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Abstract

Images are the main sources of information in many applications. However, the images
obtained from various imaging systems are subject to degradations and loss of information.

In the field of remote sensing, cloud obscuration presents a major impediment to the effective
use of passive remotely sensed imagery. Cloud occurrence distorts or completely obscures the
spectral response of land covers, which contributes to difficulties in understanding scene
content. Therefore, a cloud removal task is needed as the primary important step to recover
the missing measurements. Recently, cloud removal has been addressed as an image
reconstruction/restoration issue, in which it is aimed at recovering an original scene from
degraded or missing observation.

As a first application for remote sensing, we propose three general methods for post-
restoration of cloud contaminated areas in multispectral multitemporal remote sensing images.
Spatial, temporal and spectral information are incorporated in the post-restoration processes to
analyze which is more suited to improve the restoration quality, depending on the
contamination scenario. Experiments have shown that higher accuracies are obtained with the
use of mutual spatio-spectral and temporal information.

Second, we address the problem of contrast enhacement for remote sensing application. At
this purpose, two variational perspectives to bright preserving contrast enhancement scheme
have been proposed. The methods can be viewed as refinements of histogram equalization,
which use both local and global information to remap the image gray levels. The brightness
preserving constraint is implicitly expressed with the use of a fuzzy 2-partition thresholding
process to extract object regions from their background on the basis of the similarity of
brightness of image objects.

The first method models the spatial relationships between neighboring pixels with a second
order derivative metric which provides a local measure of spatial activity within the data. The
second method uses a contextual spatial histogram to describe the gray level distribution in a
predefined neighborhood system over a predefined area in the image.

Experiments have shown that the proposed methods increase the brightness preservation and
yield a more natural enhancement. They are able to amplify edge contrast without explicitly
detecting edge pixels.



Résumé

L'être humain dépend à 99% de sa vision pour récolter des information sur le monde qui

l'entoure. Il est donc naturel que l'imagerie numérique ait pris une importance considérable.
Néanmoins, historiquement parlant, les potentialités du traitement numérique des images pour
le transfert et l’amélioration des images sont apparues avec le développement des grands
ordinateurs et surtout avec les nécessités des programmes de recherche spatiale. Puis est
venue l'ère de l’explosion des applications dans tous les domaines....

L'imagerie numérique est limitée par les dégradations, généralement désignées sous le terme
de bruit d'image, dues aux bruits inhérents aux dispositifs d'acquisition (caméra,
amplificateurs, quantification, …). L'élimination du bruit et le recouvrement de l'information
perdue ou cachée constituent donc une étape cruciale dans le traitement d'image.

D'un autre côté, les images acquises dans des conditions d'éclairage extrêmes; lumière trop
faible ou trop puissante ainsi que les images issues de capteurs dont la dynamique est trop
réduite sont peu contrastées, ce qui gêne sérieusement les opérations de reconnaissance,
d'analyse et d'interprétation. Les méthodes de manipulation d'histogramme sont à l'origine des
techniques d'amélioration du contraste, en particulier l'égalisation d'histogramme en raison de
sa simplicité et des informations pertinentes à l'amélioration fournies par l'histogramme de
l'image.

Il est important de noter que la restauration constitue une opération d'amélioration basée sur
un modèle mathématique de la dégradation, alors que l'amélioration du contraste ne prend en
considération aucun modèle de bruit, et est par conséquent laissée aux soins de l'observateur
pour juger de la qualité de l'amélioration.

Le travail présenté dans cette thèse concerne à la fois restauration et amélioration du contraste
appliquées au domaine de la télédétection satellitaire.

La thèse est composée de quatre chapitres.

Le premier chapitre introduit l'état de l'art des méthodes de restauration tout en présentant les
critères quantitatifs standard de la qualité de restauration en plus d'un aperçu sur la littérature
des méthodes de restauration.

Le deuxième chapitre aborde la restauration du point de vue d'une post-reconstruction de
zones contaminées par les nuages dans une séquence d'images multispectrales
multitemporelles. L'objectif visé dans ce chapitre est d'améliorer la qualité de restauration
obtenue par deux méthodes générales de restauration développées récemment, en l'occurrence
la technique dite Contextual Multiple Linear Prediction (CMLP) et celle appelée Contextual
Nonlinear Prediction (CNP). Une post-reconstruction est alors effectuée en utilisant
conjointement l'information spatiale, spectrale et temporelle. Trois méthodes en guise de
solution ont été proposées, en l'occurrence la prédiction multimodale, la prédiction de l'erreur
résiduelle issue d'un estimateur et enfin la post-reconstruction spatio-spectrale. La génération
d'une Map d'erreur est utilisée comme critère d'évaluation supplémentaire de la qualité de
restauration. Les résultats de la simulation ont été présentés à la fin du chapitre.



Le troisième chapitre présente les bases théoriques générales des techniques de modification
d'histogramme. Les techniques de transformation ponctuelles sont considérées, en particulier
l'égalisation et la spécification d'histogramme qui sont décrites en détail et par l'exemple pour
la première. Trois critères de uantitification de la qualité d'amélioration sont présentés et le
chapitre s'achève par un aperçu sur la littérature concernant les méthodes d'égalisation
d'histogramme.

Le quatrième chapitre concerne l'amélioration du contraste d'images de télédétection
satellitaire en utilisant l'égalisation d'histogramme.  Deux méthodes sont proposées, chacune
se basant sur le seuillage d'une 2-partition floue pour satisfaire au critère de préservation de la
luminosité des pixels. L'incorporation de l'information spatiale est exprimée dans la première
méthode par le calcul des gradients du second ordre. Dans la deuxième méthode, le modèle
spatial est exprimé par un histogramme bi-dimensioonel représentant la distribution spatiale
conjointe des niveaux de gris dans un voisinage prédéterminé. Cet histogramme est calculée
sur une zone prédéfinie de l'image et est utilisé par la suite pour le calcul de la densité de
probabilité cumulative de l'image entière. Finalement, les résultats de la simulation sont
présentés à la fin du chapitre.



Contents

INTRODUCTION 1

1. DIGITAL IMAGE RESTORATION 3

1.1 INTRODUCTION 3

1.2 IMAGE DEGRADATION MODEL 4

1.3 MEASURE OF IMAGE RESTORATION QUALITY 5

1.3.1   Standard Metrics 5

1.3.2   Accuracy of the Measure 6

1.3.3   Precision of the Measure 6

1.3.4   Meaning of Measurement 6

1.4 LITERATURE SURVEY 7

1.4.1   Classical Image Restoration Techniques 7

1.4.2   New Image Restoration Techniques 10

1.5 SUMMARY 12

2. CONTEXTUAL POST-RECONSTRUCTION OF CLOUD-CONTAMINATED IMAGES   13

2.1 INTRODUCTION 13

2.2 CLOUD REMOVAL TECHNIQUES 14

2.3 Problem FORMULATION 17

2.4 PROPOSED SOLUTIONS 17

2.4.1   Spectral Information Source 18

2.4.2 SPATIAL Information Source 18

2.5 MULTIMODAL PREDICTOR 18

2.5.1   Spectral Information 18

2.5.2   Spatial Information 19

2.5.3   Prediction Function 19

2.6 RESIDUAL BASED PREDICTION 21



2.6.1   Sequential Residual-Based Prediction (SRBP) 21

2.6.2 PARALLEL Residual-Based Prediction (PRBP) 23

2.7 CONTEXTUAL SPATIO-SPECTRAL POST-RECONSTRUCTION 24

2.7.1   Description of the Method 24

2.7.2   Spectral Information 25

2.7.3   Spatial Information 25

2.7.4   Prediction Function 26

2.7.5   Error Map Generation 26

2.7.6 ALGORITHMIC Description 27

2.8 EXPERIMENTAL RESULTS 28

2.8.1   Data Set Description and Experiment Design 28

2.8.2   Previous Results 29

2.8.3   Multimodal Prediction Simulations 33

2.8.4   Residual-Based Prediction Simulations 37

2.8.5   CSSPR Simulations 43

2.9   Summary 49

3. HISTOGRAM MODIFICATION   50

3.1 INTRODUCTION 50

3.2 HISTOGRAM MODIFICATION 51

3.2.1   Contrast of an Image 51

3.2.2   Image Transformation 51

3.2.3   Histogram Processing 51

3.3 QUALITY MEASURES 56

3.3.1   Absolute Mean Brightness Error 56

3.3.2   Contrast –Per-Pixel 55

3.3.3 Image Distortion 56

3.4 LITERATURE SURVEY 56

3.5 SUMMARY 58

4. CONTRAST ENHANCEMENT OF SATELLITE IMAGES BASED SPATIAL CONTEXT 59

4.1 INTRODUCTION 59

4.2 CONTRAST ENHANCEMENT BASED THRESHOLDING   59

4.2.1   Brightness Preserving Bi-Histogram Equalization 60

4.2.2   Dualistic Sub-Image Histogram Equalization 62



4.2.3   Fuzzy 2-Partition Thresholding 62

4.2.4 Fuzzy 2-Partition Thresholding for Local Contrast Enhancement 68

4.3 CONTEXTUAL SPATIAL HISTOGRAM FOR CONTRAST ENHANCEMENT   70

4.3.1 Contextual Spatial Neighborhood   70

4.3.2 Contextual Spatial Histogram   70

4.3.3 Contextual Cumulative Density Function   70

4.3.4 Algorithm   71

4.4 EXPERIMENTAL RESULTS   71

4.4.1 Local Contrast Enhancement Based Thresholding Simulations   71

4.4.2   Contextual Spatial Histogram for Contrast Enhancement Results   72

4.5 SUMMARY   72

CONCLUSION   88

Bibliography   90



List of Figures

Figure 2.1        Neighborhoods system 18

Figure 2.2        Block diagram of the SRBP system 22

Figure 2.3        Block diagram of the PRBP system 24

Figure 2.4        Block scheme of the whole contextual reconstruction process 25

Figure 2.5        Original sub-images in the Visible range used in the simulations 29

Figure 2.6        Original sub-images in the Infra-Red range used in the simulations 30

Figure 2.7        Masks adopted to simulate different cloud contaminations 30

Figure 2.8        CMLP reconstruction results 31

Figure 2.9        Linear multimodal prediction reconstruction results of channel 1 34

Figure 2.10      Linear multimodal prediction reconstruction results of channel 2 35

Figure 2.11      Linear multimodal prediction reconstruction results of channel 3 35

Figure 2.12      Nonlinear multimodal prediction reconstruction results of channel 1 36

Figure 2.13      Nonlinear multimodal prediction reconstruction results of channel 2 36

Figure 2.14      Nonlinear multimodal prediction reconstruction results of channel 3 37

Figure 2.15      Linear sequential residual-based prediction results of channel 1 40

Figure 2.16      Linear sequential residual-based prediction results of channel 2 40

Figure 2.17      Linear sequential residual-based prediction results of channel 3 41

Figure 2.18      Linear parallel residual-based prediction results of channel 1 41

Figure 2.19      Linear parallel residual-based prediction results of channel 2 42

Figure 2.20      Linear parallel residual-based prediction results of channel 42

Figure 2.21      Reconstruction results with the CSSPR method 45

Figure 2.22      Color composite result with the CSSPR method 46

Figure 2.23      Plotting graphs inside the contaminated area 47

Figure 2.24      Multichannel classification maps obtained by the K-means algorithm 48

Figure 2.25      Reconstruction L2-norm error maps 49

Figure 3.1        Examples of some point processing transformations 52

Figure 3.2 Histogram Shapes 53



Figure 3.3        Histogram equalization example 54

Figure 3.4        Illustration of some histogram equalization examples 55

Figure 4.1        Fuzzy membership function 64

Figure 4.2 Contextual spatial neighborhood system 70

Figure 4.3        Two level thresholding results of channel 1 73

Figure 4.4        Two level thresholding results of channel 2 73

Figure 4.5        Two level thresholding results of channel 3 74

Figure 4.6        Two level thresholding results of channel 4 74

Figure 4.7        Two level thresholding results of channel 5 75

Figure 4.8        Two level thresholding results of channel 7 75

Figure 4.9        Local contrast enhancement-based thresholding results of channel 1 77

Figure 4.10   Local contrast enhancement-based thresholding results of channel 2 78

Figure 4.11      Local contrast enhancement-based thresholding results of channel 3 79

Figure 4.12      Local contrast enhancement-based thresholding results of channel 4 80

Figure 4.13      Local contrast enhancement-based thresholding results of channel 5 81

Figure 4.14      Local contrast enhancement-based thresholding results of channel 7 82

Figure 4.15      Masks adopted to simulate different area locations 82

Figure 4.16      Contextual spatial contrast enhancement results of channel 1: Area C outside
the mask 84

Figure 4.17      Contextual spatial contrast enhancement results of channel 4: Area C outside
the mask 85

Figure 4.18      Contextual spatial contrast enhancement results of channel 1: Area C inside
the mask 86

Figure 4.19      Contextual spatial contrast enhancement results of channel 1: Area C inside
the mask 87



List of Tables

Table 2.1        Quantitative results obtained by the linear multimodal prediction   33

Table 2.2        Quantitative results obtained by the non linear multimodal prediction   34

Table 2.3        Quantitative results obtained by the linear sequential residual predictor   38

Table 2.4        Quantitative results obtained by the non linear sequential residual predictor   38

Table 2.5        Quantitative results obtained by the linear parallel residual predictor   39

Table 2.6        Quantitative results obtained by the non linear parallel residual predictor   39

Table 2.7        Quantitative results obtained by the CSSPR method   44

Table 3.1        Histogram equalization procedure   54

Table 4.1        Quantitative results obtained by the local contrast enhancement based fuzzy 2-
partition thresholding scheme   76

Table 4.2        Quantitative results obtained by the contrast enhancement based-contextual
spatial histogram scheme: Area C outside the mask   83

Table 4.3        Quantitative results obtained by the contrast enhancement based-contextual
spatial histogram scheme: Area C inside the mask   83



INTRODUCTION

The main part of the information received by a human is visual. Receiving and using
visual information is referred to as sight perception or understanding. When a computer
receives and uses visual information, we call this computer image processing and recognition.
The modern advancement in this area is mainly due to the recent availability of image
scanning and display hardware at a reasonable cost, the relatively free use of computers and
the popularization of numerous computer processing techniques.

One of the major problems that have evolved in computer image processing was the
degradation of the images in use. Images obtained from various imaging systems are subject
to degradations and loss of information which could be devastating in many applications. The
two main limitations in image accuracy are blur and noise. As a result, it was not long before
the work on using computer techniques for retrieving meaningful information from degraded
images began, what is today known as digital image restoration.

Images are captured in an excessively bright or dark environment in a number of different
situations (e.g., pictures taken at night or against the sun rays). As a result, the images are low
contrasted, i.e. too dark or too bright, and inappropriate for visual inspection and human
interpretation and analysis. Improving the visual quality and enhancing the contrast of images
constitutes one of the major issues in image processing. Histogram modification, and in
particular histogram equalization is one of the basic and most useful operations in image
processing. It has been recognized as the ancestor of plentiful contrast enhancement
algorithms [1].

Contrast enhancement and restoration techniques are designed to improve the quality of an
image as perceived by a human for a specific application. Image restoration is distinct from
contrast enhancement techniques, which are designed to manipulate a degraded image in
order to reveal subtle details and produce results more pleasing to an observer, without
making use of any particular degradation models. Image restoration is applied to the
restoration of a known distortion for which an objective criterion can be applied.

Remote sensing images typically contain an enormous amount of information. From the field
of computer vision, enhancement procedures among other techniques determine one
possibility to extract such information. The aim of the study at hand is to apply some
developed algorithms as means for spatial information extraction.

The present thesis may be divided into two parts. The first deals with a contextual post-
restoration technique of cloud-contaminated areas in multispectral multitemporel remote
sensing images. Spatial, temporal and spectral information are incorporated in the post-
restoration process to analyze which is more suited to improve the restoration quality. The
second part concerns the contrast enhancement of remote sensing images using two
independent channel processing methods. Based on the spatial context, the processes can be
considered as local histogram equalization techniques.



The thesis is organized as follows. The first chapter provides a general and inevitably
superficial review of digital image restoration techniques.

The second chapter deals with a contextual post-restoration of cloud-contaminated remote
sensing images. The spatial and spectral information are effectively used to produce a better
quality restored image.  Numerical and visual results are presented and commented.

The third chapter introduces the histogram modification techniques. In particular, the
histogram equalization technique is described and a rapid survey of different procedures is
given.

The fourth chapter describes two different contrast enhancement techniques. Both of them are
based on the fuzzy 2-partition two level thresholding for brightness preserving. In the first
method, the spatial information is modeled to describe some spatial activity of the data in a
predefined neighborhood, whilst in the second it is modeled with the use of a contextual
spatial histogram. Numerical and visual results are presented and commented.

Finally, we conclude and present those areas which give rise to further improvements.



Chapter 1

DIGITAL IMAGE RESTORATION

1.1.   INTRODUCTION
Images are the main sources of information in many applications. However, the images

obtained from various imaging systems are subject to degradations and loss of information.
The two main limitations in image accuracy are blur and noise. Hence, the extreme need for
the ability to retrieve meaningful information from degraded images, what is today known as
restoration of images, was and still is a valid challenge since the problem arises in almost
every branch of engineering and applied physics.

Digital image restoration is being increasingly used in many applications. Just to name a few,
restoration is encountered in astronomy, geophysics, biomedical imaging, computer graphics
and enhancement, and defense-oriented applications. It has received some notoriety in the
media, especially in the movies of the last two decades, and has been used in law enforcement
and forensic science since several years. Another emerging application of this field concerns
the restoration of aging and deteriorated films, and perhaps the most expanding area of
application for digital image restoration is that in the field of image and video coding. Digital
image restoration is being used in many other applications as well, the list is not exhaustive.

Image restoration is distinct from image enhancement techniques, which are designed to
manipulate a degraded image in order to provide some interesting image features selectivity
and produce results more pleasing to an observer, without making use of any particular
degradation models. The problem of image reconstruction is a little more complicated since
the true object is no longer a measure of light intensity over some scene, but a mapping of
some physical property. The true object, therefore, must be reconstructed from data
commonly called projections. Restoration and reconstruction techniques aim to the same



objective, however, which is that of recovering the original image and they end up solving the
same mathematical problem which is that of finding a solution to a set of linear or non linear
equations

Early techniques for digital image restoration were derived mostly from frequency-domain
concepts. However, more modern algebraic approaches allow the derivation of numerous
restoration methods that have been developed from different perspectives [1]-[3]. These
algorithms have grown from denoising methods to spatially adaptive approaches and more
recently neural networks and transform domain methods with the use of wavelets. Experiment
results have shown that a single conventional restoration approach may not obtain satisfactory
results. Therefore, hybrid methods have emerged.

