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ABSTRACT 
 
The recent advent of new generations of sensors for different application fields such 

those related to remote sensing and spectroscopy has shown a great interest for their 

improved spectral, spatial and/or temporal characteristics. In particular, hyperspectral 

sensors allow an accurate spectral analysis of a physical phenomenon under investigation 

since they provide a large number of observations (features), each coming from a very 

narrow spectral band. However, the automatic analysis of data acquired with such 

sensors is somewhat challenging since it should be carried out in hyperdimensional 

spectral spaces. 
 

In the regression context where it is often desired to find a continuous relationship 

between the features and one or more parameters of the investigated physical 

phenomenon, the huge size of the feature space involves the so-called curse of 

dimensionality. This latter is due to the unbalancing between the number of features and 

the number of samples required to train the regression method. 
 

The classical approach adopted in the literature to deal with this issue consists in 

reducing the hyperdimensional feature space into a subspace of smaller dimension where 

the curse of dimensionality disappears. The most common way to do this task is 

represented by applying a feature selection process which consists in selecting the most 

significant subset of features for the considered regression problem. This allows to define 

a subspace of features of reduced dimension where the risk of affecting negatively (curse 

of dimensionality) the adopted regression method becomes negligible. However, 

whatever the degree of sophistication of the feature selection technique, one can expect a 

loss of information when reducing the size of the original hyperdimensional feature space 

with a consequent negative impact on the accuracy of the regression method. 
 

In this thesis, it is proposed to exploit the whole information available in the original 

hyperdimensional feature space by means of the fusion (combination) of multiple 

regression methods. The development of the proposed multiple regression systems will 

include three main steps. The first one is related to a proper partition of the original 

hyperdimensional feature space into subspaces of reduced dimensionality. The second 

step consists in training in each of the subspaces obtained in the previous step a 

regression method.  For this purpose, it will be made use of neural regression methods 



 xii

which have proved to be effective and sufficiently robust in numerous application fields. 

Finally, in the third and final step, the results provided by the different regression 

methods will be combined in order to produce a global estimate of the physical parameter 

of interest with an expected higher accuracy with respect to what can be achieved by the 

classical regression approach based on feature selection. 
 

The proposed methodologies are general and can be applied to any of the application 

fields of hyperspectral sensors. In the experimental phase, the validation of the 

methodologies will be carried out on data acquired by near-infrared spectrometers for 

quantitative chemical analysis. 

 

Keywords: Hyperspectral Sensors; Regression; Curse of Dimensionality; Feature 

Selection; Data Fusion; Neural Networks; Support Vector Machine; Pattern Recognition. 
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RESUME 

L’avènement récent d’une nouvelle génération de capteurs pour différents champs 

d’applications tels que ceux liés à la télédétection et à la spectroscopie a montré un grand 

intérêt pour leurs meilleures caractéristiques spectrales, spatiales et/ou temporelles. En 

particulier, les capteurs hyperspectraux qui permettent une analyse précise des 

phénomènes de recherche, puisqu'ils fournissent un grand nombre d'observations, 

chacune venant d'une bande spectrale très étroite. Cependant, l'analyse automatique des 

données acquises avec de tels capteurs est en quelque sorte défiante, puisqu'elle devrait 

être effectuée dans des espaces spectraux hyper-dimensionnels. 
 

Dans le contexte de régression où on a souvent le désire de trouver une relation continue 

entre les observations et un ou plusieurs paramètres du phénomène physique étudié, la 

taille énorme de l'espace d'observations implique la prétendue ‘’malédiction’’  de la 

dimensionnalité. Cette dernière est due au déséquilibrage entre le nombre d'observations 

et le nombre d'échantillons exigés pour exécuter la méthode de régression. 
 

L'approche classique adoptée dans la littérature pour traiter ce problème, consiste à 

réduire l'espace d'observations hyper-dimensionnelles à des sous-espaces de petite 

dimension, où la malédiction de la dimensionnalité disparaît. La façon la plus utilisée de 

faire cette tâche est d'appliquer un procédé de sélection de variables qui consiste à choisir 

le sous-ensemble d'observations le plus significatif pour le problème de régression 

considéré. Ceci laisse définir un sous-espace d'observations de dimension réduite où le 

risque d'affecter négativement (malédiction de la dimensionnalité) la méthode de 

régression adoptée devient négligeable. Cependant, quelque soit le degré d’efficacité de 

la technique de sélection, on peut s'attendre à une perte d'information en réduisant la 

taille de l'espace original d'observations hyper-dimensionnelles avec un impact négatif 

conséquent sur l'exactitude de la méthode de régression. 
 

Dans ce mémoire, on propose d’exploiter l’information complète disponible dans 

l’espace de variables hyper-dimensionnelles par le biais de la fusion (combinaison) des 

méthodes de régression multiple. Le développement des systèmes proposés inclura trois 

étapes principales. La première concerne la répartition de l'espace original des 

observations hyper-dimensionnelles à des sous-espaces de dimensionnalité réduite. La 

deuxième étape consiste à appliquer à chacun des sous-espaces obtenus en étape 

précédente une méthode de régression. À ce propos, on utilise une des méthodes 
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neuronales de régression qui se sont avérées efficaces et suffisamment robustes dans de 

nombreux domaines d'application. Dans la troisième et finale étape, les résultats fournis 

par les différentes méthodes de régression seront combinés afin de produire une 

évaluation globale du paramètre physique d'intérêt avec une exactitude prévue plus 

élevée en ce qui concerne ce qui peut être réalisé par l'approche classique de régression 

basée sur la sélection des variables. 
 

Les méthodologies proposées sont générales et peuvent être appliquées à n'importe quel 

champ d'application des capteurs hyper-spectraux. Dans la phase expérimentale, la 

validation des méthodologies sera effectuée sur des données acquises par les 

spectromètres proche-infrarouges pour l'analyse quantitative. 
 

Mots-Clés: capteurs hyper-spectraux; régression; problème de dimensionnalité; sélection 

des variables; fusion des données; réseaux de neurones; reconnaissance des formes. 

 



 
Chapter 1 

 
INTRODUCTION AND THESIS OVERVIEW 

 

Abstract: This chapter aims to provide the reader with a general and brief description of the 

main notions and problems of dimensionality phenomenon encountered in application such 

spectroscopy. And describe the main constituents of a spectrophotometric problem, the main 

topic and methodologies faced in the following chapters are introduced in such a way to 

understand in which context is proposed the methodological approaches presented by the present 

thesis. Finally, this introductive chapter ends with an overview of the thesis content. 
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1.1 GENERAL INTRODUCTION 

Modern data analysis has to cope with tremendous amounts of data. Data are 

indeed more and more easily acquired and stored, due to huge progresses in sensors and 

ways to collect data on one side, and in storage devices on the other side. Nowadays, 

there is no hesitation in many domains in acquiring very large amounts of data without 

knowing in advance if they will be analyzed and how. 

The spectacular increase in the amount of data is not only found in the number of 

samples collected for example over time, but also in the number of attributes, or 

characteristics that are simultaneously measured on a process. The same arguments lead 

indeed to a kind of precaution principle: as there is no problem in measuring and storing 

many data, why not to collect many measures, even if some (many) of them prove 

afterward to be useless or irrelevant? For example, one could increase the number of 

sensors in a plant that has to be monitored, or increase the resolution of measuring 

instruments like spectrometers, or record many financial time series simultaneously in 

order to study their mutual influences, etc. In all these situations, data are gathered into 

vectors whose dimension corresponds to the number of simultaneous measurements on 

the process of phenomenon. When the dimension grows, one speaks about high 

dimensional data, as each sample can be represented as a point or vector in a high-

dimensional space. 

The difficulty in analyzing high-dimensional data results from the conjunction of 

two effects. First, high-dimensional spaces have geometrical properties that are counter-

intuitive, and far from the properties that can be observed in two-or three dimensional 

spaces. Secondly, data analysis tools are most often designed having in mind intuitive 

properties and examples in low-dimensional spaces; usually, data analysis tools are best 

illustrated in 2-or 3-dimensional spaces, for obvious reasons. 
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 The problem is that those tools are also used when data are high-dimensional and 

more complex. In this kind of situations, we loose the intuition of the tools behaviour, 

and might draw wrong conclusions about their results. Such loss of control is already 

encountered with basic linear tools, such as PCA (Principal Component Analysis): it is 

very different to apply PCA on a 2-dimensional example with hundreds of samples (as 

illustrated in many textbooks), or to apply it on a few tens of samples represented in a 

100-dimensional space! Known problems such as collinearity and numerical instability 

easily occur. The problem is even worse when using nonlinear models: most nonlinear 

tools involve (much) more parameters than inputs (i.e. than the dimension of the data 

space), which results in lack of model identifiability, instability, overfitting and 

numerical instabilities. 

 

1.2 HIGH-DIMENSIONAL DATA 
Working with high-dimensional data means working with data that are embedded 

in high-dimensional spaces. When speaking about non-temporal data, this means that 

each sample contains many attributes or characteristics (features). Spectra are typical 

examples of such data: depending on the resolution of the spectrometer, spectra contain 

several hundreds of measurements. Fortunately for the sake of analysis, the hundreds of 

coordinates in spectra are not independent: it is precisely their dependencies that are 

analyzed in order to extract relevant information from a set of spectra. More generally, 

redundancy in the coordinates is a necessary condition to analyse a low number of 

samples in a high-dimensional space. Indeed let us imagine on the contrary that all 

coordinates are independent; a simple linear regression model will contain as many 

parameters as the number of coordinates in the space. If the number of samples available 

for learning is less than the dimension of the space, the problem is undefined (in other 

words the model is unidentifiable). This problem is known as collinearity, and has no 

other solution than exploiting the dependencies between coordinates in order to reduce 

the number of model parameters; using smoothing splines is an example of dependency 

exploitation. While collinearity is the expression of this phenomenon when linear 

models are used, a similar problem appears when nonlinear models are used; it results in 

overfitting, i.e. in a too efficient modelling of learning samples without model 

generalization ability. 
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1.2.1 The Curse of Dimensionality 
Data analysis tools based on learning principles infer knowledge, or information, 

from available learning samples. Obviously, the models built through learning are only 

valid in the range or volume of the space where learning data are available. Whatever is 

the model or class of models, generalization on data that are much different from all 

learning points is impossible. In other words, relevant generalization is possible from 

interpolation but not from extrapolation. One of the key ingredients in a successful 

development of learning algorithms is therefore to have enough data for learning so that 

they fill the space or part of the space where the model must be valid. It is easy to see 

that, every other constraint being kept unchanged, the number of learning data should 

grow exponentially with the dimension (if 10 data seem reasonable to learn a smooth 1-

dimensional model), 100 are necessary to learn a 2-dimensional model with the same 

smoothness, 1000 for a 3-dimensional model, etc.). This exponential increase is the first 

consequence of what is called the curse of dimensionality [2], which is often referred to 

as the Hughes phenomenon (Hughes, 1968), see Figure 1.1. 

 

As the dimensionality of the feature space increase subject to the number of bands, 

the number of training samples needed for the learning task has to increase too. If 

training samples are insufficient for the need, which is quite common for the case of 

using hyper spectral data, parameters estimation becomes inaccurate. The classification 

or regression accuracy first grows and then declines as the number of spectral bands 

increases. 

 

More generally, the curse of dimensionality is the expression of all phenomena that 

appear with high-dimensional data, and that have most often unfortunate consequences 

on the behaviour and performances of learning algorithms. 
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Figure 1.1: This graph illustrates the so-called Hughes effect [5] by means of the expected 
mean recognition accuracy averaged over the ensemble of all possible classifiers for a 
two-class pattern recognition problem where the classes are equally likely. The parameter 
m indicates the number of training samples used to define the two classes. 
 

1.2.2 Some Geometrical Properties of High-Dimensional Spaces 
Even without speaking about data analysis, high-dimensional spaces have 

surprising geometrical properties that are counter-intuitive. Figure 1.2 illustrates four 

such phenomena. Figure 1.2 a) shows the volume of a unit-radius sphere with respect to 

the dimension of the space. It is seen that while this volume increases from dimension 1 

(a segment) to 5 (a 5-dimensional hypersphere), it then decreases and reaches almost 0 

as soon as the space dimension exceeds 20. The volume of a 20-dimensional 

hypersphere with radius equal to 1 is thus almost 0! Figure 1.2 b) shows the ratio 

between the volume of a unit-radius sphere and the volume of a cube with edge lengths 

equal to 2 (the sphere is thus tangent to the cube). In dimension 2, the ration is obviously 

π/4, which means that most of the volume (here surface) of the cube is also contained in 

the sphere. When the dimension increases, this ratio rapidly decreases toward 0, to reach 

a negligible value as soon as the dimension reaches 10. In terms of density of data in a 
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space, this means that if samples are drawn randomly and uniformly in a cube, the 

probability that they fall near the corners of the cube is almost one! As it will be detailed 

below, this also means that their norm is far from being random (it is concentrated near 

the maximum value, i.e. the square root of the dimension). 

 
Fig. 1.2 Four phenomena in high-dimensional spaces 

 

Figure 1.2 c) shows the ratio between the volumes of two embedded spheres, 

with radii equal to 1 and 0.9 respectively. Unsurprisingly the ratio decreases 

exponentially with the dimension. What is more surprising is that, even if the two radii 

only differ by 10%, the ratio between both volumes is almost 0 in dimension 10. If data 

are randomly and uniformly distributed in the volume of the larger sphere, this means 

that almost all of them will fall in its skull, and will therefore have a norm equal to 1!  

 Finally, one can consider a multi-dimensional Gaussian distribution scaled to 

have its integral equal to 1. Figure 1.2 d) shows the percentage of the volume of the 

Gaussian function that falls inside a radius equal to 1.65. It is well known that this 

percentage is equal to 90% in dimension 1. Figure 1.2 d) shows that this percentage 
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rapidly decreases, up to almost 0 in dimension as low as 10! In other words, in 

dimension 10, almost all the volume of a Gaussian function is contained in its tails and 

not near its center, a definition that contracts with the commonly accepted view of 

locality! 

 
1.3 INVERSE PROBLEM 
 The aim of collecting data is to gain meaningful information about a physical 

system or phenomenon of interest. However, in many situations the quantities that we 

wish to determine (Regression coefficients) are different from the ones which we are 

able to measure (Target or quantitative variable), or have measured. If the measured data 

depends, in some way, on the quantities we want, then the data at least contains some 

information about those quantities. Starting with the data that we have measured, the 

problem of trying to reconstruct the quantities that we really want is called an inverse 

problem. Loosely speaking, we often say an inverse problem is where we measure an 

effect and want to determine the cause. 

 
Figure 1.3. Basic block diagram of the chemometrics inverse problem. 

 
According to some theoretical model (for example linear regression), the value of a 

quantity y (quantitative or dependent variable) depends on another quantity x 

(Independent variable) via an equation such as: 

y = a + bx1 + cx2 + dx3     (1.1) 

Given a set of measured points (xi; yi) (which are the “data” in this problem), 

how do we determine the values of a; b; c and d; and how confident are we of the result? 

In this case the “concentration” which we wish to determine is the set of numbers a 

through d: More generally, of course, the model can be more complicated and may 

depend on the concentration in a non-linear way. 

Observations Sensors Physical Process Physical 
Parameter 

Inverse Problem 
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1.4 SENSORS 
1.4.1 Definition of a Transducer and a Sensor 

“A transducer is a device that converts input energy into output energy, the latter 

usually differing in kind but bearing a known relationship to the input”. Sensors form a 

small subset of the group of transducers and are defined as follows: 

“A sensor is a transducer that receives an input signal or stimulus and responds with an 

electrical signal bearing a known relationship to the input” 

Many measuring and sensing devices, as well as loudspeakers, thermocouples, 

microphones, and phonograph pickups, may be termed transducers. 

 
1.4.2 Frequency Bands 

Sensors can be made to operate over a very broad band of frequencies for both 

electromagnetic (EM) and acoustic applications. 

 
Figure 1.4: The Electromagnetic Spectrum 

 

The frequency band designations for EM radiation can be confusing as there are 

various different standards in use. In this introduction, the United States Microwave and 

Radar nomenclature will be used. 
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Table 1.1: Frequency Bands and Typical Applications for Electromagnetic Systems 

 

1.4.3 Passive Sensors 

Passive sensors directly generate an electric signal in response to a stimulus. That 

is, the input stimulus is converted by the sensor into output energy without the need for 

an additional source of power to illuminate the environment. 

