(p-1) (11-2)
where F =diag [F(1),F(2),--,F(g,, ).---.F(WG)]. Hence (7-36) is equivalent to:
y(p)=FS;a-FS; S, y(p-1)+y(p-1)
=FS q- (I -FS,,S,, )y(p ~1)
=FS;, q- (I ~FS,,S,, )(ngff q- (I ~FS;,S,, )y(p - 2))

_ . — _ . — 2
=FS;q _(I -FS;S,; )Fsszq + (I -FS;S,; ) y(p-2)

~FS/,q-(1-FS,5, )FS],q e
+(1-FS,,S,, ) (FS], q—(1-FS},;S,, )y(p-3))
=FS), q—(I-FS,S,, JFS) q
+(1-FS.,S,, ) FS!, q+(1-FS,S,, ) y(p-3)
Proceeding in the same way and taking in consideration that y(p) = 0, we obtain:
y(p)= i(l ~FS,,S,, )HF§Z/f q
P (11-4)
=G q
where G, =[G,, G,, - G,, - G,
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and G 8oy Vs, ] . The matrix G, can also be written as:

P z[gmewl Cres2 T Bpgguy,
G, =[gp’1 80 " 8, ngK] Therefore, the CL-LGPIC can be described as a matrix

filtering of the received chip-matched signal vector. Thus, if the spreading codes and grouping of all
users are available, the decision variables of all users could be obtained without explicitly performing
parallel interference cancellation.

Using the same method as for the matched filter detector, the BER of the k" effective user at the

p" stage can be shown to be:

1 g1, S Keiffb
Pp,kw (o-) = K- Z Q ,7\//7 (11-5)
zl(lkbez/ )=l Bpikey By

where Q(.) is the O-function. Moreover, the asymptotic multiuser efficiency for the k" effective user at

the p™ stage can be shown to be given by:

WK

= max’| 0,g" , 5. (k, Lff— 5 L6
gpk gpk piker // ﬂ ; ej'/ (keff7kgff |gP’r/ f/(])| ( )

Jj#k

771’ Koy

Before discussing the convergence behavior of the proposed scheme let us develop the relation
between the latter and the Jacobi/block Jacobi iterative method. Equation (11-1) can be shown to be

setup into:

Y(P-8y )=F (8 )Suy (g e)?‘)Tq+(I_ (81 )Sey (80 ) Suy (ge[f))y(p_l’j)

& . (11-7)
+F(g. )S. (g4 ) Z (p-17)

Jj=1
Jj#g

It is easy to notice that depending on the transformation matrix (group detection scheme) F, different
group detection schemes can be obtained, namely: the CL-LGMF-PIC, CL-LGDEC-PIC, CL-LGPIC-
PIC and finally CL-LGMMSE-PIC detectors.

11.4.1 The CL-LGMF-PIC Detector
It is the simplest scheme, and it is obtained by letting:

F(g, )=1 (11-8)
where I is an (U oy -by -U oy ) identity matrix. It can be shown that this in fact is the conventional

chip-level linear PIC detector.
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11.4.2 The CL-LGDEC-PIC Detector

For this detector, the linear transformation is given by:

— — -1
Fgy ) :[Seff (g) Sy (g )} (11-9)

Note that if the group size is equal to one, we obtain the conventional chip-level linear PIC detector.

11.4.3 The CL-LGMMSE-PIC Detector

For this detector, the linear transformation is given by:

— — — 51
F(g, )= [Seff (8o ) Sy (8er )+ " Ay (8 -8 ) ZJ (11-10)

11.4.4 The CL-LGPIC-PIC Detector

The linear transformation is given by:
N pic i
_ r—
F(geﬂ):Z[I_Seﬂ (8o ) Sor (85 )J (11-11)
i=0
Where Np;c denotes the number stages of the PIC detector. The matrix l_(eﬁ, can be decomposed into
three parts, that is: l_leﬂ. = D - L - L', where D is block diagonal matrix, that is
D=diag[l_1%,. (1,1),1_1%., (2,2),---,1_281, (getf.,gw.),---,l_leﬂ (Gw .Gw ):' , and L and L” are the

remaining lower-left and upper-right block triangular parts of R, , respectively. Recall from Chapter

eff

5 that the block Jacobi iterative method is given by:
y(p)=y(p-1)+D'[y-R,y(p-1)] (11-12)