1.2.   IMAGE DEGRADATION MODEL
A two dimensional random field  ijx  on a lattice  MjNijiL   0,0:),(

represents a true but non observable image, where xij measures the grey level/color intensity
of the pixel at the (i,j)th location. The available data are  , a version of  subject to various

blurring phenomena as well as noise. Thus, image restoration techniques seek to recover an
image from a blurred and noisy one. In digital image restoration, the standard linear
observation model is expressed as:

nH                                                            (1.1)

In this formulation, n represents an additive perturbation usually taken to be a zero mean
Gaussian white noise. H is a point spread function (PSF) matrix of the imaging system.
Sometimes however, the degradation involves a nonlinear transformation and a multiplicative
noise. The problem of restoring x is then much more difficult. In model (1.1), matrix H and
the statistical characteristics of the noise n are implicitly assumed to be known. But this
assumption is not always fulfilled, and these quantities may also have to be estimated.
Techniques used for image restoration require the modeling of the degradation; usually blur
and noise and the image itself, then apply an inverse procedure to obtain an estimation of the
original image.

Classical direct approaches to solving equation (1.1) have dealt with finding an estimate
which minimizes the norm:

2
̂ H                                     (1.2)

leading to the least squares solution:

 tt HHH ˆ)(                                                       (1.3)

This solution is usually unacceptable since H is most often ill conditioned. The critical issue
that arises is that of noise amplification. This is due to the fact that the spectral properties of
the noise are not taken into account. Indeed, it can be shown that the solution can be written in
the discrete frequency domain as:

2
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                                                      (1.4)



Where )(ˆ

lX , )(ˆ


lH , and )(ˆ


lY denote the DFT of the restored image, ),(ˆ jiX , the PSF, h(i,j), and

the observed image, Y(i,j), as a function of the 2-D discrete frequency index

l , where

),( 21 kkl 


  for k1, k2 = 0, …, N-1, for an N x N point DFT, and * denotes complex

conjugate. Clearly, for frequencies at which )(ˆ

lH  becomes very small, division by it results in

amplification of the noise. Assuming that the degradation is low pass, the small values of
)(ˆ

lH are found at high frequencies, where the noise is dominant over the image. The noise

component amplification exceeds any acceptable level.

In mathematical terms, image restoration is an ill-posed inverse problem. A problem is well-
posed when its solution exists, is unique and depends continuously on the observed data.
These are the so-called Hadamard conditions for a problem to be well posed [4]-[6]. Quite
often in image restoration, no unique solution is available since many feasible solutions exist.
In addition, image restoration is almost always ill-conditioned as shown above. It is
interesting to note that the extent of the PSF has an effect on the severity of the ill-
conditioning.

The ill conditioning is a direct consequence of the ill-posedness of the initial continuous data
problem which is approximated by equation (1.1). In the restoration problem, the image is a
convolution integral:

 
D

rddrrrXrsrshssY ),(),(),(                                       (1.5)

The kernel of this integral equation h is the 2-D impulse response or PSF of the imaging
system. Since the data are erroneous or noisy, we cannot expect to solve this equation exactly
and the true solution must be approximated in some sense.

The key idea is regularization. Obtaining the true solution from imperfect data is impossible.
When regularizing the problem, it reduces to define a class of admissible solutions ̂ :

 bH  :ˆ                                       (1.6)

among which an acceptable solution must be sought. The means is that to include some a
priori information besides the information provided by the observed data.

1.3.   MEASURE OF IMAGE RESTORATION QUALITY
1.3.1. STANDARD METRICS

In most image restoration studies, the degradation modeled by blurring and additive noise
is referred to in terms of a metric called the Signal-to-Noise Ration (SNR), defined as:

 
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for an M x N image, where  and  are the original image and its mean value respectively.

In applications of image restoration, image quality usually refers to the image’s fidelity to its
original. To measure the image restoration quality thus means to measure the amount of



improvement in image quality due to restoration. By far the most popular quantitative
measures of image restoration quality are the Improvement in Signal-to-Noise Ratio (ISNR),
the Mean Squared Error (MSE) and the Peak Signal-to-Noise Ratio (PSNR) metrics, which
are defined as:

 

 



























ji

ji

jiXjiX

jiYjiX

ISNR

,

2

,

2

10
),(ˆ),(

),(),(

log.10
                                    (1.8)

  







 

ji

jiXjiX
NM

MSE
,

2
),(ˆ),(

1                                             (1.9)














MSE

MAX
PSNR p

2

10log.10                             (1.10)

where X, Y and X̂ are the original image, the degraded image and the restored image
respectively. MAXp is the maximum pixel value of the image. When the pixels are represented
using 8 bits per sample, this is 255. More generally, when samples are represented using
linear PCM with B bits per sample, maximum possible value of MAXp is 2B-1. Obviously,
these metrics can only be used for simulation cases when the original image is available.
While MSE, PSNR and ISNR do not always reflect the perceptual properties of the human
visual system, they serve to provide an objective standard by which to compare different
techniques. When the image restoration quality is measured with two different metrics, three
important aspects are considered in a comparative evaluation of the two measures: accuracy,
precision and meaning of the measurement.

1.3.2. ACCURACY OF THE MEASURE

An accurate measure of image restoration quality should closely mirror the subjective
judgment made by human observers. However, there exists no clear definition of image
quality and an ‘absolutely’ accurate measure of image quality is still not yet available in the
field.

1.3.3. PRECISION OF THE MEASURE

Precision is an expression of relative smallness of variability within the measuring process.
Suppose a set of similar distorted images of same type of blur and with same amount of noise
images were restored by the same restoration operator. A high precision measure of image
restoration quality, when applied to these restored images, should produce a set of
measurements of small spread. The smaller the spread of the measurements, the more precise
will be the measure.

1.3.4. MEANING OF MEASUREMENT

In (1.8), for example, the SNR improvement (ISNR) is defined as the difference between
SNRs of the images before and after restoration. A positive SNR improvement indicates that
the quality of distorted image is improved, while a negative one indicates deterioration. The
zero value of the SNR improvement indicates there is neither improvement nor deterioration.
However, when two different restoration methods are compared with each other by means of
the SNR improvement, it only reveals which method is better.



1.4.   LITTERATURE SURVEY
1.4.1. CLASSICAL IMAGE RESTORATION TECHNIQUES
1.4.1.1. Direct Regularized Restoration Approaches

Numerous methods have been proposed for solving and regularizing equation (1.1). When
considering the direct restoration approaches, one can use either a stochastic or a
deterministic model for the original image,  . In both cases, the model represents prior

information about the solution which can be used to make the problem well-posed.

The stochastic regularization is based upon statistical considerations of the images and noise
as stochastic or random processes. If the only random process involved is the additive noise,
n, then solving for the minimum mean squared estimate of 

 2ˆmin E                     (1.11)

will be called the regression problem. If the image   is also considered as a random image,

subject to knowledge of  T
xx ER  , which is the covariance matrix of  , and

 T
nn nnER  , which is the covariance matrix of the noise, then the problem will be referred to

a Wiener estimation [7]. In this case, the linear estimate which minimizes equation (1.11) is
given by:

 1)(ˆ  nn
T
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T

xx RHRHHR                     (1.12)

By assuming block circulant structures for each of the matrices in (1.12), it can be rewritten
and solved in the discrete frequency domain leading to the Fourier implementation of the
Wiener filter. There are several methods that may be used to estimate the statistics required
for implementing the Wiener filter. They can be separated into parametric and nonparametric
approaches. Examples of techniques which fit into this framework can be found in [8]-[13].

The regression and Wiener estimation models are excellent restoration solutions for stationary
random processes imaging situations. For imaging situations for which these assumptions are
not appropriate, a variety of more advanced stochastic restoration solutions are available that
are based upon estimation and decision theory concepts.

The deterministic regularization methods seek an estimate of   that minimizes a predefined

criterion of performance. Because of their simplicity, the least squares criterion functions
have been often used leading to several well-known restoration methods. These methods are
the result of considering either an unconstrained or a constrained approach to the least squares
restoration problem.

The least squares solution is the minimizer of the total energy of residual error between the
actual observed data y and the observed response, using the approximate solution ̂ in the
absence of any knowledge about noise. In other words, we want to find an ̂ such that:

22 ̂ Hn                                                         (1.13)

Aside of the requirement that it minimizes equation (9), ̂  is not constrained in any other
way. The least squares solution is given by:

 1ˆ  H                                                     (1.14)



In general, this solution, although unbiased, is rejected since the true image is expected to be
significantly smoother. Thus, some infidelity to the data must be introduced in order to obtain
a smoother solution. Constrained least squares (CLS) restoration can be formulated by
choosing an x̂  to minimize the Lagrangian

 22 ˆˆmin  CH                                                    (1.15)

where the term ̂C  generally represents a high pass filtered version of the image ̂ . This is

essentially a smoothness constraint. Use of C operator provides an alternative way to reduce
the effects of the small singular values of H, occurring at high frequencies, while leaving the
larger ones unchanged. This approach introduces considerable flexibility in the restoration
process because it yields different solutions for different choices of C. One typical choice of C
is the 2-D Laplacian operator described in [14]. α Represents the Lagrange multiplier,
commonly referred to as the regularization parameter, which controls the trade-off between
fidelity to the data (as expressed by the term 2̂ H ) and smoothness of the solution (as

expressed by 2̂C ). The minimization in equation (1.15) leads to a solution of the form:

 TTT HCCHH 1)(ˆ                                            (1.16)

This may also be solved directly in the discrete frequency domain when block-circulant
assumptions are used. The critical issue in the application of equation (1.16) is the choice of
α. This problem has been investigated in a number of studies [15]. Several variants of the CLS
restoration can be found, for example, in [16]-[22] and the references therein.

1.4.1.2.   Iterative Approaches
Iterative reconstruction algorithms have been widely used in computational imaging

applications. They are advantageous in that:

 there is no need to explicitly implement the inverse of an operator;
 the process may be monitored as it progresses and additional regularization may be

obtained by terminating the iteration before convergence;
 the effect of noise may be controlled with certain constraints;
 spatial adaptivity may be introduced;
 and the parameters determining the solution can be updated as the iteration proceeds.

The main disadvantage of iterative algorithms is their heavy computational burden. However,
with the advance of high-performance computing technology, this is becoming a less serious
hurdle.

There are many different iterative reconstruction algorithms. Among the first used are the
sequential block iterative (SeqBI) algorithms that have been improved by the simultaneous
block iterative (SimBI) algorithms ([23]-[31] and the references therein). All SimBI
algorithms can be regarded as special cases of the general form, expressed in matrix-vector
notations:

)(11 k
T

kkk HQHP                                                  (1.17)

where TH is the conjugate transpose of H , P and Q are positive definite matrices and
1n is a

positive scalar called the relaxation coefficient or the step size. Oftentimes  1n
is a

constant, but it does not have to be.



More recently, one of the most basic of deterministic iterative techniques, that is widely used
in various applications, considers solving

 TTT HCCHH  )(                                   (1.18)

with the method of successive approximations [32]. This leads to the following iteration for x:
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This iteration is often referred to as the iterative CLS or Tikhonov-Miller method (see for
example [32]-[38] and the references therein), depending on the way the regularization
parameter α is computed. Obviously, if the matrices H and C are block circulant, the iteration
in equation (1.19) can be implemented in the discrete frequency domain. The termination
criterion most frequently used compares at each iteration the normalized changes in energy to
a threshold such as:
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The choice of the regularization parameter, α, is still an issue with this approach, and it may
be computed in a direct or iterative manner. There are other deterministic techniques which
can be used to perform iterative restoration as well. For example, the deterministic approach
described above can be generalized to form an iterative method called projections onto
convex sets, or POCS, in which any number of prior constraints on a solution can be imposed
as long as the constraint sets are closed convex [39]. POCS has been used very successfully in
both deterministic and stochastic based image recovery techniques [40]-[44]. Other stochastic
approaches also lead to iterative restoration techniques including in particular maximum
likelihood solutions [45]-[49], various formulations of the Expectation-Maximization (EM)
algorithm for image and blur identification and restoration [50]-[52] and the iterative Wiener
filter [53]-[55].

1.4.1.3   Recursive Approaches
Recursive filtering operations usually require less memory for storage than the direct or

iterative methods when reduced order models are used. The recursive equivalent of the
Wiener filter is the discrete Kalman filter [56]-[58].

In the state space representation, the Kalman filter addresses the problem of estimating an
image distorted by noise that is governed by the linear stochastic difference equation

),()1,(),( jiwjiXjiX                                    (1.21)

with a measurement that is

),(),(),( jivjiXHjiY                           (1.22)

The random variables w and v represent the process and measurement noise (respectively).
They are assumed to be independent (of each other), zero Gaussian processes with

][ T
ww wwER   and ][ T

vv vvER  .   is the prediction matrix.

The Kalman filter estimates a process by using a form of feedback control: the filter estimates
the process state at some time and then obtains feedback in the form of (noisy) measurements.



As such, the equations for the Kalman filter fall into two groups: time update equations (or
predictor equations) and measurement update equations (or corrector equations). The time
update equations are responsible for projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, i.e. for incorporating a new measurement
into the a priori estimate to obtain an improved a posteriori estimate. The prediction and
update terms for the Kalman filter are simply:

Prediction equations:

)1,(ˆ),(ˆ  jiXjiX                             (1.23)
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Measurements update equations:

)],(ˆ),([),(),(ˆ),(ˆ jiXHjiYjiKjiXjiX                                      (1.25)

),(]),([),( jiPHjiKjiP                       (1.26)

1]),([),(),(   vv
TT RHjiPHHjiPjiK                                      (1.27)

However, different models of Kalman filter have been developed as heuristic tools with
different motivations [59]-[62]. Recall that there are other techniques which can be used to
perform recursive restoration as well [63].

1.4.2. NEW IMAGE RESTORATION TECHNIQUES

The algorithms presented in the previous section represent the foundation of the
approaches to the restoration problem today. They are successful approaches and they have
been applied to many different image restoration problems. However, most of these
algorithms deal with some global assumptions about the behavior of an image, which are at
the origin of the two most prevalent restoration artifacts: ringing around the edges, and
filtered noise causing false texturing in the flat regions of the image.

As we move into the different phases of research in this field, much progress has been made
in the last two decades. Newer successful techniques which address the problem with the
same assumptions as in the classical approaches include the use of robust functionals and total
least squares. However, spatially adaptive or non-stationary approaches have also been
developed to alleviate some of the problems associated with such rigid global restrictions.

1.4.2.1   Spatially Adaptive Approaches
Spatially adaptive algorithms frequently incorporate the properties of the human visual

system [64]-[76]. Because the visual system is sensitive to sharp changes in an image, it is not
desirable to smooth over the edges when performing restoration. Therefore, the application of
a different restoration filter at each spatial location is desirable.

An iterative algorithm is generally employed in the case of spatially adaptive restoration, and
the spatial adaptivity can be achieved with the use of weight matrices. These can be kept
fixed, or be adapted at each iteration step based on the partially restored image.



Recursive methods can accommodate spatial adptivity when using a stochastic model of the
image, by changing the parameters of the model at the edges. The multiple model approach
can also lead to a reduction in ringing artifacts around the edges in a restored image.

Maximum a posteriori (MAP) probability methods have also been investigated in great detail
for non-stationary image restoration. These methods utilize space-variant density function as
prior knowledge to capture the non-stationarity of the original image with Gibbs- Markov
random field (MRF) models as powerful and robust descriptors of the spatial information. A
rapid overview on the methods which fall under the Bayesian framework will be given in a
subsection bellow.

1.4.2.2. Color and Multichannel Image Restoration
The problem of color image restoration presents a unique difficulty in that the multiple

color channels are related. Thus, cross-channel correlations need to be exploited in order to
achieve optimal restoration results. A number of approaches have been used to handle not
only the color multichannel image restoration problem, but also other inherent multichannel
problems such as image sequence restoration and multispectral remote sensing image
restoration, see for example [77]-[91].

1.4.2.3.   Astronomical Image Restoration
The first encounters with digital image restoration in the engineering community were in

the area of astronomical imaging. Indeed, ground-based imaging systems were often subject
to one or another of the two following forms of noise: a blurring due to the rapidly changing
index of refraction of the atmosphere, and a motion blur resulting from slow camera shutter
speeds relative to rapid spacecraft motion. Iterative approaches are found to be well-suited at
restoring astronomical data, in particular entropy-based methods [92], modified Richardson-
Lucy iterative approaches [93], [94], regularized iterative constrained least-squares techniques
[95] and Bayesian approaches [96].

1.4.2.4.   Neural Networks and Restoration
Neural networks may be used to realize well-known algorithms without the need for

extensive underlying assumptions about the distribution of the parameters being estimated.
They may also be used to estimate the regularization parameter in the CLS approach, and can
be developed to alternate between learning and restoration cycles. In addition, neural
processing techniques have led to efficient VLSI architectures for image restoration due to
their highly parallel nature, see for example [97]-[101].

1.4.2.5.   Wavelets in Restoration
Past adaptive restoration techniques have examined the problem in the spatial domain,

using various local measures to describe the type of activity near a pixel. However, many
regularized image restoration algorithms result in edge smoothness of the restored image. The
use of wavelet based method greatly improves this condition.

The wavelet transform is a time-frequency representation which has good localization in both
domains. The good performance of wavelet-based denoising is intimately related to the
approximation capabilities of wavelets. The wavelet transforms of images tend to be sparse
(i.e., many coefficients are close to zero) and the noise is uniformly spread throughout the
coefficients, while most of the image information is concentrated in the few largest ones. This
implies that image approximations based on a small subset of wavelets are typically very
accurate. A number of researchers have investigated the restoration and recovery problems



from the subband/multiresolution perspective, see for example [102]-[112] and the references
therein.