The salient characteristics of most passive sensors are as follows:  

• Do not emit radiation (or an excitation signal) as part of the measurement process. 

• Rely on a locally generated or natural source of radiation (light from the sun) or an 

available energy field (gravity). 

• Passive sensors can exploit EM radiation of any frequency in which some natural 

phenomenon radiates. This can extend from ELF (below 3×103Hz) up to gamma rays 

(above 3×1019Hz). 

• They can exploit acoustic energy (vibration) from infrasound frequencies <1Hz from 

earthquakes or explosions up to the ultrasound 
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1.4.4 Active Sensors 

 Active sensors require the application of external power for their operation. This 

excitation signal is modified by the sensor to produce an output signal. So called semi-

active sensors use an excitation signal generated by (or radiated from) a source that is 

not coincident with the sensor. 

 Active sensors are restricted to frequencies that can be generated and radiated 

fairly easily. This excludes part of the far infrared (above 3×1012Hz), parts of the 

ultraviolet band and the gamma ray region. Inroads are being made into these regions 

with the development of Terahertz sources based on artificial photonic crystals. 

 

 
Figure 1.5: Classification and application of sensors 
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1.5 REGRESSION ANALYSIS 
1.5.1 Definition of Regression 
Definition: Regression is a technique of fitting a simple equation to real data points.  

The most typical type of regression is linear regression (meaning you use the equation 

for a straight line, rather than some other type of curve), constructed using the least-

squares method (the line you choose is the one that minimizes the sum of the squares of 

the distances between the line and the data points). It's customary to use "a" or "alpha" 

for the intercept of the line, and "b" or "beta" for the slope; so linear regression gives 

you a formula of the form: y = bx+ a  

 

Figure 1.6: Fitting a straight line to a bunch of points is a kind of parametric regression 
where the form of the model is known. 

 

1.5.2 Parametric and Non-Parametric Regression 
There are two main subdivisions of regression problems in statistics: parametric and 

nonparametric. In parametric regression the form of the functional relationship between 

the dependent and independent variables is known but may contain parameters whose 

values are unknown and capable of being estimated from the training set. For example, 

fitting a straight line,  

f(x) = ax+b,    (1.2) 

x 

y 

(x1,y1)
(x2,y2)

(x3,y3)

(x4,y4) (x5,y5)

Distance from the line to a typical data point 
= 

Error between the line and this y value 
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to a bunch of points, {(xi,ŷi)}i
p=1, (see the figure below) is parametric regression because 

the functional form of the dependence of y on x is given, even though the values of a and 

b are not. Typically, in any given parametric problem, the free parameters, as well as the 

dependent and independent variables, have meaningful interpretations, like “initial water 

level” or “rate of flow”. 
 

The distinguishing feature of nonparametric regression is that there is no (or very 

little) a priori knowledge about the form of the true function which is being estimated. 

The function is still modeled using an equation containing free parameters but in a way 

which allows the class of functions which the model can represent to be very broad. 

Typically this involves using many free parameters which have no physical meaning in 

relation to the problem. In parametric regression there is typically a small number of 

parameters and often they have physical interpretations. 

Neural networks, including radial basis function networks and multi-layer 

perceptrons, and more recently the SVMs [26-32] ( See Chapter 3) are nonparametric 

models and their weights (and other parameters) have no particular meaning in relation 

to the problems to which they are applied. Estimating values for the weights of a neural 

network (or the parameters of any nonparametric model) is never the primary goal in 

supervised learning. The primary goal is to estimate the underlying function (or at least 

to estimate its output at certain desired values of the input). On the other hand, the main 

goal of parametric regression can be, and often is, the estimation of parameter values 

because of their intrinsic meaning. 

 
1.5.3 Regression in Hyperdimensional Spaces 
 The spectrophotometric data are one example of hyperdimensional data; often 

they may comprise more independent variables (spectral data) than observations (spectra 

or samples). This case is rather less encountered in other applications of statistics. 

Collinearity of the independent variables is typical for spectrophotometric data, i.e. 

certain independent variables can be practically represented as a linear combination of 

other independent ones; this is the source of many problems in direct application of 

many statistical methods, such as the Multiple Linear Regression (MLR) [4, 5, 6, 7]. 

Studies have shown that if collinearity is present among the variables, the prediction 
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results can get poor. This limitation has promoted other alternative linear methods to 

offset the problems generated by the strong redundancy between variables. Several 

alternatives based on features selection + regression that are able to adapt to this 

collinearity were developed, that are Stepwise Multiple Linear Regression (SMLR) [5, 

8, 9, 10], Principal Component Regression (PCR) [6, 11, 12, 10], Partial Least Square 

Regression (PLSR) [5, 11, 12, 13, 7,10] and Sequential Forward Selection (SFS) [3] etc. 

 
Figure 1.7. Traditional regression approaches diagram block. 

 
The classical approaches adopted in the literature to deal with this issue consist in 

reducing the hyperdimensional feature space into a subspace of smaller dimension where 

the curse of dimensionality disappears. The most common way to do this task is 

represented by applying a feature selection process which consists in selecting the most 

significant subset of features for the considered regression problem [6]. This allows to 

define a subspace of features of reduced dimension where the risk of affecting 

negatively (curse of dimensionality) the adopted regression method becomes negligible. 

However, whatever the degree of sophistication of the feature selection technique, one 

can expect a loss of information when reducing the size of the original hyperdimensional 

feature space with a consequent negative impact on the accuracy of the regression 

method. 

 But there is always a problem which remains posed in this kind of traditional 

methods based on features reduction and regression, which is the loss of information, 

since all those methods sited above use before regression a feature selection technique to 

select a set of representative features among the whole space, what leads to the use of a 

part of the information included in the input space and not all the information. 

 To face this problem adopted in the literature, we propose a new method based 

on the use of the whole information contained in the input space which exploits the 

whole information available in the original hyperdimensional feature space by means of 

the fusion (combination) of estimators. 

 

Features 
Reduction 

Regression 
Method ŷ

X 
The Whole Space 
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1.6 OBJECTIVES OF THIS WORK 
In this thesis, it is proposed to exploit the whole information available in the original 

hyperdimensional feature space by means of the fusion (combination) of multiple 

regression methods. The development of the proposed multiple regression systems will 

include three main steps. The first one is related to a proper partition of the original 

hyperdimensional feature space into subspaces of reduced dimensionality. The second 

step consists in training in each of the subspaces obtained in the previous step a 

regression method. For this purpose, it will be made use of neural regression methods 

which have proved to be effective and sufficiently robust in numerous application fields. 

Finally, in the third and final step, the results provided by the different regression blocks 

will be combined in order to produce a global estimate of the physical parameter of 

interest with an expected higher accuracy with respect to what can be achieved by the 

classical regression approaches based on feature selection. 

The proposed methodologies are general and can be applied to any of the application 

fields of hyperspectral sensors. In the experimental phase, the validation of the 

methodologies will be carried out on data acquired by near-infrared spectrometers for 

quantitative chemical analysis. 

 
1.7 OVERVIEW OF DISSERTATION 
 The first chapter introduces some important general concept related to the 

hyperdimensional data providing some definitions helping to understand the context of 

the proposed approaches and gives an overview of this thesis. 

The next chapter defines the proposed approach used throughout this dissertation and 

describes the basic framework for combining multiple learned models (Estimators), 

Chapter 3 gives a broad overview of the famous technique Support Vector Machines 

(SVM) used for supervised learning problems and provides the necessary background 

for understanding this technique. 

In chapter 4, the results of the research in generating and combining multiple learned 

models are given. 

Chapter 5 reviews the main contributions of this dissertation and suggests directions for 

future work 



 Chapter 2 
THE PROPOSED APPROACH 

“MULTIPLE ESTIMATOR SYSTEM” 
 

Abstract: In the literature, the problem of calibration has been faced through the use of different 
estimation methods based on the reduction of the feature space then applying regression method. 
In this chapter, we propose a novel estimation approach that consists in defining a Multiple 
Estimator System (MES). The key idea of the MES is to capture the peculiarities of different 
regions of the spectral space by the use of a set of identical estimators for each region gaining 
the whole information provided by the large number of features. 
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2.1 CONCEPT OF MULTIPLE SYSTEMS 
2.1.1 Multiple Classifiers 
 A multiple classifier system consists of a set of classifiers and a decision 

combination function. Each classifier uses a particular descriptor of an input pattern, and 

decides on the membership of the pattern to a given set of classes. Decision by the 

individual classifiers is combined to derive a final decision, which is the output of the 

system [14]. 

The use of multiple classifier systems is motivated by the existence of many 

alternative solutions to a pattern recognition problem, and the observation that these 

solutions often complement one another correctness. The diversity of solutions is well-

known for all stages in recognition, including feature extraction, feature matching and 

classification. For instance, in classification numerous procedures have been proposed, 

and a high performance is claimed for each of them [15, 16, 17, 18]. 

 

A fair evaluation of these alternative solutions is interesting. A more interesting 

question is whether it is possible to integrate these alternative solutions, in such a way 

that the integration excels the individuals in performance. In several preliminary studies, 

there are hints that robust solutions to certain recognition problems may involve a 

number of independent methods. These studies suggest the idea of multiple classifier 

system. 
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The general idea behind the use of this technique remains in two aspects: 

Ensemble Design 

• Different classifiers; 

• Different feature subspaces; 

• Different training samples. 

 

Fusion Aspect 

• Linear Fusion; 

• Non-linear fusion. 

 

2.1.1 Multiple Estimators 
 The success of such applications leads many researchers to extend the technique 

of the multiple systems from the classification context to the regression problem, many 

approaches has been developed [15, 19, 20], in which the goal to have a good prediction 

estimate becomes significant day by day. The most important work to be noticed is that 

one done by Melgani and Bruzzone, in which they estimate the biophysical parameter in 

remote sensing data by means of different estimation techniques combined to give the 

expected improvement of the estimation process [19]. 

Once a set of learned models has been generated, the task of combining their predictions 

remains. To be effective, a method must robustly handle the high degree of correlation 

in a set of models and, if possible, identify the areas of the input space where learned 

models have superior performance. 
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2.2 THE PROPOSED SOLUTION TO THE PROBLEM OF REGRESSION IN 
HYPERSPACES 
 The idea to use a multiple system has been recently exploited in pattern 

recognition community, where the combination of different classifiers has proved to be 

an effective classification approach. It has been theoretically shown that the combination 

of a set of classifiers, enough accurate and characterized by uncorrelated classification 

errors, allows increasing both the accuracy and robustness with respect to the single 

classifiers. By analogy, we think that such an approach can be effective in the context of 

regression. 

 
 In application such as spectroscopy, the spectrophotometric data may often 

comprise more features (independent variables or spectral data) than observation 

(spectra or samples). This case is rather less encountered in applications of statistics; this 

latter causes an unbalancing between the number of features and the number of samples. 

The key idea start from the fact that, all the methods proposed in the literature to solve 

the problem of regression in hyperdimensional spaces, use a feature selection technique 

to reduce the dimension of the space in order to overcome the curse of dimensionality 

phenomenon, which leads to a loss of information, since they use a small part of the 

original feature space chosen by a feature selection approaches. 

 

In our approach we propose to use the whole information available in the original 

feature space by using of the proposed multiple estimator system (MES). 

 Before describing the proposed MES approach, let us formalize the considered 

problem. Let us consider a set of N training samples (spectra or samples) xi (i = 1, 2,…, 

N) represented in the d-dimensional feature space dℜ . Let us assume that a target yi 

∈ ℜ  (i = 1, 2, …, N) is associated to each vector xi. Let us consider a set of T estimators 

fi(x) (i = 1, 2, …, T) trained independently on the available training samples. Each one 

has an independent feature space; by other words, each estimator has his proper features. 

It is worth noting that the T estimators can be of different type. As depicted in Figure 

2.1, the problem is to find a fusion mechanism Φ{} such that the resulting estimate F(x) 

(obtained after combining the different single estimators) for a given unknown sample is 

given by: 
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F(x) = { f1(x1), f1(x1), …, fT(xT)}   (2.1) 

Basically; The task of features grouping, or in other words, the repartition of the 

features space is designed in the two following ways: 1) unsupervised grouping by 

Sampling (UGS); 2) Unsupervised adjacent grouping (UAG). Since we are dealing with 

a problem of regression, we use two methods of multiple regression, the first one is 

parametric (Linear Multiple Regression), and the second one is non-parametric by the 

use of artificial neural networks (Radial Basis Functions). Since the important stage of 

the proposed approach is the fusion, we propose to design the fusion mechanism in four 

conceptually different ways: 1) the resulting (global) estimate is computed by combining 

directly the estimates obtained by the different single estimators (Combination-Based 

Approach); 2) non-linear fusion by artificial neural networks is adopted as mechanism of 

fusion, this done by the mean of Radial Basis Functions (Non-Linear Approach); 3) the 

resulting estimate is obtained by a hybrid system between RBFs and the whole original 

feature space; 4) the final estimate is obtained in the first method by selecting the output 

(estimate) of the best single estimator found on the basis of an adequate partition of the 

feature space, in the second method, by computing the posterior probabilities of the 

single estimators (Classification-Based Approach). 

 
Figure 2.1: General block diagram of the proposed multiple regression system 

In the following paragraphs we deal with the proposed system as three stages: 

1) Features-Selection Method bloc; 

2) Regression Method bloc; 

3) Fusion method bloc. 
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2.2.1 Features selection Bloc 
 In this phase, we use two simple unsupervised strategies, in which the repartition 

of the features is done by the following ways: 

 
2.2.1 Unsupervised grouping by sampling (UGS) 
 In this technique we select the different sub-groups by the mean of sampling. Let 

us consider a set of D = (D1, D2,…,DT) of features represented in the d-dimensional 

feature space dℜ , the technique of UGS consist in distributing the features by a step, (i.e. 

if we have T estimators the step is T), the next figure shows the block diagram of the 

UGS method. 

 
Figure 2.2: Unsupervised grouping by sampling (UGS). 

 
2.2.1 Unsupervised adjacent grouping (UAG) 
The technique is based on the grouping of adjacent groups of neighbour features. 

 

 

Figure 2.3: Unsupervised adjacent grouping (UAG). 
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2.2.2 Regression Bloc 
2.2.2.1 Multiple linear regression (MLR) 
 The question is to predict a dependent variable y from independent variables x1, 

x2,...,xn which are spectral data (variables) measured on various wavelengths or channels. 

The multiple linear regression (MLR) model in its matrix form is 

Y=Xb+e     (2.2) 

where Y is a (m×1) vector of measured responses (dependent variables), X is a (m × n + 

1) matrix of measured spectra (independent variables) augmented with a column of ones, 

b is a (n+1×1) vector of regression coefficients and e is a vector of residuals. 

The estimation of the unknown parameters constituting the vector b is realised by 

minimizing cost function, for example residual sum of squares: 

.
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There are three possible ways to resolve the equation 2.2: 

1. When the number of samples (observations) and variables are equal (m = n + 1) 

then there is a unique solution for b: 

X-1y = X-1Xb,     (2.4) 

b=X-1y.     (2.5) 

2. If the number of samples is greater than the number of variables (m > n + 1) 

then a least squares solution for b is obtained by forming the generalized inverse 

of X: 

XT y = XT Xb     (2.6) 

(XTX)-1 XT y = (XTX)-1 XTXb,    (2.7) 

b = (XTX)-1 y.     (2.8) 

Equation 2.8 gives a hint towards the most frequent problem in MLR: the inverse 

of (XTX) may not exist. 

  

If the number of samples is lower than the number of variables (m < n+1) then 

there are infinite number of solutions for b. There exist many techniques to find 
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one specific solution. The minimum norm solution to this least square problem is 

given by: 

b = XT (XXT )−1y.    (2.9) 

Note that, often the matrix X comprises more variables than observations, then 

collinearity is guaranteed to occur. 

We have to remember at this stage that only non-singular (determinant is non-

zero) square matrices have inverses. The technique shown above in the second case is to 

obtain a square matrix (n + 1 × n + 1) by multiplying X by its transpose XT. However 

the inverse of this product matrix can exist only when the resulting matrix is non-

singular. In the third case, the matrix X comprises more variables than samples, then 

collinearity is guaranteed to occur. The solution of this problem is to delete some 

variables using procedures of variable selection [21]. 