T —

By comparing (11-12) and (7-36), it easy to notice that if F( o ) =[§eff ( ggﬁ,) S, ( 8o )}_1 (CL-

LGDEC-PIC), then the CL-LGPIC detector is in fact a realization of the block Jacobi iterative method.
On the other hand, if F( Lo ) =1 (CL-LGMF-PIC), then the CL-LGPIC detector is in fact a realization

of the Jacobi iterative method.

11.5 Convergence Behavior and Conditions of Convergence

From (7-37), it easy to show that as the number of stages tends to infinity the vector of decision

variables tends to that of the decorrelator detector, that is:
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lim y =lim Z(I FS;, _eff )i FSeﬂ q

pP—o0 P>«

< 11-13
(FSeTff Sy ) FSeff q ( )

(ng/ §Ci[f ) 1Fseff q

Hence if the matrix F is nonsingular then, (7-41) is equivalent to:

limy(p)=(S,,S, ) S, q (11-14)

po®
This is in fact the decorrelator detector. Therefore, if the proposed CL-LGPIC detector converges, it
converges to the decorrelator detector.
The parallel interference cancellation detector is well known to suffer from severe convergence

issues ([129] and [134]). By observing the iteration matrix, B, of the proposed detector:
B=(I-FSS,, ) (11-15)
It is easy to show that determine the condition of convergence of the proposed scheme is given by:
0< A, (FS[,S,, )<2 (11-16)

This is not always satisfied and hence the convergence problem of the CL-LGPIC scheme. To
overcome this problem, a relaxation scheme is introduced to ensure convergence of this detector. This

is the subject of the next section.

11.6 The Chip-Level Linear Weighted Group-Wise PIC (CL-LWGPIC) Detector

The interference cancellation unit of the CL-LWGPIC scheme is modified by inserting a weighting
factor. The proposed weighted scheme is shown in Figure 11.3.
Following the same procedure as for the CL-LGPIC, it is easy to show that the vector of decision
variables at the p” stage is given by:
y(p)=w (1 oFS,S, ) FS, q (11-17)
i=1
However, it can be shown that if the proposed structure converges it converges to the decorrelator
detector only if the following condition is satisfied:
2

O<o<—F—— (11-18)
A (FSL, S, )
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Figure 11.3: The p” stage interference cancellation unit of the CL-LWGPIC detector.

11.7 The CL-LGPIC Detector for the Case of an Asynchronous CDMA Multi-Path

Fading Channel

For the case of multipath fading, the diagonal of the cross-correlation matrix is not an identity matrix,

hence the CL-LGMF-PIC and CL-LGPIC-PIC group-detection schemes detailed before are changed to

the following expressions:

11.7.1 The CL-LGMF-PIC Detector

It is the simplest scheme, and it is obtained by letting:
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= = -1
F(g, )=diag |:S:ff (€ )" Sty (2 )J (11-19)

where I is an (U e -by -U e ) identity matrix. It can be shown that this in fact is the conventional

chip-level linear PIC detector.

11.7.2 The CL-LGPIC-PIC Detector

Thus the linear transformation is given by:

i
N pic —

. b H G ) H g
Fg, )= Z(; {I —diag [Seff (g0 )" Sop (2o )J S (84)" Ser (247 (11-20)
Note that all the convergence analysis and conditions of convergence determined previously apply here

as well.

11.8 Computational Complexity

The computational complexity of the proposed detector is given by the following expression:

U, (N -+ max (e )+ max (=, ))i(zug 1)+
PW 2 1<k<K 1<k <K g1
G
(2WN +22}2{;(1k)+213mk2§(1“)—l)gZ;Ug (1121)
+P (VG -N)(PN +max (e )+ max (s, )+ 2P (VN + max () + max (s, )

" i(llU;’ +%ng +UgJ+2W (7N + max (¢ )+ max (, ))i(Ug y
g=1

1<k <K 1<k <K
g=1

It is compared to the computational complexity of the symbol-level linear weighted group-wise PIC
(SL-LWGPIC) detector which is an extension of the SL-LWPIC detector proposed in [84] and its
interference cancellation unit for the g” group of users is shown in Figure 11.4.