1.4.2.6.  Blur Identification
Most classical techniques assume that the convolution operator representing the blur is

known a priori. This, however, is almost never the case in practical imaging situations, thus,
the area of blur identification, or blind deconvolution, is a very important subset of image
restoration in which much important work has been performed.

Existing blind restoration methods can be categorized into two main classes: the first includes
a large group of methods, which require estimating the PSF as a prerequisite stage to the
image restoration process. In this approach, estimating the PSF and calculating the true image
are disjoint procedures, such as zero sheet separation [113], generalized cross validation
(GCV) [1114], and maximum likelihood and expectation maximization (ML-EM) [115] based
on the ARMA image model; the second incorporates the PSF identification procedure within
the restoration algorithm, via simultaneously estimating the PSF and the original image, such
as nonnegative and support constraints recursive inverse filtering (NAS-RIF) [116],
maximum likelihood and conjugate gradient minimization (ML-CGM) [117], ML-EM [118],
and simulated annealing (SA) [119]. There are also several other emerging techniques that
have been used to address this identification problem, see for example [120]-[126] and the
references therein.

1.5. SUMMARY
In this rapid and inevitably superficial survey, we have mentioned many approaches for

solving the restoration problem that have been proposed for different applications. In the same
way, there are many other applications in today’s world that make ready use of image
restoration techniques. Some of the most interesting of these lie in the areas of medical
imaging [127]-[129], motion restoration [130]-[132], image and video coding [133], [134],
digital restoration of films [135], digital consumer products, optics, geophysics, defense
oriented applications, printing applications that require the use of restoration to ensure
halftone reproductions of continuous images to be of high quality, etc .

In spite of their apparent variety, image restoration methods have a common estimation
structure. This can be summed up in a single word: regularization. In addition, most image
restoration and estimation methods present some common practical limitations. The most
sophisticated methods require the use of several tuning parameters (referred to as
hyperparameters) which should be estimated from the data. Methods are available to perform
this task.  Some of them are reputed to give correct results, others not.

Though more complex than classical approaches, newer techniques, in particular spatially
varying restoration methods such as those based on MRFs [136]-[228] and wavelets
modeling, allow an improvement in the description of an image with the use of more
complete models. Computational and methodological complexity has, thus, to be balanced
against the quality of results, depending on the reliability for a given application.



Chapter 2

CONTEXTUAL POST-RECONSTRUCTION OF
CLOUD-CONTAMINATED IMAGES

2.1.   INTRODUCTION
Images acquired from passive sensors are often subject to cloud contamination whose

extent varies depending on the season and the geographic area. For example, only 40% of the
Brazilian Amazon basin has a good probability (>90%) of one image with less than 10%
cloud contamination [229]. In some of the Canadian coastal regions there are areas where the
probability of acquiring one satellite scene with less than 10% cloud cover during July and
August is less than 20% [230]. In fact, approximately 50% of the earth’s surface is obscured
by clouds on any given day [231].

Cloud obscuration presents a major impediment to the effective use of passive remotely
sensed imagery. Cloud occurrence distorts or completely obscures the spectral response of
land covers, which contributes to difficulties in understanding scene content. Therefore, a
cloud removal task is needed as the primary important step to recover the missing
measurements.

The cloud removal process usually begins with the cloud detection procedure. In general, the
objective of detection is simply identification of pixels within the image in which the cloud
optical depth is greater than a specified threshold. This is, practically speaking, a necessary
prerequisite for characterization, in which the basic cloud properties (optical depth, altitude,
etc.) are retrieved.



Remote sensing image data typically contain an enormous amount of information. Image
processing, in particular segmentation and boundary extraction, play a vital role in the
extraction of spatial information associated to the content of these images. Accurate cloud
detection in satellite scenes consists of discriminating between clouds and the land surface. It
usually involves two basic steps: 1) segment the scene into natural groups (e.g., cloud versus
land versus ocean); and 2) label each segment correctly. These two steps can be combined
into a single step as is done in simple thresholding approaches [232]. In recent years,
considerable research has been focused on this area resulting in the development of two major
classes of cloud detection/ classification methods: spectral-based and textural-based
algorithms.

The first class utilizes the information on the cloud radiances in different spectral bands.
Some of the most commonly used methods in this category include threshold-based
techniques and clustering approach. Most of the algorithms developed before made use of
visible/near-infrared static spectral thresholds to detect cloud according to the characteristic of
cloud with high reflectance and low temperature [233]. The accuracy of a static threshold,
however, is affected by changes in atmospheric water vapor, aerosol type and concentration,
and seasonal and inter-annual variations in surface reflectivity and emissivity which affect the
albedo and brightness temperatures observed by the sensor. In fact, a static threshold which
accurately screens a satellite scene at a given location often will fail for a different time of
year at the same location [234]. Unlike the thresholding of non satellite images for which the
thresholds are simply related to the pixels intensities [235]-[237], the thresholds of cloud
detection are strongly related to time, region and sensor (sun elevation) [238]. Consequently,
a more advantageous way has been developed for multispectral cloud detection and
processing. Variants of this method combine several thresholds on different radiance channels
[239] or threshold the differences between channel radiances [240].

The second category uses textural-based methods to classify the data based on the
characteristics of spatial distribution of gray levels corresponding to a region/block within the
image. Most of the textural-based cloud detection classification methods, in the past used
statistical measures to characterize the textural features such as Gray-level Co-occurrence
Matrix (GLCM), Gray-level Difference Matrix (GLDM), Gray-level Difference Vector
(GLDV) and Sum And Difference Histogram (SADH) [241],[242]. Recently, new texture
analysis schemes based on the Gabor Transform, Wavelet Transform and Neural Network
have been developed which not only extract the salient features of the data efficiently but also
reduce the dimensionality of the data to a manageable size [243].

2.2.   CLOUD REMOVAL TECHNIQUES
To enhance the difference between cloud and land surface, people adopt many methods to

remove cloud. In the remote sensing field scarce attention has been paid to the specific
problem of cloud removal [244].

Among the earliest attempts at removing cloud cover from the passive remotely sensed
imagery, one can find the simple NASA compositing technique [245] which consists of
selecting the optimal pixel (the most cloud-free pixel) with maximum NDVI (Normalized
Difference Vegetation Index) among a set of data acquired at the same location over a limited
time period. The main drawbacks of this technique are three: 1) it requires a high temporal
resolution acquisition over a short time period; 2) it loses temporal resolution over the
considered time period; and 3) it is not effective in persistent cloud cover areas. Recently, in
developing a compositing methodology specifically designed for the humid tropics [246], the



blue band was used in place of the red band of the normal NDVI equation in [245]. The new
NDBI (Normalized Difference Blue Index) technique provides compositing result with
considerably less speckle, but slightly blurred.

In another compositing method [247], the pixel with maximum brightness temperature has
been selected as the optimal pixel under the assumption that clouds tend to decrease the
apparent surface temperature and higher surface temperature should be measured for pixels
with lower atmospheric attenuation. The algorithm can lead to avoid clouds and cloud
shadows.

In [248] the compositing method performs into two steps. First, among candidates, a pixel is
retained if the corresponding NDVI is greater than a predetermined threshold, which indicates
the variation that the NDVI depends upon sensor scan angles. Second, the pixel with
minimum scan angle among retained pixels is selected as the optimal. The second condition
shows a preference for pixels of near-nadir acquisition geometry with high spatial resolution.
The threshold was established by trial and error and varies for areas variations.

In the algorithm of [249], the optimal pixel is selected to minimize a discriminant equation of
composite. The algorithm was found to be limited to satellite zenith angle. Based on
assessment of the algorithms in [245]-[249], a new hybrid algorithm was devised in [250].
Among 10 days time series AVHRR/HRPT data of four seasons, the optimal pixel was
selected by the following steps:

1) Pixel k is retained among candidates if the difference between the maximum
brightness temperature collected from channel 4 and the brightness temperature of
pixel k, collected from channel 4, is less than 12 [centigrade units];

2) Pixels are retained among the retained pixels by step 1, if the corresponding NDVIs
are greater than a predetermined threshold;

3) Finally pixel with minimum scan angle over the retained pixels by step 2 is selected as
the optimal pixel. The method has proved to be superior to the four previous ones;
however it is sensor dependant besides the limitation to the Asian region.

The SSM/I radiometer, like optical sensors, is sensitive to the presence of cloud cover and
precipitation, which lower the observed brightness temperature and may confuse the
measurements with some surface features like rivers or lakes. Several algorithms, like the
second highest (SH) [251] and the modified maximum average (MMA) [252], have been
developed to remove cloud effects from SSM/I images. Both algorithms aim at producing a
composite cloud-free image from a sequence of SSM/I images acquired over a short time
period. While the former is based on the idea of representing each image pixel by the second
highest value in the considered vector of multitemporal measurements as an alternative to the
mean or the median values, the latter removes cloud noise by averaging only part of the
measurements contained in the vector. Selection of the MMA subset of measurements is
carried out by considering all the measurements above the vector mean except the one with
the highest value. In [159], authors show that an hybrid algorithm that implements MMA in
the presence of clouds and averages the measurements in their absence, can significantly
improve the quality of the composite image compared to the MMA and the SH algorithms. A
further improvement of the algorithms has been achieved in [253], with the development of
new alternative heuristics for cloud removal specifically for 85 GHz SSM/I data. Higher
accuracy result can be obtained.

Unlike traditional interpolation methods, the authors in [254] tried to take full advantage of
the spatial information in the image to perform a geostatistical interpolation for predicting



obscured pixel values by cloud cover. The method is limited by the spatial distribution and the
optical depth of clouds.

In [255], a robust method termed Haze Optimized transformation (HOT) was developed for
the detection and characterization of Haze/Cloud spatial distribution in Landsat scenes. The
transformation quantifies the perpendicular displacement of a pixel from a clear line, which is
derived from a spectral analysis of a visible band-space. The transformed image has good
quality for diverse surface cover and atmospheric characteristics. However, thick clouds still
obscure the scene.

In [256] a mathematically well founded method was proposed to remove the distortions
caused by a particular kind of clouds from visible channels, namely cirrus clouds usually
found above the 10-Km altitude. The authors base their method on the fact that the
measurements acquired at the 1.38-μm band are essentially due to cirrus reflectance
attenuated by the absorption of water vapor contained in the uppermost layer of the
atmosphere (above cirrus clouds), and develop a mathematical model for correcting those
attenuation effects. They exploit this result to derive and then remove the true cirrus cloud
reflectance from contaminated measurements in visible channels. This interesting method was
assessed successfully on data acquired by two different hyperspectral sensors: the Moderate
Resolution Imaging Spectroradiometer (MODIS) and the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS).sensors.

In [257], authors tried to improve the traditional homomorphism filtering method [258] for
cloud removal. Instead of the filtering in the frequency field, the new algorithm isolates the
low frequency component of the image representing the cloud information with calculating a
neighbourhood average in the spatial field.

In [259], an ecosystem classification-dependent temporal interpolation technique is proposed
for reconstructing surface reflectance for MODIS data. It is based on the computation of
pixel-level and regional ecosystem-dependent phonological curves. Missing temporal data
associated with a given pixel are reconstructed from the most appropriate curve among the
available pixel-level and regional curves.

A new strategy for making nearly cloud-free image mosaics is that described in [260]. The
cloud removal process is carried out in two steps. Firstly, the pixel value of a cloud/cloud
shadow contaminated pixel in the reference scene is predicted from other scene dates using a
regression tree model. Secondly, a correction based histogram matching to adjacent scenes is
then applied to compensate for the apparition of the visible seam-lines. While effective, thick
clouds still remain.

In [261], authors have addressed the problem of restoring the contrast of atmospherically
degraded images and video. They presented a physics-based model [262] that describes the
appearances of scenes in uniform bad weather conditions. In the considered model, changes in
intensities of scene points under different weather conditions provide simple constraints to
detect depth discontinuities in the scene and also to compute scene structure. Depending on
the scenes structures, either depth segmentation method (regions within closed contours of
depth edges) or scene structure method (scaled depths) may appear more valuable. This
weather removal algorithm does not require any a priori scene structure, distribution of scene
reflectance, or detailed knowledge about the particular weather condition. Both of the two
methods are effective under a wide range of weather conditions including haze, mist, fog and
conditions arising due to other aerosols. Although the entire analysis was presented for



monochrome images, however the methods can be applied to gray scale, RGB color,
multispectral and IR images.

2.3.   PROBLEM FORMULATION
In [244], two general methods for the reconstruction of cloud-contaminated areas in a

sequence of multitemporal multispectral images acquired over the same geographical area
have been introduced. The methods were based on the assumptions that spectral
nonstationarity is allowed, while the spatial structure should be almost identical over the
considered multitemporal multispectral sequence. Given a contaminated image of the
sequence, each area of missing measurements (i.e., cloudy or shadowed area) can be
recovered by means of a contextual prediction process that reproduces the local spectro-
temporal relationships. These are deduced from the cloud-free areas in the spatial
neighborhood of the contaminated region over the series of temporal images available. In the
first method, called the contextual multiple linear prediction (CMLP), the contextual
prediction is implemented by an ensemble of linear predictors, each trained in an
unsupervised way over a local temporal region that is spectrally homogeneous in each
temporal image of the sequence. In order to obtain such regions, each temporal image is
locally classified in an unsupervised way by the expectation-maximization (EM) algorithm
assuming that the data classes are Gaussian. In the second method, namely the contextual
nonlinear prediction (CNP), the local spectrotemporal relationships are reproduced by a single
nonlinear predictor based on the support vector machine approach (SVM) [263],[264].

Though these contextual reconstruction approaches allow to face some general issues raised
by the methods proposed in the literature (such as sensor, ground-cover type, and cloud type
dependences) and has proved promising, they still do not fully exploit all available
information and thus leave room for further methodological improvement. The first
improvement derives from the fact that the prediction systems do not use spatial information,
whose integration in an image processing scheme can prove valuable as shown in other
applications [265],[266]. The second is related to the problem that the CMLP and the CNP
processes are carried out independently for each channel of the sequence without exploiting
the inter-channel correlation potential. In this study, we introduce enhanced and post-
reconstruction methodologies that address both issues.

2.4.   PROPOSED SOLUTIONS
Let us consider a sequence of N-channel images acquired and registered over the same

geographical area by an optical sensor at T different dates, )(i
bX  (  TSi ,...,2,1 and

 NBb ,...,2,1 ). The specific problem of the detection of clouds is not dealt within this

study. Accordingly, we assume that the original sequence of images has first been processed
to generate a sequence of cloud/no cloud classification maps by using an automatic cloud-
masking method or simply by photo-interpretation. Let N(C) be a spatial area over a cloud-
contaminated image )(iX (iS) of the sequence such that CCCN )(  and CC , where

C  represents the considered cloudy area and C  stands for the cloud-free neighboring area.

Let )(i
bY  be the image reconstructed from )(i

bX  using the CMLP method. This work aims at

generating an improved reconstruction image Z i
b

)(  from )(i
bY  by opportunely capturing spatial

and spectral correlations characterizing the considered images. At this end, we propose as a
first method an improved prediction scheme that is:

 A multimodal prediction



Thereafter, we present two post-reconstruction methods which provide an improved version
of the CMLP reconstructed image:

 A residual based predictors post-reconstruction,
 A contextual spatio-spectral post-reconstruction,

2.4.1. SPECTRAL INFORMATION SOURCE

Its definition will mainly depend on both the used method and the availability or not of
some prior knowledge about which channels in the multitemporal multispectral sequence are
more suited to contribute to the improved or post-reconstruction of cloud-contaminated areas
in the bth channel at time (ti ).

2.4.2. SPATIAL INFORMATION SOURCE

Incorporation of the spatial information in the proposed methods aims at taking advantage
of the local properties between pixels in a predefined neighborhood system to further improve
reconstruction accuracy. For this purpose we shall consider the common first and second-
order spatial neighborhood systems (Fig. 2.1). The extension to larger neighborhood systems
only causes superfluous complexity of the description without any more benefit [267].

(a)    (b)

Fig. 2.1: Neighborhoods system. (a) First-order system. (b) Second-order system.

2.5.   MULTIMODAL PREDICTOR
The multimodal predictor is a global predictor, similar to the one described in [244], which

manipulates not only those temporal observations belonging to the channel to be predicted,
but all spectral bands available in the multitemporal sequence. In the multimodal prediction
scheme, the improved version Z i

b
)(  of )(i

bY  is defined as:
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where Φ[.] is a prediction function, and )(N  and )(N  represent spectral and spatial

information sources, respectively. SC is the subset of indexes corresponding to images X k
b

)(  (k

≠ i) that are cloud-free in the spatial area N (C).

2.5.1. SPECTRAL INFORMATION

It can be expressed as a vector stacking the contributing channels from the multitemporal
multispectral sequence:
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2.5.2. SPATIAL INFORMATION

The spatial model, (SM1), used is defined as a simple stacked vector of the neighboring
pixels:
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2.5.3. PREDICTION FUNCTION

Φ[.] is formulated as an explicit combination of its information components:
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where g[] is a global contextual prediction function that can be derived from both a linear
and non linear combination of the information components of the multitemporal multispectral
observations ),}{and(,)(

C

k

j SkbBjX  .

2.5.3.1.   Linear Prediction Model
Given a contextual multitemporal multispectral vector

 ),(),(
2

),(
1 ,,, vu

K
s

vu
s

vu
s xxxX   (K is the cardinality of SC), such that ),( vu

k
jx represents

the vector of pixels values depicted in the spatial model (SM1) from the jth channel at time tk

of the observation sequence, the linear prediction model can be written as:
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            (2.5)

where ),( vu
k
s stands for a vector of scalars weighting the contribution to the combination

(2.5) of all vector components in the neighborhood system. A simple way to find the weight
vectors is to solve the system (2.5) on the basis of the minimum square error pseudo-inverse
technique [268].

2.5.3.2.   Non linear Prediction Model – Prediction with SVM
In this case, the combination function g[] is carried out through a nonparametric model

based on the support vector machine (SVM) regression approach that has proved particularly
effective to deal with different complex regression problems.