 

a) The coefficient of Multiple Determination 
 A manner to evaluate the relevance of linear model consists in measuring the 

variation of y explained by the model. The regression equation is estimated such that the 

total sum-of-squares can be partitioned into components due to regression and residuals: 
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   (2.10) 

SSTot= SSReg + SSRes     (2.11) 

The quality of adjustment of the multiple linear regression model can be 

determined using the coefficient of multiple determination R2 (called also square of the 

coefficient of multiple correlation), defined by: 

Tot

s
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g

SS
SS

SS
SS

R ReRe2 1−==     (2.12) 

 If the regression is perfect, all residuals are zero, SSRes is zero, and R2 = 1. If 

there is no linear relationship between the dependent and independent variables, then R2 

is equal to 0. 
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b) Collinearity 
 Collinearity is present when the columns of X are approximately or exactly 

linearly dependent. In the case of exact linear dependency, (XTX)−1 is not defined and 

consequently the vector b of regression coefficients can not be expressed by the equation 

2.8. If the linear dependency is approximate, at least one of the diagonal elements in the 

covariance matrix, (XTX)−1, will be large. This leads to unstable estimates of the 

regression coefficients which may be unreasonably large (in absolute value). High 

correlation of x variables will easily lead to (poor) unreliable predictions. Therefore, it is 

important to be able to detect whether X is collinear or not, prior to regression analysis. 

A related indication of collinearity is the variance inflation factor (VIF) [10]: 

( ),
1

1
2
i

i R
VIF

−
=     (2.13) 

where 2
iR  is the coefficient of multiple determination when xi (the ith variable in X 

considered here as the dependent variable) is regressed on the remaining variables. 

When the columns of X are close to linear dependence, 2
iR  will be close to unity and 

VIFi will be large. A VIF greater than 5 is generally considered large and is an indication 

that the corresponding coefficient is poorly estimated [10]. 

 

Note that, when the measurements are made in infrared spectroscopy, often the 

matrix X comprises more variables than samples, then collinearity is guaranteed to 

occur. In this situation, a form of variable selection is required. 

 

c) Features Selection 
 The problem of variable selection can be defined as follows: given a set of 

candidate variables, select a subset that performs best (according to some criterion) in a 

prediction system. More specifically, let X be the original matrix of spectral data, 

containing n different variables (columns of X) and m observations (row of X). The 

objective is to find a subset of the columns of X, Z ⊆  X containing d variables 

representing the best model [22, 3]. 
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2.2.2.2 Radial Basis Functions (RBFs) [48] 

a) Purpose 

Radial basis function networks (RBF) is a type of artificial network for 

applications to problems of supervised learning e.g. regression, classification and time 

series prediction. Radial basis function networks are non-parametric models. By non-

parametric models, it means that there is no a priori knowledge about the function that is 

to be used to fit the training set. An example of a parametric model would be fitting a 

straight line to a set of points. The form of the function – a straight line, is known and it 

is just a matter of best fitting the line to the training set. 

 In addition to solving regression problems, RBF networks can be used to solve 

classification problems. We can treat the classification problem as a non-parametric 

regression problem if the outputs of the estimated function are interpreted as the 

probability that the input belongs to the corresponding classes. Thus the training output 

values are vectors of length equal to the number of classes and containing a single one 

(and otherwise zeros). After training, the network responds to a new pattern with 

continuous values in each component of the output vector and these values are 

interpreted as being proportional to class probability. Take for example the case where 

there are 3 outputs – each output representing a different class. If the network gives an 

output vector of (0.3, 0.8, 0.1), we could interpret this as meaning the input is likely to 

belong to class 1 with probability 0.3, class 2 with probability 0.8 and class 3 with 

probability 0.1. 
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b) Architecture  

RBF networks usually have the architecture as shown in Figure 2.4 below:-  

 

 

Figure 2.4: Architecture of a Radial Basis Function Network. 

The output is given by the following equation: 
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The input layer consists of n units which represents the elements of the vector X. 

The k components of the sum in the definition of f are represented by the units of the 

hidden layer. The links between input and hidden layer contain the elements of the 

vectors ti. The hidden units compute the Euclidean distance between the input pattern 

and the vector which is represented by the links leading to this unit. The activation of the 

hidden units is computed by applying the Euclidean distance to the function h given 

below: 

f(x) 

( )jtxh −  

xn

( )jtxh − ( )jtxh −  

t1,1 tn,1 

c1 cj cm

Output Unit

Centers, width

Weights 

Inputs x1 x2



CHAPTER 2:  The Proposed Approach “Multiple Estimator System” ____________________________ 

_____________________________________________  
Development of Multiple Regression Systems for Hyperdimensional Spectral Spaces 

26

( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
= 2

2

exp)(
r

cx
xh j    (2.15) 

The parameters for the function h are its center c and its radius r. The single 

output neuron gets its input from all hidden neurons. The links leading to the output 

neuron hold the coefficients ci. The activation of the output neuron is determined by the 

weighted sum of its inputs. 

An RBF network is considered non-linear if the basis functions can move or 

change size or if there is more than one hidden layer otherwise the RBF network is 

considered linear. The above architecture can easily be extended to include more than 

one output node depending on the problem that the RBF network is to solve e.g. 

classification into different classes would need as many output nodes as the number of 

classes. 

 

c) Working Principles  

The principle of radial basis functions derives from the theory of functional 

approximation. Given N pairs (xi,yi) ( x ∈  Rn, , y ∈  R) , we are looking for a function f of 

the form 2.14. 

h is the radial basis function (normally a Gaussian function) and ti are the k 

centers which have to be selected. The coefficient ci are also unknown at the moment 

and have to be computed. xi and ti are elements of an n–dimensional vector space.  

We know that any reasonable function Fi(x) can be approximated by a linear 

combination of bars as shown in Figure 2.5 below:  

 
Figure 2.5: Function approximation by radial basis function network. 

(a) (b) 
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 We also know that each bar can be approximated by a localized lump as shown 

in Figure 2.5 (a) above. The RBF network has the Gaussian function as the activation 

function of each hidden unit and the output layer performs a linear combination of the 

localized bumps and is thus able to approximate any function.  

 When the RBF network is used in classification, the hidden layer performs 

clustering while the output layer performs classification. The hidden units would have 

the strongest impulse when the input patterns are closed to the centers of the hidden 

units and gradually weaker impulse as the input patterns moved away from the centers. 

(Characteristic of the Gaussian function). The output layer would linearly combine all 

the outputs of the hidden layer. Each output node would then give an output value which 

represents the probability that the input pattern falls under that class. 

 

d) Training the network  

The RBF network is trained in two phases. The first phase (also know as 

unsupervised learning) is the initialization. There are a few ways to initialize the 

network. By initialization, we mean that the centers tj (i.e. link weights between input 

and hidden layer) must be setup properly. 

a) Competitive learning 

Using the self-organizing method of Kohonen feature maps, appropriate centers are 

generated based on the training patterns. The computed centers are copied into the 

corresponding links.  

b) Even distribution 

Evenly distributed centers tj from the training patterns are selected and assign to the 

links between input and hidden layer. For example, if 13 training patterns are 

loaded and the hidden layer consists of 5 neurons, then the patterns with numbers 

1, 4, 7, 10 and 13 are selected as centers. 

The second phase (known as supervised learning) is computing the weights 

between the hidden layer and the output layer. If a linear RBF network is used, then it is 

possible to compute the optimal weights using the least mean square principle. If the 

network is non-linear, a gradient descent algorithm is used to compute the weights. For 

example, the weights can be trained using the delta rule: 

Δ wij = η (Ti – Oi)Hj    (2.16) 
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Where:  

Ti is the target pattern; 

Oi is the output vector; 

Hj is the hidden unit. 

2.2.3 Fusion Block 
2.2.3.1 Combination-based Approach 

In this approach, the MES is based on a direct linear combination of the 

parameter estimates provided in output by the different estimators included in the 

ensemble. Two strategies of combinations are proposed: the Average Combination 

Strategy and the Weighted Combination Strategy. 
 

a) Average Combination Strategy (ACS) 
The ACS is a simple unsupervised strategy in which the combination is based on 

the mean operator. From a statistical viewpoint, the different estimators can be viewed 

as different random processes that model the same target. The optimal first order 

statistics can be obtained by a classical mean operation. Accordingly, for a given 

unknown sample, the resulting estimate F(x) can be written as: 

( ) ( )∑
=

=
T

i
i xf

T
xF

1

1      (2.17) 

Theory and experiments show that averaging helps most if all estimators are 

unbiased and uncorrelated with identical variances or, in general, when no single 

estimator should be preferred. 

 

b) Weighted Combination Strategy (WCS) 
 By contrast to the ACS approach, the WCS is a supervised combination strategy. 

The idea of the WCS consists in exploiting available prior knowledge about the data 

(samples) in order to weigh differently, in the linear combination, the outputs of the 

estimators. The assignment of a weight to each estimator permits one to “tune up” the 

linear combination model in order to optimize the parameter estimation accuracy and 

robustness. The ACS becomes a particular case of the WCS in which the estimators have 

the same weights, which can be viewed as a “reliability factor”. The concept of 
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reliability factor has been introduced in the context of the Hybrid Consensus Theory 

[23]. Each estimator can be viewed as an information source. The reliability factors are a 

way to express the degree of confidence in each information source, and, accordingly, to 

weigh differently the influence of each information source in the combination process. 

The output of the WCS consists in a resulting estimate F(x) expressed as: 

( )∑
=

=
T

i
ii xfxF

1
)( β     (2.18) 

Where βi represents the weight assigned to the i-th estimator. The problem raised by the 

WCS is the determination of the weights. Such a problem can be faced in an effective 

way by means of the Minimum Square Error (MSE) pseudo-inverse technique [31]. The 

main advantage of this technique is that it permits to obtain an analytical optimal 

solution according the MSE criterion. 

2.2.3.2 Non-Linear Fusion Strategy (NLFS) 
The non-linear fusion is a supervised strategy in which the combination is done 

by the use of the powerful tool of neural networks, the use of this latter is motivated by 

the fact that, with addition to the robustness of such tools, the different estimators are 

used in different subspaces, which mean that there is an expected non linear relationship 

between the outputs of the different estimators. 

2.2.3.3 Hybrid Fusion Strategy (HFS) 
 In this fusion, we try to use a combination between the weighted combination 

strategy and non-linear fusion strategy, the main goal of this method is to weight the 

different outputs of the estimators by the use of the whole space, for this purpose, we use 

two kinds of estimators: 

1. Radial basis function estimator; 

2. Support vector machines estimator. 
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Figure 2.6: block diagram of the hybrid system. 

2.2.3.4 Classification based Strategy 
 Depending on the manner in which the prior-knowledge is exploited, two 

strategies of classification are proposed: the Selection Strategy and the Dynamic 

Strategy. 

a) Selection Strategy 
In this approach, the MES analyzes the accuracy of each single estimator in the 

d-dimensional feature space according to a prior knowledge represented in terms of the 

available samples. This analysis is translated in terms of a partition of the feature space 

indicating which is the best single estimator (in terms of minimum error) for any 

position in the d-dimensional feature space (Figure 2.7). In this way, it is possible to 

better capture the peculiarities of different estimators in order to increase the estimation 

accuracy with respect to the single estimators. To summarize the basic idea of the 

selection-based approach, for each unknown sample, the MES behaves as a selector of 

the best estimate found among the set of available single estimators. Such an idea can be 

implemented by the use of a classifier that will learn in a supervised way the optimal 

partition of the d-dimensional feature space according to a given predefined criterion. 

The selection-based approach consists in three phases, namely: training, validation and 

estimation phases. 

 
Multiple 

Estimator
System 
(25/35) 

All Features (256/700)

 10/20 sub-groups

 
 

Hyper 
Regressor
(266/720)

Y-Model (10/20)

Final Estimation

 

D
at

a 
Se

t 



CHAPTER 2:  The Proposed Approach “Multiple Estimator System” ____________________________ 

_____________________________________________  
Development of Multiple Regression Systems for Hyperdimensional Spectral Spaces 

31

 
Figure 2.7: Example of a partition of a 2-dimensional feature space for a 
set of 4 single estimators. Each region indicates the single estimator 
that provides the more accurate estimate of the considered target. 

 As depicted in Figure 2.8, the training phase includes the identification (among 

the set of available single estimators) of the best single estimator E(xi) ∈ {1, 2, …, T} for 

each training sample xi (i = 1, 2, …, N). This permits one to identify the optimal partition 

of the d-dimensional feature space in a set of regions, each assigned to a given single 

estimator. The concept of optimality is expressed, in our case, in terms of Minimum 

Absolute Error (MAE). The classifier task will be to model as well as possible such an 

optimal partition. During the estimation phase, each unknown sample x ∈ ℜd (for which 

the true parameter value is not available a priori) is given in input to the classifier, which 

provides in output an estimate Ê(x) ∈ {1, 2, …, T} of the best classifier that can be 

assigned to the unknown sample. The estimate F(x) resulting from the MES can be 

written as: 

F(x) = f Ê (x) (x)      (2.19) 

In the figure below, the training procedure of a MES implemented through the 

Selection-Based Approach. At the output of the block carrying out a MIN operation, the 

best estimator E(xi) among the set of single estimators is identified according the 

Minimum Absolute Error (MAE). This information is exploited to supervise the 

classifier in learning the optimal partition of the d-dimensional feature space. 
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Figure 2.8: Block diagram representing the selection strategy. 

 

 

Dynamic Strategy 
 This strategy is based on the concept of global accuracy of all the estimators in 

the d-dimensional feature space. This means that the partition of the feature space is 

carried out on the basis of the neighbouring training samples of each point of the feature 

space. In other words, the identification of the global estimate for a given unknown 

sample x ∈ ℜd is obtained by analyzing the training samples nearest to x and computing 

the a posteriori probability for each single estimator. 

 

 The technique estimate the a posteriori probabilities P(wi| x) from a set of n 

labelled samples by using the samples to estimate the densities involved. Suppose that 

we have the total number of samples is N around the sample x and capture k samples, ki 

of which turn out to be labelled wi, W = (w1, w2,…,wT) is the classes of samples, or in 

other words the output of the considered estimator. Then the obvious estimate for the 

joint probability p(x,wi) is 

( )
N

nk
wxp i

in
/

, = ,    (2.20) 

And thus a reasonable estimate for P(wi| x) is 
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 The DS allows providing a finer partition of the feature space, but, at the same 

time, is subject to a higher risk of sensitivity to noise (isolated training samples). Two 

different kinds of classifiers are proposed to implement the DS strategy: the first consists 

in adopting the K-nearest neighbours classification technique. The K-nn method is a 

reference nonparametric classification method well-known in the pattern recognition 

community for its simplicity and effectiveness [31] and the second is the famous 

classification technique support vector machines (See Chapter 3). 
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2.3 CONCLUSION 
In this chapter the multiple classifier system, initially designed for classification, 

was extended to regression problem. This was done, first by dividing the whole spectral 

space into subspaces, two techniques were presented, the unsupervised grouping by 

sampling and the adjacent grouping by sampling. In the regression block, the two 

methodologies were used, the parametric by means of Multiple Linear Regression 

(MLR) and the nonparametric one by using the Radial Basis Function Neural Networks 

(RBFN). The last bloc consisting of combining the outputs of the different estimators 

was done by several approaches: 1) Combination-based Approach, 2) Non-Linear 

Fusion Strategy (NLFS), 3) Hybrid Fusion Strategy (HFS) and 4) Classification Based 

Strategy. 



 

Chapter 3 
 SUPPORT VECTOR MACHINES 

 

Abstract: in this chapter, the concept of machine learning is introduced and the problem of 

hypothesis selection detailed. The Support Vector Machines (SVM) for two-class classification is 

dealt with in detail and some practical issues discussed. The support vector machine (SVM) is 

then introduced as a robust and principled way to solve the problem of regression. Finally, 

related comments for regression are given. 
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3.1 INTRODUCTION 
 With increasing amounts of data being generated, there is a need for fast, 

accurate and robust algorithms for data analysis. Improvements in databases 

technology, computing performance and artificial intelligence have contributed to 

the development of intelligent data analysis. The primary aim of data analysis is to 

discover patterns in the data that lead to better understanding of the data generating 

process and to useful predictions. One example of applications of data analysis is 

infrared spectroscopy. Real-world data sets are often characterized by having large 

numbers of features (several hundreds, even several thousands) and a small number 

of samples; what makes an unbalancing between the number of features and the 

number of samples [48]. 

