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Abstract 
 
 

 The main aim of the work in this thesis is to exploit nonlinear tissues 

properties for improving in medical ultrasound image quality.  

Ultrasound imaging techniques have been widely used in modern hospitals for 

clinical ultrasound diagnosis because they can provide important information on 

the diseased state of the tissues in a human body non-invasively and non-

destructively. 

Ulrasound imaging is based on the generation, detection and processing of 

acoustic waves. The waves are transmitted into the human body, and on 

encountering variations in the properties of the medium, the waves are scattered 

and reflected. These reflections therefore contain information on the structures 

and shapes inside the body. When they are intercepted, the backscattered 

acoustic echoes are then beamformed and processed to form an image. 

The standard approach for ultrasound imaging is to use the fundamental 

frequency from the reflected signal to form images. Tissue harmonic imaging is a 

new gray-scale imaging technique, which use harmonic information from 

nonlinear ultrasound propagation to form an image. It creates images that are 

derived solely from the higher frequency.  

The properties of tissue cause the primary ultrasound signal to distort in the 

body. The distortion of this signal causes harmonics to be generated in tissue and 

these harmonics can then be used to generate an ultrasound image. The 

properties of these harmonic signals that can offer several advantages including 

improved contrast resolution, reduced noise and clutter, improved lateral 

resolution, reduced artefacts (side lobes, reverberations).  



                                                                                                                            Abstract 
 

In this thesis, second harmonic component generation has been used to create 

images offering improvements over conventional B-mode images in penetration, 

spatial resolution and, more significantly, in the suppression of acoustic clutter 

and side-lobe artefacts. 

In ultrasound harmonic imaging, an ongoing problem is that undesired signals 

are contained in the reflected waves, and that corrupt the image data, which 

leads to the contamination of the obtained image. Harmonic received frequency 

band must not contain components from transmit band, and its components 

must sufficiently be separable from fundamental spectral component.  Thus, to 

effectively employ the information contained in the second harmonic of the 

received signal, this information should be properly extracted. In this thesis, a 

new technique for acquiring the proper second harmonic signal is presented; an 

optimization of the transmitted bandwidth is recommended to receive the purely 

second harmonic signal for harmonic imaging. Given a certain available 

bandwidth for the transducer, it must be decide in what band the transmitted 

pulse may be send at, and what band the second harmonic signal should be 

received at. 
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General Introduction 
 
 
 
I.1 INTRODUCTION AND MOTIVATION 

Ultrasound or acoustic waves are used in wide number of fields as means to 

test and view the inner structure of a medium without having to open it up. It may 

be possible to discover the motions of the internal parts of bodies, whether animal, 

vegetable, or mineral, by the sound they make, (Robert Hooke, 1635-1703) [1]. 

Ultrasound is a term used to describe sound waves that have frequencies above the 

audible range. As the name implies, ultrasound is high-frequency sound. Sound is 

the rapid oscillatory motion of atomes or molecules and is produced when a body 

vibrates. Sound propagates in waves. A wave is a disturbance whose position in 

space changes with time. Unlike electromagnetic waves, which can travel in 

vacuum, the propagation of sound waves requires some physical elastic medium, 

such as gas, liquid or solid. Sound waves are of an elastic or mechanical nature. 

They travel through a medium by causing local displacement of particles within the 

medium, but there is no overall movement of this last. If a particle of the medium is 

displaced from its equilibrium position by any external applied stress, internal 

forces tend to restore the system to its original equilibrium. Particles making up the 

medium are not propagating away from the disturbance source but are only 

vibrating back and forth about their equilibrium positions. Mechanical vibrations 

become vibrating pressure waves, transferring energy to the medium and to objects 

that the wave contacts by intimate contact between masses of the medium. In term 

of energy, sound is mechanical energy that propagates through a continuous, elastic 

medium by the compression and rarefaction of particles that compose it. 

Compression is caused by a mechanical deformation induced by an external force, 

with a resultant increase in the pressure of the medium. Rarefaction occurs 

following the compression event; as the backward motion of the piston reverses the 

force, the compressed particles transfer their energy to adjacent particles, with a 



Chapter I                                                                                                General Introduction

 

 

 
 

2 

subsequent reduction in the local pressure amplitude. The mechanical energy 

moves progressively from particle to particle when a sound wave propagates in a 

medium [2]. 

Many animals in the natural world, such as bats and dolphins, use sound echo-

location, which is the key principle of diagnostic ultrasound imaging. The 

connection between echo-location and the medical application of sound, however, 

was not made until the science of underwater exploration matured. Sound echo-

location is the use of reflections of sound to locate objects. The applications range 

from geophysical exploration and customs inspection to medical diagnostics and 

therapy. 

In medical field, acoustic waves are used with a frequency that is generally between 

1 and 50MHz, which is in ultrasound domain. The waves are transmitted into the 

human body, and on encountering variations in the properties of the medium the 

waves are scattered and reflected. These reflections therefore contain information on 

the structures and shapes inside the body, and when they are intercepted by a 

transducer, an image can be formed of the organs within the human body. 

The discovery of piezoelectricity (the property by which electrical charge is created 

by the mechanical deformation of a crystal) by the Curie brothers in 1880 and the 

invention of the triode amplifier tube by Lee De Forest in 1907 set the stage for 

further advances in pulse-echo range measurement. The Curie brothers also showed 

that the reverse piezoelectric effect (voltages applied to certain crystals cause them 

to deform) could be used to transform piezoelectric materials into resonating 

transducers [5]. 

The potential of ultrasound as an imaging modality was realized as early as the late 

1940s when, utilizing sonar and radar technology developed during World War II. 

After this, with sonar and radar as models, a few medical practitioners saw the 

possibilities of using pulse-echo techniques to probe the human body for medical 

purposes. When commercialized versions of the reflectoscope were applied to the 

human body in Japan, the United States, and Sweden in the late 1940s and early 

1950s (Goldberg and Kimmelman, 1988), a new world of possibility for medical 

diagnosis was born, and several groups of investigators around the world started 

exploring diagnostic capabilities of ultrasound.  
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In medical domain, ultrasound not only complements the more traditional imaging 

approaches such as x-ray, but also possesses unique characteristics that are 

advantageous in comparison to other competing modalities such as x-ray computed 

tomography, radionuclide emission tomography, and magnetic resonance imaging. 

More specifically: 

1. Ultrasound is a form of no ionizing radiation. 

2. It is less expensive than imaging modalities of similar capabilities. 

3. It produces images in real time, unattainable by any other methods. 

4. It is portable and thus can be easily transported to the bedside of a patient. 

5. It has a resolution in the millimeter range for the frequencies being clinically 

used today. 

In ultrasound imaging, some limitations compared to other modalities include 

inferior resolution and poor penetration depth, are observed in the case of the 

fundamental imaging (the standard approach for ultrasound imaging is to use the 

fundamental frequency from the reflected signal to form images).Then, harmonic 

generation properties have been used to create improved images. 

Because ultrasound attenuation is more severe for higher frequencies, there is 

typically an implicit tradeoff between resolution and penetration depth. Moreover, 

artifacts due to clutter, beam defocusing due to tissue path inhomogeneities, and 

multiple reflections can distort the image and cause erroneous interpretation. Many 

techniques are used in the aim to reinforce the ultrasound pressure field, and to 

increase the signal-to-noise ratio (SNR) of harmonic component, and consequently 

to improve the ultrasound image quality.  

 

I.2 MEDICAL ULTRASOUND IMAGING  

The history of medical ultrasound goes back more than 50 years, when tests 

were started using modified sonar equipment. It was seen that the principles of 

sonar and radar could be used to image human tissue, whose consistence is not 

that different from water. The first ultrasound systems having diagnostic value 

displayed what came to be known as A-mode images (A stands for amplitude). The 

A-mode technology had no focusing, and simply displayed a one-dimensional signal 

giving the echo strength. In the 1950s and 1960s the B-mode technology was 

developed (B standing for brightness), giving the first two-dimensional views of the 
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body. The B-mode technology forms the basis of the technology which today 

permeates most modern medical facilities. In a B-mode display the brightness in the 

image is proportional to the echo strength. In the beginning the B-mode images were 

generated using mechanically moving transducers, so that scans in various 

directions could be synthesized into an image. However, in the mid 1960s the first 

electronically steered array transducers were introduced, and this is the technology 

which has transformed into an advanced real-time scanners [11]. 

Today, ultrasound imaging techniques have been widely used in modern hospitals 

for clinical ultrasound diagnosis because they can provide important information on 

the diseased state of the tissues in a human body non-invasively and non-

destructively. 

Ulrasound imaging is based on the generation, detection and processing of acoustic 

signals. An ultrasound transducer converts electrical voltage pulses into mechanical 

pulses that propagate outwards as acoustic waves into the human body. Echo 

signals are produced when the ultrasound waves encounter the interfaces between 

human tissues with different acoustic impedances. These echo signals, which can 

have the same or multiple frequency of the original excitation wave, are generaly 

detected by the same transducer. The electrical signals generated from the 

backscattered acoustic echoes are then beamformed and processed to form an 

ultrasound image.  

Ultrasound intruments for medical imaging purposes have a significantly smaller 

size and lower cost compared with instruments in other medical imaging modalities  

such as Magnetic Resonance Imaging and Computation Tomography. In addition 

there are no special building requirements as for X-ray, and Nuclear imaging. One 

ultrasound scanner can be equipped with multiple ultrasound probes to meet 

various needs for imaging different regions of the human body, and it can form 2D, 

or 3D, images in real-time. 

Finally, it is worth mentioning one of the great leaps taken in medical ultrasound 

imaging, namely harmonic imaging. It was seen that a clearer image could be 

synthesized by processing the second harmonic frequency instead of the frequency 

of the emitted pulse. 
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I.3 TISSUE HARMONIC IMAGING AND NONLINEAR PROPAGATION 

The last few years has seen the emergence a new ultrasound technology 

called Tissue Harmonic Imaging, or Finite Amplitude Distortion-Based Harmonic 

Imaging, which overcomes some of the problems of phase aberration, clutter 

artifacts, reverberation artifacts, and offers improved spatial resolution. Tissue 

harmonic imaging is a new grayscale imaging technique, which use harmonic 

information from nonlinear ultrasound propagation to form an image. It creates 

images that are derived solely from the higher frequency.  

The properties of tissue cause the primary ultrasound signal to distort in the body. 

The distortion of this signal causes harmonics to be generated in tissue and these 

harmonics can then be used to generate an ultrasound image. When these 

harmonics are not present in the transmitted pulse, they are mostly caused either 

by nonlinear propagation of the sound wave in the tissue or by the presence of a 

medium that is capable of reflecting the transmitted energy in nonlinear manner. 

