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Abstract

The objective of this thesis is the development of new Lyapunov stability con-
ditions for continuous Takagi-Sugeno fuzzy systems, in order to reduce the de-
gree of conservatism. The nonlinear systems are represented and controlled by
Takagi-Sugeno fuzzy model design. This design combines the flexibility of fuzzy
logic theory and the rigorous mathematical analysis tools in linear system the-
ory in a unified framework. Takagi-Sugeno fuzzy systems allow a multimodel
representation, which is a convex polytopic form. The most used fuzzy control
design in the literature is carried out using the Parallel Distributed Compensa-
tion (PDC) scheme since it shares the same membership functions of the T-S
fuzzy model. The main idea of the PDC controller design is to derive each con-
trol rule from the corresponding rule of T-S fuzzy model so as to compensate it.
The resulting overall fuzzy controller, which is nonlinear in general, is a fuzzy
blending of each individual state feedback linear controller. The advantage of
the T-S fuzzy model lies in that the stability and performance characteristics
of the system represented by a T-S fuzzy model can be analyzed using Lya-
punov function approach where stability conditions resolution depends on a set
of Linear Matrix Inequalities (LMIs).
In this thesis, new non-quadratic stability conditions are derived based on

Parallel Distributed Compensation (PDC) to stabilize continuous T-S fuzzy
systems and on fuzzy Lyapunov functions. We obtain new conditions, shown
to be less conservative, that stabilize continuous T-S fuzzy systems including
those that do not admit a quadratic stabilization. Our approach is based on
two assumptions. The first one relies on the existence of a proportionality re-
lation between multiple Lyapunov functions, and the second one considers an
upper bound for the time derivative of the premise membership function. The
obtained stability results are extended to the case where the states are not avail-
able for measurement and feedback by using fuzzy observer, while guarantying
the stability of the whole system. Whereas, to check the stability of the whole
system i.e. (fuzzy system+fuzzy controller+fuzzy observer), we applied a sep-
aration property. Different examples are presented to show the effectiveness of
our proposal.
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Chapter 1

Introduction

1.1 Context and motivations

During the last decade, fuzzy logic has attracted great attention, because of its ability

to simultaneously handle numerical data and linguistic data knowledge. Fuzzy sets

theory was first introduced in the landmark paper of Zadeh (Zadeh, 1965) at berekly

university. Fuzzy logic is a powerful problem-solving methodology with a myriad of

applications embedded in control and information processing since 70’s years, such as

Mamdani which concretizes the first time this method to realize a fuzzy control in

an industrial application (Mamdani, 1974),(Mamdani, 1977). Hence, unlike classical

logic, which requires a deep understanding of a system, exact equations and precise

numeric values, fuzzy logic incorporates an alternative way of thinking, which allows

modeling complex systems using a higher level of abstraction originating from our

knowledge and experience. The human expertise is used to construct a set of fuzzy

rules of the form ”IF X is A THEN Y is B”, allowing the construction of fuzzy models,

especially for systems that are difficult to modelize, and consequently the number

of applications based on fuzzy logic increased these last years considerably such as

modelization, control, signal processing, pattern recognition and expert systems fields.

The principal advantage of fuzzy logic systems is their aptitude to approximate any

nonlinear function; they are universal approximators (Wang & Mendel, 1992). Many

researches have been developed to demonstrate this concept (Kosko, 1994),(Castro,

1995),(Ying, 1998),(Zeng et al. , 2000),(Sala & Arino, 2007). The common point of this

researches is the capability of a fuzzy model to approximate and then to represent any

real function. A theoretical justification of fuzzy models as universal approximators

has been given by wang (Wang & Mendel, 1992) for standard fuzzy systems with

gaussian membership functions, product implication, conjunction and center of gravity

defuzzification.

1
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A fuzzy model is an expression of the system of interest in the framework of a fuzzy

logic. There exist two kinds of fuzzy models: Mamdani fuzzy models and Takagi-

Sugeno (T-S) fuzzy models. The advantage of T-S fuzzy models is their powerful

capability to represent a complex nonlinear relationship in spite of a smaller number

of fuzzy IF-THEN rules, than that of the Mamdani model. Moreover, in this type of

model, the passage from one rule to another is done by a smooth transition from one

rule to another, i.e., an interpolation between the rules.

In the literature, it appears that the most important application of fuzzy logic

is fuzzy control, that was developed in Europe from the eighties and whose many

researches works were produced such as in japan (Takagi & Sugeno, 1985), in the

following decade. Takagi and Sugeno (Takagi & Sugeno, 1985) proposed a multimodel

based approach to overcome the difficulties of the conventional modeling techniques.

The proposed multimodel (T-S) is a convex polytopic form and can be obtained from

identification approach (Sugeno & Kang, 1995),(Babuska, 1998) or from nonlinear

dynamical model, by linearization, by the principle of sector nonlinearity (Kawamoto

et al. , 1992) or by local approximation (Tanaka & Wang, 2001, a). For this purpose, a

nonlinear plant is represented by the T-S fuzzy model, where local dynamics in different

state regions are represented by linear models. The overall model of the system is

obtained by a fuzzy blending of these local models. This same fuzzy structure is used to

control (Takagi & Sugeno, 1985),(Tanaka & Sugeno, 1992) (Wang et al. , 1996),(Feng,

2002) and to study the stability of the T-S fuzzy system using Lyapunov method

(Tanaka & Sugeno, 1992),(Zhao, 1995) and Linear Matrix Inequalities (LMI), where

the problem can be numerically solved by convex optimization techniques (Tanaka &

Sugeno, 1992),(Boyd et al. , 1994),(Tanaka et al. , 2001, b).

The most used fuzzy control design in the literature is carried out using the Parallel

Distributed Compensation (PDC) scheme (Tanaka & Sugeno, 1992),(Wang et al. ,

1996) since it shares the same membership functions of the T-S fuzzy model. The

main idea of the PDC controller design is to derive each linear control rule from the

corresponding rule of T-S fuzzy model so as to compensate it. The resulting overall

fuzzy controller, which is nonlinear in general, is a fuzzy blending of the local linear

controllers, knowing that the fuzzy controller shares the same fuzzy sets with the fuzzy

model. Wang et al. (Wang et al. , 1996) used this concept to design fuzzy controllers

to stabilize T-S fuzzy systems.

The advantage of the T-S fuzzy model lies in that the stability and performance

characteristics of the system represented by a T-S model can be analyzed using Lya-

punov function approach (Tanaka & Sugeno, 1992),(Zhao, 1995). Tanaka and Sugeno

(Tanaka & Sugeno, 1992) showed that the stability of a T-S fuzzy model could be

shown by finding a common symmetric positive definite matrix P for r sub-models,
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that satisfy a set of Lyapunov inequalities (Tanaka et al. , 1996),(Wang et al. , 1996).

Hence, stability conditions are derived using a Lyapunov stability criteria for the fuzzy

model , leading usually to Linear Matrix Inequalities (LMI) conditions, which are nu-

merically tractable. Different works have been realized based on this approach, such

as Lee et al. (Lee et al. , 2001) who proposed a robust fuzzy control scheme for non-

linear systems in the presence of parametric uncertainties, where sufficient conditions

were derived for robust stabilization in the sense of Lyapunov stability and Cao and

Lin (Cao & Lin, 2003) who applied the Lyapunov function based approach for the

stability analysis of nonlinear systems with actuator saturation. On the other hand,

Tsen et al. (Tsen et al. , 2001) proposed a fuzzy H∞ model reference tracking control

scheme and discussed the stability of the closed loop nonlinear system by Lyapunov

approach, and Korba et al. (Korba et al. , 2003) presented a constructive and au-

tomated method for the design of a gain-scheduling controller, based on a given T-S

fuzzy model and a controller that guarantees the closed loop stability using Lyapunov

quadratic functions. However, a possible limitation of their approaches is the use of

the quadratic Lyapunov method, which is conservative. The quadratic approach re-

quires to find a common positive definite matrix P for r sub-models, what makes it

very conservative and hence brings us to search for less conservative stability condi-

tions. Thus, having a T-S fuzzy model, the fundamental difficulty which arises during

the synthesis of PDC controller is the conservatism of the stability conditions. By

consequent, with an aim of having less conservative results , LMI relaxed conditions

were the object of several works, in particular those developed in (Tanaka et al. , 1998)

where the authors base themselves on the maximum number of active rules at each

moment to reduce the conservatism of stabilization conditions. Kim and Lee (Kim &

Lee, 2000) take as a starting point this work, by introducing additional conditions.

In (Cao et al. , 1997),(Jadbabaie, 1999),(Chadli et al. , 2000),(Tanaka et al. , 2001,

c),(Hadjili, 2002),(Teixeira et al. , 2003), the authors propose to use multiple Lya-

punov functions to search for several positive definite matrices instead of searching for

a common one, using quadratic Lyapunov function. Whereas, Johansson (Johansson

et al. , 1999, a),(Rantzer & Johansson, 2000) used piecewise Lyapunov functions to

reduce conservatism.

However, the states of a system are not always available for measurement which is

the case in a lot of practical problems. To overcome this limit, the notion of observer

was introduced. The concept of linear regulator and linear observer were introduced

by Kalman (Kalman, 1961) for linear systems in stochastic environment and by Lu-

enberger (Luenberger, 1966) for deterministic linear systems, whereas for nonlinear

systems, different observer designs were proposed such as the extended kalman ob-

server, the sliding mode observer (Utkin & Drakunov, 1995), the high gain observer
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(Nicosia & Tornambe, 1989) and the T-S fuzzy observer, that was introduced by sev-

eral authors in the literature such as Tanaka (Tanaka & Sano, 1994), Feng et al. (Feng

et al. , 1997),(Lee et al. , 2001) who proposed fuzzy observers with an asymptotic

convergence. Tanaka proposed in his paper (Tanaka et al. , 1998) a globally exponen-

tially stable fuzzy controllers and fuzzy observers designs for continuous and discrete

fuzzy systems for both measurable and non measurable premise variables. Other ap-

proaches were proposed by different authors, among them, Fayaz (Fayaz, 2000) who

combined the results of (Tanaka et al. , 1998),(Fayaz, 1999) by using local Lyapunov

functions to prove the existence of globally and quadratically stabilizing regulator and

observer, Ma and Sun (Ma & Sun, 2001) for T-S fuzzy systems analysis and design

of reduced-dimensional fuzzy observer and fuzzy functional observer with a separation

property, and also (Cao & Frank, 2000),(Chen & Liu, 2004),(Wang, 2004),(Chen &

Liu, 2005),(Lin et al. , 2006) and (Lin et al. , 2008) with other considerations. Hence,

the observer design is a very important problem in control systems and the stability

of the whole system, with the fuzzy controller and the fuzzy observer, must be guar-

anteed. For a T-S fuzzy system, a separation property is used to check the stability of

the global system. This concept was introduced by Jadbabaie et al. (Jadbabaie, 1997,

b) and Ma et al. (Ma et al. , 1998) by different approaches to assure an independent

design for the controller and the observer while assuring the stability of the global T-S

system.

1.2 Objectives and contributions

The objective of this research is the development of new Lyapunov stability condi-

tions for continuous T-S fuzzy systems, in order to reduce the degree of conservatism.

Hence, new non-quadratic stability conditions are derived based on PDC to stabilize

continuous T-S fuzzy models. We use the fuzzy Lyapunov function since it is smooth

contrary to the piecewise Lyapunov function thus avoiding the boundary condition

problem. We obtain new conditions, shown to be less conservative, that stabilize con-

tinuous fuzzy systems including those that do not admit a quadratic stabilization.

Our approach is based on two assumptions. The first one relies on the existence of a

proportionality relation between multiple quadratic Lyapunov functions, and the sec-

ond one considers an upper bound for the time derivative of the premise membership

function as assumed by Tanaka et al. (Tanaka et al. , 2001, b),(Tanaka et al. , 2001,

c),(Tanaka et al. , 2001, d),(Tanaka et al. , 2003). We extend the stability results

given in (Abdelmalek et al. , 2007) to the case of non available states for measurement

and feedback, i.e. to the fuzzy observer conception, while guaranteeing the stability

of the whole system. Whereas, we applied the separation principle of Ma et al.(Ma
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et al. , 1998), due to its simplicity, since it does not depend on the stability conditions

but rather on the fuzzy Lyapunov functions. Indeed, the separation principle design

proposed in (Jadbabaie, 1997, b) is not appropriated for the case of several stability

conditions. All these steps are illustrated by different examples.

1.3 Organization of the thesis

This thesis is organized as follows:

Chapter 2 introduces the fuzzy modeling by two particular structures of fuzzy sys-

tems that are Mamdani fuzzy systems and T-S fuzzy systems, followed by the different

construction methods of T-S fuzzy models due to their interesting characteristics. Dif-

ferent existing methods for constructing a T-S fuzzy model are detailed and illustrated

by different examples. This chapter finishes by a theorem on the concept of "fuzzy

systems are universal approximators", for any real continuous function.

Chapter 3 is devoted to quadratic stability and stabilization of T-S fuzzy systems

by Lyapunov method. First, a recall is given on stability definition in the Lyapunov

sense. Then quadratic stability conditions proposed by Tanaka (Tanaka & Sugeno,

1992),(Tanaka & Wang, 2001, a) are given for continuous T-S fuzzy systems. An out-

line is given on an important tool in control theory, Linear Matrix Inequalities and

some standards LMI problems. Also, a brief recall on the state of the art of existing

fuzzy control laws such as parallel distributed compensation (PDC), compensation

and division for fuzzy models (CDF), state feedback control and fuzzy simultaneous

stability (FSS). This chapter finishes with quadratic stabilization of T-S fuzzy mod-

els, especially, the continuous case which is considered in this thesis, starting by the

example of the inverted pendulum given at the end of this chapter.

Chapter 4 is devoted to non-quadratic stability and stabilization of T-S fuzzy sys-

tems by Lyapunov method. Due to the limitation of the quadratic approach by the

conservatism constraint, new non-quadratic stability conditions are proposed (Abdel-

malek et al. , 2007). The control design is based on PDC concept. The new conditions

are shown to be less conservative and allow stabilization of continuous T-S fuzzy sys-

tems including those that do not admit a quadratic stabilization.

Chapter 5 deals with the case of fuzzy control in presence of non measurable states.

The fuzzy observer is designed separately from the fuzzy controller using the new non-

quadratic stability conditions and applying a separation property to check the stability

of the whole fuzzy system.

The thesis finishes with concluding remarks for this research and some prospects

for the future.

The main contributions of this thesis are:
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• A non-quadratic fuzzy stabilization and tracking approach to a two link robot

manipulator (Abdelmalek & Goléa, 2006).

• A new fuzzy Lyapunov approach to non-quadratic stabilization of Takagi-Sugeno
fuzzy models (Abdelmalek et al. , 2007).

• Fuzzy observer design for Takagi-Sugeno fuzzy models via Linear Matrix Inequal-
ities (Abdelmalek & Goléa, 2007, a).

• Model-based fuzzy control of an inverted pendulum on a cart: fuzzy controller

and fuzzy observer design via LMIs (Abdelmalek & Goléa, 2008).

• LMI-based design of fuzzy controller and fuzzy observer for continuous Takagi-
Sugeno fuzzy systems: new non-quadratic stability approach (Abdelmalek &

Goléa, 2009).



Chapter 2

Takagi-Sugeno Fuzzy Models

2.1 Introduction

Fuzzy sets theory and fuzzy logic provide the means for constructing fuzzy systems.

Fuzzy sets were introduced by Professor L.A. Zadeh from berekley university in 1965

(Zadeh, 1965). Fuzzy logic provides a simple way to arrive at a definite conclusion

based upon vague, ambiguous, imprecise, noisy, or missing input information. It is

a powerful problem-solving methodology with a myriad of applications embedded in

control and information processing since 70’s years, such as Mamdani that concretizes

the first time this method to realize a fuzzy control in an industrial application (Mam-

dani, 1974). Hence, unlike classical logic, that requires a deep understanding of a

system, exact equations and precise numeric values, fuzzy logic incorporates an alter-

native way of thinking, which allows modeling complex systems using a higher level of

abstraction originating from our knowledge and experience. The principal advantage

of fuzzy logic systems is their aptitude to approximate any nonlinear function; they

are universal approximators (Wang & Mendel, 1992). Takagi and Sugeno (Takagi &

Sugeno, 1985) came up with an alternative rule format in order to make automated

tuning possible and to reduce the number of fuzzy rules needed to construct the fuzzy

model. Two particular structures of fuzzy systems will be detailed, followed by the

advantages and the disadvantages of the one compared to the other.

In this chapter, a recall is given on modeling by two particular structures of

fuzzy models that are Mamdani and T-S fuzzy models, followed by the advantages

and the disadvantages of the one compared to the other. however, the construction

procedure of a T-S fuzzy model is detailed. An outline is given on the concept of

universal approximators, to show that a fuzzy model is able to approximate and then

to represent any real function.

7
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Figure 2.1: Fuzzy model structure

2.2 Fuzzy modeling

Fuzzy modeling is to construct a model through a description language based on fuzzy

logic. It gives a qualitative description of systems functions and behaviors using a

natural language. A fuzzy model consists, in general of four basic components: a

fuzzy rule base, a fuzzy inference engine, a fuzzifier and a deffuzifier as shown in figure

(2.1) (Wang, 1994),(Mendel, 1995),(Zhao, 1995).

• Fuzzy rule base is the knowledge base of the system to be modeled. It is a

collection of IF-THEN rules, in general of the following form

Model Rule i : IF z1 (t) is Mi1and ... and zp (t) is Mip THEN y is Bi (2.1)

where z = [z1, z2, ..., zp]
T ∈ Rp is the input, y is the output and both are linguistic

variables in the input product space U1 × U2 × ...× Up and in the output space

V. Mi1,Mi2, ...,Mip and Bi are fuzzy sets. i ∈ [1, r] , r is the number of rules in
the fuzzy rule base.

• Fuzzy inference engine is a rule-based system that uses fuzzy logic, rather than

Boolean logic, to reason about data. It simulates the human decision-making

process by using fuzzy logic, and its task is to interpret and to construct an

input-output mapping relationship with respect to all the rules.

• Fuzzifier performs the conversion from numerical values of input variables

z1, z2, ..., zp, obtained by sensors, into linguistic values represented as fuzzy sets

Mi1,Mi2, ...,Mip. Usually, a simple singleton fuzzifier is used.
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• Defuzzifier performs the inverse conversion of that performed by the fuzzifier, i.e.
conversion from the linguistic values in the form of fuzzy sets into non-fuzzy crisp

values. Three kind of defuzzifier are employed in general: maximum defuzzifier,

center average defuzzifier, and modified center average defuzzifier (Wang, 1994).