Given training data   d
ii Niyx ,...,2,1,),( , in ε-SVM regression the goal is to find

a function f (x) that has at most ε deviation from the actually obtained targets yi for all the
training data, and at the same time is as flat as possible. This is achieved by non-linearly
mapping the data from the input patterns space to a higher dimensional feature space, i.e.,

)'(: ' dddd  . In this feature space, a linear function is constructed taking the form:

bxwxf  )(.)(  (2.6)



Flatness in (2.6) means that one seeks a small w. one way to ensure this is to solve the
following optimization problem:

Minimize
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where i  and 
i are the so-called slack variables introduced to account for samples that do

not lie in the ε-deviation tube. The constant C > 0 determines the trade-off between the
flatness of f and the amount up to which deviations larger than ε are tolerated.

Equivalently, one can solve the dual formulation of the above optimization problem through a
Lagrange functional, by introducing a dual set of variables:
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The final result is the flattest function written as:
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Where K( . , . ) is a kernel function, i  and 
i  are Lagrange multipliers. xi is the image of a

support vector in input space, i  and 
i  are the weight of a support vector in the feature

space and b is a bias. Note that only those training samples associated to nonzero weights are
called support vectors. The kernel is a function satisfying the Mercer’s condition [269].
Examples of common nonlinear admissible kernels are the polynomial and the Gaussian
kernel functions. For greater detail on ε-SVM see [270].

The non linear prediction is summarized through the following key steps:

Training Phase:
1) Adopt a spatio-spectral information model.

For each band )(i
bZ  at time ti,  (bB),

2) Collect the contextual training and validation samples from the area C  of the
multitemporal multispectral observations )(k

sX  (sΩ+ {b}, k ≠ i).
3) Collect the corresponding target values li

b
li

b xz ,)(,)(   (l=1, 2,..., Nt), where Nt refers to the

number of training and validation samples.
4) Train an ε-SVM post-predictor on the training set while tuning its parameters on the

validation samples.



Reconstruction Phase:
For each band )(i

bZ  at time ti, (bB), predict each contaminated observation in C by means of

the related SVM predictor.

2.6.   RESIDUAL BASED PREDICTION
A second solution we propose facing the problem at hand is to investigate the possible

validity of the Residual-Based Estimation (RBE) technique, used successfully in [271]-[273],
as a post-reconstruction process.

The RBE method consists, basically, in the combination of two estimators; the functional
estimator and the residual estimator. While the former provides an estimation model, the latter
accomplishes the task of estimating the residuals (errors) generated by the functional
estimator. A simple addition of the contribution of the two estimators is expected to offer a
more accurate estimation. Two structure models are considered in this study:

 A sequential system,
 A parallel system.

2.6.1. SEQUENTIAL RESIDUAL-BASED PREDICTOR (SRBP)
The SRBP system is shown in figure 2.2. Let lk

sx ,)(  (sΩ + {b}, kSC , l=1, 2,…, Nl ) be a

set of Nl contextual training vector samples, collected from the area C  in the multispectral
multitemporal observation images )(k

sX .  A corresponding target set ly  (l=1, 2,…, Nl ) is that

depicted from area C in the bth band )(i
bX  at time ti, to be predicted. The first estimator

(functional estimator) (Fig. 2.2a) provides an estimation model between the image )(i
bX  and

the observations )(k
sX  by means of a multimodal prediction process, described above, in which

the predictor learns from information available in the feature space. We note that the
prediction is applied over C and C  of the bth channel )(i

bX  to provide a full prediction )(ˆ i
bY  of

the considered image )(i
bX  (i.e., inside and outside the cloud-contaminated area). The second

estimator (residual estimator) is trained in a new feature space, defined by the contextual
vector samples fŷ (,f =1, 2,…, Nf ) collected from the area C in the estimate )(ˆ i

bY , to model in a

supervised way the error function associated with the functional estimator (Fig. 2.2a) and
defined as:
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i
b YX                                                        (2.12)

This modeling will be used to deduce the residuals ̂  that are generated by the functional

estimator in the contaminated area C. The final estimate of the desired bth band )(i
bZ  is given

by (Fig. 2.2b):
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Similarly to what was done for the multimodal predictor, [] is a contextual prediction
function which is carried out by using both linear and nonlinear regression methods, with

)(N  and )(N  as the spectral and spatial information sources respectively.

(a)

(b)

Fig.2.2: Block diagram of the SRBP system. (a) Training phase of the residual estimator.
(b) Estimation phase of the SRBP.

2.6.1.1 Spectral Information
The spectral information resumes to the single CMLP or CNP estimate bth channel )(ˆ i

bY .

2.6.1.2 Spatial Information
The spatial model, (SM1), used here is defined as:
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              (2.15)

 Linear Prediction Model

Under a linear regression model the residuals in the bth band are modeled by the
following linear combination:
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The scalar weights vectors ),( vu are calculated by solving the system (2.16) on the basis of
the minimum square error pseudo-inverse technique. Each contaminated observation in C is
then post-reconstructed by means of the equation (2.13).

 Non Linear Prediction Model

In this case, the residuals are estimated by means of the nonparametric model based on the
SVM regression approach which involves both training and post-reconstruction phases.

Algorithm:

1) Adopt a spatio-spectral information model.
For each image channel )(i

bZ  at time ti, (bB),

2) Predict each cloud-free observation )(ˆ i
bY  (.) in C  using either the CMLP or the CNP

method.



3) Compute the resulting reconstruction error )(i
b  (.) for each sample (u,v) of C by means

of equation (2.12).
4) Collect training and validation samples and their related error target values fromC .
5) Train an SVM predictor of the reconstruction errors on the training set while tuning its

parameters on the validation samples.
6) Predict each reconstruction error )(ˆ i

b (.) for each sample (u,v) of C by means of the

trained SVM predictor.
7) Post-predict each contaminated observation in C  by means of the equation (2.13).

2.6.2. PARALLEL RESIDUAL-BASED PREDICTOR (PRBP)
The PRBP system is that shown in Fig. 2.3. The functional estimator is exactly similar to

the one described in the SRBP system. The residual estimator (Fig. 2.3a), however, analyzes
and models in the same feature space (set lk

sx ,)(  (sΩ+{b}, kSC , l=1, 2,…, Nl ) from the area

C  in the multispectral multitemporal observations )(k
sX ) the error function associated with the

functional estimator and defined by the quantity (2.12). This analysis will serve, obviously, to
guess the residuals ̂  that are generated by the functional estimator in the contaminated area C

and consequently to post-predict each contaminated observation in C by means of the
equation (2.13), (Fig. 2.3b). This scheme can also be carried out by using both linear and
nonlinear regression methods incorporating spectral and spatial information sources.

2.6.2.1   Spectral Information
It is expressed as a vector stacking the contributing channels described in equation (2.2).

2.6.2.2   Spatial Information
The spatial model (SM1) used here is that described in equation (2.3).

 Linear Prediction Model

In this case, the residuals in the bth band are modeled by the same linear combination of
equation (2.5) such that:
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Obviously, the scalar weights vectors ),( vu
k
s are calculated by solving the system (2.17) on

the basis of the minimum square error pseudo-inverse technique.

 Non Linear Prediction Model

Similarly, the residuals here are estimated by means of the nonparametric model based on
the ε-SVM regression approach.



(a)

(b)

Fig.2.3: Block diagram of the PRBP system. (a) Training phase of the residual estimator.
(b) Estimation phase of the SRBP

Algorithm:

1) Adopt a spatio-spectral information model.

For each image channel )(i
bZ  at time ti, (bB),

2) Predict each cloud-free observation )(ˆ i
bY (.) in C  using either the CMLP or the CNP

method.
3) Compute the resulting reconstruction error )(i

b (.) for each sample (u,v) of C  by means of

equation (2.12).
4) Collect training and validation samples from the multitemporal multispectral observations

and their related error target values from C .
5) Train the SVM predictor of the reconstruction errors on the training set while tuning its

parameters on the validation samples.
6) Predict each reconstruction error )(ˆ i

b (.) for each sample (u,v) of C by means of the

trained SVM predictor.
7) Post-predict each contaminated observation in C by means of the equation (2.13).

2.7.   CONTEXTUAL SPATIO-SPECTRAL POST-RECONSTRUCTION
In this section, we introduce a post-reconstruction methodology that addresses the issues

stated previously in the formulation of the problem at hand, that is to say the incorporation of
both spatial and spectral information sources to get an improved reconstruction quality.
Moreover, as a third methodological improvement, we also propose facing a problem that has
not yet been addressed in the remote sensing literature, i.e. the generation of an error map
besides  the reconstructed images in order to provide the end-user with an indication about the
degree of reconstruction reliability associated with each reconstructed pixel [274],[275].

2.7.1. DESCRIPTION OF THE METHOD

Let )(i
bY  be the CMLP reconstructed image from )(i

bX  (Fig. 2.4). For notation simplicity, we

shall drop the superscript i. The contextual spatio-spectral post-reconstruction (CSSPR)



process aims at generating an improved reconstruction image
bZ  from

bY  by means of the

following formulation:
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where Θ[.] is a post-prediction function with )(N  and )(N  as spectral and spatial

information sources, respectively.

Fig.2.4: Block scheme of the whole contextual reconstruction process.

2.7.2. SPECTRAL INFORMATION

In general, it can be simply expressed as a vector stacking the contributing channels:

 }{and:),()),(( bBivuYvuYN ib  
                          (2.19)

2.7.3. SPATIAL INFORMATION

In this method, we shall investigate three different spatial models to analyze which of is
better adapted to our post-reconstruction problem. For all the three models, we shall make use
of the common second-order spatial neighborhood system.

As in the previous methods, the first spatial model (SM1) is defined as a simple stacked
vector of the neighboring pixels:
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The second model (SM2) is derived from the autobinomial model originally presented in
[276]:
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where the ’s express the weight of each spatial direction in the neighborhood system and G
denotes the maximum grey level value. On the one hand, SM2 presents the advantage that it is
more compact than SM1. On the other, it raises a weight estimation problem. We shall tackle
this issue by adopting the algorithm described in [174].

Finally, the third model (SM3) is based on the median-type predictor used for isolating
transmission errors in predictive coding [277]:
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This model seems attractive a priori since it is compact and parameter-free. We note that
compactness is a desirable property since it allows to limit the dimensionality of the space
where the prediction function Θ[.] will be defined.

2.7.4. PREDICTION FUNCTION

Similarly to what was done in the previous methods, Θ[.] is a post-prediction function
derived from a nonparametric model based on the ε-SVM regression approach.

2.7.5. ERROR MAP GENERATION

The unsupervised nature of cloud-contaminated image reconstruction problems makes it
difficult to provide the user with a result conveying a form of self-evaluation. The choice of a
reconstruction method is typically done on the basis of the accuracy it achieves on simulation
experiments. Thus the user is somewhat constrained to trust any result obtained for real
reconstruction scenarios by the selected method without any indication of its actual reliability.
In this work, an attempt to provide an answer to this issue is proposed. It relies on the idea of
providing the user with an error map associated with the (CSSPR) post-reconstruction result
so as to give an indication of the degree of reliability associated with each post-reconstructed
pixel. This map will thus accompany the post-reconstructed image in each of its applications.
During photo-interpretation or after automatic processing for thematic information extraction,
such as land cover/use classification and change detection, the user can decide whether or not
to discard an area that originates from a reconstruction process by consulting the error map. In
addition to a downstream use of the error map, reconstruction errors may be exploited



upstream by integrating them through a weighting mechanism within the thematic
information extraction process in order to improve its reliability.
To this purpose, we shall go round the unsupervised nature of the problem by exploiting
information available in C  to deduce in a supervised way a contextual error model that will
be used for guessing errors generated by the CSSPR process in C. In greater detail, first the
CSSPR method is applied over C and C  of each channel )(i

bY  (bB) to provide a full post-

reconstruction )(~ iZ  of the considered image )(iY  (i.e., inside and outside the cloud-

contaminated area). We note that )()(~ ii ZZ   in C, while )()(~ ii ZZ   in C , where )()( ii XZ  .
This step is important since it allows quantifying post-reconstruction errors in the cloud-free
region (C ) of the image by comparing each post-reconstructed pixel with its known true
value:
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where ),(
~

vuZb
 and Xb(u,v) are the post-reconstructed and original cloud-free pixels at the

(u,v)th location, respectively. The resulting contextual single-channel error maps are then
combined through an L2-norm operator to generate a single contextual L2-norm error map:
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
N

b
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1

2),(),(     ((u,v) C )                                   (2.25)

This contextual map aims at inferring by regression a contextual error model (for C ) that will
be used to approximate the errors generated in the cloud-contaminated area C. Similarly, we
shall adopt the SVM regression approach to predict contextual L2-norm errors as follows:
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),(ˆ 11 vuZNvuZvuZNvuZIvu NN                        (2.26)

2.7.6. ALGORITHMIC DESCRIPTION

The CSSPR post-reconstruction and error map generation processes (Fig.2.4) are
summarized through the following key steps:

Training Phase:
1) Adopt a spatio-spectral information model.
2) For each image channel

bZ  (bB),

Collect the contextual training and validation samples from the area C  of the images

aY  (a(b)+{b}) reconstructed with the CMLP method.

Collect the corresponding target values l
b

l
b xz   (l=1, 2,.., Nt), where Nt refers to the

number of training and validation samples.
Train an SVM post-predictor on the training set while tuning its parameters on the

validation samples.

Post-Reconstruction Phase:
For each image channel

bZ (bB), post-predict each contaminated observation in C by

means of the related SVM predictor.

Error Map Generation:
1) For each image channel

bZ  (bB),



Post-predict each (cloud-free) observation in C  using the previously trained post-
prediction model.

Compute the resulting contextual post-reconstruction error b() for each sample (u,v)
of C .

2) Using (2.25), compute the contextual L2-norm error () for each sample (u,v) of C .
3) Collect training and validation samples and their related L2-norm error target value

fromC .
4) Train an SVM predictor of the L2-norm errors on the training set while tuning its

parameters on the validation samples.
5) Generate the error map over C  by means of the trained SVM predictor.

2.8.   EXPERIMENTAL RESULTS
2.8.1 DATA SET DESCRIPTION AND EXPERIMENT DESIGN

In order to perform simulation experiments for the quantitative assessment of the proposed
methodologies, we considered the same images used in [151]. They represent a set of
multitemporal multispectral cloud-free images acquired with the Landsat-7 ETM+ sensor over
the Trentino area in Northern Italy in May, July and September 2000 (Figs. 2.5-2.6). The
main land covers characterizing these images include forest, grass, rock, urban areas, vineyard
and water. The three images exhibit a very similar spatial structure while some changes in the
spectral appearance of vegetated areas due to natural seasonal effects can be observed.

We made extensive tests on the data described above. The simulation experiments conducted
within the multimodal prediction and the residual based prediction methods aim at assessing
the post-reconstruction quality for a given image channel subject to a constant cloud
contamination conditions whereas the CSSPR algorithm uses for the same goal different
cloud contamination conditions including the typology of obscured ground cover and the size
of the contaminated area. In addition, in the CSSPR method a second set of computations is
conducted to assess the post-reconstruction performance over all channels of the image for a
given cloud-contamination simulation (that corresponding to the largest simulated cloud).

For the purpose of evaluating the contribution of the spectral and spatial contextual
information sources to the proposed processes, experiments were conducted exploiting them
jointly as well as separately. We note that both of the multimodal prediction and the residual
based prediction methods use only one spatial model, whereas the CSSPR method uses three
different ones. Similarly to what was done in [151], we adopted for the three methods the
following metrics for post-reconstruction accuracy evaluation: the mean square error (MSE)
and the error bias computed over the reconstructed area, in addition of the impact on the
classification process inside and outside the contaminated area for the CSSPR method.

The simulation of different cloud-contamination conditions was carried out by adopting two
groups of masks (Fig. 2.7). The first group includes masks (C1,2,3,4) whose positions were
selected in such a way as to simulate the obscuration of different kinds of ground covers. The
second (masks CA,B,C,D) was adopted to simulate increasing cloud cover sizes, varying from
3.2% (CA) to 48.6% (CD) of the total image size. In all the methods, the masking was applied
on the July image (assumed to be the cloud-contaminated image) while the May and
September images were used as cloud-free input images.

Finally, in all the methods the SVM regression approach was implemented with the nonlinear
Gaussian kernel.



2.8.2. PREVIOUS RESULTS

The methods described here are a follow up of the CMLP and CNP methods. As a starting
point, we will show in Fig.2.8 an example of a CMLP achieved reconstruction results for
Band 2 of the considered July subimage masked with (CD), the largest simulated cloud cover.

(a)       (b)

(c)        (d)

(e)        (f)

Fig.2.5: Cloud-free portion of the multispectral multitemporal sequence used in the simulations: band 2. a)
Original May subimage. b) Histogram of May subimage. c) Original July subimage. d) Histogram of July
subimage. e) Original September subimage. f) Histogram of September subimage.



(a)        (b)

(c)        (d)

(e)      (f)

Fig.2.6: Cloud-free portion of the multispectral multitemporal sequence used in the simulations: band 4. a)
Original May subimage. b) Histogram of May subimage. c) Original July subimage. d) Histogram of July
subimage. e) Original September subimage. f) Histogram of September subimage.

Fig.2.7:  Masks adopted to simulate different cloud contaminations.



(a)         (b)

(c)       (d)

(e)       (f)

(g)      (h)



(i)      (j)

(k)       (l)

(m)       (n)

(o)     (p)

Fig.2.8: CMLP reconstruction results obtained after contamination with the largest simulated cloud CD of
channel 2 of the July image. (a) Original July subimage. b) Histogram of original image. (c) CMLP
reconstructed image inside the cloud CD. (d) Histogram of image in (c). (e) Reconstructed image inside and
outside cloud CD . (f) ) Histogram of image in (e). (f) Histogram of image in (e). (g) Difference image between
images (a) and (c). (h) Histogram of prediction error in (g). (i) Difference image between images (a) and (e). (j)
Histogram of image in (i). (k) Original masked area. (l) Histogram of the original masked area. (m)
Reconstructed masked area. (n) Histogram of the reconstructed masked area. (o) Scatter of the reconstruction
errors versus the predicted pixels inside the cloud. (p) Scatter of the reconstruction errors versus the original
pixels inside the cloud.