All finite amplitude ultrasonic waves undergo a degree of nonlinear distortion when 

traveling through real media. The distortion is due to slight nonlinearities in sound 

propagation that gradually deform the shape of the propagating wave, and result in 

the development of additional harmonic frequencies that were not present in the 

initial transmitted wave. More precisely, the reason of the distortion of the wave 

shape is that the tissue is not a completely incompressible medium. At the positives 

cycles of the acoustic pressure wave (compression) the temperature increases and, 

the density will increase proportionally while during the negatives cycles of the 

acoustic pressure wave (expansion) the temperature decreases and also the density 

of the medium. This change in medium density influences the local propagation 

speed of sound. Indeed, the positive part of the wave propagates a bit faster than the 

negative part, leading to a slight deformation in the shape of the wave [51]. This 

deformation accumulates in depth with propagation distance and is more significant 

for high acoustic pressure intensities. The distortion manifests itself in the 

frequency domain by the appearance of additional harmonic signals at integer 

multiples of the original excitation frequency. Distortion will be more severe for 

higher pressure amplitudes and another additional number of harmonics will be 

generated. The properties of these harmonic signals that can offer several 

advantages including improved contrast resolution, reduced noise and clutter, 
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improved lateral resolution, reduced artifacts (side lobes, reverberations). These 

improvements are especially in the region of interest in which the acoustic energy is 

sufficiently high to cause the harmonics to be generated. 

Tissue harmonics uses various techniques to eliminate the echoes arising from the 

main transmitted ultrasound beam (the fundamental frequency), from which 

conventional images are made.  Once the fundamental frequencies are eliminated, 

only the harmonic frequencies are left for image formation.  Indeed, the quality of 

the harmonic image is primarily dependent on the complete elimination of all echoes 

derived from the transmitted frequencies.   

 

I.4 MODELING OF NONLINEAR ULTRASOUND PROPAGATION IN TISSUE  

An important aspect of modern engineering design is the use of computer 

models to simulate a technology before manufacturing. Often modeling not only 

saves money by allowing virtual research and development, but it also helps foster 

an understanding of principles needed for an optimal design. However, like in many 

engineering cases, either the structure geometry is complicated or some critical 

medium properties and behaviors are not uniform. Thus, an analytical solution 

cannot be found, or involves too many simplifying assumptions, which degrade the 

accuracy of the resulting solutions. In these situations, numerical analysis 

technique obtains piecewise approximate solutions for many engineering problems. 

Modeling of nonlinear ultrasound propagation in tissue, like the other fields, for the 

design and engineering of new technologies and techniques that exploit the 

nonlinear prapagation properties, it is primordial to be able to model the physical 

process with sufficient accuracy. Doing this, we can predict the consequences of 

certain design choises before we try to implement them. 

In the present thesis, the model of nonlinear ultrasound propagation based on the 

KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation is used. KZK equation is usually 

used to describe nonlinear wave propagation. It is based on a parabolic 

approximation, and describes the combined effects of diffraction, losses and 

nonlinearity. A numerical algorithm solves the equation in time domain and is based 

on finite differences method with a stepping in the axis of propagation direction. 

This algorithm follows similar lines as the algorithm described by Lee and Hamilton. 
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Numerical solutions have been investigated in the time domain, and the frequency 

domain. 

 

I.5 THESIS OBJECTIVE 

The objective of this thesis is firstly to develop a computationally efficient 

model of nonlinear ultrasound propagation, which may be used as a simulation tool 

for use in design of a harmonic imaging system. The model should enable 

simulation of nonlinear propagation in arbitrary media, and specifically, should 

accurately model propagation in tissue, and secondly exploiting the properties of the 

nonlinear propagation in tissue in the aim to searching improvements in ultrasound 

image quality. 

In ultrasound imaging, some limitations compared to other modalities include 

inferior resolution and poor penetration depth, are observed in the case of 

fundamental imaging. In the work of this thesis, nonlinear tissues properties are 

exploited for the purpose of improving in medical ultrasound image quality. With 

this technique profit is taken from the nonlinearity of the tissues which where the 

wave energy is transferred from the fundamental frequency, in which the wave was 

originally transmitted to its higher harmonics.  

Major improvements have been achieved by exploiting the characteristics of 

nonlinear fields with the utilization of harmonic frequencies, especially those of the 

second harmonic component which generated at two times of the transmit 

frequency.  

Second harmonic component generation has been used to create images offering 

improvements over conventional B-mode images in penetration, spatial resolution 

and, more significantly, in the suppression of acoustic clutter and side-lobe 

artifacts. 

Because ultrasound attenuation is more severe for higher frequencies, there is 

typically an implicit tradeoff between resolution and penetration depth. Moreover, 

artifacts due to clutter, beam defocusing due to tissue path inhomogeneities, and 

multiple reflections can distort the image and cause erroneous interpretation. Many 

methods like pulse inversion technique developed in this thesis are used in the aim 

to reinforce the ultrasound pressure field, and to increase the signal-to-noise ratio of 

second harmonic component. 
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In ultrasound harmonic imaging, an ongoing problem is that undesired signals are 

contained in the reflected waves, and that corrupt the image data which leads to the 

contamination of the obtained image. Harmonic received frequency band must not 

contain components from transmit band, and its components must sufficiently be 

separable from fundamental spectral component.  Thus, to effectively employ the 

information contained in the second harmonic of the received signal, this 

information should be properly extracted. In this thesis, a new technique for 

acquiring the proper second harmonic signal is presented. An optimization of the 

transmitted bandwidth is recommended to receive the purely second harmonic 

signal for harmonic imaging. Given a certain available bandwidth for the transducer, 

it must be decided in what band the transmitted pulse may be sent at, and what 

band the second harmonic signal should be received at. 

 

I.6 THESIS OUTLINE 

Following this introductory chapter, chapter II will establish some 

fundamental theory background relevant to linear and nonlinear ultrasound 

propagation. 

Chapter III will describes fundamental ultrasound imaging, and presents a 

numerical method used so far in modeling of linear propagation.  

Harmonic ultrasound imaging and the principles of the used numerical model, and 

improvements achieved with the utilization of harmonic component of echo signal 

will be discussed in the Chapter IV.  

Chapter V is dedicated to the study of bandwidths for fundamental and second 

harmonic spectral components and the overlap between them and how to optimize 

the excitation in the aim to earn more improvements in harmonic bandwidth, and 

consequently more details in required image. 

A general conclusion will summarize this work and its main contribution, give 

recommendations for future works. 
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Theoretical Background 
 
 
 
II.1 HISTORY 

Robert Hooke (1635-1703), the eminent English scientist responsible for the 

theory of elasticity, pocket watches, compound microscopy, and the discovery of 

cells and fossils, foresaw the use of sound for diagnosis when he wrote: It may be 

possible to discover the motions of the internal parts of bodies, whether animal, 

vegetable, or mineral, by the sound they make [1]. Many animals in the natural 

world, such as bats and dolphins, use echo-location, which is the key principle of 

diagnostic ultrasound imaging. The connection between echo-location and the 

medical application of sound, however, was not made until the science of 

underwater exploration matured. Echo-location is the use of reflections of sound to 

locate objects. The discovery of piezoelectricity (the property by which electrical 

charge is created by the mechanical deformation of a crystal) by the Curie brothers 

in 1880 and the invention of the triode amplifier tube by Lee De Forest in 1907 set 

the stage for further advances in pulse-echo range measurement. The Curie 

brothers also showed that the reverse piezoelectric effect (voltages applied to certain 

crystals cause them to deform) could be used to transform piezoelectric materials 

into resonating transducers. The potential of ultrasound as an imaging modality 

was realized as early as the late 1940s when, utilizing sonar and radar technology 

developed during World War II. After this, with sonar and radar as models, a few 

medical practitioners saw the possibilities of using pulse-echo techniques to probe 

the human body for medical purposes. When commercialized versions of the 

reflectoscope were applied to the human body in Japan, the United States, and 

Sweden in the late 1940s and early 1950s (Goldberg and Kimmelman, 1988), a new 

world of possibility for medical diagnosis was born, and several groups of 
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investigators around the world started exploring diagnostic capabilities of 

ultrasound. 

II.2 NATURE OF ULTRASOUND 

Sound is the rapid oscillatory motion of atomes or molecules and is produced 

when a body vibrates. A wave is a disturbance whose position in space changes with 

time. Sound propagates in waves. Unlike electromagnetic waves, which can travel in 

vacuum, the propagation of sound waves requires some physical elastic medium, 

such as gas, liquid or solid. Sound waves are of an elastic or mechanical nature. If a 

particle of the medium is displaced from its equilibrium position by any external 

applied stress, internal forces tend to restore the system to its original equilibrium. 

Particles making up the medium are not propagating away from the disturbance 

source but are only vibrating back and forth about their equilibrium positions. 

Mechanical vibrations become vibrating pressure waves, transferring energy to the 

medium and to objects that the wave contacts by intimate contact between masses 

of the medium. In term of energy, sound is mechanical energy that propagates 

through a continuous, elastic medium by the compression and rarefaction of 

particles that compose it. Compression is caused by a mechanical deformation 

induced by an external force, with a resultant increase in the pressure of the 

medium. Rarefaction occurs following the compression event; as the backward 

motion of the piston reverses the force, the compressed particles transfer their 

energy to adjacent particles, with a subsequent reduction in the local pressure 

amplitude. The mechanical energy moves progressively from particle to particle 

when a sound wave propagates in a medium [2]-[3]. 

There exist five major modes of sound waves in terms of their particle motion in 

relation to the sound wave propagation direction. Longitudinal, transverse, surface, 

plate, and torsion waves. The longitudinal wave is a compressional  wave in which 

the particle motion is parallel to the wave propagation direction. The transverse 

wave is shear wave motion in which the particle motion is perpondicular to the wave 

propagation direction. Surface waves have an elliptical particle motion and travel 

across the surface of the material, with the major axis of the ellipse perpendicular to 

wave paropagation direction. Plate or Lamb waves propagate in thin plates or 

specimen of uniform thickness less than a wavelength of the ultrasound introduced 

into it, resulting  in flexural vibration of plate. Torsion waves occur in rods or wires 



Chapter II                                                                                          Theoretical Background

 

 

 
 

11 

when the driving source performs an oscillatory, twisting action about the rod axis. 