However, there exist two kinds of fuzzy models: Mamdani fuzzy models

and T-S fuzzy models.

2.2.1 Mamdani fuzzy models

In this kind of fuzzy models, the fuzzy IF-THEN rules are of the following form:

Rule i : IF z1 (t) is Mi1and ... and zp (t) is Mip THEN y is Bi (2.2)

The main advantages of this type of model are:

• the simplicity in representation of fuzzy rules,

• the flexibility in implementation ; due to the freedom to choose the operations

included in fuzzy models.

The main disadvantage of this model is the great number of rules needed to repre-

sent a complex nonlinear system.

2.2.2 T-S fuzzy models

Takagi and Sugeno (Takagi & Sugeno, 1985) came up with the alternative rule format

(2.3) in order to make automated tuning possible and to reduce the number of fuzzy

rules. A T-S fuzzy model is described by fuzzy IF-THEN rules defined by the following

Rule i : IF z1 (t) is Mi1 and ... and zp (t) is Mip

THEN yi = ai0 + ai1z1 (t) + ai2z2 (t) + ...+ aipzp (t) (2.3)

where Mi1, ...,Mip are fuzzy sets; ai0, ..., a
i
p are the coefficients of the i-th linear con-

sequent and is the output of the i-th fuzzy IF-THEN rule. The crisp output value of

the T-S fuzzy model is a weighted average of the yi is:

y =

Pr
i=1wi (t) y

iPr
i=1wi (t)

(2.4)

where 0 ≤ wi (t) ≤ 1,
Pr

i=1wi (t) > 0 and wi (t) = Π
p
j=1 Mij (zj (t)) , Mij (zj (t))

is the grade of membership of zj (t) in Mij . The equation (2.3) gives an affine T-

S fuzzy model, for ai0 = 0, we have a linear T-S model. T-S model represents a

dynamical system whose IF-THEN rules represent local linear input-output relations

of the nonlinear dynamical system. The main feature of a T-S fuzzy model is to express
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the local dynamics of each fuzzy rule by a linear sub-model, and then the overall fuzzy

system is obtained by fuzzy “blending” of the linear sub-models (Tanaka & Wang,

2001, a).

The advantage of T-S fuzzy models is their powerful capability to represent a

complex nonlinear relationship in spite of the smaller number of fuzzy IF-THEN rules,

than that of Mamdani fuzzy models. These latter, with a centroid deffuzification, can

be seen as a particular case of T-S fuzzy models. Moreover, in a T-S fuzzy model, the

passage from one rule to another is done by a smooth transition between the rules,

i.e., an interpolation. Thus (2.4) interpolates between different linear functions, that

are the local models (figure (2.2)).

y

( )xAμ 3( )xAμ 1 ( )xAμ 2

( )xf 1 ( )xf 3

( )xf 2

x  

Figure 2.2: A function f defined by a T-S model

2.3 Construction of a T-S fuzzy model

In general, there exist two ways to construct a fuzzy model: by identification us-

ing input-output data (in other terms fuzzy modeling) or by derivation from a given

nonlinear system equations.
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Figure 2.3: Model-based fuzzy control design

The identification approach is suitable for the modelization of plants that are dif-

ficult to represent using analytical models, whereas when the nonlinear dynamical

models are available, the second approach is more appropriated (Tanaka & Wang,

2001, a). In both cases, we obtain a T-S fuzzy model whose ith rule form is:

Rule i : IF z1 (t) is Mi1 and ... and zp (t) isMip

THEN

(
.
x (t) = Aix (t) +Biu (t)

y (t) = Cix (t)
i = 1, 2, ..., r (2.5)

The final outputs of the fuzzy model are inferred as follows:(
.
x (t) =

Pr
i=1 hi (z (t)) (Aix (t) +Biu (t))

y (t) =
Pr

i=1 hi (z (t))Cix (t)
(2.6)

where z (t) = [z1 (t) , ..., zp (t)] is the premise variable vector that may be functions

of the state variables, measurable external disturbances and/or time. Ai ∈ <n×n,

Bi ∈ <n×m, Ci ∈ <q×n, x (t) ∈ <n is the state vector, u (t) ∈ <m is the input vector,

y (t) ∈ <q is the output vector. r is the number of IF-THEN rules and Mij is a fuzzy

set. hi (z (t)) is the normalized weight for each rule, that is

hi (z (t)) ≥ 0,
rX

i=1

hi (z (t)) = 1
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and is given by:

hi (z (t)) =
wi (t)Pr
i=1wi (t)

2.3.1 Identification approach

From input-output data, we obtain linear sub-models around the different operational

points. The local linear sub-models, are fuzzy IF-THEN rules, whose consequent parts

are linear models. This identification allows us to find an optimal model after estimat-

ing the parameters and validating, the final model (Sugeno & Kang, 1995),(Babuska,

1998). However, a state representation is used in the consequent part in order to

extend the state feedback control principle to the nonlinear case.

2.3.2 Nonlinear dynamical model

When nonlinear dynamical models are easy to obtain, the linearization, the principle

of sector nonlinearity or local approximation are more appropriated for constructing

the fuzzy model (Tanaka & Wang, 2001, a).

Linearization

The basic idea is to linearize the nonlinear analytical model of the process about

different operating points. Hence for the following nonlinear system

.
x (t) = f (x (t) , u (t)) ; f (·) ∈ C1 (2.7)

The linearization of the system around an arbitrary operating point (xi, ui) ∈ Rn×Rp,

we have then:

.
x (t) = Ai (x (t)− xi) +Bi (u (t)− ui) + f (xi, ui) (2.8)

Taking wi = f (xi, ui)−Aixi −Biui, equation (2.8) can be rewritten:

.
x (t) = Aix (t) +Biu (t) +wi (2.9)

where Ai =
∂f(x,u)

∂x |x=xi
u=ui

and Bi =
∂f(x,u)

∂u |x=xi
u=ui

By considering that the local sub-models result from the linearization about r

operational points, the T-S Fuzzy model is given by:

.
x (t) =

rX
i=1

hi (z (t)) (Aix (t)−Biu (t) +wi) (2.10)
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Sector nonlinearity

The first apparition of sector non linearity in fuzzy model construction was in 1992

by Kawamoto et al. (Kawamoto et al. , 1992), it is based on considering a simple

nonlinear system
.
x (t) = f (x (t)) where f (0) = 0. The objective is to find the global

sector such that
.
x (t) = f (x (t)) ∈

h
−a a

i
x (t) , as illustrated in figure 2.4.An exact

fuzzy model construction is guaranteed with this method. However, it is sometimes

difficult to find global sectors, then local sector nonlinearity is considered, where x (t) ∈h
−d d

i
. Figure 2.5 shows the local sector nonlinearity, where two lines become the

local sectors under −d < x (t) < d. The nonlinear system is represented exactly by the

fuzzy model in the “local” region −d < x (t) < d. But, it is often desirable to simplify

the original nonlinear system as much as possible in order to reduce the number of

rules. the following two examples illustrates this concept.

( )tx  

( )txa2  

( )txa1

( )( )txf

Figure 2.4: Global sector nonlinearity
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( )tx  

( )( )txf

d−  d  

Figure 2.5: Local sector nonlinearity

Example 1

For the following nonlinear system (Tanaka & Wang, 2001, a):"
.
x1
.
x2

#
=

"
−x1 (t) + x1 (t)x

3
2 (t)

−x2 (t) + (3 + x2 (t))x
3
1 (t)

#
x (t) (2.11)

it is assumed for simplicity that x1 (t) ∈
h
−1 1

i
and x2 (t) ∈

h
−1 1

i
, then

(2.11) can be written as

.
x (t) =

"
−1 x1 (t)x

2
2 (t)

(3 + x2 (t))x
2
1 (t) −1

#
x (t)

where x (t) =
h
x1 (t) x2 (t)

iT
and x1 (t)x

2
2 (t) and (3 + x2 (t))x

2
1 (t) are nonlinear

terms. By defining

z1 (t) ≡ x1 (t)x
2
2 (t) and z2 (t) ≡ (3 + x2 (t))x

2
1 (t)

we have:
.
x (t) =

"
−1 z1 (t)

z2 (t) −1

#
x (t) .

Then, the minimum and maximum values are calculated under x1 (t) ∈
h
−1 1

i
and

x2 (t) ∈
h
−1 1

i
, their values are:

max
x1(t),x2(t)

z1 (t) = 1, min
x1(t),x2(t)

z1 (t) = −1

max
x1(t),x2(t)

z2 (t) = 4, min
x1(t),x2(t)

z2 (t) = 0
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From these values, z1 (t) and z2 (t) can be represented by:

z1 (t) ≡ x1 (t)x
2
2 (t) =M1 (z1 (t)) · 1 +M2 (z1 (t)) · (−1)

z2 (t) ≡ (3 + x2 (t))x
2
1 (t) = N1 (z2 (t)) · 4 +N2 (z2 (t)) · 0

where

M1 (z1 (t)) +M2 (z1 (t)) = 1

N1 (z2 (t)) +N2 (z2 (t)) = 1

Therefore the membership functions can be calculated by:

M1 (z1 (t)) =
z1 (t) + 1

2
, M2 (z1 (t)) =

1− z1 (t)

2

N1 (z2 (t)) =
z2 (t)

4
, N2 (z2 (t)) =

4− z2 (t)

4
These membership functions are named respectively: "Positive", "Negative", "Big"

and "Small". Hence, equation (2.11) can be represented by the following fuzzy model:

Rule 1 : IF z1 (t) is ”Positive” and z2 (t) is ”Big” THEN
.
x (t) = A1x (t)

Rule 2 : IF z1 (t) is ”Positive” and z2 (t) is ”Small” THEN
.
x (t) = A2x (t)

Rule 3 : IF z1 (t) is ”Negative” and z2 (t) is ”Big” THEN
.
x (t) = A3x (t)

Rule 4 : IF z1 (t) is ”Negative” and z2 (t) is ”Small” THEN
.
x (t) = A4x (t)

where

A1 =

"
−1 1

4 −1

#
, A2 =

"
−1 1

0 −1

#

A3 =

"
−1 −1
4 −1

#
, A4 =

"
−1 −1
0 −1

#
The deffuzification yields:

.
x (t) =

4X
i=1

hi (z (t))Aix (t)

where

h1 (z (t)) = M1 (z1 (t))×N1 (z2 (t))

h2 (z (t)) = M1 (z1 (t))×N2 (z2 (t))

h3 (z (t)) = M2 (z1 (t))×N1 (z2 (t))

h4 (z (t)) = M2 (z1 (t))×N2 (z2 (t))

Finally, this model represents the nonlinear system in the region
h
−1 1

i
×
h
−1 1

i
of the x1 − x2 space.
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Example 2

For the inverted pendulum defined by the following equations of motion (Tanaka

& Wang, 2001, a):

.
x1 (t) = x2 (t) ,

.
x2 (t) =

g sin (x1 (t))− amlx22 (t) sin (2 (x1 (t))) /2− a cos (x1 (t))u (t)

4l/3− aml cos2 (x1 (t))

(2.12)

where x1 (t) denotes the angle (in radians) of the pendulum from the vertical and

x2 (t) is the angular velocity, g = 9.8 m/s2 is the gravity constant, m is the mass

of the pendulum. M is the mass of the cart, 2l is the length of the pendulum, u is

the force applied to the cart (in newtons) and a = 1/ (m+M). Equation (2.12) is

rewritten as

.
x2 (t) =

gx1 (t)− au (t)

4l/3− aml

×
µ
g sin (x1 (t))−

amlx2 (t) sin (2x1 (t))

2
x2 (t)− a cos (x1 (t))u (t)

¶
(2.13)

Define

z1 (t) ≡
1

4l/3− aml cos2 (x1 (t))

z2 (t) ≡ sin (x1 (t))

z3 (t) ≡ x2 (t) sin (2x1 (t))

z4 (t) ≡ cos (x1 (t))

where x1 (t) ∈ (−π/2, π/2) and x2 (t) ∈
h
−α α

i
. To maintain controllability of the

fuzzy model, we assume that x1 (t) ∈ [−88◦, 88◦] . Equation (2.13) is rewritten as

.
x2 (t) = z1 (t)

½
gz2 (t)−

aml

2
z3 (t)x2 (t)− az4 (t)u (t)

¾
we replace z1 (t)− z4 (t) with T-S fuzzy model representation. Since

max z1 (t) =
1

4l/3− amlβ2
≡ q1, β = cos (88

◦) ,

min z1 (t) =
1

4l/3− aml
≡ q2,

z1 (t) can be rewritten as

z1 (t) =
2X

i=1

Ei (z1 (t)) qi (2.14)
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where

E1 (z1 (t)) =
z1 (t)− q2
q1 − q2

, E2 (z1 (t)) =
q1 − z1 (t)

q1 − q2

These membership functions are obtained from the property ofE1 (z1 (t))+E2 (z1 (t)) =

1. Figure 2.6 shows the local sector of z2 (t) = sin (x1 (t)) for x1 (t) ∈ (−π/2, π/2) .
The sector [b1, b2] consists of two lines b1x1 and b2x1, where b1 = 1 and b2 = 2/π are

the slopes

  

( )tx1  

( )( )tx1sin  2/π−

 2/π
 

 ( )txb1  

( )txb2  

Figure 2.6: sin (x1 (t)) and its sector

Therefore sin (x1 (t)) is represented as follows:

z2 (t) = sin (x1 (t)) =

Ã
2X

i=1

Mi (z2 (t)) bi

!
x1 (t) (2.15)

Then, from [M1 (z2 (t)) +M2 (z2 (t)) = 1] , the membership functions are

M1 (z2 (t)) =

½z2(t)−(2/π) sin−1(z2(t))
(1−2/π) sin−1(z2(t)) , z2 (t) 6= 0
1, otherwise

M2 (z2 (t)) =

½ (2/π) sin−1(z2(t))−z2(t)
(1−2/π) sin−1(z2(t)) , z2 (t) 6= 0
0, otherwise

We consider next, z3 (t) = x2 (t) sin (2x1 (t)) . Since

max
x1(t),x2(t)

z3 (t) = α ≡ c1 and min
x1(t),x2(t)

z3 (t) = −α ≡ c2

In the same way as for the z1 (t) case:

z3 (t) = x2 (t) sin (2x1 (t)) =
2X

i=1

Ni (z3 (t)) ci (2.16)
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where

N1 (z3 (t)) =
z3 (t)− c2
c1 − c2

, N2 (z3 (t)) =
c1 − z3 (t)

c1 − c2

The same procedure is applied for z4 (t) . Since

max
x1(t)

z4 (t) = 1 ≡ d1 and min
x1(t)

z4 (t) = β ≡ d2

we obtain

z4 (t) = cos (x1 (t)) =
2X

i=1

Si (z4 (t)) di (2.17)

where

S1 (z4 (t)) =
z4 (t)− d2
d1 − d2

, S2 (z4 (t)) =
d1 − z4 (t)

d1 − d2

From (2.14)-(2.17), the following T-S fuzzy model is constructed for the inverted pen-

dulum: ∙ .
x1 (t)
.
x2 (t)

¸
=

2X
i=1

2X
j=1

2X
k=1

2X
l=1

Ei (z1 (t))Mj (z2 (t))Nk (z3 (t))Sl (z4 (t))

×
Ã"

0 1

gqibj −aml
2 qick

# ∙
x1 (t)

x2 (t)

¸
+

"
0

−aqidl

#!

=
2X

i=1

2X
j=1

2X
k=1

2X
l=1

Ei (z1 (t))Mj (z2 (t))Nk (z3 (t))Sl (z4 (t))

×{Aijklx (t) +Bijklu (t)} (2.18)

The summations in (2.18) can be aggregated as one summation:

.
x (t) =

16X
ρ=1

hρ (z (t))
©
A∗ρx (t) +B∗ρu (t)

ª
(2.19)

where

ρ = l + 2 (k − 1) + 4 (j − 1) + 8 (i− 1) ,

hρ (z (t)) = Ei (z1 (t))Mj (z2 (t))Nk (z3 (t))Sl (z4 (t)) ,

A∗ρ = Aijkl, B
∗
ρ = Bijkl

Equation (2.19) means that the fuzzy model has the following 16 rules:

Rule 1:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Big”

THEN
.
x (t) = A∗1x (t) +B∗1u (t)
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Rule 2:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Small”

THEN
.
x (t) = A∗2x (t) +B∗2u (t)

Rule 3:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Big”

THEN
.
x (t) = A∗3x (t) +B∗3u (t)

Rule 4:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Small”

THEN
.
x (t) = A∗4x (t) +B∗4u (t)

Rule 5:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Not Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Big”

THEN
.
x (t) = A∗5x (t) +B∗5u (t)

Rule 6:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Not Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Small”

THEN
.
x (t) = A∗6x (t) +B∗6u (t)

Rule 7:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Not Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Big”

THEN
.
x (t) = A∗7x (t) +B∗7u (t)

Rule 8:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Positive” and z2 (t) is ”Not Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Small”

THEN
.
x (t) = A∗8x (t) +B∗8u (t)

Rule 9:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Big”

THEN
.
x (t) = A∗9x (t) +B∗9u (t)

Rule 10:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Small”

THEN
.
x (t) = A∗10x (t) +B∗10u (t)

Rule 11:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Big”

THEN
.
x (t) = A∗11x (t) +B∗11u (t)

Rule 12:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Small”

THEN
.
x (t) = A∗12x (t) +B∗12u (t)
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Rule 13:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Not Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Big”

THEN
.
x (t) = A∗13x (t) +B∗13u (t)

Rule 14:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Not Zero”

and z3 (t) is ”Positive” and z4 (t) is ”Small”

THEN
.
x (t) = A∗14x (t) +B∗14u (t)

Rule 15:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Not Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Big”

THEN
.
x (t) = A∗15x (t) +B∗15u (t)

Rule 16:

⎧⎪⎨⎪⎩
IF z1 (t) is ”Negative” and z2 (t) is ”Not Zero”

and z3 (t) is ”Negative” and z4 (t) is ”Small”