 

 The relationship between predictive variables (spectral data), and the target 

(concentration), is often highly non-linear. One recent technique that has been 

developed to address these issues is the support vector machine. The support vector 

machine has been developed as robust tool for classification and regression in noisy, 

complex domains. The two key features of support vector machines are 

generalization theory, which leads to a principled way to choose an hypothesis; and, 

kernel functions, which introduce non-linearity in the hypothesis space without 

explicitly requiring a non-linear algorithm. This chapter introduces support vector 

machines and give a broad overview of this promising tool, also are noted some 

important points for the data analysis researchers who wishes to use support vector 

machines. 
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3.1.1 Historic Background 
 The Support Vector algorithm is a nonlinear generalization of the Generalized 

Portrait algorithm developed in Russia in the sixties [Vapnik and Lerner, 1963, Vapnik 

and Chervonenkis, 1964] [26]. 

 As such, it is firmly grounded in the framework of statistical learning theory 

[26], or VC theory, which has been developed over the last three decades by Vapnik and 

Chervonenkis [1974], Vapnik [1982, 1995]. In a nutshell, VC (Vapnik-Chervonenkis) 

theory characterizes properties of learning machines which enable them to generalize 

well to unseen data. In its present form, the SV machine was largely developed at AT&T 

Bell Laboratories by Vapnik and co-workers [Boser et al., 1992, Guyon et al., 1993, 

Cortes and Vapnik, 1995, Schőlkopf et al., 1995, Schőlkopf et al., 1996, Vapnik et al., 

1997]. Due to this industrial context, SV research has up to date had a sound orientation 

towards real-world applications. Initial work focused on OCR (optical character 

recognition). Within a short period of time, SV classifiers became competitive with the 

best available systems for both OCR and object recognition tasks [Schőlkopf et al., 

1996, 1998a, Blanz et al., 1996, Schőlkopf, 1997]. A comprehensive tutorial on SV 

classifiers has been published by Burges [1998] [27]. But also in regression and time 

series prediction applications, excellent performances were soon obtained [Műller et al., 

1997, Drucker et al., 1997, Stitson et al., 1999, Mattera and Haykin, 1999]. A snapshot 

of the state of the art in SV learning was recently taken at the annual Neural Information 

Processing Systems conference [Schőlkopf et al. 1999a] [30]. SV learning has now 

evolved into an active area of research. Moreover, it is in the process of entering the 

standard methods toolbox of machine learning [Haykin, 1998, Cherkassky and Mulier, 

1998, Hearst et al., 1998]. [Schőlkopf and Smola, 2002] contains a more in-depth 

overview of SVM regression [29]. Additionally, [Cristianini and Shawe-Taylor, 2000, 

Herbrich, 2002] provide further details on kernels in the context of classification [28]. 
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3.1.2 Motivation 
 The best way of solving a particular problem is to apply all available domain 

knowledge and spend a considerable amount of time, money and effort in building a rule 

system that will give the right answer. The second best way of doing anything is to learn 

from experience. Given the increasing quantity of data for analysis and the variety and 

complexity of data analysis problems being encountered in business, industry and 

research, it is impractical to demand the best solution every time. The ultimate dream, of 

course is to have available some intelligent agent that can pre-process your data, apply 

the appropriate mathematical, statistical and artificial intelligence techniques, and then 

provide a solution and an explanation. In the meantime we must be content with the 

pieces of this automatic problem solver. It is the purpose of the data analyzer to use the 

available tools to analyze data and provide a partial solution to the problem. The data 

analysis process can be roughly separated into three activities: pre-processing, modeling 

and prediction, and explaining. There is much overlap between these stages and the 

process is far from linear. Here we concentrate on the central of these tasks, in particular 

prediction. Machine learning in the general sense is described and the problem of 

hypothesis selection detailed. The support vector machine (SVM) is then introduced as a 

robust and principled way to choose an hypothesis. The SVM for two-class classification 

is dealt with in detail and some practical issues discussed. Finally, related comments for 

regression are given. 

3.1.3 Machine Learning 

 The general problem of machine learning is to search a, usually very large, space 

of potential hypotheses to determine the one that will best fit the data and any prior 

knowledge. The data may be labeled or unlabeled. If labels are given then the problem is 

one of supervised learning in that the true answer is known for a given set of data [31]. 

If the labels are categorical then the problem is one of classification, e.g. predicting the 

species of a flower given petal and sepal measurements. If the labels are real-valued the 

problem is one of regression, e.g. predicting property values from crime, pollution, 

statistics, etc. If labels are not given then the problem is one of unsupervised learning 

and the aim is characterize the structure of the data, e.g. by identifying groups of 
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examples in the data that are collectively similar to each other and distinct from the other 

data. 

3.1.3.1 Supervised learning 
 Given some examples we wish to predict certain properties, in the case where there 

are available a set of examples whose properties have already been characterized the 

task is to learn the relationship between the two. One common early approach was to 

present the examples in turn to a learner (learning). The learner makes a prediction of 

the property of interest, the correct answer is presented, and the learner adjusts its 

hypothesis accordingly. This is known as learning with a teacher, or supervised learning 

[31]. 

 In supervised learning there is necessarily the assumption that the descriptors 

available are in some related to a quantity of interest. For instance, suppose that a bank 

wishes to detect fraudulent credit card transactions. In order to do this some domain 

knowledge is required to identify factors that are likely to be indicative of fraudulent 

use. These may include frequency of usage, amount of transaction, spending patterns, 

type of business engaging in the transaction and so forth. These variables are the 

predictive, or independent, variables x . It would be hoped that these were in some way 

related to the target, or dependent, variable y . Deciding which variables to use in a 

model is a very difficult problem in general; this is known as the problem of feature 

selection and is NP- complete. Many methods exist for choosing the predictive 

variables; if domain knowledge is available then this can be very useful in this context. 

Here we assume that at least some of the predictive variables at least are in fact 

predictive. 

 

3.1.3.2 Unsupervised learning 
In unsupervised learning or clustering [31] there is no explicit teacher, and the 

system forms clusters or “natural groupings” of the input patterns. “Natural” is always 

defined explicitly or implicitly in the clustering system itself, and given a particular set 

of patterns or cost function; different clustering algorithms lead to different clusters. 

Often the user will set the hypothesized number of different clusters ahead of time. 
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Assume, then, that the relationship between x  and y  is given by the joint 

probability density )|()(),( xxx yPPyP = . This formulation allows for y  to be either a 

deterministic or stochastic function of x , in reality the available data are generated in 

the presence of noise so the observed values will be stochastic even if the underlying 

mechanism is deterministic. The problem of supervised learning then is to minimize 

some risk functional 

 ( )∫= ),(),()( ydPyfcfR SS xx  (3.1) 

where c  gives the cost of making prediction )(xSf  when the true (observable) value is 

y . The prediction function Sf  is learned on the basis of the training set. 

 { }),(,),( 11 ll yyS xx K=  

using some algorithm. Here we take N
i X ℜ⊂∈x . In the case of classification the labels 

{ }kYyi ,,1K=∈  and in the case of regression the labels ℜ⊂∈Yyi . In both cases we 

wish to learn a mapping 

yf
YXf

S

S

ax:
: →

 

such that the risk is minimized. In statistical pattern recognition [31] one first estimates 

the conditional density )|( xyp  and the prior probability )(xp  and then formulates a 

decision function Sf . The advantage of this approach is that it provides confidence 

values for the predictions, which is of obvious importance in such areas as medical 

decision making. The disadvantage is that estimating the distributions can be very 

difficult and a full probabilistic model may not be required. The predictive approach is 

to learn a decision function directly. The most notable methodology in this area being 

statistical learning theory [26]. 

 
3.1.4 Choosing an Hypothesis 

 As stated above we wish to find a function, or hypothesis, Sf , based on the 

available training data { }),(,),( 11 ll yyS xx K= , such that the risk R  is minimized. In 

practice we do not know what the true distribution ),( yP x  is and so cannot evaluate 

(3.1). Instead, we can calculate the empirical risk 
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based on the training set S . The minimizer of (3.2) is not necessarily the minimizer of 

(3.1). Trivially, the function that takes the values ii yf =)(x  on the training set and is 

random elsewhere has zero empirical risk but clearly doesn’t generalize. Less trivially, it 

is a well-documented phenomenon that minimizing empirical error does not necessarily 

lead to a good hypothesis. This is the phenomenon of overfitting [26, 31]. The learned 

hypothesis has fitted both the underlying data generating process and the idiosyncrasies 

of the noise in the training set. 

 In order to avoid this one needs to perform some kind of capacity control. The 

capacity of an hypothesis space is a measure of the number of different labellings 

implementable by functions in the hypothesis space. Intuitively, if one achieves a low 

empirical risk by choosing an hypothesis from a low capacity hypothesis space then the 

true risk is also likely to be low. Conversely, given a consistent data set and a 

sufficiently rich hypothesis space there will be a function that gives zero empirical risk 

and large true risk. 

 
3.1.5 Statistical Learning Theory 
  In the following we consider two-class classification and take the cost function to 

be the 0/1-loss function, i.e. 

( )
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)( if1
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yfc S
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x
x  

so that the risk is the error rate. A principled way to minimize true error is to upper 

bound in probability the true error and minimizes the upper bound. This is the approach 

of statistical learning theory [26] that leads to the formulation of the SVM. The key 

concept is that of VC dimension, the VC dimension of hypothesis space is a measure of 

the number of different classifications which implementable by functions from that 

hypothesis space. One example of an upper bound is the following. 
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Theorem: (Vapnik and Chervonenkis): Let H be an hypothesis space having VC 

dimension d . For any probability distribution ),( yP x  on }1,1{ +−×X , with probability 

δ−1  over random training sets S , any hypothesis Hf ∈ that makes k  errors on S  

has error no more than 

 ⎟
⎠
⎞

⎜
⎝
⎛ ++≤

δ
4log2log2)(err

d
eld

ll
kfSP  (3.3) 

Provided ld ≤ . 

 

 That is the true error is less than the empirical error plus a measure of the 

capacity of the hypothesis space. This leads to the idea of structural risk minimization. 

That is the empirical risk is minimized for a sequence of hypothesis spaces and the final 

hypothesis is chosen as that which minimizes the bound (3.3). 

 
3.2 SUPPORT VECTOR CLASSIFICATION 
 The support vector machine (SVM) is a training algorithm for learning classification 

and regression rules from data, for example the SVM can be used to learn polynomial, 

radial basis function (RBF) and multi-layer perceptron (MLP) classifiers. 

SVMs arose from statistical learning theory; the aim being to solve only the problem of 

interest without solving a more difficult problem as an intermediate step. SVMs are 

based on the structural risk minimization principle, closely related to regularization 

theory. This principle incorporates capacity control to prevent over-fitting and thus is a 

partial solution to the bias-variance trade-off dilemma. 

 

 Two key elements in the implementation of SVM are the techniques of mathematical 

programming and kernel functions. The parameters are found by solving a quadratic 

programming problem with linear equality and inequality constraints; rather than by 

solving a non-convex, unconstrained optimization problem. The flexibility of kernel 

functions allows the SVM to search a wide variety of hypothesis spaces. 

 

 Here we focus on SVMs for two-class classification, the classes being NP,  for 

1,1 −+=iy  respectively. This can easily be extended to −k class classification by  
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Figure 3.1: Optimal Separating Hyperplane 

constructing k  two-class classifiers. The geometrical interpretation of support vector 

classification (SVC) is that the algorithm searches for the optimal separating surface, i.e. 

the hyperplane that is, in a sense, equidistant from the two classes. This optimal 

separating hyperplane has many nice statistical properties. SVC is outlined first for the 

linearly separable case. Kernel functions are then introduced in order to construct non-

linear decision surfaces. Finally, for noisy data, when complete separation of the two 

classes may not be desirable, slack variables are introduced to allow for training errors. 

 
3.2.3 Maximal Margin Hyperplanes 
If the training data are linearly separable then there exists a pair ),( bw  such that 

 
Nb

Pb

ii
T

ii
T

∈−≤+

∈≥+

xxw

xxw

 allfor  ,1

 allfor  ,1
 (3.4) 

with the decision rule given by 

 )sgn()(, bf T
b += xwxw . (3.5) 

w is termed the weight vector and b  the bias (or b−  is termed the threshold). The 

inequality constraints (3.4) can be combined to give 

 NPby ii
T

i ∪∈≥+ xxw  allfor ,1)(  (3.6) 

Without loss of generality the pair ),( bw can be rescaled such that 

1min
,,1

=+
=

bi
T

li
xw

K
, 
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this constraint defines the set of canonical hyperplanes on Nℜ . 

 In order to restrict the expressiveness of the hypothesis space, the SVM searches 

for the simplest solution that classifies the data correctly. The learning problem is hence 

reformulated as: minimize www T=2  subject to the constraints of linear separability 

(3.6). This is equivalent to maximizing the distance, normal to the hyperplane, between 

the convex hulls of the two classes; this distance is called the margin. The optimization 

is now a convex quadratic programming (QP) problem 

 
.,,1,1)( subject to

2
1)( Minimize 2

,

liby i
T

i

b

K=≥+

=Φ

xw

ww
w  (3.7) 

 This problem has a global optimum; thus the problem of many local optima in the 

case of training e.g. a neural network is avoided. This has the advantage that parameters 

in a QP solver will affect only the training time, and not the quality of the solution. This 

problem is tractable but in order to proceed to the non-separable and non-linear cases it 

is useful to consider the dual problem as outlined below. The Lagrangian for this 

problem is  

 [ ]∑
=

−+−=Λ
l

i
i

T
ii bybL

1

2 1)(
2
1),,( xwww λ  (3.8) 

where T
l ),,( 1 λλ K=Λ  are the Lagrange multipliers, one for each data point. The 

solution to this quadratic programming problem is given by maximizing L with respect 

to 0≥Λ  and minimizing with respect to b,w . Differentiating with respect to w and b 

and setting the derivatives equal to 0 yields 

0),,(
1

=−=
Λ ∑

=

l

i
iii y

bL xw
w

w λ
∂

∂  

and 

 ∑
=

=−=
Λ l

i
ii yb

bL
1

0),,( λ
∂

∂ w . (3.9) 

So that the optimal solution is given by (3.5) with weight vector 

 ∑
=

=
l

i
iii y

1

** xw λ  (3.10). 

Substituting (3.9) and (3.10) into (3.) we can write 
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which, written in matrix notation, leads to the following dual problem 

 
0,0 subject to

2
1)( Maximize

=≥

−=

y

DIF

T

TT

ΛΛ

ΛΛΛΛ
 (3.12) 

 

where T
lyyy ),,( 1 K= and D is a symmetric ll ×  matrix with elements j

T
ijiij yyD xx= . 

Note that the Lagrange multipliers are only non-zero when 1)( =+ by i
T

i xw , vectors for 

which this is the case are called support vectors since they lie closest to the separating 

hyperplane. The optimal weights are given by (3.10) and the bias is given by 

 i
T

iyb xw** −=  (3.13) 

for any support vector ix (although in practice it is safer to average over all support 

vectors). The decision function is then given by 

 ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

l

i
i

T
ii byf

1

**sgn)( xxx λ . (3.14) 

 

 The solution obtained is often sparse since only those ix  with non-zero Lagrange 

multipliers appear in the solution. This is important when the data to be classified are 

very large, as is often the case in practical data analysis situations. However, it is 

possible that the expansion includes a large proportion of the training data, which leads 

to a model that is expensive both to store and to evaluate. Alleviating this problem is one 

area of ongoing research in SVMs. 