Longitudinal waves can propagate in any elastic and compressible medium (solid, 

liquid, or gas). However, the other wave modes barely propagate in liquids or gases 

[4]. The acoustic spectrum breaks down sound into three ranges of frequencies: 

subsonic range, audible range, and ultrasonic range. Ultrasound wave refers to the 

human-inaudible sound wave, whose frequency range is above 20 kHz, the upper 

frequency response limit of the human ear. The ultrasonic range is then further 

broken down into three subsections, figure (II.1). Ultrasound behaves in a similar 

manner to audible sound except that it has a much shorter wavelength. The 

frequency range normally employed in ultrasonic nondestructive evaluation or 

imaging is 1 MHz to 20 MHz 

 

 

 
 
 

Figure II.1 : Acoustic spectrum 
 
 
 

II.3 GENERATION AND DETECTION OF ULTRASOUND WAVES 

In ultrasonic imaging, there must be a way to both generate and detect 

ultrasound waves. Historically, ultrasound waves were generated using whistles, 

sirens, and tuning forks. With these techniques, the upper limit of the frequencies 

that could be generated was approximately 40 kHz [5]. By exploiting the 

piezoelectric properties of crystals, sound waves can be generated at several tens of 

megahertz.  
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Before and after any electrical or mechanical force is applied to a piezoelectric 

element, the charge of the material is neutral. There is no voltage across the crystal. 

For generation of an ultrasound wave, an electric voltage is applied to the material. 

The polarity of the voltage that reaches the material determines the type of 

mechanical response of the element. The element either becomes thinner and longer 

or shorter and fatter than the material was at rest. Since the change in shape 

depends on the polarity of the voltage, the shape of the ultrasound wave can be 

controlled by controlling the voltage across the piezoelectric element. Detection of 

ultrasound waves is the reverse procedure of ultrasound wave generation. The 

polarity of the voltage across the piezoelectric element is determined by whether the 

piezoelectric material is pushed (made thinner and longer) or pulled (made shorter 

and fatter) by the reflection of the ultrasound wave. In ultrasound imaging, a 

piezoelectric transducer is used for both ultrasound wave generation and detection. 

Initially, to generate ultrasound waves, the piezoelectric element converts an applied 

voltage to mechanical ultrasound waves. Then, as the reflections of the ultrasound 

waves arrive to the transducer face, it converts that mechanical energy back into 

electrical energy.  

 

II.3.1 Piezoelectric Effect 

In the 1880s, the Currie brothers and Lippmann both made realizations that 

are the basis for the current methods of ultrasound wave generation and detection. 

The Curie brothers discovered that when a mechanical stress is applied to certain 

materials, an internal electric field is generated such that opposite charges line the 

opposite sides of the material. Figure (II.2a) shows the direct piezoelectric effect in 

which a stress induces a charge separation, and figure (II.2b) shows the reverse 

piezoelectric effect in which a potential difference across the electrodes induces a 

strain. A year later Lippmann predicted that applying an electric field to these 

materials would cause the material to deform. Shortly afterwards, the Currie 

brothers proved Lippmann’s prediction experimentally [5]. 
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Figure II.2: Direct and reverse piezoelectric effects  
 

 
 

II.3.2 Piezoelectric Materials 

Materials that exhibit this piezoelectric behavior include the following 

crystals: quartz, lead zirconate, barium titanate, and lithium niobate. Typically, a 

slice of the material is taken so that the parallel portions of the element lie normal 

to an axis of non-symmetry. The cut is crucial, because a wrong cut can result in 

suppression of the piezoelectric activity. Furthermore, in order to obtain the 

piezoelectric behavior, the mechanical stress must be applied to the non-

symmetrical axis. In general, ultrasound waves are then generated and detected by 

placing the piezoelectric element between two plates that can generate and measure 

an electric field [5].  
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II.4 ULTRASOUND WAVE PROPAGATION 

II.4.1 Ultrasound Waves 

Waves in diagnostic ultrasound carry the information about the body back to 

the imaging system. Both elastic and electromagnetic waves can be found in 

imaging systems. Three simple but important types of wave shapes are plane, 

cylindrical, and spherical, figure (I.3). A plane wave travels in one direction. Stages 

in the changing pattern of the wave can be marked by a periodic sequence of 

parallel planes that have infinite lateral extent and are all perpendicular to the 

direction of propagation. When a stone is thrown into water, a widening circular 

wave is created. In a similar way, a cylindrical wave has a cross section that is an 

expanding circular wave that has an infinite extent along its axial direction. A 

spherical wave radiates a growing ball-like wave rather than a cylindrical one. In 

general, however, the shape of a wave will change in a more complicated way than 

these simple idealized shapes, which is why the principle of superposition synthesis is 

needed to describe a journey of a wave. 

 

 

 

 
 
 

Figure II.3: Plane, cylindrical, and spherical waves showing  
surfaces of constant phase 

 
 

 

II.4.2 Plane Wave of Small Amplitude, Equation of Propagation 

Ultrasound waves can be thought of as pressure variations in a media, which 

propagate periodically in space and time. To a first order approximation, ultrasound 
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propagation is well described as a linear process, governed by a linear, second order 

homogeneous differential equation. The assumption of linear propagation, however, 

is valid only for relatively small disturbances. 

The propagation of sound waves in liquids and gases is described mathematically by 

the equations of hydrodynamics, which connect the velocity of the particle, the 

density of the medium, and the pressure. The acoustic wave equation in a fluid 

medium can be derived from three fundamental physical laws: conservation of 

masse (equation of continuity), momentum equation (the equation of motion) and 

pressure density relation for a perfect gas (the equation of state).  

 
డఘ
డ௧
൅ ݒߩ׏ ൌ 0

ߩ డ௩
డ௧

                                              (II.1)  
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                                       (II.2) 

                                                  (II.3) 

 

Equation (II.1) is the equation of continuity, equation (II.2) is the momentum 

equation, and equation (II.3) is the equation of state. 

Where  is the particle velocity, ܲ is the pressure, ߩ is the masse density, ܥ is a 

constant, and ߛ is the ratio of specific heats.  

The medium is assumed to be ideal. That is, the medium has not viscosity and 

energy dissipation, the medium is quiescent when there is no acoustic disturbance, 

the sound propagation process is adiabatic and, the amplitude of acoustic 

disturbance is very small compared to the ambient medium condition. The linear, 

lossless acoustic wave equation in fluids with phase speed ܿ  can be written as [4]: 

 

డమ௣
డమ௧

ൌ 0

ܲ െ ଴ܲ ଴

,ݎሺ݌ ሻݐ ൌ ௝ሺఠ௧ି௞.௥ሻ݁ܣ

                                                (II.4) 

 

The variable ݌ ൌ  is the acoustic pressure, where ܲ  is the quiescent pressure 

in the ambient medium. The plane wave solution to equation (II.4) is: 

 

                                             (II.5) 
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Where  is the radian frequency, ݎ is the location of the space point field 

pressure with respect to the origin of the coordinate system, and ݇ is the 

propagation vector perpendicular to the constant-phase surface, which points in the 

wave propagation direction and has magnitude | . The phase speed ܿ  is a real 

number for a lossless medium. A purely imaginary phase speed corresponds to an 

evanescent wave whose amplitude decays as the wave propagates. Therefore, the 

wave vector ݇ could be a complex vector, with its real part representing a progressive 

wave and its imaginary part representing a no progressive wave. 

߱ ൌ ݂ߨ2

߱ ܿ଴⁄ | ଴

଴

଴

A plane wave is a certain approximation to real conditions. In reality, the 

perturbation is always localized in space in the form of a beam, as occurs. The 

propagation of real wave beams frequently differs from the behavior of rays. The 

reason for this difference is included in the phenomenon of diffraction.  

 

II.4.3 Nonlinear Propagation of Sound Beams 

An increase in the intensity of a sound beam brings with it the necessity of 

investigating processes of nonlinear propagation of a multidimensional acoustic 

wave.  

Nonlinear propagation arises from a convective phenomenon and from a nonlinear 

relationship between pressure and density. Convection effects can be thought of as 

being like an oscillating wind travelling with the wave. Overall, the oscillation 

propagates with small signal speedܿ , however, the peak of the oscillation will also 

have a local particle velocity above and beyond the wave velocity ܿ . Effects due to 

the nonlinearity of the medium can be understood as a dependence of the speed of 

sound with temperature and pressure.  The compression phase of a wave will cause 

a local increase in pressure and temperature compared with the rarefaction phase. 

Locally, an increase in pressure and temperature causes an increase in the speed of 

sound, figure II.4. Thus, the compression phase of a wave travels faster than the 

rarefaction phase. Note that because the speed of sound is dependent on density, 

the plane wave impedance relation is no longer a linear relation. The slope of a 

graph of pressure versus density, is thus not a straight line, but is rather a curve, 

where the local slope is proportional to the square of the speed of sound.  
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Figure II.4: Effects of nonlinear distortion of a plane sinusoidal wave: (a) Initial 
waveform, (b) Showing the nonlinear distortion after propagating 

 
 
 

Thus, nonlinear propagation of the sound wave will undergo distortion, which will 

be more severe for higher pressure amplitudes. In the frequency domain, 

nonlinearity means that harmonics and sum and difference frequencies will be 

generated. A sinusoid distorting in the process of nonlinear propagation transforms 

a monofrequency source at ݂ , into an entire spectrum of harmonics, at ݂ , 2݂ , 3݂ , 

… 
଴ ଴ ଴ ଴

4 ଴݂

The nonlinear wave propagation process is more complicated than linear case. A 

sound beam travelling through a medium will involve the effects of diffraction, 

absorption, and nonlinearity, and the sound beam can be thought of as interacting 

with itself as it propagates. 

 

II.5 PROPERTIES OF ULTRASOUND WAVES  

II.5.1 Speed 

Sound travels through different media at different speeds (e.g., sound travels 

faster through water than it does through air). The speed of a sound wave ݒ, is given 

by the distance travelled by the disturbance (compression or rarefaction) during a 

given time and is constant in any specific material. It can be found by multiplying 

the frequency ݂ by the wavelength ߣ and is usually measured in meters per second 

(m/s): 
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ݒ ൌ .ߣ ݂                                                          (II.6) 

 

The speed of sound through a material depends on both the density and the 

compressibility of the medium. The denser and the more compressible the medium, 

the slower the wave will travel through it. While media of varying properties 

propagate sound at different speeds, the wave’s speed in a single medium remains 

constant as long as the temperature and the properties of the medium are held 

constant [6]. For medical imaging, the speed of sound is different for the various 

tissues in the body, Table (II.1). 

Knowledge of the speed of sound is needed to determine how far an ultrasound wave 

has travelled. This is required in both imaging and pulsed Doppler, but ultrasound 

systems usually make an estimate by assuming that the speed of sound is the same 

in all tissues: 1540 m/s. This can lead to small errors in the estimated distance 

travelled because of the variations in the speed of sound in different tissues. 