THEN
.
x (t) = A∗16x (t) +B∗16u (t)

where z1 (t) , z2 (t) , z3 (t) and z4 (t) are premise variables and

A∗1 = A1111 =

"
0 1

gq1b1 −aml
2 q1c1

#
, B∗1 = B1111 =

"
0

−aq1d1

#
,

A∗2 = A1112 =

"
0 1

gq1b1 −aml
2 q1c1

#
, B∗2 = B1112 =

"
0

−aq1d2

#
,

A∗3 = A1121 =

"
0 1

gq1b1 −aml
2 q1c2

#
, B∗3 = B1121 =

"
0

−aq1d1

#
,

A∗4 = A1122 =

"
0 1

gq1b1 −aml
2 q1c2

#
, B∗4 = B1122 =

"
0

−aq1d2

#
,

A∗5 = A1211 =

"
0 1

gq1b2 −aml
2 q1c1

#
, B∗5 = B1211 =

"
0

−aq1d1

#
,

A∗6 = A1212 =

"
0 1

gq1b2 −aml
2 q1c1

#
, B∗6 = B1212 =

"
0

−aq1d2

#
,

A∗7 = A1221 =

"
0 1

gq1b2 −aml
2 q1c2

#
, B∗7 = B1221 =

"
0

−aq1d1

#
,

A∗8 = A1222 =

"
0 1

gq1b2 −aml
2 q1c2

#
, B∗8 = B1222 =

"
0

−aq1d2

#
,

A∗9 = A2111 =

"
0 1

gq2b1 −aml
2 q2c1

#
, B∗9 = B2111 =

"
0

−aq2d1

#
,
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A∗10 = A2112 =

"
0 1

gq2b1 −aml
2 q2c1

#
, B∗10 = B2112 =

"
0

−aq2d2

#
,

A∗11 = A2121 =

"
0 1

gq2b1 −aml
2 q2c2

#
, B∗11 = B2121 =

"
0

−aq2d1

#
,

A∗12 = A2122 =

"
0 1

gq2b1 −aml
2 q2c2

#
, B∗12 = B2122 =

"
0

−aq2d2

#
,

A∗13 = A2211 =

"
0 1

gq2b2 −aml
2 q2c1

#
, B∗13 = B2211 =

"
0

−aq2d1

#
,

A∗14 = A2212 =

"
0 1

gq2b2 −aml
2 q2c1

#
, B∗14 = B2212 =

"
0

−aq2d2

#
,

A∗15 = A2221 =

"
0 1

gq2b2 −aml
2 q2c2

#
, B∗15 = B2221 =

"
0

−aq2d1

#
,

A∗16 = A2222 =

"
0 1

gq2b2 −aml
2 q2c2

#
, B∗16 = B2222 =

"
0

−aq2d2

#
Figures 2.7- 2.10 show the membership functions, that is

E1 (z1 (t)) =
z1 (t)− q2
q1 − q2

, E2 (z1 (t)) =
q1 − z1 (t)

q1 − q2

M1 (z2 (t)) =
sin (x1 (t))− (2/π) z2 (t)

(1− 2/π) z2 (t)
, M2 (z2 (t)) =

x1 (t)− z2 (t)

(1− 2/π) z2 (t)

N1 (z3 (t)) =
z3 (t)− c2
c1 − c2

, N2 (z3 (t)) =
c1 − z3 (t)

c1 − c2

S1 (z4 (t)) =
z4 (t)− d2
d1 − d2

, S2 (z4 (t)) =
d1 − z4 (t)

d1 − d2

PositiveNegative 

( )( )tzE 11  ( )( )tzE 12  

0

1 

( )tz1

amll −3/4
1  

23/4
1

βamll −
 

Figure 2.7: Membership functions E1 (z1 (t)) and E2 (z1 (t))
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Zero

Not zero 

( )( )tzM 21  ( )( )tzM 22  

0

1 

( )tz2  

1−  10  

Figure 2.8: Membership functions M1 (z2 (t)) and M2 (z2 (t))

PositiveNegative 

( )( )tzN 31  ( )( )tzN 32  

0

1 

( )tz3  

α− α  0

Figure 2.9: Membership functions N1 (z3 (t)) and N2 (z3 (t))

BigSmall 

( )( )tzS 41  ( )( )tzS 42  

0

1 

( )tz4  

β  1
2

1 β+  

Figure 2.10: Membership functions S1 (z4 (t)) and S4 (z3 (t))
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Local approximation in fuzzy partition spaces

The principle of this method is to approximate nonlinear terms by adequate chosen

linear terms, that leads to a less number of rules. For example, Tanaka (Tanaka &

Wang, 2001, a) proposed in his book a fuzzy modelization of an inverted pendulum with

16 rules using the sector nonlinearity method, whereas, using the local approximation,

the inverted pendulum is represented by a two rules fuzzy model.

Example 3

For the inverted pendulum defined by equations of motion (2.12), the simplification

leads to two cases:

when x1 (t) is near zero we have:

.
x1 (t) = x2 (t) , (2.20)
.
x2 (t) =

gx1 (t)− au (t)

4l/3− aml
(2.21)

whereas when x1 (t) is near ±π/2 we have:
.
x1 (t) = x2 (t) , (2.22)
.
x2 (t) =

2gx1 (t) /π − aβu (t)

4l/3− amlβ2
(2.23)

where β = cos (88◦) .The equations (2.20)-(2.23) are linear systems that produces the

following fuzzy modelization of the inverted pendulum:

Model Rule 1 : IF x1 (t) is about 0 THEN
.
x (t) = A1x (t) +B1u (t)

Model Rule 2 : IF x1 (t) is about ±π/2 (|x1| < π/2) THEN
.
x (t) = A2x (t)+B2u (t)

where the membership functions are of triangular types

  

Rule 1 

Rule 2

 0 

 1 

-90  0      90 (deg) 
1x  

Figure 2.11: Membership functions of two rules model
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and

A1 =

"
0 1
2g

4l/3−aml 0

#
, A2 =

⎡⎣ 0 1
2g

π(4l/3−amlβ2)
0

⎤⎦
B1 =

"
0

− a
4l/3−aml

#
, B2 =

"
0

− aβ
4l/3−amlβ2

#
, β = cos (88◦)

2.4 Fuzzy systems as universal approximators

A fuzzy system can be regarded as a (multidimensional) input-output mapping y =

f(x). Several authors have proved that given enough rules, the fuzzy system can ap-

proximate any real continuous function to any given accuracy. The following theorem

shows that the fuzzy logic system

f (x) =

Pr
l=1 ȳl

∙
Πni=1a

l
i exp

µ
−
³
xi−x̄li
σli

´2¶¸
Pr

l=1

∙
Πni=1a

l
i exp

µ
−
³
xi−x̄li
σli

´2¶¸ (2.24)

with center average defuzzifier, product inference rule, singleton fuzzifier and gaussian

membership function, is able to uniformly approximate any nonlinear function over U

to any degree of accuracy.

Theorem 1 Universal approximation theorem (Wang & Mendel, 1992): For any

given real continuous function g on a compact set U ⊂ Rn and arbitrary � > 0, there

exists a fuzzy logic system f in the form of (2.24) such that

sup
x∈U

|f (x)− g (x)| < � (2.25)

This theorem provides a justification for applying the fuzzy logic systems to almost

any nonlinear modeling problems.

2.5 conclusion

This chapter has recalled in first the two types of fuzzy models representations for

complex systems, that are Mamdani fuzzy models and T-S fuzzy models. An atten-

tion is given to T-S fuzzy models due to their interesting characteristics. Different

existing methods for constructing a T-S fuzzy model are detailed and illustrated by

different examples. This chapter finishes by a theorem on the concept of universal

approximators of T-S fuzzy models.



Chapter 3

Quadratic stability and
Stabilization of T-S Fuzzy
Systems

3.1 Introduction

This chapter deals with the fuzzy stability and stabilization of T-S fuzzy systems.

During the last decade, several researchers in the control community have come up

with different techniques for designing control systems. Fuzzy control is probably

one of the most popular (Takagi & Sugeno, 1985),(Tanaka & Sugeno, 1992),(Wang

et al. , 1996),(Feng, 2002), since it can provide an effective solution to the control of

plants that are complex, uncertain or ill-defined, by combining the flexibility of fuzzy

logic theory and the rigorous mathematical analysis tools in linear system theory

into a unified framework. Tanaka and Sugeno (Tanaka & Sugeno, 1992) showed that

finding common symmetric positive definite matrix P for N sub-systems could show

the stability of continuous T-S fuzzy system. Generally, most of the stability criteria

for this fuzzy system derived by Lyapunov approach needs a common P to satisfy a set

of Lyapunov inequalities (Tanaka et al. , 1996),(Wang et al. , 1996). These inequalities

can be reduced to LMI problems, that can be solved efficiently in practice by convex

programming techniques for LMIs. The fuzzy controller is based on the PDC design

with the principle of deriving each control rule from the corresponding rule of T-S

fuzzy model so as to compensate it.

This chapter considers the stability and stabilization analysis of continuous T-S

fuzzy models using Lyapunov approach, PDC and LMIs. LMIs are detailed in this

chapter with some standard LMI problems used in control applications and an outline

on the different existing fuzzy control laws is given. Finally, the inverted pendulum

25
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example illustrates these different concepts.

3.2 Systems stability

The stability of systems in closed loop is one of the most significant problems in control

theory. The T-S systems stability analysis was the objective of several works (Tanaka

& Sugeno, 1992),(Wang et al. , 1996),(Jadbabaie, 1997, b),(Tanaka et al. , 1998),(Kim

& Lee, 2000),(Manamanni et al. , 2007) by quadratic Lyapunov functions (Johansson

et al. , 1999, a),(Rantzer & Johansson, 2000),(Chadli et al. , 2003),(Ohtake et al. ,

2003),(Feng, 2004) by piecewise quadratic Lyapunov functions and (Blanco et al. ,

2001),(Tanaka et al. , 2001, c),(Chadli et al. , 2002),(Tanaka et al. , 2003),(Teixeira

et al. , 2003),(Guerra & Vermeiren, 2004),(Bernal & Hus̆ek, 2005),(Zhou et al. , 2007)

by non-quadratic Lyapunov functions. In the majority, the goal was the obtention of a

global asymptotic stability by applying Lyapunov’s direct method based on Lyapunov

functions, which measure the system’s energy. Stability in the Lyapunov sense is a

mathematical translation of an elementary observation: if the total energy of a system

dissipates in a continuous manner (i.e. decreases with time), then this system (that

it is linear or not, stationary or not) tends to an equilibrium state (it is stable). The

direct method thus seeks to generate a scalar function of energy type which admits

a negative temporal derivative. There exist some definitions related to Lyapunov

stability, among them the following.

Definition 2 The equilibrium point xe is stable if

∀t ≥ 0,∀� > 0,∃α > 0 such that kx (0)− xek < α⇒ kx (t)− xek < �

in the contrary case xe is unstable.

In other terms, a system is stable in Lyapunov sense if and only if a weak distur-

bance of the initial conditions involves a weak disturbance of the system trajectory.

Another important definition in system control theory is the global asymptotic stabil-

ity.

Definition 3 The equilibrium point xe = 0 is locally asymptotically stable if it is

stable and there exist r > 0 such that:

if kx (0)k < r then limt→∞ kx (t)k→ 0

Definition 4 if a system is asymptotically stable for any initial condition in Rn, then

xe = 0 is asymptotically stable in the large or globally asymptotically stable (GAS).
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3.3 Lyapunov functions in the control literature

In general, there is no a systematic method to find candidate Lyapunov functions.

The degree of conservatism of the obtained stability conditions depends on the Lya-

punov function form and the system structure. Different Lyapunov functions forms

are used by different authors in the literature (Tanaka & Sano, 1994),(Wang et al. ,

1996),(Tanaka et al. , 1998),(Wong et al. , 1998),(Jadbabaie, 1999),(Johansson et al.

, 1999, a),(Chadli et al. , 2000),(Blanco et al. , 2001),(Chadli et al. , 2001),(Ohtake

et al. , 2003),(Tanaka et al. , 2003),(Bernal & Hus̆ek, 2005), depending of the system

nature and complexity.

3.3.1 Quadratic Lyapunov function

This one is the classical form, it is given by:

V (x (t)) = xT (t)Px (t) , P > 0, PT = P (3.1)

used initially to stability study of linear systems and then for MIMO nonlinear systems,

in particular, T-S fuzzy systems (Tanaka & Sugeno, 1992),(Zhao, 1995),(Wang et al.

, 1996),(Tanaka et al. , 1998). The principle of the method is to search a positive

definite matrix P, by the way of convex formulation of the problem. The drawback of

this quadratic approach is the conservative stability conditions, but it remains from a

practical point of view easy to implement.

3.3.2 Non-quadratic Lyapunov function

This function is of the form:

V (x (t)) =
rX

i=1

hi (z (t))x
T (t)Pix (t) (3.2)

where Pi is a positive definite matrix and hi (z (t)) ≥ 0,
Pr

i=1 hi (z (t)) = 1. It is a more

general function since it includes the quadratic case when Pi = P , i = 1, .., r. However,

an interesting advantage is that, the non-quadratic form of Lyapunov function takes

into account the speed variation of the decision variables, what allows the conservatism

reduction and more relaxed stability conditions. Indeed, it has been studied by many

authors, (Jadbabaie, 1999),(Chadli et al. , 2000),(Morère, 2001),(Tanaka et al. , 2001,

d), who concluded on the need to have an upper bounds on the speed variations

of decision variables and then on the first time derivative of premise membership

functions to reduce conservatism. On another side, this type of functions reduces the

global stability of the nonlinear system to the analysis of the local stability of each local
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linear model (sub-model) separately. However, this Lyapunov function was also used

in the discrete case by several authors such as (Daafouz & Bernussou, 2001),(Morère,

2001).

3.3.3 Piecewise quadratic Lyapunov function

T-S fuzzy systems and affine T-S fuzzy systems can be considered as piecewise linear

systems. Hence, many authors such as (Johansson, 1999),(Johansson et al. , 1999,

a),(Feng, 2002),(Ohtake et al. , 2003) proposed piecewise quadratic Lyapunov functions

to reduce conservatism and whose search is based on a convex optimization problem,

they are given by:

V (x) =

⎧⎪⎪⎨⎪⎪⎩
xTPix, , x ∈ Xi, i ∈ I0"

x

1

#T
P i

"
x

1

#
, x ∈ Xi, i ∈ I1

(3.3)

where the operating region Xi is a partition in the state space and corresponds to a

dynamic local model i. Thus, the principle of the approach is to divide the space into

two regions: an operating region and an interpolation region. This Lyapunov function

combines the power of quadratic Lyapunov functions near an equilibrium point with

the flexibility of piecewise linear functions in the large. It also allows conservatism

reduction because of the space partionning induced by a locally bounded membership

function. This leads to search for a common Pi to all active local linear models in

each region. However, the conservatism reappears for this approach when the number

of activated local models becomes equal to the total number of local models.

3.4 Quadratic stability of Takagi-Sugeno fuzzy systems

In this section quadratic Lyapunov functions are considered whose one of the existing

definitions is:

Definition 5 The system
.
x (t) = f (x (t) , u (t)) is said to be quadratically stable if

there exists a quadratic function V (x (t)) = xT (t)Px (t) , V (0) = 0, satisfying the

following conditions:

V (x (t)) > 0 ∀x (t) 6= 0⇐⇒ P > 0, (3.4)
.
V (x (t)) < 0 ∀x (t) 6= 0. (3.5)

If V exists, it is called a Lyapunov function.
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Thus, to find a Lyapunov function amounts finding a positive definite matrix P ,

we speak about quadratic stability. The following stability theorem that is based on

quadratic Lyapunov functions give sufficient conditions to assure stability of the open

loop T-S fuzzy system given by:

.
x (t) =

rX
i=1

hi (z (t))Aix (t) , (3.6)

Theorem 6 (Tanaka & Sugeno, 1992)The equilibrium of a fuzzy system (3.6) is glob-
ally asymptotically stable if there exists a common positive definite matrix P such that

AT
i P + PAi < 0, i = 1, ..., r

that is, a common P has to exist for all sub-models (Tanaka & Sugeno, 1992),(Tanaka

& Sano, 1995),(Tanaka & Wang, 2001, a). The proof of theorem 6 is given in appendix

A.

This theorem presents sufficient conditions for the quadratic stability. However,

they are conservative since the hi (z (t)) are not taken into account. The common

P problem can be solved efficiently via convex optimization techniques and LMIs

for Linear Matrix Inequalities; we call this an LMI feasibility problem. Therefore,

recasting a control problem (such as stabilization via PDC controller) as an LMI

problem is equivalent to finding a “solution” to the original problem. The existence of

P depends on two conditions: the first one is related to the stability of all sub-models,

where each matrix Ai must be Hurwitz. The second condition relates to the existence

of a common Lyapunov function for the the r sub-models. It requires that
rX

i=1

Ai must

also be Hurwitz. However if r, that is the number of IF-THEN rules, is large, it might

be difficult to find a common P.

3.5 Fuzzy control laws

In the literature, different control laws were proposed to stabilize fuzzy models. These,

are based on stability constraints transformable into LMIs to obtain the gains matrices.

Among these different control laws we cite:

3.5.1 Parallel distributed compensation concept

The main idea of the PDC controller design is to derive each control rule from the

corresponding rule of T-S fuzzy model so as to compensate it. The resulting overall

fuzzy controller, which is nonlinear in general, is a fuzzy blending of each individual

linear controller, knowing that the fuzzy controller shares the same fuzzy sets with the
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fuzzy model (3.6). Wang et al. (Wang et al. , 1996) used this concept to design fuzzy

controllers to stabilize fuzzy systems. Figure 3.1 shows the concept of PDC controller

(Tanaka & Sano, 1994).

 
              Fuzzy System       Fuzzy controller 

 Rule r  

 

 

 

 

Rule 2 

Rule 1 

Rule r 

Rule 2 

Rule 1 

Linear controller design technique 

Figure 3.1: PDC controller design

For the fuzzy system (3.6), the following fuzzy controller via PDC is obtained

(Tanaka & Wang, 2001, a):

Rule i : IF z1 (t) is Mi1 and ... and zp (t) is Mip

THEN u (t) = −Fix (t) , i = 1, 2, .., r (3.7)

which has a state feedback controller in the consequent parts. The overall fuzzy

controller is represented by

u (t) = −
rX

i=1

hi (z (t))Fix (t) (3.8)

The PDC scheme that stabilizes the T-S fuzzy model was proposed by Wang et al.

(Wang et al. , 1995),(Wang et al. , 1996), as a design framework comprising a control

algorithm and a stability test using optimization involving LMI constraints. The goal

is to find appropriated Fi gains that ensure the closed loop stability.