2.8.3. MULTIMODAL PREDICTION SIMULATIONS

Table 2.1 shows the quantitative results of the linear multimodal prediction (LMP),
obtained on channels 1, 2 and 3 masked by the largest cloud cover mask CD which represents
48.6% of the total image size. Depending on the kind of used information, different variants
of the method were applied to reconstruct each of the three channels. The obtained gains of
MSE and bias are reported with respect to the CMLP method. From the results, we see that
the lowest gains in terms of MSE are those obtained when exploiting only the spectral
information (-8.6% for band 1, 1.7% for band 2 and -1.4% for Band 3). In comparison, the
gains are higher when using solely the spatial information (14.1% for band 1, 5.4% for band 2
and 14.0% for Band 3). The fusion of both information sources allows better results further
(18.9% for band 1, 22.8% for band 2 and 17.2% for Band 3). The gains in terms of bias,
however, vary inversely such that they are the lowest when incorporating only the spatial
information (44.1% for band 1, -62.9% for band 2 and -32.0% for Band 3) and increase
significantly while using the spectral information separately (83.0% for band 1, 81.1% for
band 2 and 72.8% for Band 3). As for the MSE gains, the best results are obtained with the
fusion of both information sources (99.8% for band 1, 59.6% for band 2 and 76.9% for Band
3). Figs. 2.9-2.11 display an example of achieved reconstruction of channels 1, 2 and 3
respectively, using both spatial and spectral information sources.

As for the linear prediction model, Table 2.2 shows the quantitative results of the nonlinear
multimodal prediction (NMP) obtained on channels 1, 2 and 3 under the same contamination
conditions and for different variants of the method, depending on the used information source.
Obviously, the obtained gains of MSE and bias are reported with respect to the CNP method.
The results confirm that the spatial-based method produces MSE gains superior to the
spectral-based method (17.0% vs. 0,7% for band 1, 20,9% vs. 17.2% for band 2 and 17.6%
vs. 3.4% for band 3), while the fusion of the two information sources remains the best way to
get higher accuracies (21.8% for band 1, 31.7% for band 2 and 19.2% for band 3). Unlike the
linear prediction model, the gains on the bias, here, vary differently from one band to another.
Nonetheless, the best results are still obtained when spatial and spectral information sources
are jointly used. An example of achieved reconstruction of channels 1, 2 and 3 are displayed
in Figs. 2.12-2.14.

Band Method MSE
MSE-Gain

[%]
Bias

Bias Gain
[%]

CMLP 238.78 - 1.88 -
Spectral 259.41 - 8.6 0.32 83.0
Spatial SM1 204.93 14.1 1.05 44.11

LMP Spatial
 +

spectral
SM1 193.75 18.9 0.004 99.8

CMLP 259.2 - 1.7 -
Spectral 254.70 1.7 0.32 81.1
Spatial SM1 245.13 5.4 2.77 - 62.92

LMP Spatial
 +

spectral
SM1 200.19 22.8 0.76 59.6

CMLP 331.24 - 1.47 -
Spectral 336.15 - 1.4 0.4 72.8
Spatial SM1 284.90 14.0 1.94 - 32.03

LMP Spatial
 +

spectral
SM1 274.39 17.2 0.34 76.9

TABLE 2.1. QUANTITATIVE RESULTS OBTAINED BY THE LINEAR MULTIMODAL PREDICTION.



Band Method MSE
MSE Gain

[%]
Bias

Bias Gain
[%]

CNP 252.59 - 0.79 -
Spectral 250.44 0.7 1.12 - 41.8
Spatial SM1 209.80 17.0 2.15 - 172.21

NMP Spatial
 +

spectral
SM1 197.64 21.8 0.36 54.4

CNP 289.0 - 2.9 -
Spectral 239.24 17.2 1.9 34.5
Spatial SM1 228.66 20.9 1.53 47.22

NMP Spatial
 +

spectral
SM1 197.41 31.7 1.45 50.0

CNP 341.74 - 2.75 -
Spectral 330.04 3.4 3.4 - 23.1
Spatial SM1 281.51 17.6 2.2 20.33

NMP Spatial
 +

spectral
SM1 276.19 19.2 2.7 2.2

TABLE 2.2. QUANTITATIVE RESULTS OBTAINED BY THE NON LINEAR MULTIMODAL PREDICTION.

(a)      (b)

(c)
Fig.2.9: Linear multimodal prediction reconstruction results obtained after contamination with the largest
simulated cloud CD of channel 1 of the July image using both spectral and spatial information sources. a)
Original subimage. b) CMLP reconstructed image (MSE = 238.78). c) LMP reconstructed image (MSE =
193.75).



(a)       (b)

(c)
Fig.2.10: Linear multimodal prediction reconstruction results obtained after contamination with the largest
simulated cloud CD of channel 2 of the July image using both spectral and spatial information sources. a)
Original subimage. b) CMLP reconstructed image (MSE = 259.2). c) LMP reconstructed image (MSE = 200.19).

(a)      (b)

(c)

Fig.2.11: Linear multimodal prediction reconstruction results obtained after contamination with the largest
simulated cloud CD of channel 3 of the July image using both spectral and spatial information sources. a)
Original subimage. b) CMLP reconstructed image (MSE = 331.24). c) LMP reconstructed image (MSE =
274.39).



(a)       (b)

(c)

Fig.2.12: Nonlinear multimodal prediction reconstruction results obtained after contamination with the largest
simulated cloud CD of channel 1 of the July image using both spectral and spatial information sources. a)
Original subimage. b) CNP reconstructed image (MSE = 252.59). c) NMP reconstructed image (MSE = 197.64).

(a)       (b)

(c)

Fig.2.13: Nonlinear multimodal prediction reconstruction results obtained after contamination with the largest
simulated cloud CD of channel 2 of the July image using both spectral and spatial information sources. a)
Original subimage. b) CNP reconstructed image (MSE = 289.0). c) NMP reconstructed image (MSE = 197.41).



(a)       (b)

(c)
Fig.2.14: Nonlinear multimodal prediction reconstruction results obtained after contamination with the largest
simulated cloud CD of channel 3 of the July image using both spectral and spatial information sources. a)
Original subimage. b) CNP reconstructed image (MSE = 341.74). c) NMP reconstructed image (MSE = 276.19).

2.8.4. RESIDUAL-BASED PREDICTION SIMULATIONS
2.8.4.1   Sequential Residual-Based Predictor Results

Table 2.3 shows the quantitative results obtained by the linear sequential residual-based
predictor (LSRP) on channels 1, 2 and 3. We recall that we have applied the similar
experiment tests as in the multimodal predictor, which attempt to assess for the accuracy
evaluation of the method  for a given image channel subject to a same cloud contamination
conditions; the largest cloud cover mask CD in our case. The obtained gains of MSE and bias
are reported with respect to the CMLP method. In other words, the functional estimator used
is simply the CMLP predictor. Also here, the results vary depending on the kind of used
information sources. Indeed, the lowest gains in terms of MSE are those obtained when
exploiting only the spectral information (0.5% for band 1, 2.0% for band 2 and 0.6% for Band
3). In comparison, the gains are considerably higher when using the spatial information
(10.8% for band 13.4% for band 2 and 11.3% for Band 3). The gains in terms of bias,
however, seem to be constant for both information sources (56.5% against 54.7% for band 1,
95.2% against 94.15%for band 2 and 68.03% against 66.7% for Band 3). Figs. 2.15-2.17
display an example of achieved reconstruction of channels 1, 2 and 3.

In Table 2.4, are reported the quantitative results obtained by the nonlinear sequential
residual-based predictor (NSRP) on channel 2 with respect to the CNP regression method on
which is based the functional estimator. As expected, the obtained gains on the MSE and bias
values with the use of the spatial information are slightly higher than those obtained with the
spectral information (5.7%, 32.8%) against (0.56%, 9%).



Band Method MSE
MSE-Gain

[%]
Bias

Bias Gain
[%]

CMLP 238.78 - 1.88 -
Spectral 237.46 0.5 0.09 95.21

LSRP
Spatial SM1 213.06 10.8 0.11 94.15
CMLP 259.2 - 1.7 -
Spectral 254.05 2.0 0.74 56.52

LSRP
Spatial SM1 224.57 13.4 0.77 54.7
CMLP 331.24 - 1.47 -
Spectral 329.14 0.6 0.47 68.033

LSRP
Spatial SM1 294.72 11.03 0.49 66.7

TABLE 2.3. QUANTITATIVE RESULTS OBTAINED BY THE LSRP.

Band Method MSE
MSE-Gain

[%]
Bias

Bias Gain
[%]

CNP 289.0 - 2.9 -
Spectral 287.37 0.56 2.64 9.02

NSRP
Spatial SM1 272.66 5.7 1.95 32.8

TABLE 2.4. QUANTITATIVE RESULTS OBTAINED BY THE NSRP.

2.8.4.2   Parallel Residual-Based Predictor Results
Similarly, Table 2.5 shows the quantitative results obtained by the linear parallel residual-

based predictor (LPRP) on channels 1, 2 and 3 for the same cloud contamination conditions.
The functional estimator is based on the CMLP regression approach and the obtained gains of
MSE and bias are reported with respect to this method. We note that the LPRP scheme was
first applied only by exploiting the temporal data used in the CMLP process such that each
contaminated pixel is estimated by the corresponding cloud-free pixels in the temporal
images. The MSE gains obtained are significantly low (0.11% for band 1, 1.5% for band 2
and 0.5% for Band 3). The results are not improved any more with the incorporation of the
spectral information (-0.3% for band 1, 4.9% for band 2 and 0.22% for Band 3). The gains,
however, increase with the incorporation of the spatial information source and vary slowly
with the use of both information sources further (11.9% against 15.5% for band 1, 13.4%
against 17.3%for band 2 and 12.9% against 13.2% for Band 3). The bias gains vary
proportionately to the MSE gains such that they are the lowest when using the simple
temporal data and increase with the incorporation of the spectral and the spatial information
respectively. Also here, the fusion of the two information sources does not provide any
improvement on the gains of bias. Figs. 2.18-2.20 display an example of achieved
reconstruction of channels 1, 2 and 3.

Finally, Table 2.6 shows the quantitative results obtained by the nonlinear parallel residual-
based predictor (NPRP) on channel 2 for the same cloud contamination conditions. Also here,
the functional estimator is based on the CMLP regression approach and the obtained gains of
MSE and bias are reported with respect to this method. As for the linear model, the gain on
MSE obtained is significantly low when neither the spectral information nor the spatial
information is used (0.66%). The gain, however, increases slightly with the incorporation of
the spatial information source (5.82%) and is significantly improved further with the use of
both information sources (22.9%). The gain on bias varies proportionately to the MSE gain; it
is the lowest when using the simple temporal data and increase with the incorporation of the
spatial and spectral information. Unlike the linear model, the fusion of the two information
sources in the NPRP appears to be the best way to get higher accuracies.



Band Method MSE
MSE Gain

[%]
Bias

Bias Gain
[%]

CMLP 238.78 - 1.88 -
temporal 238.52 0.11 0.97 48.4
Spectral 239.56 -0.3 0.31 83.5
Spatial SM1 210.47 11.9 0.2 89.41

LPRP
Spatial

 +
spectral

SM1 201.75 15.5 0.25 86.7

CMLP 259.2 - 1.7 -
Temporal 255.43 1.5 1.54 9.41
Spectral 246.49 4.9 1.85 -8.8
Spatial SM1 224.43 13.4 0.93 45.32

LPRP
Spatial

 +
spectral

SM1 214.46 17.3 1.39 18.2

CMLP 331.24 - 1.47 -
Temporal 329.66 0.5 1.3 11.6
Spectral 330.50 0.22 0.84 42.9
Spatial SM1 288.6 12.9 0.4 72.83

LPRP
Spatial

 +
spectral

SM1 287.47 13.2 0.69 53.06

TABLE 2.5. QUANTITATIVE RESULTS OBTAINED BY THE LPRP.

Band Method MSE
MSE Gain

[%]
Bias

Bias Gain
[%]

CMLP 259.2 - 1.7 -
Temporal 257.55 0.66 1.2 29.4

Spatial SM1 244.09 5.82 0.7 58.82
NPRP Spatial

 +
spectral

SM1 199.89 22.9 1.5 11.8

TABLE 2.6. QUANTITATIVE RESULTS OBTAINED BY THE NPRP.



(a)      (b)

(c)      (d)

Fig.2.15: Linear sequential residual-based prediction results obtained after contamination with the largest
simulated cloud CD of channel 1 of the July image. a) Original subimage. b) CMLP reconstructed image (MSE =
238.78). c) LSRP reconstructed image using the spectral information (MSE = 237.46). d) LSRP reconstructed
image using the spatial information (MSE = 213.06).

(a)       (b)

(c)      (d)

Fig.2.16:. Linear sequential residual-based prediction results obtained after contamination with the largest
simulated cloud CD of channel 2 of the July image. a) Original subimage. b) CMLP reconstructed image (MSE =
259.2). c) LSRP reconstructed image using the spectral information (MSE = 254.05). d) LSRP reconstructed
image using the spatial information (MSE = 224.57).



(a)      (b)

(c)      (d)
Fig.2.17: Linear sequential residual-based prediction results obtained after contamination with the largest
simulated cloud CD of channel 3 of the July image. a) Original subimage. b) CMLP reconstructed image (MSE =
331.24). c) LSRP reconstructed image using the spectral information (MSE = 329.14). d) LSRP reconstructed
image using the spatial information (MSE = 294.72).

(a)      (b)

(c)

Fig.2.18: Linear parallel residual-based prediction results obtained after contamination with the largest simulated
cloud CD of channel 1 of the July image using both spectral and spatial information sources. a) Original
subimage. b) CMLP reconstructed image (MSE = 238.78). c) LPRP reconstructed image (MSE = 201.75).



(a)       (b)

(c)

Fig.2.19: Linear parallel residual-based prediction results obtained after contamination with the largest simulated
cloud CD of channel 2 of the July image using both spectral and spatial information sources. a) Original
subimage. b) CMLP reconstructed image (MSE = 259.2). c) LPRP reconstructed image (MSE = 214.46).

(a)       (b)

(c)

Fig.2.20: Linear parallel residual-based prediction results obtained after contamination with the largest simulated
cloud CD of channel 3 of the July image using both spectral and spatial information sources. a) Original
subimage. b) CMLP reconstructed image (MSE = 331.24). c) LPRP reconstructed image (MSE = 287.47).



2.8.5. CSSPR SIMULATIONS

2.8.5.1   Sensitivity to Cloud-Contamination Conditions
Unlike the previous methods, the CSSPR process attempts, in a first step, to assess the

post-reconstruction quality for a given image channel subject to different cloud contamination
conditions that have been carried out by adopting the groups of masks (C1,2,3,4) and (CA,B,C,D)
displayed in Fig.2.7. For each mask we ran the proposed approach starting from the
reconstruction results achieved with the CMLP method.

Table 2.7.a shows the quantitative results obtained on channel 2 and averaged over the eight
masks. In particular, we report the averaged gains of MSE and bias with respect to the CMLP
method. In general, as can be seen, the results vary from one source of information to another
and from one spatial model to another. In more detail the lowest gains in terms of MSE and
bias are those obtained when exploiting only the spatial information. For this information
source, the best spatial model appears to be SM1 with gains of MSE and bias of 5.7% and
3.1%, respectively. The gains are higher when adopting all available spectral information
(8.1% and 44.9%, respectively). The fusion of both information sources allows improving the
post-reconstruction results further. In particular when SM1 is adopted, the averaged gains of
MSE and bias reach values of 9.8% and 37.7%, respectively.

The assessment of the post-reconstruction quality was also evaluated in terms of preservation
capability of the information content for classification purposes. To do so, a classification
map was first generated by means of the EM-based classifier [151] for the original cloud-free
July image to serve as reference classification map. For each post-reconstruction simulation,
the impact on the classification process was assessed by comparing, inside and outside the
contaminated area, the classification map produced from the post-reconstructed image with
the reference classification map. The differences between the overall errors achieved by the
CMLP and the CSSPR methods inside and outside the contaminated area (∆OE-C and ∆OE-
U, respectively) are listed in Table 2.7.a. We recall that the reported numbers are averaged
over the eight masks. This quality criterion confirms that the best improvements are achieved
by exploiting both spatial and spectral information sources.

2.8.5.2   Multichannel Post-Reconstruction
As mentioned above, this experiment was aimed at evaluating the post-reconstruction

performances over all channels of the image for a given cloud-contamination simulation that
is the largest cloud cover mask CD,. As in the first set of experiments, the different CSSPR
variants were applied to reconstruct each of the six available image channels (i.e., channels 1-
5 and 7). Concerning the impact on the classification process, note that this time we adopted
the standard k-means classification algorithm for a simultaneous classification of all post-
reconstructed channels. The obtained results in terms of MSE and bias averaged over the six
channels and the classification error rates (OE-C and OE-U) are reported in Table 2.7.b. They
all confirm the benefit of the post-reconstruction process in improving reconstruction quality.
An illustration of reconstructed images for channel 4, for which very significant
improvements were obtained, is given in Fig. 2.21. In Fig. 2.22 we illustrate a color
composite image for the reconstructed bands 4, 3, and 2. A visual inspection of the resulting
image confirms the usefulness of the PCSSR process to enhance the reconstruction quality. In
Fig. 2.23, we illustrate the plotting graphs of the original channel 4 subimage pixels inside the
contaminated area against the corresponding pixels in the reconstructed images with the
CMLP method and the different CSSPR variants. In Fig. 2.24, we represent the multiband
classification maps obtained by the K-means algorithm with three data classes.



2.8.5.3   Error Map Generation
As an example of error map generation, we still shall consider the post-reconstruction

simulation with the largest cloud cover mask CD. In particular, we shall start from the results
provided by the CSSPR process implemented with both spectral and spatial information
sources. For the latter, we adopted the SM1 model as it appears to perform best.

As described above, we first post-reconstructed the July image outside CD. Then by
comparing the post-predicted and the cloud-free images, we generated a contextual error map
(outside CD) for each channel and afterwards a single contextual L2-norm error map. Next we
trained an SVM predictor 1) in order to model the relationship between the post-reconstructed
image channels and the contextual L2-norm errors (outside CD); and thus 2) to estimate errors
inside the contaminated area (CD). The obtained error map is shown in Fig. 2.25 together with
the true error map. The correlation coefficient between the two maps is equal to 0.53,
indicating that a moderate but useful prediction capability was inferred from the context (i.e.,
outside CD). Indeed, though the obtained map cannot be used to know the exact error value
for each post-reconstructed pixel, it allows identifying satisfactorily the areas with low,
medium and high error content.