 

 
 

Medium Speed (m/s) at 20°C to 
25°C 

Air 343 
Water 1480 
Fat 1450 

Blood 1550 
Liver 1570 

Muscle 1585 
Kidney 1561 

Soft tissue 1540 
Bone 3500 

 
 

Table II.1: Speed of sound in different medium 
 
 

 

Mainly two properties of a medium are considered to affect sound wave speed: 

elasticity and inertia of the particles within the propagating medium [7]. Elasticity is 

defined as the degree to which a medium resists deformation when a force is applied 

to it. Typically, solids have higher elasticity than liquids, which in turn have higher 
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elasticity than gases. Furthermore, sound waves tend to propagate faster in media 

with higher elasticity. Inertia, determines the responsiveness of individual particles 

to their neighboring particles. A greater inertia indicates a medium is composed of 

particles with larger mass-densities. Sound waves propagate faster in media with 

less particle inertia.  

 

II.5.2 Frequency 

Frequency is defined as the number of wave lengths passing through a point 

per second. In ultrasound, the frequency of a sound wave can be discerned by 

counting how many times per unit of time either a high pressure (compression) or a 

low pressure (rarefaction) passes a particular location. A detector can be used to 

record the pressure variations through the medium. When the frequency of the 

sound wave is not obvious from the recorded signal, a Fourier Transform can be 

performed on the signal in order to determine the frequencies of which the sound 

wave is comprised as well as the proportions of the sound wave that are at each of 

these frequencies [8]. 

 

II.5.3 Acoustic Impedance 

The acoustic impedance of a medium is the impedance (similar to resistance) 

that the material offers against the passage of the sound wave through it and 

depends on the density and compressibility of the medium. The greater the change 

in the acoustic impedance, the greater the proportion of the ultrasound that is 

reflected. The equation for finding acoustic impedance is as follows [6]: 

 

ܼ ൌ .ߩ ݒ

ݒ

                                                      (II.7) 

 

Where ܼ is the acoustic impedance of the meterial, ߩ is the density of the material, 

and  is the speed that sound travels in the material. Table (II.2) shows acoustic 

impedance of different medium. 
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Material Acoustic impedance 

( Mrayl ) 

Air 0.0004 

Water 1.48 

Fat 1.38 

Blood 1.61 

Liver 1.65 

Kidney 1.63 

Muscle 1.64 

 

Table II.2: Impedance of sound in different medium 

. 
 
II.5.4 Reflection 

When a sound wave encounters the end of one medium and the beginning of 

another one (a boundary), a portion of the transmitted energy gets reflected. The 

equation used to determine the amount of energy that gets reflected is as follows [6]: 

 

ܴ ൌ ቀ௓మି௓భ
௓మା௓భ

ቁ
ଶ

ܼଵ ଶ

                                                      (II.8) 

 

Where  is the acoustic impedance of the first medium, ܼ  is the acoustic 

impedance of the second medium, and ܴ is the fraction of the energy that gets 

reflected. Clearly, this equation depends on the acoustic impedances of the two 

media. Therefore, measuring these acoustic impedances is necessary to evaluate the 

amount of reflection.  

From the mathematical equation for finding a reflection, it can be concluded that a 

greater difference in acoustic impedances between two neighboring media results in 

a greater amount of reflection. Note that any energy that is reflected at a boundary 

is lost from the energy of the propagating sound wave. 

 

II.5.5 Attenuation 

Attenuation is the diminishing of the original sound wave’s energy resulting 

from the combined effects of both scattering and absorption. For ultrasonic imaging, 
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attenuation is significant because it determines the depth of wave penetration 

possible and, thus, the depth of imaging that is possible. Scattering occurs when 

energy reflects from a very small obstacle and absorption occurs when particles in 

the path of the ultrasound wave retain some of the energy from the wave, possibly in 

the form of heat [7]. It follows that sound wave and media characteristics that are 

more conducive to scattering and absorption dissipate sound waves more quickly. 

One example is the dependency of the degree of attenuation on the sound wave 

fequency. Sound waves at a higher frequecy tend to have greater amounts of energy 

absorbed by the media and, consequently, higher frequency sound waves tend to 

dissipate more quickly than low frequency sound waves within the same media. 

If we consider a pressure of a plane monochromatic wave propagating in the z-

direction decreases exponentially as a function of z: 

 

ሻݖሺ݌ ൌ ݖሺ݌ ൌ 0ሻ݁ିఈ௭

ሺݖ ൌ 0ሻ 0

ߙ ൌ ଵ
௭

                                              (II.9) 

 

Where ݌  is the pressure at ݖ ൌ  and ߙ is the pressure attenuation coefficient. 

Therefore, 

݈݊ ቂ௣ሺ௭ୀ଴ሻ
௣ሺ௭ሻ

ቃ                                                (II.10)                     

 

The attenuation coefficient has a unit of nepers per centimeter (sometimes 

expressed in units of decibels per centimeter), like given in the table (II.3) below. 

 

Material Attenuation coefficient (np/cm)  

at 1 MHz 

Air 1.38 

Water 0.00025 

Fat 0.06 

Blood 0.02 

Liver 0.11 

Skull bone 1.30 

Aluminum 0.0021 

 

Table II.3: Attenuation of sound in different medium 
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The relative importance of absorption and scattering to attenuation of ultrasound in 

biological tissues is a matter that is continuously debated. Investigations have 

shown that scattering contributes little to attenuation in most soft tissues (Shung 

and Thieme, 1993). Therefore, it is safe to say that absorption is the dominant 

mechanism for ultrasonic attenuation in biological tissues. 

 

II.6 ULTRASOUND TRANSDUCERS  

The realizations of the Currie brothers and Lippmann are the basis for the 

present day use of piezoelectric transducers in ultrasonic imaging. Piezoelectric 

materials are dielectric materials that produce electric charge when they are 

subjected to strain or produce strain when the electric field distribution across them 

is altered. A transducer is, by definition, a device that converts one form of energy 

into another [9]. In the case of an ultrasound transducer, this conversion is from 

electrical energy to mechanical vibration. The thickness of the piezoelectric element 

will determine the frequency at which the element will vibrate most efficiently, this 

is known as the resonant frequency of the transducer. 

 

II.6.1 Radiation and Reception  

In radiation and reception, an ultrasonic transducer has dual roles by acting 

both as a radiation device to generate ultrasound from an electrical signal and as a 

reception device to convert ultrasound to an electrical signal. In contrast to the older 

tools that generated ultrasound waves with frequencies as high as 40 kHz, 

piezoelectric transducers allow for ultrasound waves in the 100s of MHz to be 

generated. Furthermore, the precision of detection available by measuring the 

voltages in the transducer that result from the ultrasound wave reflections is much 

greater than relying on animals and flames for ultrasound wave detection.  

The main components of a transducer are the active element, backing, and wear 

plate, figure (II.5). The active element, which is piezoelectric or ferroelectric material, 

provides electric-mechanic energy transduction, and vice versa. The most commonly 

used piezoelectric materials are polarized ceramics. New materials such as piezo-

polymers and composites are also used for their benefit to transducer and system 

performance. The backing is usually a highly attenuating, high-density material that 

absorbs the energy radiating from the back surface of the active element. It is used 
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to increase the bandwidth of the transducer. For immersion applications, the wear 

plate not only provides protection to the active element but also serves as an 

acoustic impedance transformer between the high acoustic impedance of the active 

element and the low acoustic impedance of the liquid (usually a quarter-wavelength-

thick matching layer to achieve in phase output) [10]. 

 

 
 

Figure II.5: Transducer components 
 
 
 

The electrical-to-mechanical energy transduction of ultrasonic transducers can be 

modeled by three-port network called Mason’s equivalent circuit, with two acoustic 

ports representing two surfaces of the active element and one electrical port. The 

coupling between the stress in the acoustic ports and voltage in the electrical port is 

modeled by an electromechanical transformer. 

Unfocused transducer emits an ultrasonic beam that spreads radially due to 

diffraction. The beam intensity falls off and the beam diameter is too large to obtain 

good lateral resolution when probing an object in the farfield. Therefore, a focused 

acoustic beam is often employed, as in optics, to obtain good lateral resolution and 

high acoustic beam intensity at a point of interest [11]. The use of focused 

ultrasound pulse waves prompts inspection sensitivity because the ultrasound 

energy is concentrated in a focal region so that the response of the microstructure in 
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this focal region to the incident ultrasound wave could be probed with high 

sensitivity. 

Focused ultrasound pulse waves can be generated by a single element transducer 

with concave surface such as spherical or cylindrical surface, which functions 

similarly to a focusing optical lens. There are essentially three approaches to focus 

an ultrasound beam: shaping the actual transducer vibrating element, attaching a 

concave lens to the transducer face, and inserting a biconvex lens into the 

ultrasound energy path which is similar to focusing the light from the sun using a 

magnifying glass. 

The sound field of a transducer is a beam within which sound intensity varies. An 

unfocused beam can be divided into the nearfield and the farfield. The nearfield is 

the region directly in front of the transducer where the echo amplitude goes through 

a series of maxima and minima and ends at the last axial maximum, at distance 

 from the transducer, where ݀ is the diameter of the transducer surface. 

The farfield is the region at distances greater than ܰ [12]. Attenuation is effectively a 

gradual loss of energy. The ultrasound beam attenuates as it progresses through a 

medium. Attenuation in the nearfield is associated with edge diffraction, absorption 

and scattering. In farfield, beam spread joins the three factors to attenuate sound 

intensity of the beam [12]. A spherical focusing transducer has the following 

important characteristics, figure (II.6): 

ܰ ൌ ݀ଶ ⁄ߣ4

 

 
 

 
 
 

Figure II.6: The beam of a spherical focusing transducer 
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diameter , focal length ܨ  which is the distance between the center point on 

transducer surface and the point of maximum echo from a point target, focal depth 

 which is the pulse echo beam axial distance between two points whose echo 

amplitudes are െ6 ݀ܤ relative to the focal point amplitude, beam diameter ܦܤ which 

is the െ6 ݀ܤ pulse echo beam lateral diameter at ܨ . 

ܦ ௅

௓ܨ

௅

െ20 ݀ܤ

The numerical aperture of a transducer is defined as the ratio of its focal length to 

its diameter. The waveform of a transducer has the following parameters: center 

frequency, frequency bandwidth, pulse duration that is the waveform duration at 

the  level or 10% amplitude of peak, pulse repetition frequency that is the 

number of pulses produced per second. A transducer is often described by its 

waveform center frequency, diameter and numerical aperture. 