3.5.2 State feedback control

The control action is given by:

u (t) = −Kex (t) ,Ke ∈ Rm×n



3. Quadratic stability and Stabilization of T-S Fuzzy Systems 31

and the closed loop T-S fuzzy system is given by:

.
x (t) =

rX
i=1

hi (z (t)) [Ai −BiKe]x (t) (3.9)

This control law allows a pole placement such that for any x (t) 6= 0, x (t) −→ 0 when

t −→∞. However, the principle drawback is the performance limitation.

3.5.3 Fuzzy simultaneous stabilization (FSS)

This nonlinear state feedback control law was developed by Vermeirin (Vermeirin,

1998) and is based on Peterson’s works (Petersen, 1987), concerning the simultaneous

stabilization of MIMO linear models using a nonlinear state feedback control law. The

FSS control law is given by:

u (x) = g1 (x) + g2 (x) (3.10)

and the closed loop T-S fuzzy model is given by:

.
x (t) =

rX
i=1

hi (z (t)) (Aix (t)−Bi (g1 (x) + g2 (x))) (3.11)

The obtained stability conditions are more conservative than those of the PDC control.

However, this approach consists the basis for other synthesis methods.

3.5.4 Compensation and division for fuzzy models (CDF)

This control law avoids the use of cross models. It requires a linear dependency between

the input matrices and is given by:

u (t) = −
P

i hi (z (t)) kiFix (t)P
i=1 hi (z (t)) ki

, ki > 0 (3.12)

where Fi are the control gains. The closed loop T-S fuzzy model is given by (Guerra

& Vermeirin, 1998):

.
x (t) =

P
i

P
j hi (z (t))hj (z (t)) kj [Ai −BiFj ]P

i hi (z (t)) ki
x (t)

Using the dependency property of this control law i.e. Bi = KiB, the closed loop T-S

fuzzy model becomes

.
x (t) =

X
i

hi (z (t)) (Ai −BiFi)x (t) (3.13)

the conservatism is reduced since there is only r LMIs instead of r (r + 1) /2 LMIs for

the PDC case.
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3.6 Linear matrix inequalities (LMIs)

Linear Matrix Inequalities are the control version of the semi definite programs (SDP)

that are convex problems, allowing the resolution of a great number of problems in re-

lation with uncertain systems. A powerful and efficient polynomial-time interior-point

algorithms were developed for linear programming by Karmakar in 1984 (Karmakar,

1984), then extended in 1988 by Nesterov and Nemirovskii, which developed interior-

point methods that apply directly to linear matrix inequalities (Nestrov & Nemirovski,

1994). It was then recognized that LMIs can be solved with convex optimization on a

computer and in 1995 Gahinet and Nemirovskii (Gahinet et al. , 1995) wrote a com-

mercial Matlab package called the LMI Toolbox for Matlab. The advantage of SDP is

the polynomial time of global minimum computation using the interior point methods

(Nestrov & Nemirovski, 1994).

Definition 7 (Boyd et al. , 1994) A linear matrix inequality is a matrix inequality of
the form:

F (x) = F0 +
mX
i=1

xiFi > 0 (3.14)

where x (t) = [x1 (t) , ..., xm (t)]
T is the variable vector to find and Fi = FT

i ∈
Rn×n, i = 0, ...,m are given matrices. The inequality implies that F (x) must be

positive definite, i.e. all its eigenvalues are positive. The LMI (3.14) is a convex

constraint on x , i.e. the set {x | F (x) > 0} is convex, it can also gather several
convex constraints. F1 (x) > 0, F2 (x) > 0, ..., Fm (x) > 0, in a diagonal bloc matrix:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 (x) 0 . . . 0

0 F2 (x) . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Fm (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0 (3.15)

3.6.1 Some standards LMI Problems

Among the most encountered convex optimization LMI problems, we cite:

LMI Problems:

Given a LMI F (x) > 0, the LMI problem is to find xfeas such that F
¡
xfeas

¢
> 0

or determine that the LMI is infeasible, which is a convex feasibility problem that

can be solved by convex optimization algorithms such as interior-point methods. For
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example, the Lyapunov stability conditions given in section 3.4, will be expressed as

an LMI problem where P is the variable (Boyd et al. , 1994), and this, is available for

all the stability conditions encountered in this work.

Eigenvalue problem

The eigenvalue problem (EVP) is to minimize the maximum eigenvalue of a matrix

that depends affinely on a variable, subject to an LMI constraint (or determine that

the constraint is infeasible), in other terms:

minimize λ

subject to λI −A (x) > 0, B (x) > 0
(3.16)

Generalized eigenvalue problem

The generalized eigenvalue problem (GEVP) is to minimize the maximum eigenvalue

problem of a pair of matrices that depend affinely on a variable, subject to an LMI

constraint. The general form of GEVP is:

minimize λ

subject to λB (x)−A (x) > 0, B (x) > 0, C (x) > 0
(3.17)

All these problems can be solved by different tools such as ellipsoid algorithms, simplex

methods and interior-point methods. However, there exist some tools that facilitates

the passage from a non convex formulation to a LMI, that is convex, among them:

Schur complement

Nonlinear (convex) inequalities are converted to LMI form using Schur comple-

ments. For the following LMI "
Q (x) S (x)

S (x)T R (x)

#
> 0 (3.18)

where Q (x) = Q (x)T , R (x) = R (x)T and S (x) depend affinely on x is equivalent to

R (x) > 0, Q (x)− S (x)R (x)−1 S (x)T > 0 (3.19)

The lemma is also valid when changing the sign of the inequalities.

Another important property is the polytopic form of the T-S fuzzy systems
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Polytopic form
A polytopic form is defined as follows: A set of matrices {A1, A2, ..., An}

is said to be polytopic if there exists a set of positive parameters such that

(Zhao, 1995)

∀ 0 ≤ λi ≤ 1,
nX
i=1

λi = 1, A =
nX
i=1

λiAi > 0

hence the matrices form a polytopic Λ = Co {A1, A2, ..., An} , where Co

denotes the convex hull. The notion of convexity plays an important role

since the stability analysis problems are represented in terms of convex op-

timization problems, what allows a reasonable computing time and finding

a global minimum.

3.7 Quadratic stabilization of T-S fuzzy systems

The quadratic stabilization of T-S fuzzy models is not other than a state feedback

stabilization design problem that can be stated as follows: given a plant described

by a T-S model, find a PDC controller that quadratically stabilizes the closed loop

system. The design variables in this problem are the gain matrices Fi (1 ≤ i ≤ r). As

stated previously in this chapter, the control design problem is to find the gains Fi
such that the following closed loop system (3.22) is quadratically stable.

3.7.1 Stability conditions in closed loop

The overall T-S fuzzy system is given by:

.
x (t) =

rX
i=1

hi (z (t)) (Aix (t) +Biu (t)) , (3.20)

y (t) =
rX

i=1

hi (z (t))Cix (t) (3.21)

We note that equation (3.20) is a polytopic form of the fuzzy system. Hence, by

substituting (3.8) in (3.20), we obtain the T-S closed loop fuzzy system as follows:

.
x (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]x (t) , (3.22)

which can be rewritten as

.
x (t) =

rX
i=1

hi (z (t))hi (z (t))Giix (t) + 2
rX

i=1

X
i<j

hi (z (t))hj (z (t))

½
Gij +Gji

2

¾
x (t) ,

(3.23)
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where Gij = Ai −BiFj and Gii = Ai −BiFi.

Applying theorem 6 to the system defined by (3.23), we obtain the closed loop

stability conditions given by the following theorem.

Theorem 8 (Tanaka & Wang, 2001, a) The equilibrium of the continuous fuzzy con-

trol system described by (3.23) is globally asymptotically stable if there exists a common

positive definite matrix P such that the following two conditions are satisfied:

GT
iiP + PGii < 0, i = 1, ..., r, (3.24)

½
Gij +Gji

2

¾T

P + P

½
Gij +Gji

2

¾
≤ 0, i = 1, ..., r,

i < j s.t. hi ∩ hj 6= ∅ (3.25)

The proof of this theorem follows directly from theorem 6. We remark that con-

dition (3.25) contributes to the conservatism reduction since, it is not necessary that

all the sub-models are stable.

The common B matrix case

By considering B1 = B2 = ... = Br, the stability condition of theorem 8 can be

simplified as follows.

Corollary 9 Assume that B1 = B2 = ... = Br. The equilibrium of the fuzzy control

system (3.23) is globally asymptotically stable if there exist a common positive matrix

P satisfying (3.24).

The stabilization of a feedback model containing a state feedback fuzzy controller

has been extensively considered. The objective is to select Fi to stabilize the closed-

loop system. The stability conditions corresponding to a quadratic Lyapunov function

were derived by Tanaka and Sugeno in (Tanaka et al. , 1998). They give sufficient

conditions for the quadratic stabilization by the following theorem:

Theorem 10 (Tanaka & Wang, 2001, a) The fuzzy system (3.22) can be stabilized

via the PDC controller (3.8) if there exists a common positive definite matrix X and

Mi (i = 1 ... r) such that

−XAT
i −AiX +MT

i B
T
i +BiMi > 0, (3.26)

−XAT
i −AiX −XAT

j −AjX +MT
j B

T
i +BiMj

+MT
i B

T
j +BjMi ≥ 0, ∀ i < j s.t. hi ∩ hj 6= ∅

(3.27)

where

X = P−1, Mi = FiX (3.28)
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See appendix B for LMIs transformations.

The feedback gains Fi and the common P are given by

P = X−1, Fi =MiX
−1 (3.29)

whereas the single quadratic Lyapunov function is given by

V (x (t)) = x (t)X−1x (t) (3.30)

This approach requires to find a common positive definite matrix P for r sub-models,

what makes it very conservative. An attempt to reduce the conservatism using the

same Lyapunov function was given by Tanaka et al. (Tanaka et al. , 1998), who

proposed relaxed stability conditions given by this theorem.

Theorem 11 (Tanaka et al. , 1998)Assume that the number of rules that fire for

all t is less than or equal to s, where 1 < s ≤ r. The equilibrium of the continuous

fuzzy control system described by 3.23 is globally asymptotically stable if there exist a

common positive definite matrix P and a common positive semidefinite matrix Q such

that

AT
i P + PAi − (s− 1)Q < 0, i = 1, ..., r (3.31)

½
Gij +Gji

2

¾T

P + P

½
Gij +Gji

2

¾
−Q ≤ 0, i = 1, ..., r,

∀ i < j s.t. hi ∩ hj 6= ∅ (3.32)

where s > 1.

3.8 Design example: The Inverted pendulum

Consider now the problem of balancing and swing up an inverted pendulum. We recall

the equations of motion already given in chapter 2 (Tanaka & Wang, 2001, a):

x1 (t) = x2 (t) ,

.
x2 (t) =

g sin (x1 (t))− amlx22 (t) sin (2 (x1 (t))) /2− a cos (x1 (t))u (t)

4l/3− aml cos2 (x1 (t))
,

(3.33)

For the simulations, the values of the parameters are m = 2.0 kg, M = 8.0 kg, 2l = 1.0

m. The control objective for this example is to balance the inverted pendulum for the
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approximate range x1 ∈ (−π/2, π/2) by using the quadratic stability approach and
PDC controller. The system (3.33) is modeled by the following two fuzzy rules:

Rule 1 : IF x1 (t) is about 0 THEN
.
x (t) = A1x (t) +B1u (t) (3.34)

Rule 2 : IF x1 (t) is about ± π/2 (|x1| < π/2) THEN
.
x (t) = A2x (t) +B2u (t)

(3.35)

where

A1 =

"
0 1
2g

4l/3−aml 0

#
, A2 =

⎡⎣ 0 1
2g

π(4l/3−amlβ2)
0

⎤⎦
B1 =

"
0

− a
4l/3−aml

#
, B2 =

"
0

− aβ
4l/3−amlβ2

#
and β = cos (88◦)

The PDC control laws are as follows:

Rule 1 : IF x1 (t) is about 0 THEN u (t) = −F1x (t) (3.36)

Rule 2 : IF x1 (t) is about ± π/2 (|x1| < π/2) THEN u (t) = −F2x (t) (3.37)

Hence, the control law that guarantees the stability of the fuzzy control system (fuzzy

system + PDC controller) is given by:

u (t) = −h1 (x1 (t))F1x (t)− h2 (x1 (t))F2x (t) (3.38)

where h1and h2 are the triangular membership functions of rules 1 and 2, respectively.

Applying then the PDC controller, the objective of balancing the pendulum is

reached for initial conditions x1 ∈ (−π/2, π/2) and x2 = 0. By resolving the LMI

conditions (3.26) and (3.27), the values of P and Fi are:

P =

"
0.0160 0.0037

0.0037 0.0009

#
> 0,

F1 =
h
−4347.9 −981.7

i
, F2 =

h
10819 2465

i
Figure 3.2 shows the response of the pendulum system using fuzzy PDC controls for

the initial conditions x1 = 30◦, 60◦, 85◦ and.x2 = 0.
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Figure 3.2: Angle response using two-rule fuzzy control for x1 = 30◦, 60◦, 85◦ and
x2 = 0.

To assess the effectiveness of the PDC controller, this one is applied to the original

system (3.33), the results are also good as the figure 3.3 shows it for initial conditions

x1 = 85◦, 15◦, −85◦ and x2 = 0. To test the robustness of this controller, some

simulations are done by changing m from 2.0 to 4.0 kg (figure 3.4), M from 8.0 to

4.0 kg, (figure 3.5) and 2l from 1.0 to 0.5 m (figure 3.6) for different initial conditions.

The obtained results are satisfactory knowing that robustness is not included in the

controller design.
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Figure 3.3: Angle response using two-rule fuzzy control for x1 = 85◦, 15◦, −85◦ and
x2 = 0.
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Figure 3.4: Angle response using two-rule fuzzy control and m changed from 2.0 to
4.0 kg.
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Figure 3.5: Angle response using two-rule fuzzy control and M changed from 8.0 to
4.0 kg.
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Figure 3.6: Angle response using two-rule fuzzy control and 2l changed from 1.0 to
0.5 m.
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3.9 Conclusion

In this chapter, we presented the quadratic stability and stabilization of T-S fuzzy

systems within the framework of the use of a PDC control law. The stability of the

fuzzy system is based on the Lyapunov direct method consisting in finding a quadratic

function V (x (t)) = xT (t)Px (t) whose derivative is negative. In this context, various

theorems were introduced for the stability of fuzzy systems in open loop and in closed

loop for stabilization. These, constitute feasible problems whose solutions can be

found by LMIs tools, also detailed in this chapter. The proposed quadratic stability

conditions are sufficient. However, they are conservative since the hi (z (t)) are not

taken into account ,it omits all the information contained in the membership functions,

further the approach requires to find a common positive definite matrix P for r sub-

models. Finally, an example is given to illustrate all these concepts combined in a

framework entitled stable fuzzy controller design.



Chapter 4

Non-Quadratic Stability and
Stabilization of Takagi-Sugeno
Fuzzy Systems

4.1 Introduction

In this chapter, new stability conditions for the T-S fuzzy systems are proposed (Ab-

delmalek et al. , 2007), based on the use of multiple Lyapunov functions that have

been discussed (Cao et al. , 1997),(Feng et al. , 1997),(Jadbabaie, 1999),(Chadli et al.

, 2000),(Tanaka et al. , 2001, c),(Hadjili, 2002) due to their properties of conservatism

reduction. The proposed stability conditions are derived based on PDC controller.

We use a fuzzy Lyapunov function since it is smooth contrary to the piecewise Lya-

punov function thus avoiding the boundary condition problem. Hence we obtain new

conditions, shown to be less conservative, that stabilize continuous T-S fuzzy systems

including those that do not admit a quadratic stabilization. The proposed approach

is based on two assumptions. The first one relies on the existence of a proportionality

relation between multiple quadratic Lyapunov functions, and the second one considers

an upper bound for the time derivative of the premise membership function as assumed

by Tanaka et al. (Tanaka et al. , 2001, b),(Tanaka et al. , 2001, c),(Tanaka et al. ,

2001, d), (Tanaka et al. , 2003). Simulation examples demonstrate the effectiveness of

the proposed approach.

4.2 Non-quadratic stability of T-S fuzzy models

Due to their property of conservatism reduction, we define a fuzzy Lyapunov function

and consider stability conditions via the fuzzy Lyapunov function. The candidate

42
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Lyapunov function

V (x (t)) =
rX

i=1

hi (z (t))x
T (t)Pix (t) (4.1)

satisfies

V is C1,

V (0) 6= 0 and V (x (t)) > 0 for x (t) 6= 0,
kx (t)k −→∞ ⇒ V (x (t)) −→∞

Definition 12 (Tanaka & Sugeno, 1992) Equation (4.1) is said to be a fuzzy Lya-

punov function for the T-S fuzzy system if the time derivative of V (x (t)) is always

negative at x (t) 6= 0, where Pi is a positive definite matrix.

This fuzzy Lyapunov function is defined (Tanaka et al. , 2003) for studying the

stability and stabilization of the following continuous T-S fuzzy system.

.
x (t) =

rX
i=1

hi (z (t)) (Aix (t) +Biu (t)) (4.2)

Applying the PDC controller

u (t) = −
rX

i=1

hi (z (t))Fix (t) (4.3)

the T-S closed loop fuzzy system is:

.
x (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]x (t) (4.4)

4.3 New stabilization approach

In this section, and based on the fuzzy Lyapunov function, we propose an approach

that gives less conservative stability conditions (Abdelmalek et al. , 2007) The Key

assumptions are as follows:

Assumption 1: The time derivative of the premise membership func-
tion are upper bounded such that:

¯̄̄ .
hi (z (t))

¯̄̄
≤ φi for i = 1, .., r, where φi,

i = 1, ..., r are given positive constants.

Assumption 2: The local quadratic Lyapunov functions xT (t)Pix (t) ,
i = 1, ..., r are proportionally related such that: Pj = αijPi for i, j = 1, ..., r,

where αij 6= 1 and αij > 0 for i 6= j, and αij = 1 for i = j.
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Theorem 13 Under assumptions 1-2, the continuous fuzzy system (4.4) can be sta-

bilized via the PDC fuzzy controller (4.3 ) if there exist φρ, αij for i, j, ρ = 1, ..., r,

positive definite matrices P1 , P2 , ..., Pr and matrices F1 , F2 , ..., Fr such that

Pi > 0, i = 1, 2, .., r (4.5)
rX

ρ=1

φρPρ +
¡
GT
jjPi + PiGjj

¢
< 0, i, j = 1, 2, .., r (4.6)

½
Gjk +Gkj

2

¾T

Pi + Pi

½
Gjk +Gkj

2

¾
< 0, ∀ i, j, k ∈ {1, 2, .., r} s.t. j < k (4.7)

where Gjk = Aj −BjFk and Gjj = Aj −BjFj .