 
3.2.4 Kernel-Induced Feature Spaces 
 A linear classifier may not be the most suitable hypothesis for the two classes. The 

SVM can be used to learn non-linear decision functions by first mapping the data to 

some higher dimensional feature space and constructing a separating hyperplane in this 

space. Denoting the mapping to feature space by  
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)(xx φa

HX →
 

the decision functions (3.5) and (3.14) become  
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⎠
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iii by

bf

1
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**T
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xx
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φφλ

φ
. (3.15) 

 Note that the input data appear in the training (3.13) and decision functions (3.14) 

only in the form of inner products zxT , and in the decision function (3.15) only in the 

form of inner products )()( zx φφ T . Mapping the data to H  is time consuming and 

storing it may be impossible, e.g. if H  is infinite dimensional. Since the data only 

appear in inner products we require a computable function that gives the value of the 

inner product in H  without explicitly performing the mapping. Hence, introduce a 

kernel function, 

 )()(),( T zxzx φφ≡K . (3.16) 

 The kernel function allows us to construct an optimal separating hyperplane in 

the space H  without explicitly performing calculations in this space. Training is the 

same as (3.12) with the matrix D  having entries ),( jijiij KyyD xx= , i.e. instead of 

calculating inner products we compute the value of K . This requires that K  be an easily 

computable function. For instance the polynomial kernel dTK )1(),( += zxzx  which 

corresponds to a map φ  into the space spanned by products of up to d  dimensions of 
Nℜ . The decision function (3.15) becomes: 

 ⎟
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⎞
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l

i
iii bKyf

1

** ),(sgn)( xxx λ  (3.17) 

where the bias is given by 

 ∑
=

−=−=
l

j
ijijii

T
i Kyyyb

1

*** ),()( xxxw λφ  (3.18) 

for any support vector ix . 

 The only remaining problem is specification of the kernel function, the kernel 

should be easy to compute, well-defined and span a sufficiently rich hypothesis space. A 

common approach is to define a positive definite kernel that corresponds to a known 
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classifier such as a Gaussian RBF, two-layer MLP or polynomial classifier. This is 

possible since Mercer’s theorem states that any positive definite kernel corresponds to 

an inner product in some feature space. Kernels can also be constructed to incorporate 

domain knowledge. 

 This so-called ‘kernel trick’ gives the SVM great flexibility. With a suitable choice 

of parameters an SVM can separate any consistent data set (that is, one where points of 

distinct classes are not coincident). Usually this flexibility would cause a learner to 

overfit the data; i.e. the learner would be able to model the noise in the data as well as 

the data-generating process. Overfitting is one of the main problems of data analysis in 

general and many heuristics have been developed to prevent it, including pruning 

decision trees, weight linkage and weight decay in neural networks, and statistical 

methods of estimating future error. The SVM mostly side-steps the issue by using 

regularization, that is the data are separated with a large margin. The space of classifiers 

that separate the data with a large margin has much lower capacity than the space of all 

classifiers searched over. Intuitively, if the data can be classified with low error by a 

simple decision surface then we expect it to generalize well to unseen examples. 

 
3.2.5 Non-Separable Data 
 So far we have restricted ourselves to the case where the two classes are noise-free.  

In the case of noisy data, forcing zero training error will lead to poor generalization. This 

is because the learned classifier is fitting the idiosyncrasies of the noise in the training 

data.  To take account of the fact that some data points may be misclassified we 

introduce a vector of slack variables T
l ),,( 1 ξξ K=Ξ  that measure the amount of 

violation of the constraints (3.6). the problem can then be written 

 
liby
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where C  and k  are specified. C  is a regularization parameter that controls the 

trade-off between maximizing the margin and minimizing the training error term. If C  

is too small then insufficient stress will be placed on fitting the training data. If C  is too 
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large then the algorithm will overfit the training data. Due to the statistical properties of 

the optimal separating hyperplane, C can be chosen without the need for a holdout 

validation set. If 0=k  then the second term counts the number of training errors. In this 

case the optimization problem is NP-complete. The lowest value for which (3.19) is 

tractable is 1=k . The value 2=k  is also used although this is more sensitive to outliers 

in the data. If we choose 2=k  then we are performing regularized least squares, i.e. the 

assumption is that the noise in x  is normally distributed. In noisy domains we look for a 

robust classifier and hence choose 1=k . The Lagrangian for this problem is: 
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where T
l ),,( 1 λλ K=Λ , as before, and T

l ),,( 1 γγ K=Γ  are the Lagrange multipliers 

corresponding to the positivity of the slack variables. The solution of this problem is the 

saddle point of the Lagrangian given by minimizing L with respect to Ξ,w andb , and 

maximizing with respect to 0≥Λ  and 0≥Γ . Differentiating with respect to w , b and Ξ  

and setting the results equal to zero we obtain: 
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and 
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CbL γλ
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So that the optimal weights are given by    

 ∑
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=
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iii y

1

* )(xw φλ  (3.23) 

Substituting (3.21), (3.22) and (3.23) into (3.20) gives the following dual problem  
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where T
lyyy ),,( 1 K=  and D  is a symmetric ll ×  matrix with elements 

),( jijiij KyyD xx= .  The decision function implemented is exactly as before in (3.17). 

The bias term *b  is given by (3.18) where ix a support vector is for which Ci << λ0 . 

There is no proof that such a vector exists but empirically this is usually the case. If all 

support vectors have C=λ  then the solution is said to be unstable, as the global 

optimum is not unique. In this case the optimal bias can be calculated by an appeal to the 

geometry of the hyperplane. 

 

 Thus the SVM learns the optimal separating hyperplane in some feature space, 

subject to ignoring certain points which become training misclassifications. The learnt 

hyperplane is an expansion on a subset of the training data known as the support vectors. 

By use of an appropriate kernel function the SVM can learn a wide range of classifiers 

including a large set of RBF networks and neural networks. The flexibility of the kernels 

does not lead to overfitting since the space of hyperplanes separating the data with large 

margin has much lower capacity than the space of all implementable hyperplanes. 
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3.3 SUPPORT VECTOR REGRESSION 
 SVMs can also be applied to regression problems by the introduction of an 

alternative loss function, (Smola, 1996) [29]. The loss function must be modified to 

include a distance measure. Figure 3.2 illustrates four possible loss functions. 

 
Figure 3.2: Loss Functions 

 
 The loss function in Figure 3.2(a) corresponds to the conventional least squares 

error criterion. The loss function in Figure 3.2(b) is a Laplacian loss function that is less 

sensitive to outliers than the quadratic loss function. Huber proposed the loss function in 

Figure 3.2(c) as a robust loss function that has optimal properties when the underlying 

distribution of the data is unknown. These three loss functions will produce no parseness 

in the support vectors. To address this issue Vapnik [26] proposed the loss function in 

Figure 3.2(d) as an approximation to Huber’s loss function that enables a sparse set of 

support vectors to be obtained. 

(a) Quadratic (b) Laplace 

(c) Huber (d) ε-insensitive 
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3.3.1 Linear Regression 
Consider the problem of approximating the set of data, 

( ) ( ){ } ,    ,  ,  ,,...,  , 11 ℜ∈ℜ∈= yxyxyxD nll    (3.25) 

with a linear function, 

.,)( bxwxf +=      (3.26) 

the optimal regression function is given by the minimum of the functional, 

( ) ( ),
2
1, 2 ∑ +− ++=Φ

i
iiC ζζωζω     (3.27) 

where C is a pre-specified value, and ζ-, ζ+ are slack variables representing upper and 

lower constraints on the outputs of the system. 

 
3.3.1.1 ε-insensitive loss function 
Using an ε-insensitive loss function, Figure 3.2 (d), 
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The solution is given by, 
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Or alternatively, 
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With constraints, 
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Solving Equation 3.29 with constraints Equation 3.31 determines the Lagrange 

multipliers, *,αα , and the regression function is given by Equation 3.26, where 
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The Karush-Kuhn-Tucker (KKT) conditions that are satisfied by the solution are, 

l.1,...,i            i i == ,0
*

αα      (3.33) 

Therefore the support vectors are points where exactly one of the Lagrange multipliers is 

greater than zero. When ε  = 0, we get the L1 loss function and the optimization problem 

is simplified, 
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and the regression function is given by Equation 3.26, where 
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3.3.1.2 Quadratic loss function 

Using a quadratic loss function, Figure 3.2(a), 

( ) ( ) .)()( 2yxfyxfLquad −=−    (3.37) 

the solution is given by, 
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The corresponding optimisation can be simplified by exploiting the KKT conditions, 

Equation 3.33 and noting that these imply ii ββ =* . The resultant optimisation problems 

is, 
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with constraints, 
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l
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and the regression function is given by Equations 3.26 and 3.36. 

3.3.1.3 Huber loss function 

Using a Huber loss function, Figure 3.2(c), 
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the solution is given by, 
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The resultant optimisation problems is, 
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Figure 3.3: Linear Regression 
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3.3.2 Non Linear Regression  
 Similarly to classification problems, a non-linear model is usually required to 

adequately model data. In the same manner as the non-linear SVC approach, a non-

linear mapping can be used to map the data into a high dimensional feature space where 

linear regression is performed. The kernel approach is again employed to address the 

curse of dimensionality. The non-linear SVR solution, using an ε-insensitive loss 

function, Figure 3.2(d), is given by, 
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with constraints, 
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Solving Equation 3.45 with constraints Equation 3.46 determines the Lagrange 

multipliers, *, ii αα , and the regression function is given by,  
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 As with the SVC the equality constraint may be dropped if the Kernel contains a 

bias term, b being accommodated within the Kernel function, and the regression 

function is given by, 
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The ε-insensitive loss function is attractive because unlike the quadratic and Huber cost 

functions, where all the data points will be support vectors, the SV solution can be 

sparse. The quadratic loss function produces a solution which is equivalent to ridge 

regression, or zeroth order regularisation, where the regularisation parameter λ= 1/2C. 
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Examples 

 
Figure 3.4: Polynomial Regression  Figure 3.5: RBF Regression 

 

 
Figure 3.6: Example of ε-insensitive tube and error function used in the SVR 

 

3.3.3 COMMENTS AND CONCLUSION 
 In the regression method it is necessary to select both a representative loss 

function and any additional capacity control that may be required. These considerations 

must be based on prior knowledge of the problem and the distribution of the noise. In the 

absence of such information Huber’s robust loss function, Figure 3.2(c) has been shown 

to be a good alternative (Vapnik, 1998) [26]. Vapnik developed the ε-insensitive loss 

function as a trade-off between the robust loss function of Huber and one that enables 

sparsity within the SVs. However, its implementation is more computationally 

expensive and the ε-insensitive region can have some drawbacks. 
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 Chapter 4 
 

EXPERIMENTAL RESULTS 
 

 

Abstract: In the present chapter, the brief overview of chemometry is presented as well as the 
description of the two datasets used to evaluate and to assess the accuracy and robustness of the 
different approaches. The experimental results of the proposed approach MES to solve the 
problem of regression in hyperdimensional spaces are shown. For the sake of comparison, three 
different techniques used commonly in the literature of chemometrics community are presented ( 
SFS, PCR, PLSR) with the experimental results obtained over the two data sets. The promising 
tool of SVM is proposed as an alternative way to overcome the problem of dimensionality 
encountered in such problems.  
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4.1 APPLICATION TO CHEMOMETRICS 
 The infrared spectra of agricultural and food products contain information which 

presents an analytical interest. However, the extraction of this information is not 

immediate and requires almost always a rather complex mathematical treatment. Indeed, 

the spectra are the result of an interaction of light with matter which one cannot 

completely describe from a theoretical point of view. There are many definitions of 

chemometrics. One of the most frequent states the following [33]: 

Definition: Chemometrics is a new chemical branch which uses the theory and the 

methods developed in statistics, mathematics and computer sciences to extract useful and 

substantial information from chemical measurements. Another term used in the literature 

for chemometrics is multivariate analysis. 

4.1.1 Chemometrics and quality 
 Chemometrics is not always involved in obtaining new knowledge and this is 

particulary so in industrial applications. Chemometrics is involved in the process of 

producing data and in the extraction of the information from these data. If the quality of 

measurement processes and therefore the quality of the data is not good enough, the 

information may be uncertain or even wrong. Quality is an essential preoccupation of 

chemometrics and this is also the case for industry. It is, therefore, not surprising that 

chemometrics has been recognized in recent years as an important subject. Indeed, many 

of the techniques that chemometrics apply to obtain better measurement processes are 

also used to obtain better processes in general or better products. The measurement 

processes themselves often have the aim of assisting the development of better products 

or of controlling processes. Very often, therefore, the ultimate aim of chemometrics is to 

improve or optimize or to monitor and control the quality of a product or process [10]. 
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 This work focuses particularly on the application of chemometrics in the field of 

analytical chemistry. Chemometrics (or multivariate analysis) consists in finding a 

relationship between two groups of variables, often called dependent and independent 

variables. In infrared spectroscopy for instance, chemometrics consists in the prediction 

of a quantitative variable (the obtaining of which is delicate, requiring a chemical 

analysis and a qualified operator), such as the concentration of a component present in 

the studied product, from spectral data measured on various wavelengths or 

wavenumbers (several hundreds, even several thousands). 

We distinguish two operations [48]: 

1. Modelling in laboratory where all measurements of variables 

(dependent and independent variables) must be carried out and where 

parameters of the model (linear or non-linear) must also be estimated, 

2. Using only the measured new independent variables to predict the 

dependent one, once the parameters of the model are estimated (see 

figure 4.1). 

 

 
 

Figure 4.1: Calibration and prediction diagram block of the spectrophotometric data. 
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 From a chemometric point of view, the spectrum obtained in infrared 

spectroscopy is a complex function that depends on both the physical and chemical 

properties of the sample, and has remarkable characteristics which require specific 

methods for their treatment.  
 

In analytical chemistry, a lot of linear calibration methods are applied to solve 

quantitative determination problems with the argument that the relation between the 

chemical composition and the measured signal is linear. However, there are many 

situations where non-linearity is present. For instance, Miller [34] discusses important 

sources of non-linearity in near-infrared spectroscopy, namely  

 

• Deviations from the Beer-Lambert law, which are typical of highly absorbing 

samples; 

• Non-linear detector responses; 

• Drifts in the light source; 

• Interactions between analytes; 

• Non-linearity between diffuse reflectance/transmittance data and chemical data. 

 

When the non-linearity is significant, one can use truly non-linear calibration techniques, 

e.g. Artificial Neural Networks (ANN). 

 

To summarize, spectral data obtained from spectrophotometers have the following 

characteristics: 

1. Great number of spectral data (several hundreds, even several thousands), 

2. More spectral data (variables) than spectra (observations),  

3. High collinearity between spectral data, 

4. Non-linear relationship between the spectral data (independent variables) and the 

analyte concentration (dependent variable). 
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4.1.2 Beer-Lambert’s law [48] 
 Spectrophotometric analysis relies on the interaction of electromagnetic radiation 

(light) with the matter of interest. Strictly speaking, every compound has a distinct 

absorption spectrum, which allows its identification, in many cases, in the presence of 

other compounds. In addition to the identification of a compound, it is also possible to 

determine quantitatively the concentration of that compound. The relationship between 

absorbance and concentration is given by the Lambert-Beer’s law and is written 

mathematically as: 

x C A ε= ,     (4.1) 

where A is the absorbance, ε is the molar absorptivity constant, x is the pathlength over 

which the light interacts with the sample in cm and C is the concentration. 

In a more practical sense, the absorbance is defined as the negative logarithm of the 

transmittance. This is given mathematically as: 

,log
0I
ITA −=−=     (4.2) 

 
Figure 4.2: Absorbance according to concentration. 
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4.2 MODEL SELECTION 
 In many areas we are faced with the problem of model selection; that is, how 

complex should we allow our model to be, measured perhaps in terms of the number of 

free parameters to estimate? If we choose a model that is too complex, then we may be 

able to model the training data very well (and also any noise on the training data), but it 

is likely to have poor generalization performance on unknown data, drawn from the same 

distribution as the training set was drawn from (thus the model overfits the data). Model 

selection is inherently a part of the process of determining optimum model parameters. In 

this case, the complexity of the model is a parameter to determine. As a consequence, 

many model selection procedures are based on optimizing a criterion that penalises a 

goodness of fit measure by a model complexity measure. In this section, we give some 

general procedures that have been widely used for model selection [48]. 

 
4.2.1 Separate training, validation and test sets 
 Before building a model, the samples are often subdivided into ”training”, 

”validation” and ”test” sets. The distinctions among these subsets are crucial, but the 

terms ”validation” and ”test” sets are often confused in literature. 

 
4.2.1.1 Training set: The training set is used to train or build a model. For example, in 

linear regression, the training set is used to fit the linear regression model, i.e. to compute 

the regression coefficients. In a neural network model, the training set is used to obtain 

the network weights. 