 

II.6.2 Important Transducer Performance Parameters 

The ultrasound transducer is one of the most important parts in any 

ultrasound scanner system. Electromechanical coupling coefficient, resonance 

frequency, bandwidth, the dimension, and the effective transducer aperture are 

among the major parameters  that govern the performance of an ultrasound 

transducer [13]. Electromechanical coupling coefficient is a key parameter used to 

describe a transducer’s effectiveness as a converter of energy. It can be defined as 

the ratio between the converted mechanical energy and total input energy in one 

cycle. It is important to note that the electromechanical coupling coefficient value is 

not equal to the energy conversion efficiency which determines the amount of energy 

that is converted, the amount that is lost as heat with respect to available input 

energy. A transducer that has the efficiency equal to unity but a low 

electromechanical coupling coefficient value will convert all input energy to output 

energy but it will not be able to complete it in one single cycle. It will take several 

cycles before all input energy is converted [14]. For piezoelectric transducers 

operated in the thickness mode, the resonance frequency, which approximately 

determines where maximum sensitivity is achieved, is determined by the thickness 

of the transducer layer, sound velocity and electromechanical coupling coefficient 

[15]-[16]. The operating frequency also affects the focusing performance of an 

ultrasound transducer. Higher frequency is associated with a shorter wavelength, 

resulting in improved lateral and axial resolution. 
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Bandwidth is generally defined as the frequency range over which the transducer 

response is greater than its half-maximum (i.e. -6 dB with respect to maximum). 

Higher bandwidth increases the versatility of ultrasound transducers. 

The size of the transducer and each individual element plays an important role in 

transducer’s performance. For a certain range or focal length, a larger aperture 

generally improves the lateral resolution. The element spacing pitch also has a 

significant impact and determines whether there is any grating lobe in the 

transducer angular response, and where the grating lobe will exist. The element 

width has an impact on both single element and overall array beam pattern. For an 

array transducer, it determines the magnitudes of the sidelobes and grating lobes. 

For single element beam pattern, it determines the behavior of the sidelobes. The 

ultrasound transducer is a complex system in the sense that every parameter has 

impact on net transducer performance. For every application, the transducer has to 

be designed carefully and has to undergo an optimization procedure to ensure the 

transducer performance meets the application needs [17]. 

 

II.6.3 Transducer In Medical Imaging 

All ultrasonic imaging systems require a device called an ultrasonic 

transducer to convert electrical energy into ultrasonic or acoustic energy and vice 

versa. The ultrasonic field from transducers is the feature that determines the 

performance of a given system. The study of the spatial and temporal characteristics 

of the acoustical pressure field allows a greater understanding of the behavior of 

such devices. The medical ultrasound scanners use advanced transducer 

geometries for creating ultrasound fields suitable for probing the body. Ultrasound 

imaging is based on the transducer characterization in where pulsed ultrasound 

waves are directed into the human body, and echo signals from reflectors and 

scatterers organs are detected and used to construct an image. A first 

characterization of these transducers is based on computer simulation of the field. 

Ultrasonic transducers come in a variety of forms and sizes ranging from single-

element transducers for mechanical scanning and linear arrays, to 

multidimensional arrays for electronic scanning. Although performance of an 

ultrasonic scanner is critically dependent upon transducers/arrays, 
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array/transducer performance has been one of the bottlenecks that prevent current 

ultrasonic imagers from reaching their theoretical resolution limit. 

Like imaging, ultrasound transducers have also been improved over the time to 

meet the increasing needs demanded by new diagnostic and clinical applications. 

Lead Zirconium Titanate transducers (PZT) have dominated the medical ultrasound 

field since its beginning. Most current handheld ultrasounds probes are based on 

PZT technologies. In recent years, another type of transducer – Capacitive 

Micromachined Ultrasonic Transducer (CMUT) has gained a lot of attention and has 

emerged as promising transducer replacement due to its high bandwidth, low cost, 

and potential compatibility with tightly integrated electronics. However, both PZT 

and CMUT transducers have deficiencies providing opportunities for making 

significant improvements [17]. Figure (II.7), shows an example of a beam profile in 

medical ultrasound imaging field. 

Harmonic imaging necessitates high transducer bandwidth. In harmonic imaging, 

the transducer transmits ultrasound waves at a fundamental frequency band, and 

receives harmonic (generally second harmonic) echoes back from the human body. 

Moreover, bandwidth is a critical factor determining the image axial resolution. A 

higher bandwidth means fewer pulse cycles in the time domain, and results in 

improved axial resolution (range of depth resolution) in an image. A transducer with 

higher electromechanical coupling effectiveness usually has wider bandwidth and 

shorter pulse duration. 

 

 
 
 

Figure II.7: Beam profile of a medical ultrasound transducer 
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Medical ultrasound scanners typically use high frequencies of between 1 and 20 

MHz. Simple Doppler systems operate with a continuous single-frequency excitation 

voltage, but all imaging systems and pulsed Doppler systems use pulsed excitation 

signals. If ultrasound is continuously transmitted along a particular path, the 

energy will also be continuously reflected back from any boundary in the path of the 

beam, and it will not be possible to predict where the returning echoes have come 

from.  

The pulses used in imaging ultrasound are very short and will only contain 1 to 3 

cycles in order that reflections from boundaries that are close together can be easily 

separated. Pulsed Doppler signals are longer and contain several cycles. In fact, a 

pulse is made up not of a single frequency but of a range of frequencies of different 

amplitudes. Different shaped pulses will have different frequency contents. 

 

II.6.3.1 Beam profile 

When the vibrating surface of the transducer is in contact with the tissue 

which be imaged, an ultrasound beam of longitudinal waves is radiated into the 

tissue. According to Huygens’s principle, which describes a large transducer surface 

as an infinite number of point sources of ultrasound energy where each point is 

characterized as a radial emitter, the ultrasound beam can be calculated as 

interference between spherical waves that originate at all points from the transducer 

surface. The spatial variation of the beam power is called beam profile.  

The soft tissue which has inhomogeneous acoustic properties absorbs acoustic 

energy. This affects the ultrasound beam profile by changing the frequency content, 

phase aberrations, and reverberations. Exact values of the ultrasound beam profile 

can be obtained by numerical calculation, and in special cases we can obtain exact 

and approximate analytical expressions for the beam profile [18]. The ultrasound 

beam profile will depend on the length of the transmitted pulse, and we therefore 

often define a continuous wave (CW) beam pattern for a continuous vibration of the 

surface of the transducer, and a pulsed wave (PW) for a pulsed vibration. 

 

II.6.3.2 Focusing 

The principle of focusing an ultrasound beam is to align the pressure fields 

from all points of the transducer aperture to arrive at the field point at the same 
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time. This can be done through either a physically curved aperture, through a lens 

in front of the aperture, or by the use of electronic delays for multi-element arrays. 

The focal distance, the length from the transducer to the narrowest beam width, is 

shorter than the focal length of a nonfocused transducer and is fixed. The focal zone 

is defined as the region over which the width of the beam is less than two times the 

width at the focal distance; thus, the transducer frequency and dimensions should 

be chosen to match the depth requirements of the clinical situation. 

 

II.7 RADIATED BEAM DESCRIPTION   

II.7.1 Beam Regions 

The ultrasound field that emanates from a piezoelectric transducer does not 

originate from a point, but instead originates from most of the surface of the 

piezoelectric element. Round transducers are often referred to as piston source 

transducers because the ultrasound field resembles a cylindrical mass in front of 

the transducer. Since the ultrasound field originates from a number of points along 

the transducer surface, the ultrasound intensity along the beam is affected by 

constructive and destructive wave interference. These are sometimes also referred to 

a diffraction effects. For a plane ultrasound transducer there are three distinct 

regions of the beam: 

 

II.7.1.1 Nearfield or Fresnel region  

It’s the region situated between the transducer and the farfield region. The 

nearfield is adjacent to the transducer face and has a converging beam profile. 

Beam convergence in the nearfield occurs because of multiple constructive and 

destructive interference patterns of the ultrasound waves from the transducer 

surface. As individual wave patterns interact, the peaks and troughs from adjacent 

sources constructively and destructively interfere, causing the beam profile to be 

tightly collimated in the nearfield. The ultrasound beam path is thus largely 

confined to the dimensions of the active portion of the transducer surface, with the 

beam diameter converging to approximately half the transducer diameter at the end 

of the nearfield. The nearfield lengh ܰܮܨ is dependent on the transducer frequency 

and diameter as: 

ܮܨܰ ൌ   ୢ
మ

ସ஛
ൌ   ୰

మ

஛
                                                                  (II.11) 
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Where  is the transducer diameter, ݎ is the transducer radius, and λ is the 

wavelength of ultrasound waves in the propagation medium. Pressure amplitude 

characteristics in the near field are very complex, caused by the constructive and 

destructive interference wave patterns of the ultrasound beam. Peak ultrasound 

pressure occurs at the end of the nearfield, corresponding to the minimum beam 

diameter for a single element transducer. Pressures vary rapidly from peak 

compression to peak rarefaction several times during transit through the nearfield. 

݀

sinሺθሻ ൌ 1.22  ஛
ୢ

 

II.7.1.2 Farfield or Fraunhofer region 

It’s the region wherein the ultrasound beam spreads as a cone with a main 

lobe and side lobes as skirts around. The intensity falls off gradually from the axis 

in the main lobe, and we specify the intensity drop of the ultrasound field that 

defines the beam width. For a large area single element transducer, the angle of 

ultrasound beam divergence θ, for the farfield is given by: 

 

                                                                           (II.12) 

 

Where  is the effective diameter of the transducer, and λ is the wavelength. Less 

beam divergence occurs with high frequency, large diameter transducer. Unlike the 

nearfield, where beam intensity varies from maximum to minimum to maximum in a 

converging beam, ultrasound intensity in the farfield decreases monotonically with 

distance. 

d

 

II.7.1.3 Transition region 

It’s the region between the extreme nearfield and farfield regions. In the 

transition region, the diffraction causes a slight contraction of the central portion of 

the ultrasound beam before it starts to diverge in the farfield region. This 

phenomenon is sometimes referred to as diffraction focusing, and it causes highest 

intensity of the ultrasound beam for a focused transducer to be nearer the 

transducer than the geometric focus. 
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II.7.2 Energy Distribution 

In the general case, the radiated transducer energy is distributed on three 

zones called lobes, figure (II.8): 

 

II.7.2.1 Main lobe 

The main lobe, or main beam, of a transducer radiation pattern is the lobe 

containing the maximum radiated power. This is the lobe that exhibits the greatest 

field strength. 

 

II.7.2.2 Secondary lobes 

The sidelobe is the field intensity outside the main lobe of the far field. 