Proof. The candidate Lyapunov function is defined by

V (x (t)) =
rX

i=1

hi (z (t))x
T (t)Pix (t) (4.8)

The time derivative of V (x (t)) is calculated as

.
V (x (t)) =

.
x
T
(t)

Ã
rX

i=1

hi (z (t))Pi

!
x (t)

+ xT (t)

⎛⎝ rX
ρ=1

.
hρ (z (t))Pρ

⎞⎠x (t)

+ xT (t)

Ã
rX

i=1

hi (z (t))Pi

!
.
x (t) (4.9)

By substituting the following

.
x (t) =

rX
i=1

hi (z (t))hi (z (t))Giix (t) + 2
rX

i=1

X
i<j

hi (z (t))hj (z (t))

½
Gij +Gji

2

¾
x (t)

in (4.9), we obtain

.
V (x (t)) = xT (t)

⎡⎣ rX
j=1

rX
i=1

hj (z (t))hj (z (t))hi (z (t))G
T
jjPi

+
rX

j=1

X
j<k

rX
i=1

hj (z (t))hk (z (t))hi (z (t))

µ
Gjk +Gkj

2

¶T

Pi

+
rX

ρ=1

.
hρ (z (t))Pρ +

rX
i=1

rX
j=1

hi (z (t))hj (z (t))hj (z (t))PiGjj

+
rX

i=1

rX
j=1

X
j<k

hi (z (t))hj (z (t))hk (z (t))Pi

µ
Gjk +Gkj

2

¶⎤⎦x (t) (4.10)
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Further, (4.9) can be arranged as:

.
V (x (t)) = xT (t)

⎡⎣ rX
i=1

rX
j=1

hi (z (t))hj (z (t))hj (z (t))
¡
GT
jjPi + PiGjj

¢
+

rX
ρ=1

.
hρ (z (t))Pρ

+
rX

i=1

rX
j=1

X
j<k

hi (z (t))hj (z (t))hk (z (t))

Ãµ
Gjk +Gkj

2

¶T

Pi + Pi

µ
Gjk +Gkj

2

¶!⎤⎦x (t) .
(4.11)

Under the assumption
¯̄̄ .
hρ (z (t))

¯̄̄
≤ φρ, (4.11) can be rewritten as follows:

.
V (x (t)) ≤ xT (t)

⎡⎣ rX
i=1

rX
j=1

hi (z (t))hj (z (t))hj (z (t))
¡
GT
jjPi + PiGjj

¢
+

rX
ρ=1

φρPρ

+
rX

i=1

rX
j=1

X
j<k

hi (z (t))hj (z (t))hk (z (t))

Ãµ
Gjk +Gkj

2

¶T

Pi + Pi

µ
Gjk +Gkj

2

¶!⎤⎦x (t)
(4.12)

If equations (4.5)-(4.7) hold, the time derivative of the fuzzy Lyapunov function is

negative. So we have

.
V (x (t)) ≤ xT (t)

⎡⎣ rX
i=1

rX
j=1

hi (z (t))h
2
j (z (t))

⎛⎝¡GT
jjPi + PiGjj

¢
+

rX
ρ=1

φρPρ

⎞⎠
+

rX
i=1

rX
j=1

X
j<k

hi (z (t))hj (z (t))hk (z (t))

Ãµ
Gjk +Gkj

2

¶T

Pi + Pi

µ
Gjk +Gkj

2

¶!⎤⎦x (t) < 0,
and the closed loop fuzzy system (4.4) is stable.

4.3.1 Constraints on the time derivative of the premise membership
functions

Conditions of theorem 13 were derived by including an assumption on the time deriv-

ative of the premise membership functions¯̄̄ .
hρ (z (t))

¯̄̄
≤ φρ for ρ = 1, ..., r (4.13)

In this subsection, the constraint imposed on the time derivative of the premise mem-

bership functions and hence on the derivative of the premise variables, (i.e. the speed

of the state variables for the case of z (t) = x (t)), is transformed into LMIs of theorem

14 that are solved simultaneously with those of theorem 13 to stabilize the T-S fuzzy
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systems. The new LMIs that support assumption 1, allows to increase the perfor-

mance by limiting the displacement rate in the polytope, implying a facility to find

the Lyapunov functions and thus a faster stabilization.

Theorem 14 Assume that x (0) and z (0) are known. The assumption (4.13) holds

if there exist positive definite matrices P1 , P2, ... ,Pr and matrices F1 , F2, ... ,Fr
satisfying "

1 xT (0)

x (0) P−1i

#
≥ 0, for i = 1, .., r (4.14)

"
φρPi WT

ijρc

Wijρc φρI

#
≥ 0, ∀ i, j, ρ ∈ {1, 2, .., r} , ∀c (4.15)

where Wijρc = ξρc (Ai −BiFj) . The selection of ξρc is obtained from
.
hi (z (t)) using a

simple procedure (see appendix C) given in (Tanaka et al. , 2001, d). However, it is to

be noted that the conditions of this theorem are initial states dependent, so the initial

conditions should be known and for different initial states, we need to solve the LMIs

again.

Proof. From (4.13) and for z (t) = x (t) we have¯̄̄ .
hρ (z (t))

¯̄̄
=

¯̄̄̄
∂hρ (z (t))

∂x (t)

·
x (t)

¯̄̄̄
≤ φρ (4.16)

we assume also that
∂hρ (z (t))

∂x (t)
=

sX
c=1

υρc (z (t)) ξρc (4.17)

where υρc (z (t)) ≥ 0 and
Ps

c=1 υρc (z (t)) = 1. Using (4.17) we obtain LMIs that satisfy

assumption (4.16).

From (4.16) we haveµ
∂hρ (z (t))

∂x (t)

·
x (t)

¶T µ∂hρ (z (t))
∂x (t)

·
x (t)

¶
≤ φ2ρ (4.18)

By replacing (4.4) in (4.18) we obtain⎡⎢⎣
⎛⎝ sX

c=1

υρc (z (t)) ξρc

⎧⎨⎩
rX

i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]x (t)

⎫⎬⎭
⎞⎠T

×

⎛⎝ sX
c=1

υρc (z (t)) ξρc

⎧⎨⎩
rX

i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]x (t)

⎫⎬⎭
⎞⎠⎤⎦

≤ φ2ρ (4.19)



4. Non-Quadratic Stability and Stabilization of Takagi-Sugeno Fuzzy
Systems 47

Dividing by φ2ρ we obtain

1

φ2ρ
xT (t)

⎡⎣⎛⎝ sX
c=1

υρc (z (t)) ξρc

⎧⎨⎩
rX

i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]
T

⎫⎬⎭
⎞⎠

×

⎛⎝ sX
c=1

υρc (z (t)) ξρc

⎧⎨⎩
rX

i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]

⎫⎬⎭
⎞⎠⎤⎦x (t)

≤ 1 (4.20)

We assume that for the fuzzy Lyapunov function (4.1), the inequality (4.21) holds

(Tanaka & Wang, 2001, a),(Bernal & Hus̆ek, 2005):

V (x (t)) ≤ V (x (0)) ≤ 1, t ≥ 0 (4.21)

i.e.
rX

i=1

hi (z (t))x
T (t)Pix (t) ≤

rX
i=1

hi (z (0))x
T (0)Pix (0) ≤ 1 (4.22)

then we have

1−
rX

i=1

hi (z (0))x
T (0)Pix (0) ≥ 0 (4.23)

and

1− xT (0)

Ã
rX

i=1

hi (z (0))Pi

!
x (0) ≥ 0 (4.24)

then we have

1−
rX

i=1

hi (z (0))x
T (0)Pix (0) ≥ 0 (4.25)

and

1− xT (0)

Ã
rX

i=1

hi (z (0))Pi

!
x (0) ≥ 0 (4.26)

which is expressed via LMIs using the Schur complement as follows:"
1 xT (0)

x (0) (
Pr

i=1 hi (z (0))Pi)
−1

#
≥ 0 (4.27)

which is implied by "
1 xT (0)

x (0) P−1i

#
≥ 0, for i = 1, .., r

that leads to the LMI condition (4.14).
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On the other hand, by considering inequalities (4.20) and (4.22), inequality (4.16)

holds if

1

φ2ρ

⎡⎣⎛⎝ sX
c=1

υρc (z (t)) ξρc

⎧⎨⎩
rX

i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]
T

⎫⎬⎭
⎞⎠

×

⎛⎝ sX
c=1

υρc (z (t)) ξρc

⎧⎨⎩
rX

i=1

rX
j=1

hi (z (t))hj (z (t)) [Ai −BiFj ]

⎫⎬⎭
⎞⎠⎤⎦− rX

i=1

hi (z (t))Pi

≤ 0 (4.28)

which is equivalent to"
φρ
Pr

i=1 hi (z (t))Pi
¡Ps

c=1 υρc (z (t)) ξρcQ
T
¢¡Ps

c=1 υρc (z (t)) ξρcQ
¢

φρI

#
≥ 0 (4.29)

where Q =
Pr

i=1

Pr
j=1 hi (z (t))hj (z (t)) [Ai −BiFj ] . This leads to the LMI condition

(4.15) "
φρPi WT

ijρc

Wijρc φρI

#
≥ 0, ∀i, j, ρ ∈ {1, 2, .., r} ∀c

where Wijρc = ξρc (Ai −BiFj) .

4.3.2 Stable fuzzy controller design

We are interested in this part by non-quadratic stabilization of T-S fuzzy models by

using PDC laws. The fuzzy controller design is to determine the local feedback gains

Fi for the closed loop T-S fuzzy system (4.4). We define Xi = P−1i , Fi = MiX
−1
i ,

Xi = αijXj for i, j = 1, ..., r, where αij 6= 1 and αij > 0 for i 6= j, and αij = 1 for

i = j. By giving φρ > 0 and αij for i, j, ρ = 1, ..., r, we obtain the following LMIs

conditions that constitute a stable fuzzy controller design problem:

Xi > 0, i = 1, 2, .., r (4.30)

rX
ρ=1

φρXρ +XiA
T
j − αijM

T
j B

T
j +AjXi − αijBjMj < 0, i, j = 1, 2, .., r (4.31)

XiA
T
j −αikM

T
k B

T
j +XiA

T
k −αijM

T
j B

T
k +AjXi−αikBjMk +AkXi−αijBkMj < 0

s.t. j < k, ∀ i, j, k,∈ {1, 2, ..., r}"
1 xT (0)

x (0) Xi

#
≥ 0, for i = 1, ..., r (4.32)
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φρXi WT
ijρc

Wijρc φρI

#
≥ 0, ∀ i, j, ρ ∈ {1, 2, ..., r} , ∀c (4.33)

where Wijρc = ξρc (AiXi − αijBiMj) .

It is to be noted that from Xi = αijXj , we have Xj = (1/αij)Xi = αjiXi so

αij = 1/αji ∀ i, j ∈ {1, 2, ..., r} , hence according to our proposal and for a given i and
j, the following relation is used αijαji = 1. Coefficients αij and φρ for i, j, ρ = 1, 2, ..., r

and i 6= j, can be chosen heuristically according to the considered application. In

particular, the φρs are chosen in such way to obtain a fast switching among IF-THEN

rules in order to keep the speed of response for a closed loop system (Tanaka et al. ,

2001, d).

4.4 Design examples

This part presents four different examples that illustrate the effectiveness of the new

non-quadratic stabilization conditions that we propose in this chapter (Abdelmalek

et al. , 2007).

4.4.1 Example 1

Consider the following fuzzy system (Tanaka et al. , 2001, b):

.
x (t) =

rX
i=1

hi (z (t)) (Aix (t) +Biu (t)) (4.34)

h1 (x1 (t)) =
1 + sinx1 (t)

2
, h2 (x1 (t)) =

1− sinx1 (t)
2

A1 =

"
−5 −4
−1 −2

#
, A2 =

"
−2 −4
20 −2

#

B1 =

"
0

10

#
, B2 =

"
0

3

#
For this fuzzy system that admits a quadratic stabilization it is assumed that |x1 (t)| ≤
π
2 and |x2 (t)| ≤

π
2 . By taking

φ1 = φ2 = 0.5

α12 = 0.2, α21 = 1/α12

ξ11 = 0, ξ12 = 0.5, ξ21 = −0.5, ξ22 = 0
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we obtain the following P1, P2, F1 and F2, that depend on initial conditions and satisfy

the LMIs given in theorems 13 and 14 simultaneously:

P1 =

"
8.2039 1.0367

1.0367 3.0338

#
> 0, P2 =

"
30.5563 −6.3970
−6.3970 4.7558

#
> 0

F1 =
h
0.0262 0.1232

i
, F2 =

h
−3.4925 1.9967

i
The new PDC fuzzy controller design conditions has feasible solutions for different

initial conditions and hence stabilizes the system. Figure 4.1 shows, respectively, the

states evolution and the control input for the initial values x (0) =
h
1 1

iT
. It also

shows that the conservatism reduction leads us to very interesting results with a fast

convergence for the stabilization of the T-S fuzzy system comparing to those obtained

in (Tanaka et al. , 2001, b).

0 1 2 3 4 5
-0.5

0

0.5

1

x 1(t)

0 1 2 3 4 5
-0.5

0

0.5

1

x 2(t)

0 1 2 3 4 5
-1

-0.5

0

0.5

time (sec)

u(
t)

Figure 4.1: Example 1 performances.

4.4.2 Example 2

Here, another example which does not admit a single Lyapunov function (Morère,

2001).

h1 (x1 (t)) =
1

π

hπ
2
− tan−1 x1 (t)

i
, h2 (x1 (t)) =

1

π

hπ
2
+ tan−1 x1 (t)

i
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A1 =

"
0.1000 −1.0000
−0.2500 1.0000

#
, A2 =

"
1.0000 0.5000

0.7500 2.0000

#

B1 =

"
−0.6500
−0.2000

#
, B2 =

"
−1.0000
−0.0500

#
The design of a state-feedback controller using a common Lyapunov function is not

possible since the corresponding LMI problem is infeasible. However, if we consider

local Lyapunov functions, the LMI problem (4.30)-(4.33) is feasible. The proposed

approach gives feasible solutions for different initial conditions, and thus stabilizes the

T-S closed loop system. For

φ1 = φ2 = 5

α12 = 1.5, α21 = 1/α12

ξ11 = 0.25, ξ12 = 0.75, ξ21 = 0.25, ξ22 = 0.75

we obtain the following P1, P2, F1 and F2 :

P1 =

"
12.1789 −104.4753
−104.4753 997.4141

#
> 0, P2 =

"
12.3823 −103.6178
−103.6178 989.7426

#
> 0

F1 =
h
14.1362 −211.3544

i
, F2 =

h
−0.3676 −72.8607

i
Figure 4.2 shows, respectively, the system’s states and control evolution, for the initial

values x (0) =
h
0.1 0.1

iT
.
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0 1 2 3 4 5
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20
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u(
t)

Figure 4.2: Example 2 performances.



4. Non-Quadratic Stability and Stabilization of Takagi-Sugeno Fuzzy
Systems 52

4.4.3 Example 3: The Inverted Pendulum

Consider now the problem of balancing and swing-up an inverted pendulum using

the approach that we propose in this chapter. The equations of motion are given in

chapter 3 by (3.33) (Tanaka & Wang, 2001, a). The control objective for this example

is to balance the inverted pendulum for the approximate range x1 ∈ (−π/2, π/2). The
nonlinear system is modeled by two fuzzy rules (3.34) and (3.35), where

A1 =

"
0 1
2g

4l/3−aml 0

#
, A2 =

⎡⎣ 0 1
2g

π(4l/3−amlβ2)
0

⎤⎦
B1 =

"
0

− a
4l/3−aml

#
, B2 =

"
0

− aβ
4l/3−amlβ2

#
and β = cos (88◦) .

The PDC control laws are given by (3.36) and (3.37). The control law that guarantees

the stability of the closed loop fuzzy system is given by:

u (t) = −h1 (x1 (t))F1x (t)− h2 (x1 (t))F2x (t)

where h1 (x1 (t)) and h2 (x1 (t)) are the triangular membership functions of rules 1 and

2, respectively.

Applying the proposed approach, the objective of balancing and stabilizing the

pendulum is reached with success for different initial conditions of x1 ∈ (−π/2, π/2)
and x2 = 0. For

φ1 = φ2 = π/1.5

α12 = 1.3, α21 = 1/α12

ξ11 = −2/π, ξ12 = 2/π, ξ21 = −2/π, ξ22 = 2/π

we obtain the following P1, P2, F1 and F2 for each initial condition.

For x (0) =
h
π/6 0

iT
:

P1 =

"
57.7603 23.2068

23.2068 10.3697

#
> 0, P2 =

"
58.1998 17.5082

17.5082 6.1428

#
> 0

F1 =
h
−630.7446 −164.6591

i
, F2 = 10

−3
h
−1.2396 −0.2958

i
For x (0) =

h
π/4 0

iT
:

P1 =

"
32.0668 13.1229

13.1229 6.4541

#
> 0, P2 =

"
39.1987 11.4436

11.4436 4.1936

#
> 0

F1 =
h
−530.6214 −127.4777

i
, F2 = 10

3
h
−1.0859 −0.2427

i
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For x (0) =
h
π/3 0

iT
:

P1 =

"
27.3149 10.8202

10.8202 5.6005

#
> 0, P2 =

"
51.3551 14.8473

14.8473 5.3225

#
> 0

F1 =
h
−502.4650 −115.6213

i
, F2 = 10

3
h
−1.3235 −0.3102

i
Figure 4.3 shows, respectively, the inverted pendulum position, velocity and control

force evolution, for different initial conditions.
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Figure 4.3: Example 3 performances.