Its computational complexity is given by:

(2WN+2rnax(rk )+2max(r,k )—1)WK+2(WN + max(rk )+ max(r,k ))(WK )2

I<k<K 1<k <K I<k<K 1<k <K

G G G G
+PW (Wz;ug_z;(zUj -+ 2 (U, -1)U, + Zl(ng -1)U, +221Ug] (11-22)
&= 1= g= g=

Q

g=1

G 3 G
3 2 2
HV {Z(llUg +U; +Ugj+2ZUgj
=

g=1
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Figure 11.4: SL-LWGPIC unit of the g” effective group of users.

11.9 Simulation Results

In this section, the above discussed multiuser detectors are simulated and the results obtained are
commented. We simulate the convergence behavior of the chip-level interference cancellation
detectors and compare their computational complexity to their symbol-level counterparts. Two
different scenarios are considered, a synchronous CDMA AWGN channel and an asynchronous
CDMA multipath Rayleigh fading channel. The simulation parameters are presented in Table 7.1.

In Figure 11.5, the average BER (average of all users) is plotted versus the number of chip-level linear

group-wise PIC stages.
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Table 11.1: Simulation parameters

Channel Synchronous CDMA AWGN Asynchronous CDMA
multipath Rayleigh fading
Performance measure Average BER versus number | Average BER versus number
of stages of stages
K 20 10
N 31 31
SNR 4dB 4dB
w 1 5
Spreading codes Gold Gold
Power control Perfect Perfect
Power delay profile Not applicable Vehicular A outdoor Channel
for WCDMA
Length of ISI+MAI 0 max (Tk )+ max (le ) <N
+— MF detector
15 £ Decorelator detector ]

—FH&—— LMMSE detector
7~ ——©&— CL-LGDEC-PIC detector F—F—
157 —+—— CL-LGMFPIC detector
—F—— CL-LGMMSE-PIC detector
—<—— CL-LGPIG-PIC detector

m
T

— —
= =

i T e N e S e N s N e S e SN e N
e e e e s N S |
1 1 1 1

1 1 1
6 8 10 14 16 18 20
Number of CL-LGPIC stages

N}

Figure 11.5: Convergence behavior of the CL-LGPIC detector.
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Different detection schemes are considered. For the CL-LGPIC-PIC detector, a 2-stage PIC detector is
used. It is easy to note that the CL-LGDEC-PIC converges faster than the other group-detection
schemes, it needs only 7 stages whereas the CL-LGPIC-PIC detector, the CL-LGMMSE-PIC detector
and the CL-LGMF-PIC detector needs 8 stages, 10 stages and 11 stages, respectively. However, the
linear CL-LGMF-PIC and the CL-LGMMSE-PIC detectors achieve the lowest average BER level
among all detection schemes. Moreover, it is important to notice that lower average BER levels are
achieved prior to convergence, this is more noticeable for highly loaded systems and it has also been
reported in other works such as [121].

The effect of grouping is analyzed and is depicted in Figure 11.6, 11.7, 11.8 and 11.9. It can be
seen that while the convergence speed of the CL-LGDEC-PIC, the CL-LGMMSE-PIC and the CL-
LGPIC-PIC detectors increases with decreasing number of groups, the convergence speed of the CL-
LGMEF-PIC detector is independent of grouping and is constant for any grouping. This is because the
CL-LGMF-PIC detector is equivalent to the conventional linear PIC detector and hence the grouping in
this case is G = K. However, the average BER difference between different groupings is small and is of

theoretical importance only.