Once a model is built on training data, we need to find the accuracy of the model 

on unknown data. For this, the model should be used on a set that was not used in the 

training process. If we were to use the training data itself to compute the accuracy of the 

model fit, we would get an overly optimistic estimate of the accuracy of the model. This 

is because the training or model fitting process ensures that the accuracy of the model for 

the training data is as high as possible – the model is specifically suited to the training 

data. To get a more realistic estimate of how the model would perform with unknown 

data, we need to set aside a part of the original data and not use it in the training process. 

Such sets are known as validation and test sets. 
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4.2.1.2 Validation set: The validation set is often used to fine-tune models. For 

example, we might try out neural network models with various architectures (for 

example different number of neurons in the hidden layer of RBFN) and test the accuracy 

of each of the validation sets to choose among the competing architectures. 

 

4.2.1.3 Test set: When a model is finally chosen, its accuracy on the validation set is 

still an optimistic estimate of how it would perform with unknown data. This is because 

the final model has come out as the winner among the competing models based on the 

fact that its accuracy on the validation set is the highest. Thus, we need to set aside yet 

another portion of data which is used neither in training nor in validation. This set is 

known as the test set. The accuracy of the model on the test data gives a realistic estimate 

of the performance of the model on completely unknown data. 

 

 
Figure 4.3: Distribution of training, validation and test sets. 
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4.3 PERFORMANCE EVALUATION CRITERIA 
4.3.1 Normalized Mean Square Error 

As mentioned above, in each method used, the error of several models must be 

evaluated on data independent from the ones used for learning. This is achieved through 

the use of a validation set V containing NV spectra (samples): 

( ){ })(:1,, qqV
d

qq xfyNqRRyxV =≥≤×∈=   (4.3) 

The error criterion can be chosen as the normalized mean square error defined as [35]: 
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where NT , NV are the number of samples included in the training set and the validation 

set respectively, ŷq is the value predicted by the model and yq is the actual value 

corresponding to spectrum q. Note that equation 4.4 normalizes the errors with respect to 

the standard deviation of y values in the combined learning and validation sets, the 

reason being to use as much data as possible to estimate this standard deviation. As this 

estimation does not depend on the model, the comparison of performances between 

models remains objective, whatever is the set used to estimate this standard deviation [3]. 

 

4.3.2 Computational Time  
To have a fair comparison or evaluation, between our proposed approach and the 

other ones found in the literature of the chemometrics community, and to measure the 

robustness and the reliability of each method, we suggest using another performance 

evaluation criterion, which is the computational time T [s] of each method. It is obvious 

that all the comparative methods and our proposed approach have been carried out over 

the same machine (PC). 
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4.4 REAL-LIFE EXAMPLES 
 In this section, we use our procedure MES and the traditional comparative 

methods such PCA, SFS, PLS and SVM in two real-life datasets. The two datasets (wine 

dataset, orange juice) as well as their distribution between training and test sets were 

provided by the laboratory of spectrophotometry of the research unit AGRO/BNUT of 

UCL (Université Catholique du Louvain, Belgium) [36]. 

4.4.1 Wine dataset 
The first dataset relates to the determination of alcohol concentration by mid-

infrared spectroscopy in wine samples. The training, validation and test sets contain 60, 

34 and 30 spectra respectively, with 256 spectral variables that are the absorbance (log 

1/T ) at 256 wave-numbers between 4000 and 400 cm−1 (where T is the light 

transmittance through the sample thickness). Figure 4.4 (a) shows a collection of 60 wine 

spectra used in the training, figure 4.4(b) the 30 spectra of validation set and the figure 

4.4 (c) shows a collection of 30 wine spectra used in the prediction. 

 
 

(a) Training set     (b) Validation set 

 
(c) Test set 

Figure 4.4: Mid-Infrared transmittance spectra of wine. 
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4.4.2 Orange juice dataset 
 The second data set relates to the determination of sugar (saccharose) by near-

infrared reflectance spectroscopy in orange juice samples. In this case, training, 

validation and test sets contain respectively 100, 50 and 68 spectra, with 700 spectral 

variables that are the absorbance (log 1/R) at 700 wavelengths between 1100 and 2500 

nm (where R is the light reflectance on the sample surface). Figure 4.5(a) shows a 

collection of 100 orange juice spectra used in the training set, figure 4.5(b) shows a 

collection of 50 orange juice spectra used in the validation set and figure 4.5(c) shows 68 

orange juice spectra used in the test set. 

 
(a) Training set     (b) Validation set 

 
(c) Test set 

Figure 4.5: Near-Infrared reflectance spectra of orange juice. 
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4.5 GRAPHICAL DETECTION OF OUTLIERS 
The visualization of data has always been very important in chemometrics, and it 

is impossible to discuss chemometrics without showing plots. One possibility is to 

simply plot all spectra on the same graph. Evident outliers will become apparent. It is 

also possible to identify noisy wavelength regions, and perhaps exclude them from the 

model. 

Graphical display methods, mapping the objects (samples) from a high-

dimensional to a two-dimensional space, are especially important in the early stage of 

data analysis. These methods often provide useful information about the relationships 

between samples in a dataset. Principal component analysis (PCA) gives a linear 

reduction and is widely used for this purpose, since PCA produces new variables 

(principal components), such that the highest amount of variance is explained by the first 

principal components (eigenvectors), the score plots can be used to give a good 

representation of the data. By using a small number of score plots (e.g. Pc1 − Pc2, Pc1 − 

Pc3 and Pc2 − Pc3), useful visual information can be obtained about the data 

distribution and the presence of outliers [37]. 

In what follows, we use this graphic representation to see the distribution of the 

data, and to detect the presence of outliers in the wine and orange juice datasets. 

 
4.5.1 Wine dataset 

All spectra of the wine dataset are plotted in figure 4.6. Spectra 34, 35 and 84, 

shown in figure 4.6 can be regarded as outliers. Figure 4.7 gives a typical example of a 

score plot for two first principal components (Pc1 − Pc2), after the application of the 

PCA on the 124 wine spectra. In figure 4.7, one dense region and few outliers can be 

seen, so that we can consider that samples 34, 35 and 84 are outliers and consequently 

can be eliminated from the wine dataset. 
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Figure 4.6: Outliers in wine data set 

 
Figure 4.7: Score map (PC1-PC2) of the wine data set. 

 
Figure 4.8: Wine samples distribution according to the target. 
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4.5.2 Orange juice dataset 
Figure 4.9 shows all the spectra of the orange juice dataset. We can regard spectra 

130 and 194 illustrated in figure 4.9 as outliers. Figure 4.10 gives a typical example of a 

score plot for two first principal components (Pc1 − Pc2), after the application of the 

PCA on the 218 orange juice spectra. In figure 4.10, two clusters (dense regions) and few 

outliers can be seen, and we can consider that samples 130 and 194 are outliers, and can 

consequently be eliminated from the orange juice dataset. 

 
Figure 4.9: Outliers in orange juice data set 

 

 
Figure 4.10: Score map (PC1-PC2) of the orange juice data set. 
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Figure 4.11: Orange juice samples distribution according to the target. 

 There is not doubt that PCA continues to play an important role, and is still a 

basic method in the display of multivariate dataset. In many cases, the inter-point 

distances in the display space reflect the trends in the original space. However, its 

drawback is also obvious. PCA imposes a linear structure on the variables that may 

obscure useful information contained in non-linear combinations. The first few principal 

components are related to the largest variance in the dataset. If an important variable 

contains a small amount of variance, this may not be reflected in the first few principal 

components [48]. 

 Outliers in the X-space can be due to measurement or handling errors, in which 

case they should be eliminated. They can also be due to the presence of samples that 

belong to another population, to impurities in the outliers that are not present in the other 

samples, or extreme amounts of constituents (i.e. with very high or low quantity of 

analyte) in the outliers. In this case, it may be appropriate to include the sample in the 

model, as it represents a composition that could be encountered during the prediction 

stage. For this reason in this study we don’t remove the outliers present in wine and 

orange juice datasets. To decrease the importance of the outliers, there are in the 

literature the robust regression methods which use other errors criteria [38]. It should be 

noted that the outliers detected in the wine and orange juice datasets will not be 

eliminated, in order to evaluate the robustness of our approach. 

TR1 
TR2 
TR3 
TST 



CHAPTER 4: Experimental Results ______________________________________________________  

_____________________________________________  
Development of Multiple Regression Systems for Hyperdimensional Spectral Spaces 

69

4.6 RESULTS OF TRADITIONAL APPROACHES 
 It is obvious that the goodness of any method can’t be if it is applied alone. For this 

purpose, to assess the reliability and the robustness of our proposed approach (MES), which 

deals directly in the high-dimensional spaces, we use some traditional methods found in the 

literature of chemometry’s community [10], PCR (Principal Component Regression), SFS 

(Sequantial Forward Selection) [3] and Partial Least Square Regression (PLSR), such 

methods are known by their efficiency in such problems. This section present an overview of 

these methods as well as the results obtained over the two datasets wine and orange. 

 
4.6.1 Principal Component Regression (PCR) 
4.6.1.1 Method presentation 

The Principal component regression (PCR) is a simple extension of the principal 

component analysis (PCA) and the multiple linear regression (MLR) [6-12]. In the first 

step, the principal components are calculated. The original variables are replaced by 

principal components (Pc), which are linear combinations of the columns in matrix X. 

Most multivariate analysis textbooks (for example [5, 11]) describe matrix methods for 

performing PCA. The goal is to find the eigenvectors of the covariance matrix. These 

eigenvectors correspond to the directions of the principal components of the original 

data. Their statistical significance is given by their corresponding eigenvalues. In more 

details, these techniques can be structured as: 

1. Subtract for each column, the mean of the column from each individual 

elements, resulting in a zero mean of the transformed variables and hence 

eliminating the need for a constant term in the regression model. 

2. Calculate the covariance matrix C. 

XX
n

C T1
=      (4.5) 

3. Determine eigenvalues and eigenvectors of the matrix. C is real symmetric 

matrix so a positive real number λ and a nonzero vector α can be found such 

that: 

C α = λ α     (4.6) 
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where λ is called an eigenvalue and α is an eigenvector of C. To find a nonzero 

α the characteristic equation | C − λI |= 0 must be solved. If C is a n × n matrix 

of full rank, n eigenvalues can be found λ1, λ2, . . . , λn. Using (C − λI) = 0 all 

the corresponding eigenvectors can be found. 

4. Sort the eigenvalues (and corresponding eigenvectors) so that λ1 ≥ λ2 ≥ . . . ≥ 
λn . 

5. Select the first a ≤ n eigenvectors and generate the dataset in the new 

representation. 

 

 
Figure 4.12: Principal component regression 

 

The scores (values for ath principal component) of the most important principal 

components are then used as inputs for multiple linear regression (MLR) with the 

dependent variable y (see figure 4.12) 

y = Tb + e,     (4.7) 

where T is a (m × a) new matrix of data. By Analogy with MLR, the least squares 

solution for Equation 4.7 is: 

b = (TTT)−1TT y.    (4.8) 
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PCR solves the collinearity problems (by guaranteeing an invertible matrix (TTT) 

in the calculation of b if a << n) and the ability to eliminate the less important principal 

components allows some noise reduction. The regression coefficients are more stable. 

This is due to the fact that the eigenvectors are orthogonal to each other. For PCR 

method the optimum number of principal components (a) corresponding to the PCR 

model has to be determined by validation using an increasing number of components. 

The model with the smallest criterion error value on validation set can be regarded as the 

best model. 

4.6.1.2 Datasets Results 
1) Wine dataset 

In the figure below, the PCR model which have the lowest NMSEV=0.0030, was 

obtained with 22 principal components corresponding to 0.0045 as test error, the 

regression method used in this experiment was the MLR (Multiple Linear Regression). 

 
 

Figure 4.13: NMSE with respect to number of features of PCA based MLR regression. 
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In the figure 4.14, we use non-linear regression with the principal components 

analysis, the PCR model which have the lowest NMSEV=0.0022, the number of selected 

features is 22 principal components corresponding to 0.0035 as test error, the best model 

of the RBF regression was obtained with 10 neurons in the hidden layer. 

 
 

Figure 4.14: NMSE with respect to number of features of PCA based RBF regression. 

 

1) Orange juice dataset 

In this data set, the PCR of the linear model which have the lowest 

NMSEV=0.1097, was obtained with 15 principal components corresponding to 0.2821 as 

test error. 

 
Figure 4.15: NMSE with respect to number of features of PCA based MLR.
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The best PCR model of the radial basis function regression which have the lowest 

NMSEV=0.1124, was obtained with 15 principal components corresponding to 0.2546 as 

test error. The figure below show the evolution of the NMSE according to the number of 

features in the validation set. It is noticed that the number of hidden units in the RBF 

network was 20 neurons. 

 

 
Figure 4.16: NMSE with respect to number of features of PCA based RBF. 

 

 The table below summarizes the results of principal component approach with the two 

regression methods and show the computational time of these methods. 

 

Data set 
Regression Based 

Method 
Number of 

features 
NMSEV NMSET 

Computational 
time [s] 

MLR 22 0.0030 0.0045 2.6570 
Wine 

RBF 46 0.0022 0.0035 1.7243e+003 

MLR 15 0.1097 0.2821 12.1560 
Orange 

RBF 15 0.1124 0.2546 1.0630e+003 

 
Table 4.1: Results summary of principal component approach for the two data sets. 
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4.6.2 Partial Least Square Regression (PLSR) 
4.6.2.1 Method presentation 

The PLSR method consists of a regression of the dependent variable y on the 

variables t1, t2, . . . which are latent variables (linear combinations of x1, x2, . . . , xn). 

However, in the PLSR method the latent variables are determined by using both y and the 

independent variables x1, x2, . . . , xn, whereas in the principal component regression 

(PCR) method, the latent variables (principal components) are determined using only the 

information coming from the independent variables. The PLSR method proceeds in an 

iterative manner and determines at each step a latent variable which is strongly connected 

to y, the force of the connection being measured by the importance of the covariance [5, 

7, 10, 11, 12, 13]. 

 

The original and computationally simplest algorithm for the PLSR method was 

developed by Savante Wold, as given e.g. in Wold et al. [39]. It starts by finding the 

loading weight vector wa for the ath latent variable by maximizing the covariance 

between the linear combination Xa−1wa and ya−1 under the constraint that 1=a
T
a ww , 

where Xa−1 and ya−1 are the old residuals and are calculated by subtracting the effects of 

the previous (a-1)th latent variables. This corresponds to finding the input vector wa that 

maximizes the expression 11 −− a
T
a

T
a yXw  i.e. the scaled covariance between Xa−1 and ya−1. 

The steps of the PLSR algorithm are: 

1. Center the input variables X and y firstly. Choose Amax the number of latent 

variables and for each latent variable a = 1, . . . , Amax perform steps 2-6. Before 

step 2, we fix X0 = X and y0 = y. 

2. Starts by estimating the loading weight vector wa for the ath latent variable, as 

the vector that maximizes the expression 11 −− a
T
a

T
a yXw : 

11

11

−−

−−=
a

T
a

a
T
a

a yX
yX

w .    (4.9) 

3. Estimate the factor scores ta as the projection of Xa−1 on wa: 

Xa−1 = ta wa + E;    (4.10) 
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the solution is (since a
T
a ww  = 1): 

ta=Xa-1wa.    (4.11) 

4. Regress Xa−1 on ta to find the loading vector pa: 

Xa−1 = ta
T
ap + E,    (4.12) 

which gives the least square solution: 

a
T
a

a
T
a

a tt
tX

P 1−= .     (4.13) 

5. In order to make estimations of ya−1 from ta possible, the regression coefficient 

qa for the ath latent variable is needed, which is determined by regression of ya−1 

on ta: 

ya-1= ta qa + f,    (4.14) 

which gives the solution: 

a
T
a

a
T
a

a tt
ty

q 1−= .    (4.15) 

6. New residuals Xa and ya are calculated by subtracting the effect of the previous 

latent variables: 

T
aaa ptXE −= −1 ,   (4.16) 

aaa qtyf −= −1 .    (4.17) 

Replace the former Xa−1 and ya−1 by the new residuals E and f and increase a 

by 1: 

Xa=E,    (4.18) 

ya= f,     (4.19) 

a = a + 1.    (4.20) 

7. Determine A, the optimal number of latent variables to retain in the calibration 

model by cross-validation. 