4.4.4 Example 4: Two-link robot manipulator

To show the effectiveness of the proposed approach, we apply it to a more complicated

system: a two-link robot manipulator (Tsen et al. , 2001, a). The dynamic equation

of the two-link robot system is given as follows:

M (q)
..
q + C

¡
q,

.
q
¢ .
q +G (q) = τ (4.35)

where

M (q) =

"
(m1 +m2) l

2
1 m2l1l2 (s1s2 + c1c2)

m2l1l2 (s1s2 + c1c2) m2l
2
2

#

C
¡
q,

.
q
¢
= m2l1l2 (c1s2 + s1c2)

"
0 − .

q2

− .
q1 0

#
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G (q) =

"
− (m1 +m2) l1gs1

−m2l2gs2

#
and q = [q1, q2]

T , q1, q2 are generalized coordinates, M (q) is the inertia matrix ,

C
³
q,
·
q
´
includes coriolis, centripetal forces, and G (q) is the gravitational force. The

different parameters are: links masses m1, m2 (kg) , links lengths l1, l2 (m) , angular

position q1, q2 (rad) , applied torques τ =
h
τ1 τ2

iT
(N.m) , the acceleration due

to gravity g = 9.8
¡
m/s2

¢
, and short-hand notation s1 = sin (q1) , s2 = sin (q2) ,

c1 = cos (q1) , and c2 = cos (q2) . Let x1 = q1, x2 =
·
q1, x3 = q2 and x4 =

·
q2. The state

space representation is given by:

.
x1 = x2,
.
x2 = f1 (x) + g11 (x) τ1 + g12τ2,
.
x3 = x4,
.
x4 = f2 (x) + g21 (x) τ1 + g22τ2,

y1 = x1,

y2 = x3 (4.36)

For more details concerning f1 (x) , f2 (x) , g11 (x) , g12, g21 (x) and g22, see (Tsen et al.

, 2001).

The objective is the fuzzy stabilization of the two-link robot using the non-quadratic

approach. The links masses are m1 = 1 (kg) , m2 = 1 (kg) , the links lengths are l1 =

1 (m) , l2 = 1 (m) and angular positions q1, q2 are constrained within [− (π/2) , (π/2)] .
The T-S fuzzy model for the system (4.36) is given by the following 9 rules whose

membership functions are of triangular form (Tsen et al. , 2001):

Rule 1 :

(
IF x1 (t) is about − π/2 and x3 (t) is about π/2

THEN
.
x (t) = A1x (t) +B1u (t) , y = C1x (t)

Rule 2 :

(
IF x1 (t) is about -π/2 and x3 (t) is about 0

THEN
.
x (t)=A2x (t)+B2u (t) , y = C2x (t)

Rule 3 :

(
IF x1 (t) is about − π/2 and x3 (t) is about − π/2

THEN
.
x (t) = A3x (t) +B3u (t) , y = C3x (t)

Rule 4 :

(
IF x1 (t) is about 0 and x3 (t) is about − π/2

THEN
.
x (t) = A4x (t) +B4u (t) , y = C4x (t)

Rule 5 :

(
IF x1 (t) is about 0 and x3 (t) is about 0

THEN
.
x (t) = A5x (t) +B5u (t) , y = C5
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Rule 6 :

(
IF x1 (t) is about 0 and x3 (t) is about π/2

THEN
.
x (t) = A6x (t) +B6u (t) , y = C6x (t)

Rule 7 :

(
IF x1 (t) is about π/2 and x3 (t) is about − π/2

THEN
.
x (t) = A7x (t) +B7u (t) , y = C7x (t)

Rule 8 :

(
IF x1 (t) is about π/2 and x3 (t) is about 0

THEN
.
x (t) = A8x (t) +B8u (t) , y = C8x (t)

Rule 9 :

(
IF x1 (t) is about π/2 and x3 (t) is about π/2

THEN
.
x (t) = A9x (t) +B9u (t) , y = C9x (t)

where x = [x1, x2, x3, x4]
T , u = [τ1, τ2]

T , and the local models matrices given by

A1 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

5.927 −0.001 −0.315 −8.4× 10−6

0 0 0 1

−6.859 0.002 3.155 6.2× 10−6

⎤⎥⎥⎥⎥⎦ ,

A2 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

3.0428 −0.0011 0.1791 −0.0002
0 0 0 1

3.5436 0.0313 2.5611 1.14× 10−5

⎤⎥⎥⎥⎥⎦ ,

A3 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

6.2728 0.0030 0.4339 −0.0001
0 0 0 1

9.1041 0.0158 −1.0574 −3.2× 10−5

⎤⎥⎥⎥⎥⎦ ,

A4 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

6.4535 0.0017 1.2427 0.0002

0 0 0 1

−3.1873 −0.0306 5.1911 −1.8× 10−6

⎤⎥⎥⎥⎥⎦ ,

A5 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

11.1336 0.0 −1.8145 0.0

0 0 0 1

−9.0918 0.0 9.1638 0.0

⎤⎥⎥⎥⎥⎦ ,

A6 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

6.1702 −0.0010 1.6870 −0.0002
0 0 0 1

−2.3559 0.0314 4.5298 1.1× 10−5

⎤⎥⎥⎥⎥⎦ ,
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A7 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

6.1206 −0.0041 0.6205 0.0001

0 0 0 1

8.8794 −0.0193 −1.0119 4.4× 10−5

⎤⎥⎥⎥⎥⎦ ,

A8 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

3.6421 0.0018 0.0721 0.0002

0 0 0 1

2.4290 −0.0305 2.9832 1.9× 10−5

⎤⎥⎥⎥⎥⎦ ,

A9 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

6.2933 −0.0009 −0.2188 −1.2× 10−5

0 0 0 1

−7.4649 0.0024 3.2693 9.2× 10−6

⎤⎥⎥⎥⎥⎦ ,

B1 =

⎡⎢⎢⎢⎢⎣
0 0

1 −1
0 0

−1 2

⎤⎥⎥⎥⎥⎦ , B2 =
⎡⎢⎢⎢⎢⎣

0 0

0.5 0

0 0

0 1

⎤⎥⎥⎥⎥⎦ ,

B3 =

⎡⎢⎢⎢⎢⎣
0 0

1 1

0 0

1 2

⎤⎥⎥⎥⎥⎦ , B4 =
⎡⎢⎢⎢⎢⎣

0 0

0.5 0

0 0

0 1

⎤⎥⎥⎥⎥⎦ ,

B5 =

⎡⎢⎢⎢⎢⎣
0 0

1 −1
0 0

−1 2

⎤⎥⎥⎥⎥⎦ , B6 =
⎡⎢⎢⎢⎢⎣

0 0

0.5 0

0 0

0 1

⎤⎥⎥⎥⎥⎦ ,

B7 =

⎡⎢⎢⎢⎢⎣
0 0

1 1

0 0

1 2

⎤⎥⎥⎥⎥⎦ , B8 =
⎡⎢⎢⎢⎢⎣

0 0

0.5 0

0 0

0 1

⎤⎥⎥⎥⎥⎦ ,

B9 =

⎡⎢⎢⎢⎢⎣
0 0

1 −1
0 0

−1 2

⎤⎥⎥⎥⎥⎦ , Ci =

"
1 0 0 0

0 0 1 0

#

For
φ1 = 1 φ2 = 1.5 φ3 = 1.2 φ4 = 2 φ5 = 1.6

φ6 = 1.8 φ7 = 2.5 φ8 = 2.2 φ9 = 2.4
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α12 = 1.2 α13 = 0.66 α14 = 0.9 α15 = 0.8 α16 = 0.7

α17 = 1.5 α18 = 2 α19 = 1.1 α23 = 1.6 α24 = 1.18

α25 = 1.05 α26 = 1.9 α27 = 1.99 α28 = 0.99 α29 = 0.77

α34 = 0.88 α35 = 1.33 α36 = 1.4 α37 = 1.7 α38 = 1.66

α39 = 1.56 α45 = 1.48 α46 = 1.39 α47 = 1.69 α48 = 1.11

α49 = 1.88 α56 = 2.1 α57 = 2.2 α58 = 1.61 α59 = 1.23

α67 = 2.11 α68 = 2.2 α69 = 1.52 α78 = 0.78 α79 = 0.98

α89 = 0.82

ξ11 = 0 ξ12 = 2/π ξ21 = 0 ξ22 = 2/π

ξ31 = −4/π ξ32 = 0 ξ41 = −2/π ξ42 = 0

ξ51 = 0 ξ52 = 4/π ξ61 = 2/π ξ62 = 4/π

ξ71 = −2/π ξ72 = 0 ξ81 = 2/π ξ82 = 4/π

ξ91 = 0 ξ92 = 4/π

we obtain the following Pi and Fi for i = 1, ..., 9 :

P1 =

⎡⎢⎢⎢⎢⎣
0.0044 0.0005 −0.0002 −0.0000
0.0005 0.0001 0.0000 0.0000

−0.0002 0.0000 0.0180 0.0011

−0.0000 0.0000 0.0011 0.0001

⎤⎥⎥⎥⎥⎦ > 0,

P2 =

⎡⎢⎢⎢⎢⎣
0.0063 0.0007 −0.0003 −0.0000
0.0007 0.0001 0.0000 0.0000

−0.0003 0.0000 0.0238 0.0014

−0.0000 0.0000 0.0014 0.0001

⎤⎥⎥⎥⎥⎦ > 0,

P3 =

⎡⎢⎢⎢⎢⎣
0.0052 0.0006 −0.0003 −0.0000
0.0006 0.0001 0.0000 0.0000

−0.0003 0.0000 0.0206 0.0012

−0.0000 0.0000 0.0012 0.0001

⎤⎥⎥⎥⎥⎦ > 0,

P4 =

⎡⎢⎢⎢⎢⎣
0.0081 0.0008 −0.0004 −0.0001
0.0008 0.0001 0.0000 −0.0000
−0.0004 0.0000 0.0286 0.0014

−0.0001 −0.0000 0.0014 0.0001

⎤⎥⎥⎥⎥⎦ > 0,

P5 =

⎡⎢⎢⎢⎢⎣
0.0066 0.0007 −0.0004 −0.0000
0.0007 0.0001 0.0001 0.0000

−0.0004 0.0001 0.0249 0.0014

−0.0000 0.0000 0.0014 0.0001

⎤⎥⎥⎥⎥⎦ > 0,
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P6 =

⎡⎢⎢⎢⎢⎣
0.0073 0.0007 −0.0004 −0.0001
0.0007 0.0001 0.0001 −0.0000
−0.0004 0.0001 0.0268 0.0015

−0.0001 −0.0000 0.0015 0.0001

⎤⎥⎥⎥⎥⎦ > 0,

P7 =

⎡⎢⎢⎢⎢⎣
0.0098 0.0008 −0.0005 −0.0002
0.0008 0.0001 −0.0001 −0.0000
−0.0005 −0.0001 0.0321 0.0018

−0.0002 −0.0000 0.0018 0.0001

⎤⎥⎥⎥⎥⎦ > 0,

P8 =

⎡⎢⎢⎢⎢⎣
0.0089 0.0007 −0.0003 −0.0001
0.0007 0.0001 −0.0001 −0.0000
−0.0003 −0.0001 0.0303 0.0016

−0.0001 −0.0000 0.0016 0.0001

⎤⎥⎥⎥⎥⎦ > 0,

P9 =

⎡⎢⎢⎢⎢⎣
0.0095 0.0006 −0.0004 0.0001

−0.0006 0.0001 0.0001 0.0000

−0.0004 0.0001 0.0316 0.0002

0.0001 0.0000 0.0002 0.0001

⎤⎥⎥⎥⎥⎦ > 0

F1 = 10
4

"
0.1972 0.0304 1.5274 0.0935

−0.1281 −0.0118 1.0172 0.0685

#
,

F2 = 10
3

"
7.1742 0.7969 −0.8884 −0.0548
0.9590 0.1227 7.8326 0.5126

#
,

F3 = 10
3

"
6.0170 0.6897 −3.3359 −0.2237
−2.7700 −0.3101 3.3993 0.2093

#
,

F4 = 10
3

"
8.4037 0.8734 0.3998 −0.0322
0.2103 0.0442 7.2717 0.3699

#
,

F5 = 10
3

"
9.4557 1.0430 1.7476 0.0815

5.8559 0.6682 5.5596 0.3062

#
,

F7 = 10
3

"
5.1527 0.4600 1.4825 −0.0170
−3.5642 −0.3247 2.7930 0.2575

#
,

F6 = 10
3

"
6.9498 0.7022 1.4199 0.0196

0.8046 0.1075 6.1771 0.3639

#
,

F8 = 10
3

"
−3.5642 −0.3247 2.7930 0.2575

−0.0917 −0.0166 4.9180 0.2621

#
,
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F9 = 10
3

"
4.7285 −0.1862 1.7978 0.2830

0.4183 0.2383 −5.1097 0.5124

#
Satisfactory and less conservative results are obtained, showing the effectiveness of our

proposal. Figures 4.4 and 4.5 show, respectively, the two links dynamic performances

and the control torques, for the initial values x (0) =
h
π/3 0 π/6 0

iT
.
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Figure 4.4: Example 4 (Two-link robot) performances: Link 1 (non-quadratic ap-
proach)
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Figure 4.5: Example 4 (Two-link robot) performances: Link 2 (non-quadratic ap-
proach)

To better show the conservatism reduction of the non-quadratic approach, we at-

tempt to stabilize the same system using the quadratic approach. The following sim-

ulation results are obtained:

P =

⎡⎢⎢⎢⎢⎣
0.0008 0.0004 −0.0004 −0.0001
0.0004 0.0003 −0.0002 −0.0001
−0.0004 −0.0002 0.0104 0.0031

−0.0001 −0.0001 0.0301 0.0025

⎤⎥⎥⎥⎥⎦ > 0

F1 = 10
8

"
0.0010 −1.0149 0.0001 2.0290

0.0002 −1.0141 −0.0000 1.0150

#
,

F2 = 10
8

"
0.0009 −0.0005 0.0000 1.0141

0.0002 −0.5074 −0.0000 0.0003

#
,

F3 = 10
8

"
0.0009 1.0143 0.0000 2.0283

−0.0001 −1.0149 0.0000 −1.0141

#
,

F4 = 10
8

"
0.0011 −0.0008 0.0000 1.0143

−0.0001 −0.5071 0.0000 0.0003

#
,

F5 = 10
8

"
0.0011 −1.0152 0.0000 2.0286

0.0001 −1.0140 0.0000 1.0145

#
,
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F6 = 10
8

"
0.0011 −0.0009 0.0000 1.0143

−0.0001 −0.5071 −0.0000 0.0003

#
,

F7 = 10
8

"
0.0009 1.0140 0.0000 2.0285

−0.0002 −1.0146 −0.0001 −1.0140

#
,

F8 = 10
8

"
0.0009 −0.0004 0.0000 1.0141

0.0001 −0.5074 0.0000 0.0002

#
,

F9 = 10
8

"
0.0009 −1.0143 −0.0000 2.0288

0.0001 −1.0136 −0.0001 1.0148

#
Figures 4.6 and 4.7 show the failure of the quadratic approach to stabilize the two-links

robot, whereas, figures 4.8 and 4.9 show
.
V (x (t)) for respectively the fuzzy Lyapunov

function and the quadratic Lyapunov function.

At t = 2sec,
.
V (x (t))

(
−1.1054 ∗ 10−14 < 0; for the non-quadratic approach

0.1138 ∗ 105 > 0; for the quadratic approach
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Figure 4.6: Example 4 (Two-links robot) performances: Link 1 (quadratic approach)
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Figure 4.7: Example 4 (Two-links robot) performances: Link 2 (quadratic approach)
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Figure 4.8:
.
V (x (t)) with non-quadratic approach
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Figure 4.9:
.
V (x (t)) with quadratic stabilization

4.5 Conclusion

This chapter has presented a new fuzzy Lyapunov approach for the stabilization of

T-S fuzzy systems, basing on the fuzzy Lyapunov function, which is defined by fuzzily

blending quadratic Lyapunov functions. The conditions are derived in a logical way

while profiting fully of the fuzzy Lyapunov function advantage and considering two

assumptions that are a proportional relation between the multiple quadratic Lyapunov

functions and an upper bound for the time derivative of the premise membership

function whose corresponding LMIs that support it in theorem (14) are solved with

those of theorem (13) to stabilize the closed loop fuzzy system. Hence, the PDC

local feedback gains construction procedure is simple and can be solved effectively

by optimization computation tools. The proposed approach leads to less conservative

results and very good results are obtained for different examples, even for those that

do not admit a single Lyapunov function and for complicated systems such as a two-

links robot with 9 rules, thus illustrating the effectiveness of the proposed stabilization

approach.



Chapter 5

Output Stabilization of
Takagi-Sugeno Fuzzy Systems via
Fuzzy Observer

5.1 Introduction

The states of a system are not always available for measurement which is the case in

a lot of practical problems. To overcome this limit, the notion of observer was intro-

duced. The concept of linear regulator and linear observer were introduced by Kalman

(Kalman, 1961) for linear systems in stochastic environment and by Luenberger (Lu-

enberger, 1966) for deterministic linear systems such that the difference between the

system state x (t) and the observer state x̂ (t) converges to zero when t tends to ∞.
For nonlinear systems, different observer designs were proposed such as the extended

kalman observer, the sliding mode observer (Utkin & Drakunov, 1995), the high gain

observer (Nicosia & Tornambe, 1989) and the T-S fuzzy observer, that was introduced

by several authors in the literature such as Tanaka (Tanaka & Sano, 1994), Feng et al.

(Feng et al. , 1997) and Jadbabaie (Jadbabaie, 1997, b) who proposed fuzzy observers

with an asymptotic convergence. Tanaka proposed in his paper (Tanaka et al. , 1998)

a globally exponentially stable fuzzy controllers and fuzzy observers designs for con-

tinuous and discrete fuzzy systems for both measurable and non measurable premise

variables. Other approaches were proposed by different authors (Fayaz, 2000) (Ma

& Sun, 2001) (Cao & Frank, 2000),(Chen & Liu, 2004),(Wang, 2004),(Chen & Liu,

2005),(Lin et al. , 2006) and (Lin et al. , 2008) with other considerations. Hence, the

observer design is a very important problem in control systems and the stability of the

whole system, with the fuzzy controller and the fuzzy observer, must be guaranteed.

For a T-S fuzzy system, a separation property is used to check the stability of the

64
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global system. This concept was introduced by Jadbabaie et al. (Jadbabaie, 1997, b)

and Ma et al. (Ma et al. , 1998) by two different approaches to assure an independent

design for the controller and the observer while assuring the stability of the global T-S

fuzzy system.