——— MF detector

—=—— Decorrelator detector

—H=— LMMSE detector

~——6—— OL-LGDEGPIC detector (G=2,U;=10)

- - ©o- - CL-LGDECPIC detector (G=10, Ug=2)

g—/-%:&vfe—e—@fvwf D

Average BER

o
16| !
10°° o ) |
Ny
[JD%DDDDDDDDDDDDDDDD[]
Il Il Il I Il Il I Il Il
2 4 6 8 0 12 14 16 18 20

Number of CL-LGDEC-PIC stages

Figure 11.6: Convergence behavior of the CL-LGDEC-PIC detector for G =2 and G = 10.
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8 10
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N}

10} ]
% 17
as7|! —— MF detector
10"
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|
: N ———
10-1.59
10»1.6
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Figure 11.7: Convergence behavior of the CL-LGMMSE-PIC detector for G =2 and G = 10.
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Figure 11.8: Convergence behavior of the CL-LGPIC-PIC detector for G =2 and G = 10.
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Figure 11.9: Convergence behavior of the CL-LGMF-PIC detector for G =2 and G = 10.

To study the instability of some detectors, a set of 10 highly correlated codes are used for spreading

and despreading. Their cross-correlation matrix is given by:

1 -06 02 -04 06 -02]
06 1 -02 04 -06 02
— 02 -02 1 -0.8 06 -0.6
Reff

: -04 04 08 1 -08 08

06 -06 06 -08 1 -0.6

1-02 02 -06 08 -06 1

The six users are divided into two equally sized groups of 3 users each. It is evident from Figure 11.10
that while the CL-LGDEC-PIC and the CL-LGMMSE-PIC detectors are converging to the decorrelator
detector’s performance, the CL-LGMF-PIC and the CL-LGPIC-PIC detectors are exhibiting an
oscillatory/smooth divergence behaviors, respectively. Different modes of convergence and divergence
are discussed in detail in [134].

It is clear also that even though the CL-LGMF-PIC detector, which is equivalent to the
conventional linear PIC detector, diverges the CL-LGDEC-PIC and CL-LGMMSE-PIC detectors
converge. This means that group-wise detection is an alternative to relaxation for stabilizing the

conventional linear PIC detector.
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Figure 11.10: Divergence behavior of some chip-level linear interference cancellation detectors due to

highly correlated codes.

Another interesting characteristic of the CL-LGPIC detector is its smoothing effect. The ping-pong
effect of the divergent CL-LGMF-PIC detector is removed in the divergent CL-LGPIC-PIC detector.
This suggests that group-wise detection is an alternative to relaxation for removing the ping-pong
effect of the conventional CL-LPIC detector.

In Figure 11.11, the convergence behavior of different CL-LGPIC detection schemes is
evaluated in an asynchronous CDMA multipath fading channel. The simulation parameters are
depicted in Table 7.1. Here, 10 users are divided into two equally sized groups. In addition, a two—
stage PIC detector is used for the CL-LGPIC-PIC detector.

The figure shows that the CL-LGMF-PIC detector which is equivalent to the CL-LPIC detector
is divergent. This result is similar to that obtained for the simulation of the CL-LPIC detector in
Chapter 7. The CL-LGPIC-PIC detector is also divergent as expected since the group-detection
scheme used is the linear PIC detector which is already divergent as shown before. The CL-LGDEC-
PIC detector and the CL-LGMMSE-PIC detector on the other hand are convergent and they need only

few stages to converge to the decorrelator detector’s performance.
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10 T

MF detector
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ttoddiyg

Average BER
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Figure 11.11: Convergence behavior of the CL-LGPIC detector.

As mentioned earlier, the group-wise detection is an alternative to relaxation for stabilizing the
conventional linear PIC detector. Here, in Figure 11.11, the CL-LGMF-PIC detector, which is
equivalent to the conventional linear PIC detector, diverges whereas the CL-LGDEC-PIC and CL-
LGMMSE-PIC detectors converge. Hence, preconditioning (group-wise detection) is an alternative to
relaxation (both under-relaxation and over-relaxation).