CHAPTER 4: Experimental Results ______________________________________________________  

_____________________________________________  
Development of Multiple Regression Systems for Hyperdimensional Spectral Spaces 

76

8. Similar to PCR, the regression coefficients bPLS are useful for the interpretation 

of the PLSR model and for predictions of validation samples (Xval) as y = 

XvalbPLS. The bPLS coefficients are calculated after A latent variables as: 

bPLS =W (PT W)-1 q,     (4.21) 

where W is (w1 | w2 | . . . | wA), P = (p1 | p2 | . . . | pA) and qT = (q1, . . . , qA). 

 

This algorithm is also called the orthogonalized PLSR algorithm, since the estimated 

score and weight vectors are orthogonal, i.e, j
T
i tt = 0 and j

T
i ww  = 0 where i ≠ j. 

 

4.6.2.2 Datasets Results 
a) Wine data set 

 The lowest NMSEV corresponding to the best model was obtained with 18 latent 

variables, which leads to the NMSE of the prediction equal to 0.0082 in the linear 

regression (MLR) and 0.0041 in the radial basis function regression based, the best 

architecture of the network was obtained with 19 neurons in the hidden layer with respect 

to the validation set. 

 

a) Orange juice data set 

 The best model corresponding to the lowest NMSEV was obtained with 10 latent 

variables, which leads to the NMSE of the prediction equal to 0.2625 in the MLR 

regression, the same number of latent variables are maintained in the RBF regression 

with NMSE= 0.2339, the number corresponding to the best architecture of the RBF 

network was 13 hidden units. 

Data set 
Regression Based 

Method 
Number of 
features 

NMSET 
Computational 

time [s] 

MLR 0.0082 2.5160 
Wine 

RBF 
18 

0.0041 67.3750 

MLR 0.2625 9.1570 
Orange 

RBF 
10 

0.2339 78.7970 

Table 4.2: Results summary of partial least square regression for the two data sets. 
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4.6.3 Sequential forward Selection with mutual information (SFS) 
 In this method, we have used the algorithm of Benoudjit et al.[40], this method use the 

mutual information measure to select the first variable and use after the forward selection 

used by the same author in [3]. This section gives an overview of the mutual information 

theory and describes the sequential forward selection algorithm. 

 
4.6.3.1 Mutual information 

In this subsection we will explain how mutual information can be used to assess 

the importance of each variable (spectral data) with respect to the calibration model. 

a) Definition 
The main goal of a prediction model is to minimize the uncertainty on the output 

variable. A good formalization of the uncertainty of a random variable is given by 

Shannon’s information theory [41]. While first developed for binary variables, it has 

been extended to continuous variables. 

The uncertainty of a random variable y with values v in a finite set D can be measured by 

means of its entropy H: 

( ) ( ) ( )vyPvyPyH
D

==−= ∑ log.   (4.22) 

To illustrate this concept, let us suppose that in an extreme case all values v in D 

have null probability except one, which has a probability equal to 1. Then, there is 

absolutely no uncertainty since y is a constant; H(y) = 0. Suppose now that all the values 

in D are equiprobables. Uncertainty is then maximal and its value is  

H(y) = logN, where N is the cardinal of D. 

When the value of another variable xi with values v’ in D’ is known, one can define 

conditional entropy: 

( ) ( ) ( ) ( ).log. '''

'

vxvyPvxvyPvxPxyH i
D

i
D

ii =====−= ∑∑ . (4.23) 

Mutual information between xi and y is then defined by: 

I(y, xi) = H(y) − H(y | xi).   (4.24) 
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The last term represents the decreasing of uncertainty on y when xi is known. The 

concepts of entropy, conditional entropy and mutual information, can be extended to the 

continuous case (set D of infinite size). 

Mutual information between variables y and xi may be expressed by: 

∫= dydx
ygxf

yxh
yxhI i

i

i
i )().(

),(
log).,( ,   (4.25) 

where f(xi) and g(y) are the marginal probability densities of variables xi and y 

respectively, and h(xi, y) is the joint probability density function of xi and y. This 

formulation shows that the mutual information between xi and y is zero if and only if xi 

and y are statistically independent. The mutual information is not affected by any 

variable transformation, and does not make any assumption on the underlying 

relationship between xi and y. 

b) Computation of the mutual information 
The computation of the mutual information is based on the estimation of the 

marginal probability densities and the joint probabilities density function. That 

estimation must be carried out on the dataset. Histograms and kernels based pdf 

estimation are among the most commonly used. In this thesis we used histogram 

estimation, because it requires less computations than kernel based estimation. Since we 

need to estimate both joint and marginal probability densities, we must construct a bi-

dimensional histogram. This is done using the ith column of X and the vector of 

measured responses (dependent variable). The procedure starts by building a bi-

dimensional grid spanning the cartesian product of the domains of both variables, and 

then counting the number of pairs (xi, y) that fall into a particular cell. The sizes of the 

cells are important parameters that have to be chosen carefully. If the cells are too large, 

the approximation will not be precise enough; if they are too small, most of them will be 

empty and the approximation will not be sufficiently smooth. In our case we will limit 

ourselves to regular grids, making all cells the same size. Once both the joint and 

marginal probability densities have been estimated, the mutual information is computed 

using Eq. 4.25 and the fact that: 
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( ) ( )
( ) ( ) .,

,,

∫
∫

=

=

ii

ii

dxxyhyg

dyxyhxf
    (4.26) 

4.6.3.2 Sequential Forward Selection (SFS) [3-48] 
After selecting the first variable (feature) by the mutual information, this leads to 

the choice of the first variable; we keep this variable, and build n−1 models by adding 

one of the remaining spectral variables. The error criterion for each one of these models 

is calculated and we choose the model that minimizes this criterion. A second variable is 

then selected. We continue this process until the value of the error criterion increases. As 

detailed below, it is therefore necessary to evaluate the error criterion on a validation set, 

independent from the training dataset. By validation dataset, we mean a set of samples 

(observations) not used for training (fitting the calibration model). Depending on the 

research discipline, some authors use the words ’external validation set’, ’external set’ or 

’prediction set’; the important concept is that the samples used to validate a method must 

be independent from those used for training, regardless of the terminology. Only the use 

of a validation dataset will ensure an objective evaluation of the error resulting from each 

model. Moreover, only the error on a validation dataset will increase when the number of 

selected variables is too large, leading to the well-known overfitting phenomenon (see 

figure 4.17) [38].  

 

Figure 4.17: Typical evolution of the performances of training and validation. 
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It should be noted that during step 1, we only need the training set, since the 

computation of the mutual information does not require the estimation and the 

comparison of models. On the other hand for step 2, the use of other data (validation set) 

independent from the training set, for the computation of the NMSEV is necessary to 

detect and avoid the overfitting phenomenon. 

 

4.6.3.3 Datasets results 
1) Wine dataset 

The SFS model which has the lowest NMSEV, was obtained with 26 variables 

corresponding to 0.0068 as test error, the regression method used in this experiment was 

the MLR (Multiple Linear Regression). In the RBF based regression, the number of 

features remains the same since we us a linear estimator for both MLR and RBF 

regressions. The corresponding test error was 0.0055. 

 

2) Orange juice dataset 

The SFS model which has the lowest NMSEV, was obtained with 48 variables 

corresponding to 0.2882 as test error with the MLR (Multiple Linear Regression). In the 

RBF based regression, the best model obtained in the validation set corresponds to 

0.2126 as error value in the test set. 

 

Data set 
Regression Based 

Method 
Number of 
features 

NMSET 
Computational 

time [s] 

MLR 0.0068 12.3750 
Wine 

RBF 
26 

0.0055 27.6250 

MLR 0.2882 52.5780 
Orange 

RBF 
48 

0.2126 152.3600 

Table 4.3: Results summary of SFS approach for the two data sets. 
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4.6.4 Multiple Estimator System (MES) 
As it was detailed in the chapter 2, our proposed approach to deal with the 

problem of regression in the hyperdimensional spaces is the multiple estimator system, in 

this section we give a results obtained by our approach with different architectures. 

 
4.6.4.1 Multiple linear regression based 
1) Wine dataset 

a) Combination-based approach 
In this data set we have divided by the two techniques UGS and UAG the original 

feature space into 10 subgroups of 25 features, except the last subgroup which contains 

31 features. The samples are also distributed as 60, 34, and 30 respectively between the 

training, validation and test sets. The table 4.4 shows the detailed results of the MES 

procedure applied in the different regions of the feature space, by the two techniques of 

features grouping, it is obvious that the accuracy is different between the different 

estimators, which show the importance of the feature grouping block in the design of the 

MES. The best single estimator was obtained with the features group 2 in the UGS 

strategy, in the UAG technique the best single estimator correspond to 2nd subgroup of 

features. The coefficients alphas of the WCS (Weighted Combination Strategy) were 

obtained by the SVD (Single Value Decomposition) technique. 

 

(a) UGS     (b) UAG 
 

Figure 4.18: Validation error of non linear fusion for soda-data set 
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b) Non-linear approach 
The figure 4.18 shows the validation error of the non linear fusion, the optimum 

number of hidden units in the fusion network was 4 neurons in the UGS and 7 neurons in 

the UAG technique. 

 

c) Hybrid approach 
In the hybrid fusion, the 10 outputs of the linear estimators were combined by the 

whole space in order to weight the outputs, to kind of estimators has been used, the RBF 

estimator and the support vector machines (See chapter 3). In this latter, we have used 

the linear kernel with regularization parameter C= 0.6. 
 

d) Classification-based approach 

• Selection Strategy (SS) 

In this approach, we propose to analyze the accuracy of each single estimator 

included in the MES in different portions of the -dimensional feature space. This is 

equivalent to making a partition of the -dimensional feature space, in which each point is 

associated with the estimator of the ensemble that provides the minimum estimation 

error. In other words, the MES behaves like an ideal selector of the most accurate 

estimate achieved by the set of available estimators. In this way, it is possible to better 

exploit the peculiarities of the different estimators in order to increase the robustness 

(and possibly the accuracy) of the estimation process in the entire feature space.  

Two kinds of classifiers were used, the KNN classifier and the SVC (Support Vector 

Classification). In the K-NN classifier, the optimum number of nearest neighbours 

according to the validation set was 19 nearest neighbours corresponding to 0.0055 as 

prediction error. 

• Dynamic Strategy (SS) 

We propose in this approach based on dynamic weighting, taking the peculiarities of 

the influence of each estimator to the global accuracy into account. The measure of 

global accuracy is based on the combination of different estimators in the area of the 

feature space surrounding the considered sample. The same number of nearest 

neighbours as the selection strategy was retained leading to 0.0040 as test error. 
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Estimator UGS UAG Alphas 
UGS 

Alphas 
UAG 

1 0.0055 0.0084 0.5900 0.2594 
2 0.0038 0.0083 0.2108 0.4843 
3 0.0069 0.7367 -0.3641 -0.0173 
4 0.0057 0.0233 0.4820 0.0920 
5 0.0044 0.0189 0.1474 0.1524 
6 0.0061 0.0127 0.1193 0.0675 
7 0.0055 0.0769 0.0105 -0.0241 
8 0.0048 0.0690 -0.1361 0.0663 
9 0.0058 0.1943 0.1237 -0.0050 

10 0.0086 0.0498 -0.1833 -0.0761 
Average 0.0057 0.1199 

ACS 0.0038 0.0068 
WCS 0.0033 0.0044 

RBF fusion 0.0030 0.0041 
Hybrid-RBF 0.0038 -- 
Hybrid-SVM 0.0057 -- 

KNN 0.0055 -- Selector SVM 0.0061 -- 
KNN 0.0040 -- Dynamic SVM 0.0040 -- 

Table 4.4: Results summary MES based MLR for wine data set. 
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2) Orange juice dataset 

a) Combination-based approach 
In the table 4.5, the detailed results of the MES procedure applied in the different 

regions of the feature space are shown. The original feature space of 700 variables was 

divided into 20 subgroups of 35 features in each one, 100, 50 and 68 are respectively the 

number of samples in the training, validation and test sets. The best single estimator was 

obtained with the features group 8 in the UGS technique; in the UAG technique the best 

single estimator correspond to 17th subgroup of features. The coefficients alphas of the 

WCS (Weighted Combination Strategy) were obtained by the SVD (Single Value 

Decomposition) technique. 

b) Non-linear approach 
In this data set, the non linear fusion was done with an optimum number of 

hidden units according to the validation set, the normalized mean square error NMSE 

was 0.1461 in the UGS and 0.3555 in UAG, leading to the importance and the crucial 

choice of the features grouping technique. 

c) Hybrid approach 
In the hybrid fusion, the 20 outputs of the linear estimators were combined by the 

whole space in order to weight the outputs, two kinds of estimators has been used, the 

RBF estimator and SVM. In this latter, we have used the linear kernel with regularization 

parameter C= 0.1. The results are respectively 0.2690 obtained with a network containing 

6 units in the hidden layer according to the validation set in the RBF and 0.1761 in the 

SVM estimator. 

d) Classification-based approach 

• Selection Strategy (SS) 

In this approach, the two kinds of classifiers were used, the KNN classifier and the 

SVC (Support Vector Classification). In the K-NN classifier, the optimum number of 

nearest neighbours according to the validation set was 13 nearest neighbours 

corresponding to 0.3190 as prediction error. In the SVC the final error was 0.4408. 

• Dynamic Strategy (SS) 

The number of nearest neighbours in the dynamic strategy was 5NN leading to 

0.2548 as test error in the KNN classifier and 0.2414 in the SVC. 
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Estimator UGS UAG Alphas 
UGS 

Alphas 
UAG 

1 0.3620 0.9442 0.4851 -0.0698 
2 0.3698 0.8085 -0.1704 0.0547 
3 0.4528 1.0593 -0.1244 -0.0455 
4 0.3915 1.1719 0.3813 0.0308 
5 0.3204 0.7906 0.0491 -0.0022 
6 0.2188 1.1117 0.3785 -0.0050 
7 0.2244 1.2670 -0.1241 0.0407 
8 0.1880 1.3453 0.1516 0.1306 
9 0.2543 0.6087 0.3451 0.1840 

10 0.1998 0.6889 0.0495 0.1794 
11 0.3157 0.8764 -0.1073 0.0970 
12 0.2689 0.9293 0.0093 0.0309 
13 0.3000 0.7823 -0.2360 0.0879 
14 0.3568 0.6566 -0.0061 0.1771 
15 0.3990 0.8061 0.2835 -0.1285 
16 0.2491 0.6673 -0.2103 -0.1095 
17 0.2676 0.5671 0.0923 0.2222 
18 0.2572 0.9589 0.0695 0.1449 
19 0.4254 1.0583 -0.0737 -0.0715 
20 0.3792 1.5781 -0.2382 0.0701 

Average 0.3100 0.9338 
ACS 0.2334 0.6205 
WCS 0.2354 0.6084 

RBF fusion 0.1461 0.3555 
Hybrid-RBF 0.2690 -- 
Hybrid-SVM 0.1761 -- 

KNN 0.3190 -- Selector SVM 0.4408 -- 
KNN 0.2548 -- Dynamic SVM 0.2414 -- 

Table 4.5: Results summary MES based MLR for orange juice dataset. 
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4.6.4.2 RBF regression based 
1) Wine dataset 

a) Combination-based approach 
The table 4.6 shows the detailed results of the MES procedure applied in the 

different regions of the feature space, by the two techniques of features grouping, it is 

obvious that the accuracy is different between the different estimators, which show the 

importance of the feature grouping block in the design of the MES. The best single 

estimator was obtained with the features group 6 in the UGS strategy; in the UAG 

technique the best single estimator correspond to 1st subgroup of features. It is noticed 

that in the RBF regression-based, the number of the hidden units has been computed 

differently in each estimator with respect to the correspondent estimator in the validation 

set. 

b) Non-linear approach 
In this data set, the non linear fusion was done with an optimum number of 

hidden units according to the validation set, the normalized mean square error NMSE 

was 0.0026 in the UGS and 0.0032 in the UAG strategy. 

c) Hybrid approach 
In the hybrid fusion, the 10 outputs of the linear estimators were combined by the 

whole space in order to weight the outputs, two kinds of estimators has been used, the 

RBF estimator and SVM. In this latter, we have used the linear kernel with regularization 

parameter C= 0.1. The results are respectively 0.0036 obtained with a network containing 

6 units in the hidden layer according to the validation set in the RBF and 0.0035 in the 

SVM estimator. 

d) Classification-based approach 

• Selection Strategy (SS) 

The KNN classifier and the SVC (Support Vector Classification) have roughly the 

same performance. In the K-NN classifier, the optimum number of nearest neighbours 

according to the validation set was 17 nearest neighbours corresponding to 0.0045 as 

prediction error. In the other classifier the final accuracy was 0.0040 

• Dynamic Strategy (SS) 
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The number of nearest neighbours in the dynamic strategy was 15-NN leading to 

0.0037 as test error. In the SVC the total accuracy was 0.0038. 