Method
MSE Gain

[%]
Bias Gain

[%]
∆OE-C

[%]
∆OE-U

[%]
Spectral  (M1) 8.1 44.9 0.9 0.3

SM1  (M2) 5.7 3.1 0.2 -0.5
SM2  (M3) 3.8 -25.5 0.0 -0.4Spatial
SM3  (M4) 3.8 -3.9 0.2 -0.2
SM1  (M5) 9.8 37.7 1.0 0.2
SM2  (M6) 9.2 22.8 0.9 0.1

CSSPR
Spatial

 +
Spectral SM3  (M7) 9.2 50.4 1.0 0.2

(a)

Method MSE
MSE Gain

[%]
Bias

Bias Gain
[%]

OE-C
[%]

OE-U
[%]

CMLP 451.8 - 1.7 - 11.1 1.8
Spectral  (M1) 408.5 9.6 0.5 70.8 10.4 2.4

SM1  (M2) 389.0 13.9 1.0 43.5 10.4 1.1
SM2  (M3) 414.8 8.2 1.0 39.9 10.9 1.1Spatial
SM3  (M4) 414.0 8.4 0.9 49.4 10.8 0.9
SM1  (M5) 368.9 18.3 0.5 72.0 9.5 1.5
SM2  (M6) 390.0 13.7 0.9 48.8 10.3 1.9

CSSPR
Spatial

 +
Spectral SM3  )M7) 385.6 14.6 0.5 70.2 10.1 2.4

(b)

TABLE 2.7. QUANTITATIVE RESULTS OBTAINED BY THE CSSPR METHOD FOR (a) THE FIRST AND (b) THE

SECOND SIMULATION EXPERIMENTS



(a)     (b)

(c)     (d)

(e)     (f)

(g)     (h)



(i)

Fig.2.21: Reconstruction results obtained after contamination with the largest simulated cloud CD (which
covers 48.6% of the entire image) of channel 4 of the July image by (a) the CMLP method (MSE=790.7), (b)
the CSSPR (M1) (MSE=669.6), (c) the CSSPR (M2) (MSE=674.44), (d) the CSSPR (M3) (MSE=739.33),
(e) the CSSPR (M4) (MSE=739.44), (f) the CSSPR (M5) (MSE=612.8), (g) the CSSPR (M6) (MSE=653.55)
and (h) the CSSPR (M7) (MSE=638.73) compared to (i) the original cloud-free image. The white marker in
(i) shows the area that has been completely obscured by cloud CD before reconstruction (i.e., all data within
the marker were assumed to be missing).

 (a)      (b)

(c)

Fig.2.22: Color composite (bands 4, 3 and 2) of the July subimage by (a) the CMLP method, (b) the CSSPR
(M5) compared to (c) the original cloud-free image.



 (a)          (b)

    (c)        (d)

     (e)        (f)

    (g)       (h)
Fig.2.23: Plotting graphs of the original channel 4 subimage pixels inside the contaminated area against the
corresponding pixels in the reconstructed images by (a) CMLP method, (b) CSSPR M1, (c) CSSPR M2, (d)
CSSPR M3, (e) CSSPR M4, (f) CSSPR M5, (g) CSSPR M6, (h) CSSPR M7.



(a)      (b)
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(g)      (h)

(i)

Fig.2.24:  Multichannel classification maps obtained by the K-means algorithm with three data classes. (a) for
the original multichannel July subimages and the same subimages reconstructed with the largest simulated cloud
CD by (b) CMLP method, (c) CSSPR (M1), (d) CSSPR (M2), (e) CSSPR (M3), (f) CSSPR (M4), (g) CSSPR
(M5), (h) CSSPR (M6), (i) CSSPR (M7).



(a)   (b)

Fig.2.25: Reconstruction L2-norm error maps associated with the CSSPR process applied to all channels   of the
July image after contamination with cloud CD: (a) map estimated with the proposed procedure and (b) map
representing the true value of the committed errors.

2.9.   SUMMARY
Three methods have been proposed for use in the post-reconstruction of cloud

contaminated areas from remote sensing images. The first method uses a multimodal
prediction, the second is based on the exploitation of the residuals generated by an estimator
for further improvements, and the last method consists in a contextual spatio-spectral post-
reconstruction scheme (CSSPR). In all the methods, we have investigated the suitability of
incorporating spatial and spectral information sources. In particular, the first two methods
consider solely the common second order spatial neighborhood system, while three different
spatial models were investigated in the CSSPR method.

In general, post-reconstruction is useful to boost the reconstruction quality depending on the
contamination scenario, either the spectral or the spatial information may appear more
valuable. However their fusion is the best way to get higher accuracies.



Chapter 3

HISTOGRAM MODIFICATION

3.1.   INTRODUCTION

Images captured in an excessively dark or bright environment are less contrasted. As a
consequence, the image is inappropriate for visual inspection or simple observation. The aim
of image enhancement is to improve the interpretability or perception of information in
images for human viewers, or to provide better input for other automated image processing
techniques [1],[7],[278].

We note that there is no general theory of image enhancement. When an image is processed
for visual interpretation, the viewer is the ultimate judge of how well a particular method
works. Visual evaluation of image quality is a highly subjective process, thus making the
definition of a good image an elusive standard by which to compare algorithm performance.
However, when image enhancement techniques are used as pre-processing tools for other
image processing techniques, then quantitative measures can determine which techniques are
most appropriate.

Image enhancement approaches fall into two broad categories: 1) spatial domain methods,
which operate directly on pixels, and 2) frequency domain methods, which operate on the
Fourier transform and more recently on the wavelet transform of an image. Enhancement
techniques based on various combinations of methods from these two categories exist as well.

Histogram modification for contrast enhancement in the spatial domain is the topic for the
remaining sections. In particular, a technique which is based upon a mapping of the grey
levels to achieve a uniform distribution is considered, that is histogram equalization.



3.2. HISTOGRAM MODIFICATION
3.2.1. CONTRAST OF AN IMAGE

Contrast generally refers to a difference in luminance or grey level values in some
particular region of an image . For any given imaging system, only a finite luminance or

optical density range will be available. If we assume that the values of X(i,j) correspond to
luminance values at the point (i,j), then X(i,j) would have a finite maximum and minimum, ie,
[m,M], and large values of X(i,j) will correspond to bright points.

The difference between the maximum and the minimum values of X(i,j) is called the contrast
range and is an important parameter for any imaging system. The ratio of the maximum to the
minimum values is called the contrast ratio and is also a commonly used parameter.

3.2.2. IMAGE TRANSFORMATION

We may alter the grey level values and thus change the contrast of the information in an
image by effecting a linear or non linear transformation, i.e., by forming a new image function
Y(i,j) for each (i,j). In the spatial domain such a function may be expressed as:

)],([),( jiXTjiY  (3.1)

where X(i,j) is the input image, Y(i,j) is the processed image, and T is an operator (some
mapping) on   defined over some neighborhood of (i,j).

The simplest form of T is when the neighborhood is 1x 1. In this case,  depends only on the
value of   at (i,j), and T becomes a grey-level transformation function of the form:

)(rTs                   (3.2)

where r and s are variables denoting the grey level of X(i,j) and Y(i,j) at any point (i,j).
Because enhancement at any point in an image depends only on the grey level at that point,
techniques in this category often are referred to as point processing.

Larger neighborhoods allow a variety of processing functions that go beyond just image
enhancement. Some grey scale transformations are outlined in Fig. 3.1.

3.2.3. HISTOGRAM PROCESSING

For a given image   with grey levels in the range [0, L - 1], the histogram of the image

represents the number of pixels that have a specific intensity Xk. It is associated with the
probability density function defined as:

1,1,0)(  Lk
n

n
xp k

k             (3.3)

where nk represents the number of times that the level Xk appears in the image   and n is the

total number of samples in the image. p(Xk) gives an estimate of the probability of occurrence
of grey level Xk. A plot of this function for all k or nk vs Xk provides a global description of the
appearance of an image. Although it says nothing specific about image content, the shape of
the histogram of an image does give useful information about the possibility for contrast
enhancement (Fig. 3.2).



(a) (b)

(c) (d)

(e)

Fig. 3.1 [279]: Examples of some point processing transformations. (a) Image lightning. (b) Image darkening.
(c) Compression of dynamic range. (d) Image inversion. (e) Contrast stretching.



(a)         (b)         (c)         (d)

Fig. 3.2 [279]: Histograms corresponding to four basic image types. (a) Dark image.
(b) Bright image. (c) Low-contrast image. (d) Low shading between shadows and lights.

3.2.3.1.   Histogram Equalization (HE)
For many classes of images, the ideal distribution of grey levels is a perfectly flat

histogram which makes use of every available grey value in the image format and tends to
enhance low-contrast information. The following steps show us how to obtain a uniform
distribution with a grey level transformation [1],[7],[278]:

1. Compute the histogram of the image grey level values,

2. Add up the histogram values to obtain a distribution curve, and

3. Use this distribution curve for the grey level transformation )(rTs  .

Given an image   with grey levels in the range [0, L - 1], the transformation function T(r) is

essentially the cumulative density function defined by:
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where Xk = x, for k = 0, 1, …, L-1. Note that c(XL-1) = 1, by definition. HE is the scheme that
maps the input image into the entire dynamic range, (X0, XL-1) by using the cumulative density
function as a transform function. If we define a transform function f(x) based on the
cumulative density function such as:

)()()( 010 xcXXXxf L                                      (3.5)

Then the output image of the HE,  ),( jiY  can be expressed as.
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A numerical example is given in Table 3.1 to illustrate the computational procedure for
histogram equalization of the image shown in Fig. 3.3a.

HE flattens a histogram. Based on information theory, entropy of a message source will get
the maximum value when the message has uniform distribution property. In spite of its high
performance in enhancing contrasts of a given image, however, the straight use of HE may
introduce a significant change in the original brightness of an input image.
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(b)
Fig. 3.3: Histogram equalization example. (a) Original image having 8 grey levels.

(b)  Histogram equalized image.

I xj = 1/7 nj p(xj) = p(I) yj = c(xj) J

0 0.000 10 0.333 0.333 2
1 0.143 5 0.167 0.500 3
2 0.286 3 0.100 0.600 4
3 0.429 3 0.100 0.700 5
4 0.571 0 0.000 0.700 5
5 0.714 2 0.067 0.767 5
6 0.857 2 0.067 0.834 6
7 1.000 5 0.167 1.000 7

TABLE 3.1. HISTOGRAM EQUALIZATION PROCEDURE. C1: ORIGINAL GREY LEVEL VALUES. C2: SCALED VALUES.
C3: NUMBER OF OCCURRENCES. C4: RELATIVE FREQUENCIES. C5: DISTRIBUTION FUNCTION.

C6: SCALED OUTPUT GREY LEVELS.

Suppose that the input image   is a continuous random variable, ie. L = ∞, then the output of

the HE,  is also regarded as a random variable. HE produces an image whose grey levels
have a uniform density, that is:

)(/1)( 01 XXxp L                          (3.7)

for
10  LXxX . Thus the mean brightness of the output image of the HE is:
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where E( . ) denotes a statistical expectation. Clearly, the output mean of the HE is always the
middle grey level regardless of the input mean.

Some pictorial examples of HE are outlined in Fig. 3.4.

3.2.3.2.   Histogram Specification
Sometimes, it is desirable to specify particular histogram shapes capable of highlighting

certain grey-level ranges in an image. This can be achieved by using a powerful scheme
called histogram specification (HS). The procedure can be summarized as follows
[1],[7],[278]:



    (a)   (b)

   (c)    (d)

Fig. 3.4 [279]: Illustration of some histogram equalization examples. (a) Contrast enhancement.
(b) Modes suppression. (c) Image degradation. (d) Details highlighting.

1. Histogram-equalize the original image   ( )(xTs  ), using Eq. (3.4).

2. Specify the desired density function )(ypy
, (corresponding to the desired image  )

and obtain the equalizing transformation )(yUv  .

3. Apply the inverse transformation )(1 sUy   to the previously equalized image s

obtained in step (1).

Step 3 is justified by the following assumption: the inverse process, )(1 vUy  , would give

back the levels, y, of the desired image. This formulation is hypothetical because the y levels
are precisely what is being sought. However, )(sps

 and )(vpv
 would be identical uniform

densities. Thus, we use the uniform levels s, obtained from the original image, instead of
using v in the inverse process 1U . The resulting levels )(1 sUy   would have the desired

probability density function )(ypy
.

The above three steps process may be compressed into a simple but powerful enhancement
procedure by combining the transformations

])([1 xTUy                                      (3.9)



3.3. QUALITY MEASURES
As stated before, when image enhancement methods are used as pre-processing tools for

other image processing techniques, then quantitative measures can determine which
techniques are most appropriate. In the following, we will define three different quality
measures.

3.3.1. ABSOLUTE MEAN BRIGHTNESS ERROR

The brightness preservation is based on an objective measurement referred as Absolute
Mean Brightness Error (AMBE) [280]. It is defined as the absolute difference between the
input and the output mean as follows:

)()(  EEAMBE                    (3.10)

Lower AMBE implies better brightness preservation.

3.3.2. CONTRAST-PER-PIXEL

We define contrast-per-pixel C of an image as the average difference in grey level between
adjacent pixels [281]:
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3.3.3. IMAGE DISTORTION

To measure the dissimilarity or distortion of the structure between two images with grey
functions g1 and g2 defined over [0, L-1] x [0, L-1], we compute the standard deviation of the
ratios of pixel grey levels pairwise in g1 and g2 [281]. This measure can be thought of as the
standard deviation of local change in contrast. Formally, it is defined as:
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where the quantity 
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NM
 is the mean ratio. If g2(i,j) = 0, then pixel (i,j) is

excluded from the sums.

3.4.   LITTERATURE SURVEY
Enhancing the contrast of images is one of the major issues in image processing. Contrast

enhancement techniques are encountered in many applications including medical image
processing, radar image processing, remote sensing, analysis of reconnaissance images and
industrial inspection…

There are many algorithms for contrast enhancement and among these, histogram equalization
(HE) is the most common method used due to its simplicity and effectiveness.

HE can be categorized into two approaches: global and local HE [1]. Global HE uses the
histogram information of the whole input image as its transformation function. This method is
simple and powerful, but it can not adapt to local brightness features of the input image. This
fact causes significant contrast losses in the background and other small regions. To overcome



this limitation, a local HE method has been developed, which can also be termed block-
overlapped HE [282]. The procedure is to define first a rectangular neighborhood and move
the center of this area from pixel to pixel. A histogram of that region is computed and then its
HE function is determined. Thereafter, the center pixel of the region is histogram equalized
using this function. The center of the neighborhood region is then moved to an adjacent pixel
location and the procedure is repeated pixel by pixel for all input pixels. This method
obviously allows each pixel to adapt to its neighboring region, so that high contrast can be
obtained for all locations in the image.  However, its computation complexity is very high. In
[283], the computation is reduced with the use of a more effective and much faster contrast
enhancement algorithm, which is based on partially overlapped sub-block HE transformation.

Another approach of contrast enhancement achieved by means of a local HE is that proposed
in [284]. The scheme preserves the family of level-sets of the image by equalizing the
histogram in all the connected components of the image. A variation of HE which uses both
local and global information is described in [281]. The method presents a refinement of HE
by using local image properties, generally called neighborhood metrics to subdivide
histogram bins that would be otherwise indivisible in classical HE.

As said previously, the mean brightness of the histogram equalized image is always the
middle grey level no matter how much the input image is bright or dark. This is not a
desirable property in some applications where brightness preservation is necessary.

Mean preserving Bi-brightness equalization (BBHE) has been proposed then to overcome the
aforementioned problem [285]. BBHE firstly separates the input image's histogram into two
based on its mean: one having rang from minimum grey level to mean and the other ranges
from mean to the maximum grey level. Next, it equalizes the two histograms independently. It
has been analyzed both mathematically and experimentally that this technique is to preserve
the original brightness to a certain extend. Later, Equal Area Dualistic Sub-Image HE
(DSIHE) [286] has been proposed and claimed to outperform BBHE both in term of
brightness and also image content (entropy) preservation. Both BBHE and DSIHE is similar
except that DSIHE choose to separate the histogram based on grey level with cumulative
probability density equal to 0.5 instead of the mean as in BBHE. A novel extension of BBHE
referred as the Minimum Mean Brightness Error Bi-Histogram Equalization with better
brightness preservation is proposed in [280]. The main idea lies on separating the histogram
using the threshold level that would yield minimum Absolute Mean Brightness Error.
Variational perspectives of BBHE for brightness preserving HE can be found in [287], [288].

An extension of a typical histogram equalization, which utilizes cumulative density function
of a quantized image and performs independent HE over two sub images obtained by
decomposing the input image based on its mean is proposed in [289].

The representation and handling of the histogram is easy and straightforward in most of the
cases. But when it comes to multicomponent image processing, the memory space required
for the storage of classical multidimensional image histograms increases dramatically, which
prevents the use of the exact vector histogram in most of the applications [290]. As a
consequence, two strategies are commonly used:

1. A monodimensional histogram of each spectral component is handled separately.
Although easy to do, this method does not take into account the cross-correlation
between the different components.



2. A multivariate histogram processing with the re-quantization of each spectral
component on a lower number of levels. Although this method enables the
reduction of the memory size, it induces a loss of information.

More recently, the histogram explosion technique that performs full 3-D processing for, color
images, and produces output images whose histograms approach the full display gamut was
proposed in [291]. Although the method produces more useful results, the multivariate nature
of histogram explosion requires much more computation than earlier color enhancement
approaches. Therefore, for these images, there is more than one way to equalize the
histogram. There is no obvious method of equalization as there is with single-channel images.

3.5. SUMMARY
Contrast enhancement is a common technique for revealing subtle details in grey level

images as well as in color images. There exist a number of techniques for contrast
enhancement and among them histogram equalization is the most popular. It expands the
contrast between widely varying intensities. The algorithm attempts to equalize the number of
pixels at every intensity level. This is usually accomplished by producing a cumulative
histogram for the image and making it conform as closely as possible to the cumulative
histogram of an image with all grey levels equally probable.

In the rapid and inevitably superficial survey of the previous section, we have seen that with a
monochrome image of a single channel there is only one way to alter the histogram in this
process. Many extensions to this technique have been developed to improve perceived
performance. For multichannel and true-color images, there is more than one way to equalize
the histogram. However, there is no obvious method of equalization for multichannel images
as there is for single channel images.