Finally, the computational complexity of the proposed CL-LPIC detector is compared to its
symbol-level counterpart (SL-LPIC). Again, two cases are considered and are depicted in Figure 11.12.
In case of Figure 11.12 (a), the number of stages needed for the SL-LPIC/CL-LPIC to converge to the
decorrelator detector is assumed to be P = (WK)/2, whereas for case of Figure 11.12 (b), the number of
stages needed for the SL-LPIC/CL-LPIC to converge to the decorrelator detector is assumed to be P =
(WK)/4.

It is clear that the proposed CL-LGPIC structure exhibits less computational complexity that its

symbol-level counterpart. Hence, for a long-code system, it is preferable to use this scheme.
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Figure 11.12: Computational complexity of the CL-LGDEC-PIC detector compared to that of the SL-
LGDEC-PIC detector.

11.10 Conclusion

In this chapter, the principle of group-detection is extended from successive interference cancellation
to parallel interference cancellation through the introduction of the CL-LGPIC detector. Different
group-detection schemes were derived and their convergence behavior and conditions of convergence
were detailed. A weighted version of the CL-LGPIC detector was also derived to ensure the
convergence of the proposed structure. A very interesting result is obtained and it consists of using the
preconditioning principle as an alternative to the relaxation principle. Finally, the proposed structure

was simulated and the results obtained corroborate well with our theoretical findings.
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12.2 Conclusion

This dissertation has stepped forward into the direction of making use of mathematical tools in the field
of engineering. By doing so, new achievements can be accomplished and new results can be obtained.
This dissertation exploited the close relation between linear interference cancellation and linear
iterative methods to develop new chip-level linear interference cancellation detectors that are suitable
for long-code CDMA systems. By noting that symbol-level linear interference cancellation detectors
are not suitable for actual long-code CDMA systems because they need to use the cross-correlation
matrix, which is computationally expensive for long-code CDMA systems, many chip-level
interference cancellation detectors were derived. Some of the chip-level linear structures developed

here are:

e SIC/GSIC structures that can converge to either the decorrelator detector or the LMMSE detector.

e SIC/GSIC structures that are equivalent to the linear SOR/linear BSOR iterative methods.

e SIC/GSIC structures that are suitable for the case of asynchronous CDMA multipath fading
channel and they are derived using the under-relaxation principle.

e GPIC/weighted GPIC structures were derived for the first time.

Moreover, the convergence behavior analysis and conditions of convergence for all the
aforementioned structures are derived. Thanks again to the rich theory of linear iterative methods that
made such analysis easy and efficient. In fact, establishing the connection between interference
cancellation structures and linear iterative methods makes their convergence analysis straightforward

and simple. This was particularly illustrated in Chapter 9 where the conditions of convergence are
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determined using two different approaches that led to the same result. It was clear that the approach
using the theory of iterative methods is more tractable and facilitated considerably the convergence
analysis than the other one.

Furthermore, establishing the analogy between iterative methods and interference cancellation
detectors allowed the identification of some of the structures as hybrid or modified linear iterative
methods. Such a case was illustrated in Chapter 10 where the chip-level linear group-wise SIC
structure was identified as a linear BSOR iterative method but with a relaxation matrix instead of a
relaxation factor. With the help of the iterative methods theory conditions of convergence were
derived.

Finally, during the phase of this dissertation some by-product contributions have been made such
as the development of a new linear asynchronous CDMA multi-path fading channel model, which can

be in fact used to develop new multiuser detectors.

12.3 Future Work

Many new avenues and directions for research have been opened by this dissertation, just to name a

few:

e Many new multiuser detection structures can be derived using the novel linear asynchronous
CDMA multi-path fading channel model proposed in Chapter 4.

e Recently, the connection is also established between nonlinear interference cancellation detectors
and nonlinear iterative methods used within the optimization field, by studying such connection,
new structures can be developed.