 

II.7.2.3 Grating lobes 

The grating lobes are sound waves that get transmitted from the transducer 

at angles other than that of the ultrasound wave. 

 

 
 

Figure II.8: Angular beam representation. Illustration of main lobe, sidelobes, and 
grating lobes 

 

 

II.8 MEDICAL ULTRASOUND IMAGING 

II.8.1 Principle 

Ulrasound imaging is based on the generation, detection and processing of 

acoustic signals. An ultrasound transducer converts electrical voltage pulses into 
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mechanical pulses that propagate outwards as acoustic waves into the human body. 

Echo signals are produced when the ultrasound waves encounter the interfaces 

between human tissues with different acoustic impedances. These echo signals, 

which can have the same or multiple frequency of the original excitation wave, are 

generaly detected by the same transducer. The electrical signals generated from the 

backscattered acoustic echoes are then beamformed and processed to form an 

ultrasound image. Figure (II.9), shows data processing sequences of the signal 

before displaying an ultrasound image. 

 
 
 

 
 
 
 

Figure II.9: Ultrasound imaging system (figure Adapted from [14]) 
 

 

Ultrasound imaging is one of the most popular medical imaging modalities because 

of several attractive features. It non-invasively forms images using reflected acoustic 

signals resulting from non-ionizing radiation. Ultrasound intruments for medical 

imaging purposes have a significantly smaller size and lower cost compared with 
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instruments in other medical imaging modalities such as MRI (Magnetic Resonance 

Imaging) and CT (Computation Tomography). One ultrasound scanner can be 

equipped with multiple ultrasound probes to meet various needs for imaging 

different regions of the human body. Another advantage of ultrasound imaging is 

that it can form 2D, or 3D, images in real-time. 

 

II.8.2 Image Displaying Modes 

The creation of an ultrasound image depends on the way in which ultrasound 

energy interacts with the tissue as it passes through the body. It uses information 

contained in reflected and scattered signals received by the transducer. The 

amplitude of the returning pulse will depend on the proportion of the ultrasound 

reflected or back scattered to the transducer and the amount by which the signal 

has been attenuated along its path. Ultrasonic pulse echo systems encompass a 

large number of configurations, which include both single element and multi-

element ultrasonic transducers. The output of such systems can be presented in 

several types of display mode: A, B, and, M-mode scans. In each imaging mode, the 

transducer defines the limitation in terms of sensitivity and resolution of the system. 

Thus, there are multiple ways to interpret the echo-signals depending on different 

operation schemes, display, and presentation formats [19]. 

 

II.8.2.1 A-mode 

The A-mode (A stands for amplitude) technology had no focusing, and simply 

displayed a one-dimensional signal giving the echo as function of time. It is the 

simplest and earliest mode of ultrasonic imaging. 

 

II.8.2.2 B-mode  

In the 1950s and 1960s the B-mode technology was developed, with the B-

standing for brightness, giving the first two-dimensional views of the body. The B-

mode technology forms the basis of the technology, which today permeates most 

modern medical facilities. In a B-mode display, the brightness in the image is 

proportional to the echo strength. It is the most widely used ultrasound image 

format, where ultrasound echoes are collected from a 2D field instead of a single 

beam direction. In this type of imaging, the emitted ultrasound wave is mechanically 
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or electronically steered to different directions. The whole image of the 2D field 

within a selected depth and viewing angle are formed by interpolating between the 

multiple scan-lines. Figure (II.10), shows an example of a B-Mode ultrasound image 

of a fetus (gynecology domain). 

 

 
 

 
 
 

Figure II.10: Example of a B-Mode ultrasound image of fetus 
 
 
 

II.8.2.3 C-mode 

In C-scan mode, the reconstructed image plane is parallel to the transducer 

surface. C-scan captures ultrasound echoes from a fixed depth in one image and it 

generally requires a 2D array transducer to accomplish this. 

 

II.8.2.4 M-mode 

M-mode (or motion mode) imaging is designed to display tissue structure 

motion (e.g. heart chamber contractions). The echoes from moving body structures 

are displayed as a vertical line continuously monitored with respect to a moving 

time axis along the image width dimension.  

According the clinical need, and in addition of these three modes, there are : C-

mode, color fow imaging mode or color fow Doppler mode, color M-mode, and  other 

types [20].  
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II.9 BEAMFORMING FOR IMAGING  

Beamforming can be described as the technique of using an array of 

transducer elements to focus or steer a wave field, and can be employed at both 

transmission and reception. At transmission, both the amplitude and the time of 

excitation are controlled at each element so that propagating waves add up 

constructively in the focal point, and have as much destructive interference as 

possible at all other locations. At reception, the received signals are weighted and 

added coherently so that the wave field from the desired direction is reinforced while 

it is suppressed as much as possible from all other directions. For conventional 

beamforming the question of phase control or time-delay reduces to simple 

geometry, translating the path length to distance travel time. The shape of the beam 

is usually quantified through the beampattern, which is the angular response of an 

array to a plane wave. Figure (II.11), shows the principle of beamforming where a 

wavefield impinges on an array of elements at some angle. Each element records a 

time-delayed version of the wavefield, and each of these recordings are then time-

delayed, so that they interfere constructively when being summed. 

 

 

 
 
 

Figure II.11: Illustration of the principle of beamforming (figure Adapted from [14]) 
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II.10 RESOLUTION AND IMAGE QUALITY 

The resolution is defined as to able separate between two adjacent close 

points in a corresponding image. The Medical image quality relates to the subjective 

interpretation of visual data and does not have a simple analytical definition despite 

several attempts to provide one. It is the clinical information contained in the image 

and whether this can be goodley interpreted.   

The ultrasound beam can be focused to improve the image quality within the focal 

zone. By using several elements, excited with a range of delays, it is possible to 

focus the beam. The axial resolution is determined by the length of the pulse, 

although this may be shorter than the actual transmitted waveform if pulse 

compression is used. 

In fact, modern scanners use electronic transducers, which typically comprise 128 

piezoelectric elements that are capable of producing many adjacent beams, or scan 

lines, without the need to move the transducer itself. The quality of the image will 

obviously depend on the distance between adjacent beam paths, known as the line 

density.  
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Fundamental Ultrasound Imaging 
 
 
 

III.1 INTRODUCTION  

Fundamental ultrasound imaging operates in linear mode, it transmit and 

receive at the same frequency. A linear theory is a simplified solution to the 

propagation problem, ignoring any nonlinear effects of the medium. The propagation 

of ultrasound waves through real media is a very complicated process involving 

combined effects of diffraction, nonlinearity and attenuation. A good knowledge of 

the properties of the linear equation may thus provide a head start when turning to 

the nonlinear case. 

In medical imaging, it is the ultrasound field signal reflected by the constituents of 

the tissue that is received by the transducer. After this, a signal processing step is 

needed to finally show the ultrasound image. The ultrasonic field from transducers 

is the feature that determines the performance of a given system.  

The study of the spatial and temporal characteristics of the acoustical pressure field 

allows a greater understanding of the behavior of such devices. The linear 

approximation has a wide range of validity, and it is always an important first step 

in the analysis of finite amplitude effects in more intense acoustic fields.  

Linear and phased array are widely used in modern medical ultrasound imaging 

systems. They enable beams to be electronically steered and focused on both 

transmission and reception. Array geometry and signal processing are of key 

importance in improving the system resolution and contrast.  

The major difficulties in developing new arrays and signal processing method are the 

complexities and high costs in building array and imaging system prototypes. 

However, with the ever increasing computing power available to researchers, 

computer modeling become a more and more important tool for analyzing the 

resolution and contrast of an imaging system with different array designs and signal 

processing methods, before physically building a such system. 
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III.2 FUNDAMENTAL ULTRASOUND IMAGING 

Ulrasound imaging is based on the generation, detection and processing of 

acoustic echo signals which produced when the ultrasound waves encounter the 

interfaces between human tissues with different acoustic impedances.  

In fundamental ultrasound imaging, the echo signal has the same frequency of the 

original excitation wave, and it is generaly detected by the same transducer. 

The medical scanners use advanced transducer geometries for creating ultrasound 

fields suitable for probing the body. Ultrasound imaging is based on the transducer 

characterization in where pulsed ultrasound waves are directed into the human 

body, and echo signals from reflectors and scatterers organs are detected and used 

to construct the image. A first characterization of these transducers is based on 

computer simulation of the field. 

The standard approach for linear ultrasound imaging is to use the fundamental 

frequency from the reflected signal to form images. Generally speaking, linear wave 

propagation theory is adequate for describing fundamental or conventional 

ultrasound imaging mode, which uses the same frequency for the excitation and 

reception. The linear approximation has a wide range of validity, and it is always an 

important first step in the analysis of finite amplitude effects in more intense 

acoustic fields.  

Fundamental ultrasound imaging is still the primary imaging mode in clinical 

ultrasound scanners. It can be simulated realistically using linear acoustics. 

 

0BIII.3 LINEAR PROPAGATION AND SMALL SIGNAL APPROXIMATION  

1BUltrasound waves can be thought of as pressure variations in a media, which 

propagate periodically in space and time. To a first order approximation, ultrasound 

propagation is well described as a linear process, governed by a linear, second order 

homogeneous differential equation. The assumption of linear propagation, however, 

is valid only for relatively small disturbances. 

In considering wave propagation in fluids, one can obtain the linear wave equation 

from the Navier-Stokes equation by making a small signal approximation for the 

density and pressure [21], given by: 

 

ρ ൌ ρ଴ ൅ ρଵ                                                     (III.1) 
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p ൌ p଴ ൅ pଵ                                                    (III.2) 

 

Where ρ଴ and p଴ denote the equilibrium medium density and pressure respectively. 

ρଵ and pଵ denote changes in density and pressure, which are small. This small 

signal approximation leads to the equation: 

 

γρ଴
பమPభ
ப୲మ

ൌ ଶpଵ׏ ൅ γ ቀµୠ ൅
ସ
ଷ
µቁ ப

ப୲
ሺ׏ଶpଵሻ                                  (III.3) 

 

Where µୠ is the bulk viscosity, µ is the shear viscosity, and γ is the adiabatic 

compressibility. This is a linear equation and, can also be expressed in terms of the 

normal particle velocity ݑ, or the velocity potential ׎.  

In the frequency domain, this becomes the homogeneous Helmholtz wave equation 

as: 

ଶ߮׏ ൅ ଶ߮ߜ ൌ 0                                                  (III.4) 

Where  

δଶ ൌ ୩మ

ଵା୨னஓቀµౘା
ర
యµቁ
                                                 (III.5) 

 

݇ ൌ ߱/ܿ଴ is the wave number, ߱ is the radian frequency, and ܿ଴ is ambient sound 

speed. 