 

Estimator UGS UAG Alphas 
UGS 

Alphas 
UAG 

NHU 
UGS 

NHU 
UAG 

1 0.0039 0.0047 0.5900 0.2593 23 13 
2 0.0032 0.0055 0.2108 0.4842 24 10 
3 0.0039 0.3893 -0.3641 -0.0173 27 9 
4 0.0043 0.0424 0.4820 0.0920 29 14 
5 0.0039 0.0129 0.1473 0.1524 28 5 
6 0.0026 0.0098 0.1193 0.0675 21 10 
7 0.0048 0.0657 0.0105 -0.0241 16 11 
8 0.0160 0.0417 -0.1361 0.0663 17 25 
9 0.0086 0.3098 0.1237 -0.0050 26 4 

10 0.0062 0.0220 -0.1833 -0.0761 24 20 
Average 0.0057 0.0904 

ACS 0.0038 0.0145 
WCS 0.0028 0.0034 

RBF fusion 0.0026 0.0032 
Hybrid-RBF 0.0036 -- 
Hybrid-SVM 0.0035 -- 

KNN 0.0045 -- Selector SVM 0.0040 -- 
KNN 0.0037 -- Dynamic SVM 0.0038 -- 

Table 4.6: Results summary MES based RBF regression for wine data set. 
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2) Orange juice dataset 

a) Combination-based approach 
In the table 4.5, the detailed results of the MES procedure applied in the different 

regions of the feature space are shown. The original feature space of 700 variables was 

divided into 20 subgroups of 35 features in each one, 100, 50 and 68 are respectively the 

number of samples in the training, validation and test sets. The best single estimator was 

obtained with the features group 8 in the UGS technique; in the UAG technique the best 

single estimator correspond to 17th subgroup of features. The coefficients alphas of the 

WCS (Weighted Combination Strategy) were obtained by the SVD (Single Value 

Decomposition) technique. 

b) Non-linear approach 
In this data set, the non linear fusion was done with an optimum number of 

hidden units according to the validation set, the normalized mean square error NMSE 

was 0.1461 in the UGS and 0.3555 in UAG, leading to the importance and the crucial 

choice of the features grouping technique. 

c) Hybrid approach 
In the hybrid fusion, the 20 outputs of the linear estimators were combined by the 

whole space in order to weight the outputs, two kinds of estimators has been used, the 

RBF estimator and SVM. In this latter, we have used the linear kernel with regularization 

parameter C= 0.1. The results are respectively 0.2298 obtained with a network containing 

4 units in the hidden layer according to the validation set in the RBF and 0.1964 in the 

SVM estimator. 

d) Classification-based approach 

• Selection Strategy (SS) 

In this approach, the two kinds of classifiers were used, the KNN classifier and the 

SVC (Support Vector Classification). In the K-NN classifier, the optimum number of 

nearest neighbours according to the validation set was 9 nearest neighbours 

corresponding to 0.1659 as prediction error. In the SVC the final error was 0.3830. 

• Dynamic Strategy (SS) 

The number of nearest neighbours in the dynamic strategy was 5NN leading to 

0.1627 as test error in the KNN classifier and 0.3040 in the SVC. 
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Estimator UGS UAG Alphas 
UGS 

Alphas 
UAG 

NHU 
UGS 

NHU 
UAG 

1 0.4351 0.8749 0.2163 0.0146 14 21 
2 0.3539 0.7447 0.0971 0.0625 30 4 
3 0.2923 0.8697 0.1273 0.1035 40 15 
4 0.3491 1.1067 0.4071 0.1788 40 29 
5 0.3094 0.6960 0.1611 -0.4935 15 6 
6 0.3014 0.8622 0.0178 -0.0337 12 9 
7 0.3435 0.6087 -0.4884 -0.0736 17 5 
8 0.4024 0.5150 0.1184 -0.1149 18 7 
9 0.2680 0.5496 0.3729 0.2779 28 17 
10 0.3188 0.5879 0.2810 0.1932 18 6 
11 0.5103 0.6004 -0.0543 0.1192 19 13 
12 0.4656 0.8921 0.0217 0.0614 17 14 
13 0.4667 0.6578 -0.2780 0.3170 20 16 
14 0.4809 0.6245 0.0144 -0.1420 20 7 
15 0.2937 0.5433 0.0387 -0.2365 14 6 
16 0.2568 0.5674 0.1188 0.0065 34 12 
17 0.2528 0.6608 -0.1050 0.3228 17 6 
18 0.2644 0.5627 0.2131 0.2639 13 18 
19 0.4893 0.7831 0.0310 0.2109 16 5 
20 0.3826 0.9785 -0.3109 -0.0280 16 3 

Average 0.3721 0.7143 
ACS 0.3123 0.6093 
WCS 0.1806 0.6181 

RBF fusion 0.1742 0.4480 
Hybrid-RBF 0.2298 -- 
Hybrid-SVM 0.1964 -- 

KNN 0.1659 -- Selector SVM 0.3830 -- 
KNN 0.1627 -- Dynamic SVM 0.3040 -- 

Table 4.7: Results summary MES based RBF for orange dataset. 
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4.6.5 SVM Results 
As stated in chapter 2, the choice of this kind of estimator is motivated by the 

interest in a detailed and complete assessment of the effectiveness of the SVM regression 

approach when applied to the problem of regression in hyperdimensional spaces. In 

particular, we considered three different kinds of SVMs: a linear SVM (SVM-Linear) 

(which corresponds to an SVM without kernel transformation), a nonlinear SVM with 

polynomial kernels (SVM-Polynomial), and a nonlinear SVM with Gaussian radial basis 

functions (SVM-RBF). This allowed us to evaluate the influence of the kernel type in the 

SVM regression process, and to obtain useful indications for choosing the estimators 

appropriate to implement the different scenarios defined to evaluate the robustness of the 

MES. 

For the three SVM-based regression techniques, it was necessary to derive the 

value of the regularization parameter C, since data are not ideally contained in the ε-

insensitive tube. By contrast with the linear SVM, the nonlinear SVMs required the 

determination of additional parameters, i.e., the order of the polynomial and the γ 

parameter for the SVM-Polynomial and the SVM-RBF, respectively. 

 

Theoretically, in the SVM-polynomial, on the one hand, by increasing the order 

of polynomial kernels we can obtain more accurate regression potentialities. On the other 

hand, the generalization capabilities of the estimator decrease. This becomes critical in 

operational situations where the number of training samples is very limited and a high 

polynomial degree is considered (large number of coefficients to estimate). The 

parameter γ of the SVM-RBF is related to the width of the Gaussian radial basis kernels, 

and consequently, tunes the smoothing of the approximating function. 

 

Several experiments were carried out in order to identify empirically (on the basis 

of the test samples) the best parameter(s) associated with each of the three considered 

types of SVM (see tables 4.8 and 4.9). The smallest NMSE value found for the 

polynomial SVM was equal to 0.0700 (C=0.00008) corresponding to the second-order 

polynomial in the soda data set and 1.076 (C=0.001) with same degree for orange juice 

data-set. 
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By contrast, with the other SVMs (Linear and RBF), one order of magnitude was 

gained in terms of NMSE in the orange dataset. In greater detail, the tables 4.8 and 4.9 

resume the three experiments carried-out in the two data sets. 

 

Kernel Parameters NMSE 
Comput. 

Time [s] 

Linear C=1 SV=60 0.0072 24.18 

Polynomial Degr.=2 C= 0.00008  SV=60 0.0701 0.0209 

RBFN Gamma=0.00001 C=100000 SV=60 0.0060 0.0109 

 

Table 4.8: Results of three SVM techniques for wine data set. 

 

Kernel Parameters NMSE 
Comput. 

Time [s] 

Linear C=5 SV=100 0.4619 47.72 

Polynomial Degr.=2 C= 0.001  SV=100 1.0767 0.0405 

RBFN Gamma=0.0001 C=50 SV=99 0.5440 0.0220 

 

Table 4.9: Results of three SVM techniques for orange data set. 
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4.7 SUMMARY OF BEST RESULTS 
4.7.1 Wine data set 
 

Regression Method Fusion Strategy NMSE Comput. 
Time (s) 

Best single 0.0038 0.1090 
Worst single 0.0086 0.1090 Single Estimator 
Average 0.0057 -- 
ACS 0.0038 
WCS 0.0033 
NLF 0.0030 

24.6560 

Hybrid-RBF 0.0038 90.9370 
Hybrid SVM 0.0057 19.84 
Selector KNN 0.0055 3.9380 
Selector SVM 0.0061 3.5460 
Dynamic KNN 0.0040 2.7030 

M.E.S. 

Dynamic SVM 0.0040 3.0310 
SFS -- 0.0068 12.3750 
PCA -- 0.0045 2.6570 

M
L

R
 

R
eg

re
ss

io
n 

B
as

ed
 

 

PLS -- 0.0082 2.5160 
Best single 0.0026 20.5630 
Worst single 0.0157 20.5630 Single Estimator 
Average 0.0058 -- 
ACS 0.0038 
WCS 0.0028 
NLF 0.0026 

220.8910 

Hybrid-RBF 0.0036 261.7190 
Hybrid SVM 0.0035 3.56 
Selector KNN 0.0045 183.110 
Selector SVM 0.0040 178.0630 
Dynamic KNN 0.0037 190.3430 

M.E.S. 

Dynamic SVM 0.0038 192.9220 
SFS -- 0.0055 27.6250 
PCA -- 0.0035 1.0224e+003 

R
B

F
 

R
eg

re
ss

io
n 

B
as

ed
 

 

PLS -- 0.0041 67.3750 

Linear C=5 SV=100 0.0072 24.18 

Polynomial Degr.=2 C= 0.001 0.0701 0.0209 

SV
M

 
R

eg
re

ss
io

n 
 

B
as

ed
 

RBFN Gamma=0.00001 C=100000 0.0060 0.0109 

 

Table 4.10: Summary of Best Results for wine dataset. 
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4.7.2 Orange juice data set 

Regression Method Fusion Strategy NMSE Comput. 
Time (s) 

Best single 0.1880 0.1090 
Worst single 0.4528 0.1090 Single Estimator 
Average 0.3100 -- 
ACS 0.2334 
WCS 0.2354 
NLF 0.1461 

27.2340 

Hybrid-RBF 0.2690 293.8280 
Hybrid SVM 0.1761 3.42 
Selector KNN 0.3190 16.5160 
Selector SVM 0.4408 11.2500 
Dynamic KNN 0.2548 15.0470 

M.E.S. 

Dynamic SVM 0.2414 15.9060 
SFS -- 0.2882 52.5780 
PCA -- 0.2821 12.1560 

M
L

R
 

R
eg

re
ss

io
n 

B
as

ed
 

 

PLS -- 0.2625 9.1570 
Best single 0.2614 20.5630 
Worst single 0.5799 20.5630 Single Estimator 
Average 0.3721 -- 
ACS 0.3123 
WCS 0.1806 
NLF 0.1742 

547.5930 

Hybrid-RBF 0.2298 748.7500 
Hybrid SVM 0.1964 2.56 
Selector KNN 0.1659 638.9840 
Selector SVM 0.3830 452.0780 
Dynamic KNN 0.1627 426.6560 

M.E.S. 

Dynamic SVM 0.3040 467.8590 
SFS -- 0.2126 152.3600 
PCA -- 0.2546 1.063e+003 

R
B

F
 

R
eg

re
ss

io
n 

B
as

ed
 

 

PLS -- 0.2339 78.7970 

Linear C=1 SV=60 0.4619 47.72 

Polynomial Degr.=2 C= 0.001 1.0767 0.0405 

SV
M

 
R

eg
re

ss
io

n 
 

B
as

ed
 

RBFN Gamma=0.0001 C=50 0.5440 0.0220 

Table 4.11: Summary of Best Results for orange juice dataset. 
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4.8 CONCLUSION 
In this work, a novel approach to the calibration of near-infrared spectrometers 

based on a multiple estimator system has been presented. The MES aims at exploiting the 

total information included in the whole spectral space to improve the NMSE (and in 

some cases the robustness) of the estimation process. Different strategies to implement 

the MES have been described. The strategies differ from each other for: 1) the grouping 

method to select spectral variables; 2) The category of the estimator (supervised / 

unsupervised); 3) the fusion procedure. The ensembles of estimators used in the 

experiments were based on both MLR estimator and Radial Basis Function Neural 

Networks. We have addressed another solution to deal with this problem of 

dimensionality found in the literature based on support vector machines (SVM). 

In general, all the experimental results pointed out the ability of the MESs to 

increase the NMSE of the estimation process since they provided promising NMSE 

values compared to that of the other methodologies based on features reduction and 

regression. 



Chapter 5 
 

CONCLUSIONS AND PERSPECTIVES 

 
 

Abstract: In this chapter conclude the dissertation and gives general description between the 

three approaches (MES, Traditional methods, SVM) and point out the issues of the proposed 

MES as well as the perspectives for future works. 
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5.1 CONTRIBUTION OF THIS DISSERTATION 

Regression plays a central role in machine learning. Creating accurate regressors 

from a set of examples is extremely important. The fact that no single learning algorithm 

will do well for all domains has stimulated much research in the area of combining 

multiple learned models. All methods have been shown to be a very effective way of 

improving generalization performance. The study of different methods leading to new 

strategies, a better understanding of existing strategies and a characterization of where 

they will work well are of great value. 

In this work, we tried to describe problems and limitations related to the 

regression in high-dimensional data. Working with high-dimensional data is not a 

mathematical or theoretical question without consequence in practical situations. On the 

contrary, most data analysis problems encountered in real world applications explicitly 

deal with high-dimensional data. Indeed high-dimensional related problems already arise 

in dimensions as low as 4 or 5! 

Artificial neural networks have been "invented" to solve problems where other 

more traditional data analysis tools fail. Since artificial neural networks can effectively 

outperform other methods in specific situations, it has been argued that they solve all 

problems, including those related to high dimensions! This is obviously not true, even if 

this work shows methods to deal with such problems, probably more effectively than 

conventional data analysis tools. 

This work explores the problem of regression in high dimensional data applied to 

mid and near-infrared spectroscopy. The dissertation presents new systems for generating 

and combining regression estimates in hyperdimensional spaces. 
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In chapter 2, the proposed multiple estimator system is presented; this latter has 

been proposed in the classification context, and early in the regression, the great success 

of the multiple systems, allows us to extend the application of the multiple system to 

solve the problem of dimensionality, encountered in applications such spectroscopy and 

remote sensing. 

 

Another possible direction to solve the problem of dimensionality was presented, 

the recent Support Vector Machines (SVM) theory. The fact that this latter do not suffer 

from the problem of dimensionality, makes the SVM a good candidate for regression 

problem in hyperdimensional spaces. 

 

Different architecture of MES are presented with two evaluation criteria, NMSE 

and the computational time of each method,  

 

 The obtained experimental results allowed us to conclude that: 

1) The proposed system outperforms in terms of accuracy the traditional regression 

methods which consist in applying a regression method in a reduced feature space; 

2) the best multiple estimator architecture is that based on the unsupervised grouping 

based on sampling partition of the whole features space trained with Linear regression 

technique and combined by non-linear fusion technique based on artificial neural 

networks. 

 

5.2 PERSPECTIVES AND FUTURE WORK 
The regression in hyperdimensional spaces have been discussed and analysed 

thoroughly in this work. We cite here some future possible research directions. 

• The problem of feature selection, remains always the major problem of the 

pattern recognition community, for this purpose, a new algorithm of feature 

selection will be a great contribution to improve the accuracy and the robustness 

of the proposed system by overcoming the problem of correlation between 

variables found in the databases of high dimension. 
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• Another way to explore could be to go further into the use of mutual information 

on spectrophotometric data where the spectrochemical information is well 

established in order to better understand the choice of the selected variables. 

 

This dissertation serves as a useful synthesis and extension of the current literature in 

regression in hyperdimensional spaces. It is hoped that practitioners will find immediate 

utility in the methods derived, and researchers will find stimulating new directions based 

on the guidelines defined, and the outline of future work. 
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