e In Chapter 9, simulation results showed that chip-level linear SIC/GSIC structures attain their
minimum achievable average BER within the region of under-relaxation (0,1) for the case of an

asynchronous CDMA multi-path fading channel. This is unexpected and needs more investigation.
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Appendix A: Probability of error of a linear transformation of the

received chip-matched signal/matched filter output

Recall from section 6.7.1 that the k" effective user’s output of a linear transformation applied to the

recived signal is given by:
v (kg )=V (ky ) a=V,, (SyA,b+0) (A-1)

where m is a vector of AWGN LLD samples of zero mean and variance o°. By using the total

probability theorem, we can write:
P(bkw b, ) - P(b,w =Ly(ky )< 0) + P(bk(ﬁ =—1y(k,)> o)

=Pl =1)p{s{i <01, 1)+ pla, =-1)P{s{5, )01, =)

1 1 (A-2)
:Ep(y(keﬂ) <0|b, = 1)+5P(y(keff) >0]b, =- )
=P(y(keﬂ.)<0|bkw =1)
thus:
P(b,, #b, )=P (V(:,keff ) (S, A, b+i)<0]b, = 1) s
=P (v n<-v; S A, blp,_ =1
Due to the symmetry of the Gaussian (Normal) function we have:
P(V(nky ) T<=V(ik, ) S,A,B16, =1)=
. o (A-4)
P(V(ky ) T>V(ik, ) 8,455, =1)
hence:
P(b,, #b,, )= P(V(:,kcﬁ, ) 5> V(uk, ) S,A,blb, = 1)
V(iky) S, A D-E|V(ik,) 7| (A-5)
= Q .
\/V;;lr[V(:,keﬂ) ﬁ}
we have:
E[V(sk, ) W |=0 (A-6)
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and:
var| V(ok,, ) B |=E [V(:,keﬂ Y 5(V(ok, ) A) }
=E|V(ik, ) BV (k)| (A-7)
=0’V (,k,, )T V(5k,, )
thus:

V(:’keif/) SrAyb E_V(:’ke.lf) n V( keff) S,A,b

P(b,, #b, |=0 = .
(b, #b., ) Jvar[v(:,keﬁ) ﬁ} 0\/V ky) V(ky)

Conditioning over all interfering bits, the probability of error of the k" effective user can be written as:

(A-8)

P, (0)= Z Z Z [ ME k"ff) S‘—’ff‘(s‘effb J

biel-L1} biel-Ll} by ef-1,1) g\/V e// e//)

J#k ey

_ 1 Z V(sky ) Seff Aeff b
WK -1
2 O

allb \/ V(: e// e// )

by =1
For a linear transformation applied to the matched filter output, the decision variable is given by

(section 6.8.1):

(A-9)

v (kg )=V (kg )T Yur =V (kg )T (_eff eﬁb+S:ff_) (A-10)
Following the same procedure above and taking in consideration that:
E[V(ok, ) Spa|=0 (A-11)

and
_ _ — _T
var| V (k) S}, JzE[V(:,keff) Sy(V(ok, ) SA) }
=E[V(.k, ) SRS, V(ok,, )| (A-12)
ZUZV("keff) R, V(.k,)

It easy to show that the probability of error of the " effective user can be written as:

'JUI
>I

WI

: ! b
WK : z Q[ 4 Eff) eff “"eff J (A-13)
0'\/V

ZF: -1 ko) Ry V (k)
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Appendix B: Asymptotic multiuser efficiency of a linear
transformation of the received chip-matched signal/matched filter

output

Recall from Appendix A that for " effective user’s output of a linear transformation applied to the

recived signal, the probability of error of the is given by:

Vi(:.k S A Y
Pk 3 0| ) o
b :’_1 o \/ Vi e// ( o )
WK
Ay (keff ’ ketf) ( keitf) Serr ( o ) ; o ( ke )T S ()P (B-1)
Z Q J#key
2WK ! Z:'):zl a\/V ﬁff Lff)

As o — 0, equation (B-1) is dominated by the smallest argument [30], that is,:

T

5 (/)

WK
Ay (koo )V (k) 5 (k) - le A j’j)‘v(:’ke/f)
£

itk

(B-2)

kg

11mP (o)= 2WK1Q
G\/V eﬁ, eff)

The latter goes to zero as o goes to zero if and only if the argument of O-function is positive, that is,:

Y —

Ay (ko oo )V (ke ) 85 (g ) Z Ay (. ‘V a) Sy (U )‘ (B-3)

j ;tk o
which is known as the open eye condition, hence, for the determination of the AME, two cases exist:
.. - & - .. T —
* Closed eye condition ( A, (ks .k )V (nky ) 5y (ko) Z Ay (75 )‘V(3’ke// v )‘ ):

j=1
J#k,

Recall from section 6.3.2, that the AME is defined as:
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1, =supq0<r<1:lim Yy (<) <+
kg N A
2
=—— =  _limo’log / J
Ay (keﬂ"kejf )2 o ( P"eﬂ (U)
Using the relation [30]:
. 2 1 + 2 +
2}3230 log 0(z/0) :([z] ) , where [z] =max(0,z) (B-5)
we obtain:
M, =0 (B-6)

*  Openeye condition ( A, (ks .k )V (ke ) 5y (ko )> 20 Ay (o) ‘V o) Sy (U )‘)
j=1

jzk/

From equation (B-4), we get:

lim By () =
0 o YrAa (ke k)
o
r_ WK r_
Ay (kg ooy )V (ki ) S (K ) - Z Ay j’j)‘v(:’keﬁ) Sf-’ff(j)‘
1 5:2 (B-7)
2WK71 Q
0'\/V eﬁf :, o )
lim =
o Q(\/;Ae//(kewkeﬂ)J
o

By using [30]:

0(ax) _ {*w’ [o] <5 (B-8)

m =
==0(Bx) o, [B] <«
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e/f (keff ’keff ) ( keft')T g@ff (keiff)_

where o =

ﬂ \/7Aeff ( eff ° etf )

1
and x =—, we get:
o

lim i (o) =
. Q[\/;Aeff (kelf’ketf)J
o
WK —
Ay (kEff’keff) ( kfi./f)rgﬂil‘f (keff) le Ay (o ‘V e/f)T erf(J)‘
=
0, \/’Aeff( ” eﬁ) < Tj#-k(// (B-9)
V) Vi)
WK —
Ay (ko ok )V (keff) Sy (ke ) - _ZAeff(j’j)‘v(:’keﬂ')rge.ff(j)‘
0, A (ky.ky)> - ths
\/V(:’ke/f) V(:’kEﬂ')
P, (U) .
Hence, the largest value of » from the interval [0,1] for which lim - <+ is:
. (\/_Ae// (£ o Ko )J
T _ WK T_
Ay (koo )V (ki) Seff(keff')_zll Aeﬁ’(j’j)‘v(:’keff) seﬁ’(j)‘
=
VrA (kg ok ) = e ®-10)
\/V(:’kd/') V (kg )
Consequently:
2
r= ! V(k, Vs, (k y%%\v Y 5, () (B-11)
V (kg )T V(aky ) B 3 Ay (ko ok ) b ) %

Combining both cases of closed and open eye conditions, we obtain the following expression of the

AME:

2 T 43 ;ge i T._
max [o,v(:,keﬂ) sy (k)= %‘V(:,@) sy (J )‘J (B-12)

7=l off >V eff
j¢kﬂ
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For the case of a linear transformation applied to the matched filter outputs, we have from Appendix A:

FUI

o P
+V(k

eff

V :,k Y
WK 1 Z Q Q//)
allb O-\/V

’rf

(B-13)

Wl
< >|

eff )

Following the same procedure above and taking in consideration that:
E[V(.k, ) S, ]=0 (B-14)

and

V(b ) ][ Vioky Y S (V ok, ) S, |

- E[VL/V( Ky ) SRS, V (k)| (B-15)

= GZV(:’kEff ) ReffV( k o )

It easy to show that the AME of the k" effective user can be written as:

0,V(.k, ) ﬁeﬂ.(; k)
My = — max’| UK A
v V(:’keﬁ')r cff/‘V(:’kcfff) - Z ff(—

A A (karkr)

~

r_ ) (B-16)
‘V of Reff(:’J)‘

where l_leﬂ. (:, i ) is the j column of the cross-correlation matrix l_le[f .
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