In this chapter, we extend the stability results given in (Abdelmalek et al. , 2007)

to the case when the states are not available for measurement and feedback in other

terms fuzzy observer, by guarantying the stability of the whole system (Abdelmalek

& Goléa, 2009). The observer design is based on fuzzy implications, with fuzzy sets

in antecedents, and a Lunenberger observer form in the consequents. Each fuzzy rule

is responsible for observing the states of a locally linear sub-system (Jadbabaie, 1997,

a),(Jadbabaie, 1997, b), then a separation property is used to check the stability of the

global system. We applied in our proposal the separation principle of Ma et al.(Ma

et al. , 1998), due to its simplicity, since it does not depend on the stability conditions

but rather on the fuzzy Lyapunov functions. Indeed, the separation principle design

proposed in (Jadbabaie, 1997, b) is not appropriated for the case of different stability

conditions.

5.2 Fuzzy observer design

An observer is required to satisfy x (t)−x̂ (t)→ 0 when t→∞, where x̂ (t) denotes the

states vector estimated by a Luenberger observer for a linear time invariant system,

given by:

.
x̂ (t) = Ax̂ (t) +Bu+Ki (y − ŷ)

ŷ = Cx̂

A fuzzy observer is designed by fuzzy IF-THEN rules whose consequents are of Luen-

berger observer form. Thus, the ith observer rule is of the following form:

Rule i : IF z1 (t) is Mi1 and ... and zp (t) is Mip

THEN

( .
x̂ (t) = Aix̂ (t) +Biu (t) +Ki (y (t)− ŷ (t))

ŷi (t) = Cix̂ (t)
i = 1, 2, ..., r

(5.1)

where z (t) = [z1 (t) , ..., zp (t)] is the premise variable, Ki i = 1, ..., r are the observa-

tion error matrices. y (t) and ŷ (t) are the final outputs of the fuzzy system and the

fuzzy observer, respectively. The final outputs of the fuzzy observer, that are obtained

by fuzzy blending of the local observer of Luenberger form, depend on the dependence

of the premise variables on the state variables, hence two cases can be considered:
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• Case 1: z1 (t) , ..., zp (t) are measurable, so they do not depend on the estimated
variables, then the normalized weights of the observer hi (ẑ (t)) are replaced by

hi (z (t)) (Tanaka et al. , 1998),(Ma et al. , 1998).

• Case 2: z1 (t) , ..., zp (t) are not measurable, then they depend on the estimated
variables. They must be estimated to allow the calculation of normalized weights

of the observer hi (ẑ (t)) that are the same normalized weight of the fuzzy model

for each rule with ẑ1, ẑ2, ..., ẑp, representing the estimated premise variables.

Hence, there is a difference between the designs of the two cases when using z (t)

or ẑ (t) .

5.2.1 Case 1: measurable premise variables

The fuzzy observer is inferred as follows:

.
x̂ (t) =

rX
i=1

hi (z (t)) (Aix̂ (t) +Biu (t) +Ki (y (t)− ŷ (t))) (5.2)

ŷ (t) =
rX

i=1

hi (z (t))Cix̂ (t) (5.3)

We use the same weight hi (z (t)) of the ith rule of the fuzzy model (3.20) and (3.21).

The fuzzy observer design is to find the local gains Ki in the consequent part. The

PDC fuzzy controller takes the following form:

u (t) = −
Pr

i=1wi (z (t))Fix̂ (t)Pr
i=1wi (z (t))

= −
rX

i=1

hi (z (t))Fix̂ (t) (5.4)

Replacing this fuzzy controller in the fuzzy observer expression (3.20) and considering

x̃ (t) = x (t)− x̂ (t) , we obtain the following representation:

.
x (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t)) {(Ai −BiFj)x (t) +BiFjx̃ (t)} ,

(5.5)
.
x̃ (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t)) {Ai −KiCj} x̃ (t) (5.6)
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The augmented system representations are given by:

.
xa (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t))Gijxa (t)

=
rX

i=1

hi (z (t))hi (z (t))Giixa (t)

+2
rX

i=1

X
i<j

hi (z (t))hj (z (t))
Gij +Gji

2
xa (t) (5.7)

where xa =

"
x (t)

x̃ (t)

#
and Gij =

"
Ai −BiFj BiFj

0 Ai −KiCj

#
Tanaka et al. (Tanaka et al. , 1998) proposed the following theorem for the global

asymptotic stability of the augmented system.

Theorem 15 The equilibrium of the augmented system described by (5.7) is globally

asymptotically stable if there exists a common positive definite matrix P such that

GT
iiP + PGii < 0, (5.8)

(Gij +Gji)
T

2
P + P

(Gij +Gji)

2
< 0, (5.9)

∀ i < j s.t. hi ∩ hj 6= ∅

5.2.2 Case 2: non measurable premise variables

The fuzzy observer is inferred as follows:

.
x̂ (t) =

rX
i=1

hi (ẑ (t)) (Aix̂ (t) +Biu (t) +Ki (y (t)− ŷ (t))) (5.10)

ŷ (t) =
rX

i=1

hi (ẑ (t))Cix̂ (t) (5.11)

The PDC fuzzy controller takes the following form:

u (t) = −
Pr

i=1wi (ẑ (t))Fix̂ (t)Pr
i=1wi (ẑ (t))

= −
rX

i=1

hi (ẑ (t))Fix̂ (t) (5.12)
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The augmented system is then given by:

.
xa (t) =

rX
i=1

rX
j=1

rX
s=1

hi (z (t))hj (ẑ (t))hs (ẑ (t))Gijsxa (t)

=
rX

i=1

rX
j=1

hi (z (t))hj (ẑ (t))hj (ẑ (t))Gijjxa (t)

+2
rX

i=1

X
j<s

hi (z (t))hj (ẑ (t))hs (ẑ (t))
Gijs +Gisj

2
xa (t)

(5.13)

where

xa =

"
x (t)

x̃ (t)

#
x̃ (t) = x (t)− x̂ (t)

Gijs =

"
Ai −BiFs BiFs

S1ijs S2ijs

#
S1ijs = (Ai −Aj)− (Bi −Bj)Fs +Kj (Cs −Ci)

S2ijs = Aj −KjCs + (Bi −Bj)Fs

Stability conditions for the augmented system (5.13) are given by Tanaka et al (Tanaka

et al. , 1998):

Theorem 16 The equilibrium of the augmented system described by (5.13) is globally
asymptotically stable if there exists a common positive definite matrix P such that

GT
ijjP + PGijj < 0, (5.14)

(Gijs +Gisj)
T

2
P + P

(Gijs +Gisj)

2
< 0, j < s (5.15)

∀ i, j < j s.t. hi ∩ hj ∩ hs 6= ∅ (5.16)

It is interesting to note that the control gains and the observer gains can be designed

separately and then using a separation property check the stability of the whole system.

However, this principle is applicable only in case A, i.e. z (t) = ẑ (t) .

5.3 Proposed continuous Fuzzy observer design

Our proposal is based on continuous T-S fuzzy models and on the first case where

z (t) = ẑ (t) (Abdelmalek & Goléa, 2009). The controller is based on the estimated



5. Output Stabilization of Takagi-Sugeno Fuzzy Systems via Fuzzy
Observer 69

state and is given by (5.4), then the closed loop system is given by:

.
x (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t)) (Aix (t)−BiFjx̂ (t)) (5.17)

On the other hand, by substituting y (t) =
Pr

i=1 hi (z (t))Cix (t) and (5.3) in (5.2) we

obtain:

.
x̂ (t) =

rX
i=1

hi (z (t)) (Aix̂ (t) +Biu (t)) +
rX

i=1

rX
j=1

hi (z (t))hj (z (t))KiCi (x (t)− x̂ (t))

(5.18)

that can be written as

.
x̂ (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t)) [(Ai −KiCj) x̂ (t) +Biu (t) +KiCjx (t)] (5.19)

Defining the steady error as x̃ = x− x̂, and substracting (5.17) from (5.19), we obtain:

.
x̃ (t) =

rX
i=1

rX
j=1

hi (z (t))hj (z (t)) (Ai −KiCj) x̃ (t) (5.20)

The design of the fuzzy observer is to determine the local gains Ki, using stability

conditions of theorem (17) such that the steady error tends to zero.

Theorem 17 The observer dynamic is stable if there exist positive definite matrices
Po1 , Po2 , ... , Por and matrices K1 ,K2 , ...,Kr such that the following is satisfied:

Poi > 0, i = 1, 2, .., r (5.21)
rX

ρ=1

φρPoρ +
¡
GT
jjPoi + PoiGjj

¢
< 0, i, j = 1, 2, .., r (5.22)

½
Gjk +Gkj

2

¾T

Poi + Poi

½
Gjk +Gkj

2

¾
< 0, ∀i, j, k ∈ {1, 2, .., r} s.t. j < k

(5.23)"
1 xT (0)

x (0) Po−1i

#
≥ 0, for i = 1, .., r (5.24)

"
φρPoi WT

ijρc

Wijρc φρI

#
≥ 0, ∀i, j, ρ ∈ {1, 2, .., r} ∀c (5.25)

where Gjk = Aj −KjCk, Gjj = Aj −KjCj and Wijρc = ξρc (Ai −KiCj).
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These inequalities can be recast in terms of LMIs by the following changes of

variables:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Poi = Xo−1i , ∀i ∈ {1, 2, ..., r}

Xoi = αijXoj such that αij = 1/αji ,∀i, j ∈ {1, 2, ..., r} and i 6= j

Ki = βijKj such that βij = 1/βji ,∀i, j ∈ {1, 2, ..., r} and i 6= j

Ni = KiCiXoi ,∀i ∈ {1, 2, ..., r}

The coefficients αij , βij and φρ for i, j, ρ = 1, 2, ..., r and i 6= j, can be chosen heuristi-

cally according to the considered application. αij and βij must be different from 1 (for

i = j; αij = βij = 1) and selection of ξρc is obtained from
.
hi (z (t)). Subsequently, we

will consider that the premise variables do not depend on the estimated states x̂ (t).

5.4 Separation property of observer/controller

By augmenting the states of the system with the state estimation error, we obtain

the following 2n dimensional state equations for the observer/controller closed-loop

system:"
.
x
.
x̃

#
=

" Pr
i=1

Pr
j=1 hihj (Ai −BiFj)

Pr
i=1

Pr
j=1 hihjBiFj

0
Pr

i=1

Pr
j=1 hihj (Ai −KiCj)

#"
x

x̃

#

y =
h Pr

i=1 hiCi 0
i " x

x̃

#
(5.26)

To show that the whole system above is stable, we must show that the separation

property holds. For this purpose we suggest to extend the separation property principle

proposed by Ma et al. in their paper (Ma et al. , 1998) to the non-quadratic design

that we propose in (Abdelmalek et al. , 2007). We have to construct a comparison

system
·
w = Aw, where A is a function of γi and

∼
γi, i = 1, 2, 3, 4. Then using the

vector comparison principle, we can obtain a global system globally asymptotically

stable. The separation property is expressed by the following theorem:

Theorem 18 (Ma et al. , 1998): If there exist two scalar functions V (x) : Rn → R

and
∼
V
³∼
x
´
: Rn → R and positive real numbers γ1, γ2, γ3, γ4,

∼
γ1,

∼
γ2,

∼
γ3and

∼
γ4such that

γ1 kxk2 ≤ V (x) ≤ γ2 kxk2 ,
∼
γ1

°°°∼x°°°2 ≤ ∼
V
³∼
x
´
≤ ∼
γ2

°°°∼x°°°2 (5.27)

∂V (x)

∂x

rX
i=1

rX
j=1

hihj (Ai −BiFj)x ≤ −γ3 kxk2 ,

∂
∼
V
³∼
x
´

∂
∼
x

rX
i=1

rX
j=1

hihj (Ai −KiCj)
∼
x ≤ −∼γ3

°°°∼x°°°2 (5.28)
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°°°°∂V (x)∂x

°°°° ≤ γ4 kxk ,

°°°°°°°
∂
∼
V
³∼
x
´

∂
∼
x

°°°°°°° ≤
∼
γ4

°°°∼x°°° (5.29)

then, the whole system is globally asymptotically stable.

Hence, this theorem shows that the fuzzy controller and the fuzzy observer can

be designed to be stable independently and the whole system that is fuzzy controller,

fuzzy observer and fuzzy system is still stable. This theorem is extended to the case of

non-quadratic stability conditions, where V (x (t)) =
Pr

i=1 hi (z (t))x
T (t)Pix (t) and

∼
V
³∼
x
´
=
Pr

i=1 hi (z (t))
∼
x
T
(t)Poi

∼
x (t) (Abdelmalek & Goléa, 2009). The principle of

this method is to find the scalars γ1, γ2, γ3, γ4,
∼
γ1,

∼
γ2,

∼
γ3and

∼
γ4 that satisfy inequalities

(5.27)-(5.29) and then to satisfy the following inequality:⎡⎢⎣
·
V (x (t))
·
∼
V
³∼
x
´
⎤⎥⎦ ≤

⎡⎣ − γ3
2γ2

aγ24
2γ3

∼
γ1

0 −
∼
γ3
∼
γ2

⎤⎦⎡⎣ V (x (t))
∼
V
³∼
x
´ ⎤⎦ = A

⎡⎣ V (x (t))
∼
V
³∼
x
´ ⎤⎦ (5.30)

where

A =

⎡⎣ − γ3
2γ2

aγ24
2γ3

∼
γ1

0 −
∼
γ3
∼
γ2

⎤⎦ (5.31)

is a stability matrix. Hence the construction of the comparison system
·
w = Aw,

which is obviously globally asymptotically stable and the use of the vector comparison

principle, allow us to verify that the whole system (5.26) is globally asymptotically

stable (the proof of theorem 18 is given in (Ma et al. , 1998)).

5.5 Design examples

This part presents the design examples that illustrates the effectiveness of the pro-

posed controller-observer design with the separation property principle for the stability

checking of the global system, i.e. fuzzy system, fuzzy controller and fuzzy observer

(Abdelmalek & Goléa, 2009).

5.5.1 Example 1: The inverted Pendulum

We recall that this system (3.33) is modeled by the following two fuzzy rules:

Rule 1 : IF x1 (t) is about 0 THEN
.
x (t) = A1x (t) +B1u (t) , y (t) = C1x (t)

Rule 2 : IF x1 (t) is about ±π/2 (|x1| < π/2) THEN
.
x (t) = A2x (t)+B2u (t) , y (t) = C2x (t)
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where

A1 =

"
0 1
2g

4l/3−aml 0

#
, A2 =

⎡⎣ 0 1
2g

π(4l/3−amlβ2)
0

⎤⎦
B1 =

"
0

− a
4l/3−aml

#
, B2 =

"
0

− aβ
4l/3−amlβ2

#
, β = cos (88◦) ,

C1 = C2 =
h
1 0

i
The control objective for this example is to balance the inverted pendulum for the

approximate range x1 ∈ (−π/2, π/2). The PDC control laws are as follows:

Rule 1 : IF x1 (t) is about 0 THEN u (t) = −F1x̂ (t)
Rule 2 : IF x1 (t) is about ± π/2 (|x1| < π/2) THEN u (t) = −F2x̂ (t)

The observer rules are:

Rule 1 : IF x1 (t) is about 0 THEN
.
x̂ (t) = A1x̂ (t) +B1u (t) +K1C1 (x (t)− x̂ (t))

Rule 2 : IF x1 (t) is about ± π/2 (|x1| < π/2) THEN

.
x̂ (t) = A2x̂ (t) +B2u (t)

+K2C2 (x (t)− x̂ (t))

Hence the control law that guarantees the stability of the fuzzy model and the fuzzy

observer system is given by:

u (t) = −h1 (x1 (t))F1x̂ (t)− h2 (x1 (t))F2x̂ (t) (5.32)

where h1and h2 are the membership functions of triangular form, for rules 1 and 2

respectively.

Applying the proposed approach, the objective of balancing and stabilizing the

pendulum and the estimation process are reached with success for different initial

conditions of x1 (0) ∈ (−π/2, π/2) and x2 (0) = 0. We considered two cases:

a) with a pole placement:

We choose the closed-loop eigenvalues
h
−3.0 −5.0

i
for (A1 −B1F1) and (A2 −B2F2)

and the closed-loop eigenvalues
h
−50.0 −60.0

i
for (A1 −K1C1) and (A2 −K2C2) ,we

have then:

F1 =
h
−645.8824 −160.0000

i
, F2 = 10

3
h
−4.6525 −1.5279

i
K1 =

h
110.0000 174.4694

iT
,K2 =

h
110.0000 321.5121

iT
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Hence, for

φ1 = φ2 = 0.5

ξ11 = −0.0637, ξ12 = 0.0637, ξ21 = −0.0637, ξ22 = 0.0637

and for the initial condition x (0) = [π/6, 0]T , we obtain the following results:

For the controller design:

P1 = 10
8

"
3.0097 0.1270

0.1270 0.1262

#
> 0, P2 = 10

8

"
2.9974 0.1267

0.1267 0.1259

#
> 0

For the observer design:

Po1 = 10
7

"
7.3509 −1.0523
−1.0523 0.5042

#
> 0, Po2 = 10

7

"
7.3102 −1.0432
−1.0432 0.5000

#
> 0

Figures (5.1) and (5.2) show the closed loop behavior of the fuzzy controller and the

fuzzy observer, for respectively, the inverted pendulum position, velocity and control

force evolution of the closed loop system.
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Figure 5.1: Inverted pendulum performances with a pole placement
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Figure 5.2: Inverted pendulum action evolution with a pole placement

The stability of the whole system (fuzzy controller+fuzzy observer+fuzzy system)

is verified applying the vector comparison principle, having two scalar functions V (x) ,
∼
V
³∼
x
´
and positive real numbers obtained from simulation and that satisfy the inequal-

ities (5.27)-(5.29), their values are:

γ1 = 4.6738× 107 γ2 = 4.6039× 108 γ3 = 1.2411× 108 γ4 = 4.3764× 108
∼
γ1 = 1.3174× 104

∼
γ2 = 4.4097× 108

∼
γ3 = 5.0038× 106

∼
γ4 = 4.3820× 108

Comparing our results with those obtained for the same example with a pole placement

in (Jadbabaie, 1997, a), our results are very interesting, since on one side the stability

design that depends on non-quadratic stability conditions is less conservative and on

the other side the separation property design is very flexible since it do not depends

on the stability conditions but directly on the fuzzy Lyapunov functions.

b) without a pole placement:
For

φ1 = φ2 = 1

α12 = 0.4, α21 = 1/α12

β12 = 1.2, β21 = 1/β12

ξ11 = −0.0064, ξ12 = 0.0064, ξ21 = −0.0064, ξ22 = 0.0064

we obtain the following P1, P2, F1, F2, Po1, Po2,K1 andK2 for the initial condition x (0) =
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h
π/3 0

iT
:

P1 =

"
0.6122 0.2216

0.2216 0.0878

#
> 0, P2 =

"
0.6131 0.2181

0.2181 0.0794

#
> 0

F1 =
h
−937.3591 −294.8718

i
, F2 = 10

3
h
−6.0636 −2.0828

i
Po1 =

"
0.1459 −0.0034
−0.0034 0.0095

#
> 0, Po2 =

"
0.0425 −0.0061
−0.0061 0.0062

#
> 0

K1 =
h
9.6602 24.7890

iT
, K2 =

h
5.9401 12.6046

iT
Also very good results are obtained for the stability of the whole system which is

checked applying the vector comparison principle, and the positive real numbers values

are:

γ1 = 0.0868 γ2 = 2.0100× 108 γ3 = 0.1475 γ4 = 2.0327× 108
∼
γ1 = 1.6547× 10−6

∼
γ2 = 1.9823× 108

∼
γ3 = 0.0053

∼
γ4 = 1.9619× 108

Figures 5.3 and 5.4 show the closed loop behavior of the whole system (fuzzy sys-

tem+fuzzy controller+fuzzy observer), for respectively, the inverted pendulum posi-

tion, velocity and control force evolution for the initial condition above.
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Figure 5.3: Inverted pendulum performances without pole placement
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Figure 5.4: Inverted pendulum action evolution without pole placement

5.5.2 Example 2: TORA system

We choose to apply the proposed method to another example; the TORA system

(Translational Oscillator with an eccentric Rotational proof mass actuator). The equa-

tions of motion are given by (Bupp et al. , 1998):

.
x1 (t) = x2 (t) ,

.
x2 (t) =

−x1 (t) + �x24 (t) sinx3 (t)

1− �2 cos2 x3 (t)
+
−� cosx3 (t)
1− �2 cosx3 (t)

u (t) ,

.
x3 (t) = x4 (t) ,

.
x4 (t) =

� cosx3 (t)
¡
x1 (t)− �x24 (t) sinx3 (t)

¢
1− �2 cos2 x3 (t)

+
1

1− �2 cosx3 (t)
u (t)

(5.33)

where x1 (t) and x2 (t) denote respectively the translational position and velocity of

the cart, x3 (t) and x4 (t) denote respectively the angular position and velocity of the

rotational proof mass. u is the torque applied to the eccentric mass and � = 0.1 in

the numerical simulation. Hence, for x = [x1, x2, x3, x4]
T , we have the following T-S

fuzzy model (Jadbabaie et al. , 1998, a):

Rule 1 : IF x1 (t) is about 0 THEN
.
x (t) = A1x (t) +B1u (t) , y (t) = C1x (t)

Rule 2 : IF x1 (t) is about ± π /2 THEN
.
x (t) = A2x (t) +B2u (t) , y (t) = C2x (t)



5. Output Stabilization of Takagi-Sugeno Fuzzy Systems via Fuzzy
Observer 77

where

A1 =

⎡⎢⎢⎢⎢⎣
0.0 1.0 0.0 0.0

−1/1− �2 0.0 0.0 0.0

0.0 0.0 0.0 1.0

�/1− �2 0.0 0.0 0.0

⎤⎥⎥⎥⎥⎦ , A2 =
⎡⎢⎢⎢⎢⎣

0.0 1.0 0.0 0.0

−1/1− �2β2 0.0 0.0 0.0

0.0 0.0 0.0 1.0

� ∗ β/1− �2β2 0.0 0.0 0.0

⎤⎥⎥⎥⎥⎦

B1 =

⎡⎢⎢⎢⎢⎣
0.0

−�/1− �2

0.0

1/1− �2

⎤⎥⎥⎥⎥⎦ , B2 =
⎡⎢⎢⎢⎢⎣

0.0

−� ∗ β/1− �2β2

0.0

1/1− �2β2

⎤⎥⎥⎥⎥⎦
C1 = C2 =

"
1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

#
,

and β = cos (80◦). The control law that guarantees the stability of the fuzzy model

and the fuzzy observer system is given by (5.32), where h1and h2 are the membership

functions of rules 1 and 2 of TORA system, respectively, they are given by:

h1 (x1 (t)) = 1− 2
π
|x1 (t)|

h2 (x1 (t)) =
2

π
|x1 (t)| .

The objective of stabilizing the fuzzy controller and the fuzzy observer is reached with

success. First, two sets of LMIs are solved separately to obtain the gains Fi and Ki of

respectively the fuzzy controller and the fuzzy observer with a guaranteed stability for

each design. Then the global stability of the whole system is checked using the vector

comparison principle and constructing the comparison system. Hence, for

φ1 = φ2 = 0.1

α12 = 0.5, α21 = 1/α12

β12 = 0.1, β21 = 1/β12

ξ11 = −0.0064, ξ12 = 0.0064, ξ21 = −0.0064, ξ22 = 0.0064
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we obtain the following P1, P2, F1, F2, Po1, Po2,K1 and K2 for the initial condition

x (0) =
h
0.4 0 π/3 0

iT
:

P1 =

⎡⎢⎢⎢⎢⎣
6.3461 −0.3446 −0.0285 −0.2009
−0.3446 3.7592 0.0118 0.0567

−0.0285 0.0118 0.0006 0.0022

−0.2009 0.0567 0.0022 0.0146

⎤⎥⎥⎥⎥⎦ > 0,

P2 =

⎡⎢⎢⎢⎢⎣
6.3471 −0.6841 −0.0294 −0.2580
−0.6841 2.8002 0.0113 0.0652

−0.0294 0.0113 0.0005 0.0022

−0.2580 0.0652 0.0022 0.0180

⎤⎥⎥⎥⎥⎦ > 0

and

F1 =
h
−7.1844 −0.5599 0.0723 0.5076

i
F2 =

h
−10.9127 −17.6978 0.0738 0.6304

i

Po1 =

⎡⎢⎢⎢⎢⎣
0.8831 0.0010 0.0013 0.0161

0.0010 0.8803 0.0044 0.0764

0.0013 0.0044 0.0075 0.0565

0.0161 0.0764 0.0565 0.9589

⎤⎥⎥⎥⎥⎦ > 0,

Po2 =

⎡⎢⎢⎢⎢⎣
0.2978 −0.0001 0.0006 0.0032

−0.0001 0.2980 −0.0010 −0.0041
0.0006 −0.0010 0.0214 0.0080

0.0032 −0.0041 0.0080 0.2033

⎤⎥⎥⎥⎥⎦ > 0

and

K1 =

"
0.2403 −0.0001 0.0028 −0.0050
0.0001 0.0000 0.0018 0.0004

#T
,

K2 = 103

"
0.8766 0.0011 −0.0162 −0.0045
0.0008 0.0029 0.3859 0.0644

#T
Figures 5.5 and 5.6 show the closed loop behavior of the TORA system with the

fuzzy controller and the fuzzy observer, for respectively, the translational position and

velocity and the angular position and velocity evolution of the closed loop system for

the initial conditions above. The stability of the whole system is checked and the

positive real numbers obtained from simulation are:

γ1 = 0.0027 γ2 = 3.1439× 108 γ3 = 2.0702× 10−6 γ4 = 2.9630× 108
∼
γ1 = 2.4583× 108

∼
γ2 = 2.4583× 108

∼
γ3 = 2.4583× 108

∼
γ4 = 2.4583× 108
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Based on a two rules fuzzy model for the TORA system and on only stability con-

ditions without addition of any performance conditions, the obtained results are less

conservative and fast, with comparison to the design given in (Tanaka et al. , 1998,

a), where the TORA system is modelized by four T-S fuzzy rules.
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Figure 5.5: TORA performances
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Figure 5.6: TORA input control evolution

5.6 Conclusion

In this chapter, design procedure of fuzzy observer is discussed. The non-quadratic

stability conditions also developed in chapter 3 (Abdelmalek et al. , 2007), are used

for the stabilization of the global T-S fuzzy systems. The controller and the observer

are designed separately. The fuzzy controller guarantees the stabilization of the T-

S fuzzy system, whereas the fuzzy observer guarantees that the estimation error for

states converges to 0. However, to check the stability of the global system i.e. (fuzzy

controller+fuzzy observer+fuzzy system), we applied a separation property based on

a vector comparison principle proposed by Ma et al. (Ma et al. , 1998). The design ex-

amples allow us to assess the performances of the proposed observer/controller design

and to check the truth of the separation property.



Chapter 6

Conclusion

6.1 Contributions and concluding remarks

The purpose of this thesis is the development of new non-quadratic stability conditions,

less conservative, for the control of continuous T-S fuzzy systems, by exploiting the

polytopic representation of T-S fuzzy models and using the PDC control design and

LMIs.

In this thesis, an outline is given in chapter 2, on fuzzy modeling by two particular

structures of fuzzy systems that are Mamdani and T-S fuzzy models, followed by

different construction procedures of T-S fuzzy models illustrated by different examples.

In the present work, we focused on T-S fuzzy models for their interesting properties

that allow us study stability of complex systems. The advantage of T-S fuzzy models

is their more powerful capability to represent a complex nonlinear relationship in spite

of the smaller number of fuzzy IF-THEN rules. Further, a theorem on the concept of

fuzzy systems are universal approximators is given, to show that a fuzzy model is able

to approximate and then to represent any real function.

The following step, detailed in chapter 3, concerns the quadratic stability analysis

and synthesis (V (x (t)) = xT (t)Px (t)) of T-S fuzzy systems via PDC controllers

(Tanaka et al. , 1998) and LMIs, one of the important tools in control theory. The main

idea of the PDC controller design is to derive each control rule from the corresponding

rule of T-S fuzzy model so as to compensate it. The resulting overall fuzzy controller,

which is nonlinear in general, is a fuzzy blending of each individual linear controller.

Wang et al. (Wang et al. , 1996) used the concept of a fuzzy controller that shares

the same fuzzy sets with the fuzzy model to design fuzzy controllers to stabilize closed

loop fuzzy systems. However, the stability analysis is based on the Lyapunov direct

method consisting in finding a quadratic function whose derivative is negative. The

used approach seems to be conservative since the hi (z (t)) are not taken into account, it

81
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omits all the information contained in the membership functions, further the approach

requires to find a common positive definite matrix P for r sub-models at the same time.

The inverted pendulum example is studied at the end of this chapter to illustrate the

concept of PDC controller design.

In chapter 4 and due to the conservatism of the quadratic stability conditions,

we have searched for new stability conditions that realize non-quadratic stabilization

and reduce the conservatism, these lead to the results given in (Abdelmalek et al. ,

2007). We used a fuzzy Lyapunov function V (x (t)) =
Pr

i=1 hi (z (t))x
T (t)Pix (t) ,

that is a fuzzily blending of quadratic Lyapunov functions and that shares the same

membership functions of the fuzzy systems. The conditions were derived in a logical

way while profiting fully of the fuzzy Lyapunov function advantage and considering two

assumptions that are a proportional relation between the multiple quadratic Lyapunov

functions and an upper bound for the time derivative of the premise membership

function. The PDC local feedback gains construction procedure is simple and can

be solved effectively by optimization computation tools. Our proposal leads to less

conservative results and very good results are obtained for different examples, even

for those that do not admit a single Lyapunov function and also for T-S systems with

several rules (two-links robot with 9 rules) , thus illustrating the effectiveness of the

proposed stabilization approach, by reducing conservatism and fast convergence.

The last step in this thesis was the fuzzy observer design to estimate non measur-

able variables (chapter 5). The non-quadratic stability conditions also developed in

chapter 3 (Abdelmalek et al. , 2007), were used for the fuzzy observer design. The

controller and the observer are designed separately. The fuzzy controller guarantees

the stabilization of the T-S fuzzy system, whereas the fuzzy observer guarantees that

the estimation error for states converges to 0. The stability of the global system is

checked by applying a separation property based on a vector comparison principle

proposed by Ma et al. (Ma et al. , 1998). The different examples given at the end

of chapter 4 allow us to assess the performances of the proposed observer/controller

design (Abdelmalek & Goléa, 2009).

6.2 Perspectives and future work

Throughout this thesis, fuzzy control for T-S fuzzy systems stabilization in Lyapunov

sense has been discussed and analyzed. We cite here some future possible research

direction.

• To extend the proposed stability conditions to uncertain T-S fuzzy systems, and
to develop new algorithms including performance constraints in the design of
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robust fuzzy controllers.

• To extend the proposed approach to the case of observer design in presence of
non measurable premise variables.

• To attempt to reduce conservatism by other manners, using other existing control
laws or other forms of Lyapunov functions from the literature.
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Appendix A

Proof of theorem 6 of chapter 3

As is well known from the stability theory, an autonomous dynamical system is stable

if there exists a positive definite quadratic function, V (x (t)) = xT (t)Px (t), which

decreases along every nonzero trajectory of the system, and a system having such a

Lyapunov function system is called quadratically stable. In the following polytopic

system
.
x (t) =

rX
i=1

hi (z (t))Aix (t) (A.1)

the derivative of V along nonzero trajectory x (t) is given by

.
V (x (t)) =

.
x
T
(t)Px (t) + xT (t)P

.
x (t)

=

Ã
rX

i=1

hi (z (t))Aix (t)

!T

Px (t)

+xT (t)P

Ã
rX

i=1

hi (z (t))Aix (t)

!

=
rX

i=1

hi (z (t))
£
xT (t)

¡
AT
i P
¢
x (t) + xT (t) (PAi)x (t)

¤
=

rX
i=1

hi (z (t))x
T (t)

©
AT
i P + PAi

ª
x (t) < 0 (A.2)

since AT
i P + PAi is negative when P is positive definite, then the polytopic system

(A.1) is quadratically stable if there exists a symmetric matrix P satisfying the fol-

lowing inequalities (Boyd et al. , 1994), (Tanaka & Sugeno, 1992):

P > 0, (A.3)

AT
i P + PAi < 0 i = 1, ..., r (A.4)
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LMI transformations for theorem
10 of chapter 3

By multiplying the inequalities (3.17) and (3.18) on the left and right by P−1 and

defining a new variable X = P−1, the conditions are rewritten as

−XAT
i −AiX +XFT

i B
T
i +BiFiMi > 0,

−XAT
i −AiX −XAT

j −AjX +XFT
j B

T
i +BiFjX +XF T

i B
T
j +BjFiX ≥ 0, (B.1)

i < j s.t. hi ∩ hj 6= ∅

DefineMi = FiX and X = P−1, so that for X > 0 we have Fi =MiX
−1. Substituting

into the above inequalities yields

−XAT
i −AiX +MT

i B
T
i +BiMi > 0, (B.2)

−XAT
i −AiX −XAT

j −AjX +MT
j B

T
i +BiMj +MT

i B
T
j +BjMi ≥ 0, (B.3)

i < j s.t. hi ∩ hj 6= ∅

where X = P−1and Mi = FiX.
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Derivative process of the
parameters ξρc

By using example 4.4.1 of chapter 4 where

h1 (x1 (t)) =
1 + sinx1 (t)

2
, h2 (x1 (t)) =

1− sinx1 (t)
2

we have the following equations

∂h1 (x1 (t))

∂x1 (t)
=

1

2
cosx1 (t) =

2X
c=1

υ1c (z (t)) ξ1c

∂h2 (x1 (t))

∂x1 (t)
= −1

2
cosx1 (t) =

2X
c=1

υ2c (z (t)) ξ2c

where
2X

c=1

υ1c (z (t)) = 1

2X
c=1

υ2c (z (t)) = 1

under

|x1 (t)| ≤ π/2
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we calculate the minimum and the maximum values that correspond to ξρc

ξ11 = min
|x1(t)|≤π/2

1

2
cosx1 (t) = 0

ξ12 = max
|x1(t)|≤π/2

1

2
cosx1 (t) = 0.5

ξ21 = min
|x1(t)|≤π/2

1

2
cosx1 (t) = −0.5

ξ22 = max
|x1(t)|≤π/2

1

2
cosx1 (t) = 0
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Résumé 
 
    L'objectif de cette thèse est le développement de nouvelles conditions de stabilité de 
Lyapunov pour les systèmes flous continus du type Takagi-Sugeno (T-S), afin de réduire le 
degré de conservatisme. Les systèmes non linéaires sont représentés et commandés par une 
conception à base de systèmes flous T-S. Elle combine la flexibilité de la théorie de logique 
floue et les outils mathématiques rigoureux d'analyse de la théorie des systèmes linéaires. Les 
systèmes flous T-S permettent une représentation multimodèles, qui est une forme 
polytopique convexe. La conception de commande floue la plus utilisée dans la littérature est 
effectuée en utilisant le concept de la compensation parallèle distribuée (PDC) puisqu'elle 
partage les mêmes fonctions d'appartenance que les modèles flous T-S. L'idée principale de la 
conception du contrôleur PDC est de dériver chaque règle de commande à partir de la règle 
correspondante du modèle flou T-S afin de la compenser. Le contrôleur flou global résultant, 
qui est non linéaire en général, est une combinaison floue de chaque contrôleur linéaire par 
retour d'état. L'avantage du modèle flou T-S réside dans le fait que les caractéristiques de 
stabilité et de performances du système représenté par un modèle flou T-S peuvent être 
analysées en utilisant l'approche à base de fonction de Lyapunov dont la résolution des 
conditions de stabilité dépend d'un ensemble d'inégalités matricielles linéaires (LMIs). 
   Dans cette thèse, de nouvelles conditions de stabilité non-quadratiques sont dérivées. Elles 
sont basées sur le contrôle PDC pour stabiliser les systèmes flous T-S continus et sur la 
fonction de Lyapunov floue. Nous obtenons de nouvelles conditions, moins conservatives, qui 
stabilisent les systèmes flous T-S continus, comprenant aussi ceux qui n'admettent pas une 
stabilisation quadratique. Notre approche est fondée sur deux hypothèses. La première est 
basée sur l'existence d'une relation de proportionnalité entre les fonctions de Lyapunov 
multiples, et la seconde considère une borne supérieure pour la dérivée par rapport au temps 
de la fonction d'appartenance des prémisses. Les résultats de stabilité obtenus sont étendus au 
cas où les états ne sont pas disponibles pour la mesure et la rétroaction, en d'autres termes 
l'observateur flou, en garantissant la stabilité du système global. Cependant, pour vérifier la 
stabilité du système global, c à d. système flou + contrôleur flou + observateur flou, un 
principe de séparation est appliqué. Différents exemples sont présentés pour montrer 
l'efficacité de notre proposition. 

 