In the absence of viscous loss, the time domain equation becomes the familiar 

homogeneous wave equation as: 

 

߶ଶ׏ ൅ ଵ
௖మ
߶ ൌ 0                                                  (III.6) 

 

The frequency domain equation looks the same except that ߜ ൌ ݇. The 1-D version of 

this equation for particle velocity is: 

 

ቀ డ
మ

డ௧మ
െ ܿଶ డమ

డ௭మ
ቁ  (III.7)                                                ݑ

 

Equation (III.7) can be factored to obtain two uncoupled wave equations called 

reduced or evolution equations, one of which is: 
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డ௨ሺ௧,௭ሻ
డ௭

ൌ ଵ
௖బ

డ௨ሺ௧,௭ሻ
డ௧

                                                (III.8) 

 

Equation (III.8) describes linear plane waves propagating in the positive z-direction 

for small signal approximation. 

 

III.4 LINEAR ULTRASOUND SYSTEM  

Compared with the full nonlinear ultrasound propagation theory, the linear 

wave theory is much simpler to solve by numerical methods. A number of 

transducer field simulation methods and linear B-mode image models have been 

described in the literature. They roughly fall into two categories: frequency domain 

models and time domain models. Frequency domain simulation techniques are 

based on classic diffraction theory for continuous waves which can be thought of as 

pressure variations in a media and propagate periodically in space and time. As well 

know linear wave equation can be written as Helmholtz equation model [22]: 

 

ଶp׏ െ  ଵ
ୡమ

பమ୮
ப୲మ

ൌ 0                                               (III.9) 

 

Where p is the pressure, c is the speed of sound and t is the time. When the surface 

of the transducer is vibrating uniformly at a single frequency with an infinite rigid 

baffling, the solution to the linear wave equation (III.9) is [22]: 

 

,Ԧݎሺ݌ ߱ሻ ൌ െ ௜ఘ௞௖௨ሺఠሻ
ସగ

,Ԧݎ଴ሺܣ ߱ሻ                                  (III.10) 

 

Where ܣ଴ሺݎԦ, ߱ሻ is the Rayleigh integral evaluated at field point ݎԦ. The latter is given 

by: 

,Ԧݎ଴ሺܣ ߱ሻ ൌ ׭ ௘೔ೖหೝሬሬԦషೝሬሬԦ
ᇲห

|௥Ԧି௥Ԧᇲ|
  ݏ݀

௦ᇲ                                      (III.11) 

 

 Ԧᇱ is a source point on the surface of the transducer and the integral is over theݎ

surface area ݏᇱ of the transducer. If the medium is dispersive, cሺ߱ሻ can be used in 

place of ܿ. Attenuation is taken into account by replacing ݇ by the complex wave 

number: 
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݇ ൌ ఠ
௖ሺఠሻ

൅  ሺ߱ሻ                                            (III.12)ߙ݅

 

Where ߙሺ߱ሻ is the attenuation coefficient. 

Spectrum analysis and linear superposition have to be used to calculate the 

ultrasound field of a short pulse that has rich frequency content. Two dimensional 

integration in equation (III.11) has to be applied to calculate the diffraction in the 

frequency domain methods. In the time domain, the field pressure at a point in 

space ݎԦ from a source that is vibrating at arbitrary velocity ݒሺݐሻ can be formulated 

as: 

,Ԧݎሺ݌ ሻݐ ൌ ߩ డ௩ሺ௧ሻ
డ௧

۪݄ሺݎԦ,  ሻ                                     (III.13)ݐ

Or: 

,Ԧݎሺ݌ ሻݐ ൌ ሻ۪ݐሺݒߩ డ௛ሺ௥Ԧ,௧ሻ
డ௧

                                        (III.14) 

 

Where ۪ is the convolution operator and ݄ሺݎԦ,  ሻ is the spatial impulse responseݐ

function of the transducer at the field point. It is given by: 

 

݄ሺݎԦ, ߱ሻ ൌ ׭
ఋ൬௧ିหೝ

ሬሬԦషೝሬሬԦᇲห
೎ ൰

ଶగ|௥Ԧି௥Ԧᇲ|
 ݏ݀

௦ᇲ                                       (III.15) 

 

 ሻ is the Dirac delta function. Closed form expressions for the impulse responseݐሺߜ

function in equation (III.14) have been derived for many geometries [23]-[24]. In 

linear acoustics, the emitted, scattered and received ultrasound field can be 

assessed by using the spatial impulse response calculated by the Rayleigh integral 

as developed by Tupholme and Stepanishen.  

 

III.4.1 Field in Linear Ultrasound Systems  

It is a well-known fact in electrical engineering that a linear electrical system 

is characterized by its impulse response. Applying a delta function ߜሺݐሻ to the input 

of the circuit and measuring its output characterizes the system. The output ݔ௢ሺݐሻ to 

any kind of input signal ݔ௜ሺݐሻ is then given by: 

 

ሻݐ௢ሺݔ ൌ ݄ሺݐሻ۪ݔ௜ሺݐሻ ൌ ׬ ݄ሺߞሻାஶ
ିஶ ݐ௜ሺݔ െ  (III.16)                            ߞሻ݀ߞ
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Where ݄ሺݐሻ is the impulse response of the linear system. The transfer function of the 

system is given by the Fourier transform of the impulse response and characterizes 

the systems amplification of a time-harmonic input signal. 

The same approach can be taken to characterize a linear acoustic system. The basic 

set-up is shown in Figure (III.1), [25].  

 

 

 

 
 
 

Figure III.1: Linear ultrasound system 
 
 

The acoustic transducer is mounted in a infinite, rigid baffle and its position is 

denoted by ݎԦଶ. It radiates into a homogeneous medium with a constant speed of 

sound c and density ρ଴ throughout the medium. The field point denoted by ݎԦଵ is 

where the acoustic pressure from the transducer is measured by a small point 

hydrophone. A voltage excitation of the transducer with a delta function will give 

rise to a pressure field that measured by the hydrophone. The measured response is 

the acoustic impulse response for this particular system with the given set-up. Moving 

the transducer or the hydrophone to a new position will give a different response. Moving the 

hydrophone closer to the transducer surface will often increase the signal intensity, 

and moving it away from the center axis of the transducer will often diminish it. 

Thus, the impulse response depends on the relative position of both the transmitter 

and receiver ሺݎԦଶ െ  .Ԧଵሻ and hence it is called a spatial impulse responseݎ

A perception of the ultrasound field for a fixed time instance can be obtained by 

employing Huygens’ principle in which every point on the radiating surface of the 

transducer is the origin of an outgoing spherical wave. Each of the outgoing 

spherical waves are given by: 

Field point 
Baffle 

x 

y 

r2 

r1 
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,Ԧଵݎ௦ሺ݌ ߱ሻ ൌ ݇௣
ఋቀ௧ି|ೝሬሬԦమషೝሬሬԦభ|೎ ቁ

|௥Ԧమି௥Ԧభ|
ൌ ݇௣

ఋቀ௧ି|ೝ|೎ ቁ

|௥Ԧ|
                                (III.17) 

 

Like shown in figure (III.1), ݎԦଵ indicates the point in space, ݎԦଶ is the point on the 

transducer surface, ݇௣ is a constant, and ݐ is the time for the snapshot of the spatial 

distribution of the pressure. The spatial impulse response is then found by 

observing the pressure waves at a fixed position in space over time by having all the 

spherical waves pass the point of observation and summing them. 

 

III.4.2 Spatial Impulse Response    

The transducers excitations employed in medical ultrasound imaging are 

pulsed. A more accurate and general solution is, thus, needed, and this is developed 

in this chapter. The approach is based on the concept of spatial impulse responses 

developed by Tupholme and Stepanishen [26]-[28]. The spatial impulse response of 

a transducer is, as the name suggests the field response of a perfect impulse 

excitation. 

 

III.4.3 Calculation of Spatial Impulse Response    

The calculation of the spatial impulse response assumes linearity and any 

complex-shaped transducer can therefore be divided into smaller apertures and the 

response can be found by adding the responses from the sub-apertures. The integral 

is, as mentioned before, a statement of Huygens’ principle of summing contributions 

from all areas of the aperture. An alternative interpretation is found by using the 

acoustic reciprocity theorem [29]. This states that: If in an unchanging environment 

the locations of a small source and a small receiver are interchanged, the received 

signal will remain the same. Thus, the source and receiver can be interchanged. 

Emitting a spherical wave from the field point and finding the wave’s intersection 

with the aperture also yields the spatial impulse response.  

The calculation of the impulse response is then facilitated by projecting the field 

point onto the plane of the aperture, and thus, determined by the relative length of 

the part of the arc that intersects the aperture. Thereby it is the crossing of the 

projected spherical waves with the edges of the aperture that determines the spatial 

impulse responses [18]. 



Chapter III                                                                          Fundamental Ultrasound Imaging 
 

 
 

44 

However, the spatial impulse response is found from the Rayleigh integral derived 

earlier as: 

݄ሺݎԦଵ, ሻݐ ൌ ׭
ఋቀ௧ି|ೝሬሬԦభషೝሬሬԦమ|೎ ቁ

ଶగ|௥Ԧభି௥Ԧమ|
 ݏ݀

௦                                         (III.18) 

 

The solution is to project the field point onto the plane coinciding with the aperture, 

and then find the intersection of the projected spherical wave (the circle) with the 

active aperture as shown in figure (III.2). 

 

 
 

Figure III.2: Intersection of spherical waves from the field point by the aperture, 
when the field point is projected onto the plane of the aperture 

 
 

Rewriting the integral into polar coordinates gives: 

 

݄ሺݎԦଵ, ሻݐ ൌ ׬  ఝమ
ఝభ

׬
ఋቀ௧ିೃ೎ቁ

ଶగோ
ௗమ
ௗభ

 (III.19)                                   ߮݀ݎ݀ݎ

 

Where ݎ is the radius of the projected circle and ܴ is the distance from the field 

point to the aperture given by ܴ ൌ ටݎଶ ൅  ௣ is the field point height aboveݖ ௣ଶ. Hereݖ

ݖ ൌ 0 plane of the aperture. The projected distances ݀ଵ, ݀ଶ are determined by the 

aperture and are the distance closest to and furthest away from the aperture, and 

߮ଵ, ߮ଶ are the corresponding angles for a given time (see figure (III.3). 