Finally, we should emphasize that histogram equalization is one of those enhancement
techniques that work well as judged by human observers even though the mathematical
criteria are not completely understood.



Chapter 4

CONTRAST ENHANCEMENT OF SATELLITE
IMAGES BASED SPATIAL CONTEXT

4.1.   INTRODUCTION
Remote sensing image data typically contain an enormous amount of information. The

answer to "how can be this information extracted?" constitutes a critical issue. From the field
of digital image processing and computer vision, image interpretation is often greatly assisted
by first applying histogram modification techniques to improve contrast and feature visibility.

The intent of this chapter is to propose two variational perspectives for contrast enhancement.
These are essentially a refinement of histogram equalization (HE) which uses local
relationships to remap the image gray levels. For multispectral images, the procedures are
independent processing approaches.

In the first method, local image properties are deduced, firstly, by the use of a two level
thresholding of a fuzzy 2-partition. Then, the spatial correlation in a predefined neighborhood
is modeled using a local measure of spatial activity within the data, which we shall call a
neighborhood metric. We formulate the second method as HE using a novel contextual spatial
histogram.

4.2.   CONTRAST ENHANCEMENT BASED THRESHOLDING
Brightness preservation is a desirable property in some applications. Brightness preserving

Bi-Histogram Equalization (BBHE) has been proposed to overcome that problem [285]. The
main idea of BBHE lies on separating the input image's histogram into two, using its mean as
a threshold level. It has been analyzed that BBHE can preserve the original brightness to a



certain extent when the input histogram has a quasi-symmetrical distribution around its mean.
Later, equal area Dualistic Sub-Image Histogram Equalization (DSIHE) has been proposed. It
claims that if the separating level of histogram is the median of the input image4s brightness,
it will yield the maximum entropy after two independent sub-equalizations [286].

An alternative to the mean level and median level thresholding is to use a threshold value to
create two sub-images in each of which pixels preserve similar properties. In image
processing, thresholding is essentially a classification problem where one wishes to identify
and extract object regions from their background on the basis of the similarity of brightness of
image objects, for further processing.

Most of the proposed methods base the selection of suitable thresholds on the optimization of
some criterion function which is related to the image and its properties. The fuzzy set theory
has been successfully applied in several areas. With respect to automatic threshold selection
the fuzzy methods lead to powerful and effective schema.

We propose a local contrast enhancement method based on the fuzzy 2-partiton thresholding
in the sense of both entropy maximization and between class variance maximization. The
constraint of brightness preserving will not be explicitly expressed since it is implicit within
the thresholding process. The local information is modeled to describe some spatial activity of
the data in a predefined neighborhood system.

4.2.1. BRIGHTNESS PRESERVING BI-HISTOGRAM EQUALIZATION

This section covers the essential of the Mean preserving Bi-Histogram Equalization
(BBHE) algorithm proposed in [285].

We denote by Xm the mean of the image   and assume that  11,0 ,,  Lm XXXX  . Based

on the mean, the input image is decomposed into two sub-images
L and

U  such as:
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We define the respective probability density functions of the sub-images
L and

U as:
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k
Ln  and k

Un stand for the respective numbers of Xk in L  and
U  , and nL and nU are the total

number of samples in XL and XU, respectively. The cumulative density functions for
L and

U are then defined as:
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where Xk = x. Note that 1)( mL Xc  and 1)( 1 LU Xc  by definition.

Similar to the case of histogram equalization (HE), we define the partial transform functions
exploiting the cumulative density functions such as:

)()()( 00 xcXXXxf LmL                              (4.8)

)()()( 111 xcXXXxf UmLmU                                  (4.9)

Based on these transform functions, the decomposed sub-images are equalized independently
and the composition of the resulting equalized sub-images constitute the output of BBHE that
is  , expressed as:
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where
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and
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Eqs. (4.11) and (4.12) show clearly that )( LLf  equalizes the sub-image
L over (X0, Xm)

whereas )( UUf  equalizes the sub-image
U over the range (Xm+1, XL-1), and consequently the

entire image is equalized over the entire range (X0, XL-1) with the constraint that samples less
than the input mean are mapped to (X0, Xm) and samples greater than the mean are mapped to
(Xm+1, XL-1).

Concerning the mean brightness, suppose that  is a random variable which has symmetric
distribution around its mean Xm, ie. 2

1)()(  mm XXpXXp  . When the sub-images are

equalized independently, the mean brightness of the output of BBHE can be expressed as:
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It can be easily shown that:

2)()( 0 mm XXXXE                    (4.14)

and
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which results in:
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where

2)( 10  LG XXX                   (4.17)

is the middle gray level. Eq. (4.16) shows that the output mean of BBHE is a function of the
input mean brightness Xm, which indicates clearly that BBHE preserves the brightness,
compared of the typical HE where output mean is always the middle gray level.

4.2.2. DUALISTIC SUB-IMAGE HISTOGRAM EQUALIZATION

Dualistic Sub-Image Histogram Equalization (DSIHE) [285] is very similar to BBHE,
except that the separating point XD is selected as the median gray level of the input image, i.e.,
XD satisfies:
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The purpose of DSIHE is to find a separating point to yield the maximum entropy after two
independent sub-equalizations. It is easy to p[rove that the brightness of the output image is :
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where
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is the middle gray level of the input image. From (4.20), it is clear that DSIHE always pulls
the output brightness toward the input middle level from the input median level.

4.2.3. FUZZY 2-PARTITION THRESHOLDING

In this section, the fuzzy 2-partition entropy thresholding will be reviewed and the
developed recursive version will be presented. Next, the 1-D Otsu method for two level
thresholding will be quickly introduced, and the proposed extension of the scheme to the
fuzzy domain with the recursive fast version will be presented.

4.2.3.1.   Probability Partition
Let  1.,,1,0;1.,,1,0:),(  NjMijiD  the domain on which an image  with (L-

1) gray level is defined. A pixel (i,j) with gray level X(i, j) = 0 is black and is assumed to
belong to the object class, while a pixel (i, j) with gray level X(i, j) = 255 is white and is
assumed to belong to the background class. For pixels (i, j) with other gray levels, i.e. 0 <
X(i, j) < 255, are assumed to be in the gray area between these two classes. In other words, we
can say they partly belong to the object and partly belong to the background [297].

Having a threshold T, we define the two partitions of   generated by T as:

 DjiTjiXjiDd  ),(,),(:),(                                         (4.21)

and

 DjiTjiXjiDb  ),(,),(:),(                    (4.22)



with probability distributions of the pixels of D belonging to classes object and background,
respectively:
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4.2.3.2. Fuzzy Probability
The fuzzy probability of class A is defined as:

)(. APp AA                    (4.25)

where μA is the characteristic function of A referred to as fuzzy membership function, and
P(A) is the probability of class A.

4.2.3.3. Fuzzy 2-Parttion Entropy For Two-Level Thresholding

 Basic Algorithm

In the approach proposed in [298], an image is modeled with two fuzzy sets; dark and
bright (object class and background). For two-level thresholding, the pixels with gray level k
can belong partially to the background class and the object. The probability of the pixels with
gray level k belonging to a certain class is represented by its fuzzy membership function μ.
The membership function can have different shapes, but for simplicity it is usually assumed to
be a function as shown in Fig. 4.1. The fuzzy membership functions of the two classes, object
μd(k) and background μb(k) are defined as below:
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where a and c are parameters determining the shape of the above two membership functions.

Based on the fuzzy set model of an image and the maximum entropy principle, an exhaustive
search is used to find the pair aopt and copt which forms a fuzzy 2-partition that has the
maximum entropy.

For an 8-bit image with 256 gray levels ranging from 0 to 255, the entropy of this fuzzy 2-
partition is given by:

))((log.)())((log.)( brightPbrightPdarkPdarkPH  (4.28)



Fig.4.1: Fuzzy membership functions.

where
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stand for the probabilities of the fuzzy sets dark and bright, respectively.

The optimal threshold value T is the crossover point of the fuzzy sets

2
)( optopt ca

T
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that satisfies

1,,0))((max)(  LttHTH                                        (4.32)

 Recursive Algorithm

The recursive algorithm proposed in [237] reduces the computation complexity of the basic
algorithm bounded by O(L3) to O(L2).

According to Eq. (4.26), the formula for calculating µd(i) can be rewritten as:

)(1)( ii bd                                         (4.33)

The probability of the fuzzy dark set is thus defined as:

)(1)( brightPdarkP  (4.34)

The entropy of the fuzzy 2-partition can be obtained as:
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where P(bright) is subdivided such as:
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In the method we propose, only the probability of the bright fuzzy set will be computed
recursively and then used to compute the entire entropy of the fuzzy 2-parttion according to
Eq. (4.35). There is no need to compute the membership function of for any fuzzy set.

The recursive algorithm is implemented as follows:

For a = 0 to 254

    For c = (a+1) to 255

1. Compute the probability vector Pc such that
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and recursively
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2. Compute the probability matrix Pa,c such that:
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and recursively

)1()1(1,,   cpacPP caca (4.40)

3. Compute the total probability matrix P(bright), Pb,  such that:
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4. Compute the entropy of this fuzzy 2-partition according to Eq. (4.35). The selected
threshold value Topt is the value that satisfies (4.31) and (4.32).

/* End c */

/* End a */

4.2.3.4. Maximization of the Between-Class Variance of A Fuzzy 2-Parttion

 Basic Algorithm

The 1-D Otsu method for two level thresholding is based on the maximization of the
between-class variance criterion [299]. It is formally defined by the following procedures:

1. Calculate the size ti, for each of the class Ci, i = 0, 1, according to
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2. Calculate the size mi, for each of the class Ci, i = 0, 1, according to
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jD
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Where h is the histogram and Dj, is the set of gray levels belonging to the class Ci. The
optimal threshold value, T, is selected so that to maximize the between-class variance

2
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 Fuzzy 2-Partition Algorithm

The purpose of the fuzzy version of the 1-D Otsu method is to take an effective use of both
the power of fuzzy set theory and the efficiency of the maximization of the between-class
variance matrix criterion to improve the performance of the basic method.

i) Definitions
For an 8-bit image with 256 gray levels ranging from 0 to 255, modeled by two fuzzy sets;

dark and bright (object class and background), whose membership functions are those defined
by (4.26) and (4.27), we define the size of the fuzzy events dark and bright as:
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Using (4.33), Eqs. (4.46) and (4.48) can be rewritten as follows:
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Ht is the total number making up the image and mt is its expected value. The between class
variance matrix B is given by:

2
)(

)( 










bt

btt
bbt

tH
mmH

ttHB (4.53)

ii) Recursive Method
The proposed recursive method performs into two steps, and needs only the calculation of

the size and the mean level value of the bright event.

1) Computation of the Size:  the procedure of calculating the size of the bright event is
summarized as follows.

For a = 0 to 254

    For c = (a+1) to 255

1. Compute the frequency vector Hc such that
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and recursively
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2. Compute the frequency matrix Ha,c such that:
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and recursively

)1()1(1,,   chacHH caca (4.57)

3. Compute the total matrix size tb of the bright event such that:
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/* End c */

/* End a */

2) Computation of the Mean Value: Similarly, the recursive calculation of the mean of the
bright event is outlined below.

For a = 0 to 254

    For c = (a+1) to 255

1. Compute the mean vector Mc such that
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and recursively
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2. Compute the mean values matrix Ma,c such that:
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and recursively
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3. Compute the total mean values matrix size mb of the bright event such that:
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/* End c */

/* End a */

The selected threshold value Topt is the mid-point of aopt and copt that maximizes the between
class variance B(Topt) given by (4.53).

4.2.4 FUZZY 2-PARTITION THRESHOLDING FOR LOCAL CONTRAST ENHANCEMENT

As has been said above, the Local Fuzzy 2-Partition Thresholding for Contrast
Enhancement (LFPTCE) is a novel alternative to the brightness preserving contrast
enhancement scheme without any mathematical formulation of some constraints of
brightness. Inspired by the work in [281], we formulate our solution as histogram equalization
using a specific neighborhood metric as sorting function to subdivide large bins in the original
histogram.

4.2.4.1.   Sorting Function
In the classical HE algorithm, the original histogram is subdivided into bins where pixels

have the same gray level. The use of the sorting function will have the effect of subdividing
the original histogram bins into sub-bins where pixels in each sub-bin share the same grey
level and neighborhood metric value.

4.2.4.2.   Neighborhood Metric
We now consider in detail the neighborhood metric used to model the spatial correlation

between pixels in a local neighborhood of the input image.

 Spatial Neighborhood Definition

Let  1.,,1,0;1.,,1,0:),(  NjMijiD   the domain on which an image  with (L-

1) gray level is defined. The spatial neighborhood model used is that of the common second



order neighborhood shown in Fig. 2.1b (chapter 2), and defined as a simple stacked vector of
the neighboring pixels:

]),(),(},1,,1{},1,,1{:),([),( vuqpvvvquuupqpN vu          (4.64)

 Neighborhood Metric Definition

We define our metric as the second order derivative metric given by the following four
differences:
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The quantity )(, xd k
ji

, for k = 1, 2, 3, 4, provides a local measure of spatial activity within the

data. In smooth image regions, )(, xd k
ji

 is a small value, while at edges )(, xd k
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 is large.

We associate to the derivative metric )(, xd k
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 the following voting function:
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jidV  is defined in the spirit of the Huber-Markov edge-preserving function used effectively

to preserve discontinuities in image restoration applications. )( ,
k

jidV  serves to penalize

discontinuities within the data dependent upon a free positive parameter β.

4.2.4.3.   Algorithm
The contextual spatial algorithm, LFPTCE is summarized through the following key steps:

1. Compute the derivative metric for each pixel in the input image.

2. Subdivide the original histogram into sub-bins using the gray level as the primary sort
key and the voting function )( ,

k
jidV  as the secondary sort key.

3. Find the threshold XT that yields a two-level thresholding with maximum entropy or
maximum between-class variance, either the entropic criterion or cross-variance
criterion is used.

4. Separate the sorted histogram obtained in step 2 into two, based on the threshold XT

found in step 3 and equalize them independently.

4.3. CONTEXTUAL SPATIAL HISTOGRAM FOR CONTRAST ENHANCEMENT
The basic thought of the Contextual Spatial Histogram for Contrast Enhancement

(CSHCE) is to achieve a contrast enhancement which preserves the brightness of the input



image and employs a contextual bi-dimensional histogram to characterize the spatial
relationships.

4.3.1. CONTEXTUAL SPATIAL NEIGHBORHOOD

In the basic HE scheme, pixels are modified by a transformation function based on the gray
level distribution over an entire image. In the method at hand, we propose a transformation
function based on a joint gray level distribution in a local neighborhood, Nij, of every pixel
(i,j) (Fig. 4.2b), defined over a predefined area, C, in the image (Fig. 4.2a). In other words, we
consider C as the area in the neighborhood of the areaC over the entire image,

i.e., DCC  . The transformation function will be defined using the area C, and then will

be applied to the entire image for the purpose of contrast enhancement.

         (a)             (b)

Fig. 4.2: Contextual spatial neighborhood system. (a) Contextual area for transformation
function definition. (b) Local neighborhood system Nij for every pixel (i,j).

4.3.2. CONTEXTUAL SPATIAL HISTOGRAM

Let   be an image defined on  1.,,1,0;1.,,1,0:),(  NjMijiD  , with gray levels

in the range [0, L - 1]. Let
sr XlkXndaXjiX  ),(),( , where CNndaNlk jiji ),( .

The contextual spatial histogram defined on Nij, over the area C is given by:
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where nrs represents the number of times that the level Xr appears having the level Xs in his
neighborhood such as Xr represents the pixel (i,j) whilst Xs represents the pixel (k,l).

4.3.3. CONTEXTUAL CUMULATIVE DENSITY FUNCTION

We define the contextual cumulative density function as:
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where Xk = x, for k = 0, 1, …, L-1. Note that cc(XL-1) = 1, by definition. If we define a transform
function fc(x) based on the cumulative density function such as:
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Then the output image of the CSHCE method,  DjijiY  ),(,),(  can be expressed as:
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4.3.4. ALGORITHM

The CSHCE brightness preserving algorithm is summarized through the following key
steps:

1. Define the areas C and C in the image such as DCC  .

2. Compute the contextual spatial histogram Hc for every pixel Cji ),(  .

3. Find the threshold XT that yields a two-level thresholding with maximum between-class
variance criterion for the entire image.

4. Separate the sorted histogram obtained in step 2 into two, based on the threshold XT

found in step 3 and equalize them independently, using (4.68).

4.4.   EXPERIMENTAL RESULTS
The proposed algorithms, LFPTCE and CSHCE, besides HE, BBHE and DSIHE methods

are simulated on the remote sensing images described in chapter 2 (section 2.8.1). The
comparison was made using three quality metrics: the Absolute Mean Brightness Error
(AMBE), the contrast-per-pixel C, and the distortion δ. We note that contrast and distortion are
competing measures, since increased contrast also increases distortion. The best result is one
that increases contrast significantly while increasing distortion only slightly.

4.4.1 LOCAL CONTRAST ENHANCEMENT BASED THRESHOLDING SIMULATIONS

4.4.1.1 Thresholding Results
The BBHE, DSIHE and LFPTCE algorithms are based on the use of a threshold level to

preserve the brightness. The corresponding two-level images of Channels 1-5 and 7 are
represented in Figs. 4.3-4.8. As can be seen in Figs. 4.3d-4.5d and in Fig. 4.8d, the main
components of the image are well segmented and the main features are preserved, whilst in
Figs. 4.3a,b,c-4.5a,b,c some contours disappear and some false contours appear. In Figs.
4.7a,b,c-4.8a,b,c, the contours in some regions are slightly more preserved than in Fig. 4.7d-
4.8d. Clearly, the proposed Otsu method for fuzzy 2-partition thresholding behaves better
with images in the Visible (Vis) channel (Bands 1,2, 3) than with Infra Red (IR) images
(Bands 4, 5 and 7). Note that the Otsu method for fuzzy 2-partition thresholding has been
developed initially for single channel gray level images.

4.4.1.2 Contrast Enhancement Results
Table 4.1 shows the quantitative results of the LFPTCE algorithm obtained on channels 1-

5 and 7 of the September sub-image, together with HE, BBHE and DSIHE for comparison.
The obtained gains of AMBE and contrast C and distortion δ are reported with respect to the
HE method. From the results, we see that the LFPTCE-ME (Local Fuzzy 2-Partition for
Contrast Enhancement with the Maximum Entropy criterion) and the DSIHE produce in
average the less contrasted images with distortion and absolute mean brightness values fairly
high (G-C = -7.54%, G- δ = -2.52%) and (G-C = -2.52%, G- δ = -5.74%) respectively. The
gains are gradually enhanced with the BBHE (G-C = 0.12%, G- δ = 12.76%). However, the
best results are those obtained with the proposed LFPTCE-MV (Local Fuzzy 2-Partition for
Contrast Enhancement with the Maximum Between-Variance criterion) method (G-C =
12.11%, G- δ = 42.53%). Concerning the brightness, clearly the proposed LFPTCE-MV has
increased the brightness preservation (G-AMBE = 81.73%) and yielded a more natural
enhancement than LFPTCE-ME (G-AMBE = 66.93%), BBHE (G-AMBE = 66.19%) and
DSIHE (G-AMBE = 55.83%). Note that the LFPTCE-MV provides better results for images



the Vis channel than for images in the IR Channel. Finally, we should mention that values
ranging from 0 to 4 of the free parameter β in (4.66) yielded similar quality of contrast
enhancement, thus simulations were conducted with the value β = 0. Figs. 4.9-4.14 display the
results of achieved contrast enhancement of the channels 1-5 and 7 of the September sub-
image.

4.4.2 CONTEXTUAL SPATIAL HISTOGRAM FOR CONTRAST ENHANCEMENT RESULTS

The main idea behind the development of the CSHCE method for remote sensing images is
to reproduce the brightness property of the input image by means of a local enhancement
process in which the spatial relationships between neighboring pixels are exploited, besides
the spatial relationships between neighboring areas where various land cover classes can be
found in each area.

To verify the effectiveness of the proposed method different locations and sizes of the area C
have been adopted with the use of the same groups of masks used in chapter 2, besides the
mask CE in Fig. 4.15b. For each mask, the CSHCE algorithm was tested in two ways.

First, we consider the area C outside the mask. The results for Band 1 in the Vis channel and
Band 4 in the IR channel of the September sub-image are shown in Table 4.2 and Figs. 4.16-
4.17. The table shows that the results are highly related to the spectral channel of the image,
the land cover, the dimension and location of the area C. The area outside the largest mask CD

produces the best combination of results comparing to LFPTCE-MV: contrast enhancement is
better of 51% for Band 1 and 90.84% for Band4, brightness is better of 9.07% for Band 1 and
18.32% for Band 4 and no more distortion is introduced in excess. The results decrease
gradually with masks CC,B,A, but contrast enhancement remain better than LFPTCE-MV with
less distortion and comparable values of brightness preserving. The brightness preservation
decreases slightly with the use of masks C1,2,3,4,E, however, contrast enhancement remain
better than LFPTCE-MV with less distortion in Band 1. For Band 4, the results obtained still
outperform LFPTCE-MV results.

Secondly, we consider the area C inside the mask. The results for Band 1 and Band 4 are
shown in Table 4.3 and Figs.4.18-4.19. The choice of such areas decreases notably the
brightness preservation in Band 1, but the images remain less distorted with better contrast
enhancement than LFPTCE-MV. In Band 4, however, the CSHCE algorithm improves the
brightness preservation and contrast enhancement with less distortion.

4.5. SUMMARY
We presented two novel extensions of brightness preserving contrast enhancement

techniques. Both of the two methods use a fuzzy 2-partition thresholding scheme for
brightness preserving. The first method models the spatial relationships with the use of a
neighborhood metric which provides a local measure of spatial activity within the data. The
second method uses a contextual spatial joint probability within a local neighborhood system,
over a local area to remap the gray levels of the pixels in the entire image. Accordingly, our
methods are able to achieve better contrast enhancement and brightness preservation with less
distortion than some popular brightness preserving techniques.



         (a)          (b)

        (c)          (d)

Fig. 4.3: Two level thresholding of channel 1 of the September sub-image with (a) BBHE. (T = 65).
(b) DSIHE (T = 59). (c) Fuzzy 2-partition maximum entropy criterion (T = 57).

(d) Fuzzy 2-partition maximum between-variance criterion (T = 105).

         (a)          (b)

        (c)          (d)

Fig. 4.4: Two level thresholding of channel 2 of the September sub-image with (a) BBHE. (T = 78).
(b) DSIHE (T = 71). (c) Fuzzy 2-partition maximum entropy criterion (T = 75).

(d) Fuzzy 2-partition maximum between-variance criterion (T = 101).



         (a)          (b)

        (c)          (d)

Fig. 4.5: Two level thresholding of channel 3 of the September sub-image with (a) BBHE. (T = 57).
(b) DSIHE (T = 45). (c) Fuzzy 2-partition maximum entropy criterion (T = 48).

(d) Fuzzy 2-partition maximum between-variance criterion (T = 106).

         (a)          (b)

        (c)          (d)

Fig. 4.6: Two level thresholding of channel 4 of the September sub-image with (a) BBHE. (T = 154).
(b) DSIHE (T = 157). (c) Fuzzy 2-partition maximum entropy criterion (T = 157).

(d) Fuzzy 2-partition maximum between-variance criterion (T = 150).



         (a)          (b)

        (c)          (d)

Fig. 4.7: Two level thresholding of channel 5 of the September sub-image with (a) BBHE. (T = 110).
(b) DSIHE (T = 112). (c) Fuzzy 2-partition maximum entropy criterion (T = 110).

(d) Fuzzy 2-partition maximum between-variance criterion (T = 110).

         (a)          (b)

        (c)          (d)

Fig. 4.8: Two level thresholding of channel 7 of the September sub-image with (a) BBHE. (T = 77).
(b) DSIHE (T = 69). (c) Fuzzy 2-partition maximum entropy criterion (T = 72).

(d) Fuzzy 2-partition maximum between-variance criterion (T = 96).



Band Method T
G-AMBE

(%)
G-C (%) G-δ (%)

HE - 69.83 240.10 0.29
BBHE 65 69.18 00.47 17.24
DSIHE 59 58.34 - 02.18 - 03.45

LFPTCE-ME 57 64.60 -12.18 - 06.90
B1

LFPTCE-MV 105 93.41 24.7 75.86
HE - 54.91 206.03 0.20

BBHE 78 67.26 - 04.48  05.00
DSIHE 71 54.67 - 05.26 - 15.00

LFPTCE-ME 75 67.47 - 14.20 - 05.00
B2

LFPTCE-MV 101 97.63 19.72 65.00
HE - 75.6 232.28 0.47

BBHE 57 78.27 07.15 59.57
DSIHE 45 58.15 - 03.31 12.77

LFPTCE-ME 48 67.83 - 07.36 25.53
B3

LFPTCE-MV 106 86.81 30.57 82.98
HE - 23.73 237.78 0.07

BBHE 154 66.20 01.12 00.00
DSIHE 157 59.80 00.74 00.00

LFPTCE-ME 157 52.30 - 03.16 00.00
B4

LFPTCE-MV 150 64.56 - 01.83 00.00
HE - 19.76 231.02 0.09

BBHE 110 48.89 - 01.37 - 11.11
DSIHE 112 48.89 - 01.72 - 11.11

LFPTCE-ME 110 55.82 - 04.83 - 11.11
B5

LFPTCE-MV 110 55.82 - 04.83 - 11.11
HE - 53.34 240.89 0.17

BBHE 77 67.34 - 02.13 05.88
DSIHE 69 55.17 - 03.43 - 17.65

LFPTCE-ME 72 63.42 - 07.61 - 17.65
B6

LFPTCE-MV 96 92.18 04.38 41.18

(a)

Method G-AMBE (%) G-C (%) G-δ (%)
HE 49.52 231.35 0.21

BBHE 66.19 00.12 12.76
DSIHE 55.83 - 02.52 - 05.74

LFPTCE-ME 66.93 - 07.54 - 02.52
LFPTCE-MV 81.73 12.11 42.31

(b)

TABLE 4.1. QUANTITATIVE RESULTS OBTAINED FOR LOCAL FUZZY 2-PARTITION FOR

CONTRAST ENHANCEMENT. (A) INDIVIDUAL RESULTS OF THE SEPTEMBER SUB-IMAGE.
(B) AVERAGED VALUES ON THE SIX CHANNELS OF THE SEPTEMBER SUB-IMAGE.



(a)      (b)

(c)      (d)

(e)     (f)

Fig.4.9: Histogram equalization results obtained for channel 1 of the September sub-image. a) Original sub-
image. b) HE method. c) BBHE method. d) DSIHE method. e) LFPTCE-ME method. f) LFPTCE-MV method.



(a)      (b)

(c)      (d)

(e) (f)

Fig.4.10: Histogram equalization results obtained for channel 2 of the September sub-image. a) Original sub-
image. b) HE method. c) BBHE method. d) DSIHE method. e) LFPTCE-ME method. f) LFPTCE-MV method.



(a)      (b)

(c)      (d)

(e) (f)

Fig.4.11: Histogram equalization results obtained for channel 3 of the September sub-image. a) Original sub-
image. b) HE method. c) BBHE method. d) DSIHE method. e) LFPTCE-ME method. f) LFPTCE-MV method.



(a) (b)

(c)      (d)

(e) (f)

Fig.4.12: Histogram equalization results obtained for channel 4 of the September sub-image. a) Original sub-
image. b) HE method. c) BBHE method. d) DSIHE method. e) LFPTCE-ME method. f) LFPTCE-MV method.



(a)      (b)

(c)      (d)

(e) (f)

Fig.4.13: Histogram equalization results obtained for channel 5 of the September sub-image. a) Original sub-
image. b) HE method. c) BBHE method. d) DSIHE method. e) LFPTCE-ME method. f) LFPTCE-MV method.



(a)      (b)

(c)      (d)

(e) (f)

Fig.4.14: Histogram equalization results obtained for channel 7 of the September sub-image. a) Original sub-
image. b) HE method. c) BBHE method. d) DSIHE method. e) LFPTCE-ME method. f) LFPTCE-MV method.

     (a)    (b)

Fig.4.15:  Masks adopted to simulate different locations of area C.



Band Mask AMBE Contrast C Distortion δ
CD 2.22 164.39 0.04
CC 3.57 165.60 0.05
CB 5.80 165.80 0.05
CA 6.82 165.41 0.06
C1 6.84 165.43 0.05
C2 8.11 165.34 0.05
C3 7.96 164.50 0.05
C4 7.97 164.55 0.05

B1

CE 5.39 185.36 0.05

(a)

Band Mask AMBE Contrast C Distortion δ
CD 0.77 197.78 0.03
CC 3.85 200.02 0.03
CB 5.85 199.61 0.03
CA 6.69 199.73 0.03
C1 6.69 233.05 0.07
C2 6.71 232.89 0.07
C3 6.39 233.59 0.07
C4 6.73 232.03 0.07

B4

CE 6.28 231.14 0.07

(b)

TABLE 4.2. QUANTITATIVE RESULTS OBTAINED FOR CONTEXTUAL SPATIAL HISTOGRAM FOR CONTRAST

ENHANCEMENT: AREA C OUTSIDE THE MASKS. (A) RESULTS OF CHANNEL 1. (B) RESULTS OF CHANNEL 4.

Band Mask AMBE Contrast C Distortion δ
CD 12.77 166.16 0.09
CC 20.45 172.92 0.12
CB 26.36 171.75 0.15
CA 27.85 167.53 0.15
C1 4.46 169.32 0.42
C2 15.29 174.02 0.18
C3 7.12 188.83 0.19
C4 14.20 180.33 0.20

B1

CE 19.22 155.08 0.15

(a)

Band Mask AMBE Contrast C Distortion δ
CD 1.68 232.00 0.07
CC 2.62 220.42 0.05
CB 4.37 221.15 0.05
CA 5.52 214.26 0.04
C1 5.33 237.26 0.08
C2 4.42 237.49 0.07
C3 10.57 221.46 0.06
C4 3.61 261.16 0.12

B4

CE 7.92 242.59 0.11

(b)

TABLE 4.3. QUANTITATIVE RESULTS OBTAINED FOR CONTEXTUAL SPATIAL HISTOGRAM FOR CONTRAST

ENHANCEMENT: AREA C INSIDE THE MASKS. (A) RESULTS OF CHANNEL 1. (B) RESULTS OF CHANNEL 4.



        (a) (b)

(c)                (d)

(e) (f)

(g) (h)

(i) (j)

Fig.4.16: Histogram equalization results obtained for channel 1 of the September sub-image with the CSHCE
method: Area C outside the mask. a) Original sub-image. b) Mask CD. c) Mask CC. d) Mask CB. e) Mask CA. f)
Mask C1. g) Mask C2. h) Mask C3. i) Mask C4. j) Mask CE.



        (a) (b)

(c)                (d)

(e) (f)

(g) (h)

(i) (j)

Fig.4.17: Histogram equalization results obtained for channel 4 of the September sub-image with the CSHCE
method: Area C outside the mask. a) Original sub-image. b) Mask CD. c) Mask CC. d) Mask CB. e) Mask CA. f)
Mask C1. g) Mask C2. h) Mask C3. i) Mask C4. j) Mask CE.



        (a) (b)

(c)                (d)

(e) (f)

(g) (h)

(i) (j)

Fig.4.18: Histogram equalization results obtained for channel 1 of the September sub-image with the CSHCE
method: Area C inside the mask. a) Original sub-image. b) Mask CD. c) Mask CC. d) Mask CB. e) Mask CA. f)
Mask C1. g) Mask C2. h) Mask C3. i) Mask C4. j) Mask CE.



    (a) (b)

(c)                (d)

(e) (f)

(g) (h)

(i) (j)

Fig.4.19: Histogram equalization results obtained for channel 4 of the September sub-image with the CSHCE
method: Area C inside the mask. a) Original sub-image. b) Mask CD. c) Mask CC. d) Mask CB. e) Mask CA. f)
Mask C1. g) Mask C2. h) Mask C3. i) Mask C4. j) Mask CE.



CONCLUSION

We have addressed two principal applications for remote sensing:

1. The post restoration of cloud-contaminated areas in remote sensing images

2. A contextual spatial contrast enhancement of satellite images.

For the purpose of post-restoration, three methods have been explored. The first uses a

multimodal predictor. The second is based on the exploitation of residuals generated by an
estimator, and the last one consists in a contextual spatio-spectral post-reconstruction scheme
(CSSPR). In all the methods, we have investigated the opportunity of using both spatial and
spectral information.

Three different spatial models have been introduced to analyze which of is better adapted to
our post-restoration problem. The first model is the common second order neighborhood
system. The second is derived from the autobinomial model originally used in the restoration
based Markov Random Fields. On the one hand, this model presents the advantage that is
more compact than the first model. On the other hand, it raises a weight estimation problem.
Finally, the third spatial model is based on the median-type predictor used for isolating
transmission errors in predictive coding. This model presents the advantage to be compact and
parameters free. The compactness of the second and the third model allowed limiting the
dimensionality of the space where the prediction problem was defined.

The following general conclusions can be drawn from the experimental results:

1. Depending on the contamination scenario, either the spectral or the spatial information
may appear more valuable;

2. However their fusion is the best way to get higher accuracies, especially when
adopting the simple first spatial model.

Nevertheless, when examining each method along with the remaining two others, the
residual-based prediction method seems to be the weakest:

1. The gains on MSE are almost low when using the spectral information separately in
both sequential and parallel systems;

2. The parallel residual-based system exhibits better gains than the sequential residual-
based system when taking into account the spatial information or the fusion of the two
information sources;

3. However, the obtained gains with the residual correction process, in the latter case, are
comparable to those obtained by the CSSPR and the multimodal predictor. The
residual correction process is unable to refine more the results because the generated
errors by the CMLP or CNP methods are not systematic.

4. The CSSPR and multimodal predictor show comparable accuracies, however the
CSSPR is more tractable since it is modeled more in the spirit of multispectral
reconstruction.



5. Finally, the contextual generation of error maps in the CSSPR method provides a
mean to deduce helpful indications on the spatial structure of errors and their
magnitude.

Post-reconstruction is useful to boost the reconstruction quality. However, the above two
steps process may be compressed into a simple but powerful restoration procedure by using
more complete models, in particular wavelets and MRFs to allow an improvement in the
description of remote sensing images.

For the purpose of contrast enhancement, two novel alternatives to bright preserving

contrast enhancement schema have been proposed, namely the LFPTCE and the CSHCE
method. The basic thought of our proposed algorithms have been met.

First, the brightness preserving constraint is expressed elegantly and implicitly in the
thresholding process, where object regions are extracted from their background on the basis of
the similarity of brightness of image objects.

With respect to automatic threshold selection, the fuzzy thresholding method, we have
initially developed for single channel gray level images, has proven to be powerful and
effective for multispectral images.

The proposed methods increase the brightness preservation and yield a more natural
enhancement. They are able to amplify edge contrast without explicitly detecting edge pixels.
This is due essentially to the models used by each method to describe the spatial relationships
between neighboring pixels and neighboring areas for the CSHCE method.

In the LFPTCE algorithm, the second order derivative metric defined in the spirit of an edge
preserving function, provides a local measure of spatial activity within the data and tries to
preserve discontinuities. The sorting function enables to preserve image structure by not
overly-enhancing image contrast.

In the CSHCE algorithm, the contextual spatial histogram represents a refinement of the
histogram in which local information about pixels as well as global histogram information is
combined. The introduction of the area neighborhood seems to be attractive for remote
sensing images since it is highly related to the land cover and spectral properties of this kind
of images.

Both of the two methods, however, suffer from some limitations and give rise to further
improvements that can be summarized in:

1. The methods are single channel processing and do not take advantage of the inter-
correlation between the different spectral components. One alternative is to consider a
multispectral thresholding. Another interesting alternative is to achieve the
multispectral contrast enhancement in the spirit of the multispectral restoration based
on a Bayesian paradigm, in which spatial and spectral relationships are described
using appropriate MRFs.

2. The area of transformation definition in the CSHCE algorithm is determined
empirically. The addition of some constraints in the choice of such area would be
more valuable.
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