Aperture x 

y Field point 

r2 

r1 
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Figure III.3: Distances and angles in the aperture plan  
for evaluating the Rayleigh integral 

 
 

Introducing the substitution 2ܴܴ݀ ൌ  :gives ݎ݀ݎ2

 

݄ሺݎԦଵ, ሻݐ ൌ
ଵ
ଶగ ׬  ఝమ

ఝభ
׬ ߜ ቀݐ െ ோ

௖
ቁோమ

ோభ
ܴ݀݀߮                             (III.20) 

 

The variables ܴଵ and ܴଶ denote the edges closest to end furthest away from the field 

point. Finally using the substitution ߬ ൌ ܴ ܿ⁄  gives: 

 

݄ሺݎԦଵ, ሻݐ ൌ
௖
ଶగ ׬  ఝమ

ఝభ
׬ ݐሺߜ െ ߬ሻ௧మ
௧భ

݀߬݀߮                              (III.21) 

 

For a given time instance the contribution along the arc is constant and the integral 

gives: 

݄ሺݎԦଵ, ሻݐ ൌ
ఝమିఝభ
ଶగ

ܿ                                           (III.22) 

 

When assuming the circle arc is only intersected once by the aperture. The angles 

߮ଵ and ߮ଶ are determined by the intersection of the aperture and the projected 

spherical wave, and the spatial impulse response is, thus, determined by these 

intersections, when no apodization (the apodization is the reduction of the vibration 

amplitude towards the edge of the aperture face) of the aperture is used. The 

r 

d2 
d1 
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response can therefore be evaluated by keeping track of the intersections as a 

function of time as: 

݄ሺݎԦଵ, ሻݐ ൌ
௖
ଶగ
∑ ൣ߮ଶ௜ ሺݐሻ െ ߮ଵ௜ ሺݐሻ൧
௡ሺ௧ሻ
௜ୀଵ                                  (III.23) 

 

Where ݊ሺݐሻ is the number of arc segments that crosses the boundary of the aperture 

for a given time and ߮ଶ௜ ሺݐሻ, ߮ଵ௜ ሺݐሻ are the associated angles of the arc. The calculation 

of the spatial impulse response can, thus, be formulated as finding the angles of the 

aperture edges intersections with the projected spherical waves, sorting the angles, 

and then sum the arc angles that belong to the aperture. 

 

III.5 NUMERICAL SIMULATION     

Medical ultrasound imaging can be simulated realistically using linear 

acoustics. One of the most powerful approaches is to employ spatial impulse 

response. Hereby both emitted fields and pulse echo responses from point scatterers 

can be determined, and the response from the transducer is found by summing the 

spatial impulse responses from the individual elements. 

The impulse response generally exhibits discontinuities, which leads to the need for 

very high temporal sampling rates to obtain accurate results for the ultrasound 

field. However, the closed form time domain solution is exact for all field locations 

and is much more efficient to evaluate by numerical methods than spectrum 

analysis and the 2D integration in equation (III.11) that is required for calculating 

the pressure fields accurately in the frequency domain. To reduce the computational 

complexity of frequency domain methods, many approximations are used by 

researchers to reduce the 2D integration in equation (III.11) to 1D integration. These 

different approximation methods result in various degrees of accuracy and efficiency 

[30]-[32].  

Crombie, Bascom and Cobbold surveyed many representative time domain and 

frequency domain simulation methods [33]. They concluded that in the frequency 

domain, the Fresnel approximation [34] yields the most accurate results for 

unsteered arrays. However, the accuracy degrades with increasing steering angle. 

They also showed that the frequency domain method with the Fresnel 

approximation is generally more efficient than the exact time domain method. 

Turnbull and Foster [35] did an extensive study of 2D arrays using the time domain 



Chapter III                                                                          Fundamental Ultrasound Imaging 
 

 
 

47 

method. JØrgen Jensen et al. have demonstrated that realistic B-mode images can 

be generated by using the time domain impulse response method to calculate the 

transducer ultrasound field, even when approximations are used to reduce the 

computational complexity [36]. 

In this chapter, a program for the simulation of ultrasound systems called UFIELDU is 

used to calculate impulse responses and ultrasound fields [37]. It is based on the 

Tupholme-Stepanishen method, which uses the approach of spatial impulse 

responses that assumes linear propagation [26]-[28]. 

 

III.5.1 UFIELD U: Program Description   

UFIELDU program is based on the Tupholme-Stepanishen method, and is fast 

because of the use of a far field approximation. Any kind of transducer geometry 

and excitation can be simulated, and both pulse-echo and continuous wave fields 

can be calculated for both transmit and pulse-echo. Dynamic apodization and 

focusing are handled through time lines, and different focusing schemes can be 

simulated. The versatility of the program is ensured by interfacing it to Matlab. All 

routines are called directly from Matlab, and all Matlab features can be used. This 

makes it possible to simulate all types of ultrasound imaging systems.  

The prime application of the UFIELDU program is to simulate the image of an 

ultrasound scanner. This necessitates that multiple foci zones can be taken into 

account and that dynamic apodization can be used. The two concepts are 

introduced through time lines. The focus time line holds information about the 

dynamic behavior of the focusing. Each focal zone in characterized by a time point 

and a delay value for each transducer element. The time point indicates the time 

after pulse emission when these delay values are used. The same approach is used 

for the apodization time line, which assigns an apodization value for each 

transducer element. Multiple transducers can be handled by the program. 

Commands for defining linear, phased, and 2D matrix arrays are given. The 

commands return an identifier for the array, which can be passed to the routines for 

field calculation. Thereby different transducers can be used on the same scatterers 

and the effect of different choices can readily be evaluated. Commands are also 

found for setting the excitation waveform of the transducer and the 

electromechanical impulse response. Commands for calculating the emitted, the 
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pulse echo, and the scattered fields are given. Thereby the transducers can be 

evaluated and images for computer phantoms can be found. A simple cyst phantom 

with point scatterers has been defined, and can be used in imaging [37]. 

 

III.6 ARRAY TRANSDUCER 

Linear and phased array are widely used in modern medical ultrasound 

imaging systems. They enable beams to be electronically steered and focused on 

both transmission and reception. 

For a rectangular radiating source, figure (III.4), the Rayleigh integral in expression 

(III.11) becomes: 

 

 
 

Figure III.4: Rectangular radiated source and coodinates 
 

 

,Ԧݎ଴ሺܣ ߱ሻ ൌ ׬ ׬ ௘೔ೖหೝሬሬԦషೝሬሬԦ
ᇲห

|௥Ԧି௥Ԧᇲ|
ᇱݕᇱ݀ݔ݀ 

ೌ
మ
ିೌమ

್
మ
ି್మ

                                 (III.24) 

 

For typical clinical linear or phased arrays, usually the length of the transducer 

element ܾ is on the order of 1ܿ݉ and the width is on the order of a half wavelength 
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[38], resulting in the condition ܾ ب ܽ. Define ݎ to be the distance from the field point 

to the center of the element: ݎ ൌ |Ԧݎ| ൌ ඥݔଶ ൅ ଶݕ ൅  ଶ. Under the assumption thatݖ

ݎ ൐ ܾ ب Ԧݎ| ,ܽ െ  :Ԧᇱ| can be expanded byݎ

 

Ԧݎ| െ |Ԧᇱݎ ൌ ඥሺݔ െ ᇱሻଶݔ ൅ ሺݕ െ ᇱሻଶݕ ൅  ଶ                               (III.25)ݖ

 

The expression (III.25) can be approximated as: 

 

Ԧݎ| െ |Ԧᇱݎ ൎ ݎ ൅ ଵ
ଶ௥
൫ݔᇱଶ ൅ ᇱଶݕ െ ᇱݔݔ2 െ ᇱ൯ݕݕ2 െ ଵ

଼௥య
൫ݔᇱଶ ൅ ᇱଶݕ െ ᇱݔݔ2 െ ᇱ൯ݕݕ2

ଶ
       (III.26) 

 

Here ݎԦሺݔ, ,ݕ ,ᇱݔԦᇱሺݎ ሻ is the field point, andݖ ,ᇱݕ  ᇱሻ is the source point. We can takeݖ

advantage of the fact that if ܽ ൎ ߣ 2⁄ , terms on order of ݔᇱଶ ⁄ݎ2  are negligible for the ݕᇱ 

integration in expression (III.26). This introduces a phase error of 

 ൫݇ ᇱଶݔ ⁄ݎ2 ൯ ൏ ሺ݇ ܽଶ ⁄ݎ8 ሻ ൎ ሺߨ ߣ ⁄ݎ16 ሻ at most, which is smaller than 7. 10ିଷ radians in 

the common case when ݎ is greater than 1ܿ݉ and the wavelength is around 

 :ሻ. Thereforeݖܪܯଵ/5ିݏሺ1500݉ ݉ߤ300

 

Ԧݎ| െ |Ԧᇱݎ ൎ ݎ ൅ ଵ
ଶ௥
൫ݕᇱଶ െ ᇱݔݔ2 െ ᇱ൯ݕݕ2 െ ଵ

଼௥య
൫ݔᇱଶ ൅ ᇱଶݕ െ ᇱݔݔ2 െ ᇱ൯ݕݕ2

ଶ
         (III.27) 

 

In the region where ௞
଼௥య

൫ݔᇱଶ ൅ ᇱଶݕ െ ᇱݔݔ2 െ ᇱ൯ݕݕ2
ଶ
ا 1 radian, |ݎԦ െ  Ԧᇱ| can beݎ

approximated using the first two terms. This approximation is less restrictive than 

the Fresnel approximation [34], the expression (III.25) is written as: 

 

Ԧݎ| െ |Ԧᇱݎ ൎ ݖ ൅ ଵ
ଶ௭
ሾሺݔ െ ᇱሻଶݔ ൅ ሺݕ െ ᇱሻଶሿݕ െ ଵ

଼௭య
ሾሺݔ െ ᇱሻଶݔ ൅ ሺݕ െ  ᇱሻଶሿଶ           (III.28)ݕ

 

The Fresnel approximation requires ௞
଼௭య

ሾሺݔ െ ᇱሻଶݔ ൅ ሺݕ െ ᇱሻଶሿଶݕ ا 1 radian for 

reasonable accuracy. The error using the Fresnel approximation is on the order of 

݋ ቀ௫
రା௬ర

௭య
ቁ, while the error using the approximation in expression (III.27) is on the 

order of ݋ ቀ௫
మା௬మ

௭య
ቁ. When the beam is steered at a large angle, i.e., ݔ is comparable to 

 the Fresnel approximation will not hold; however the expression (III.27) is still ,ݖ



Chapter III                                                                          Fundamental Ultrasound Imaging 
 

 
 

50 

valid as long as ݎ is not too small, that means: ௞
଼௥య

൫ݔᇱଶ ൅ ᇱଶݕ െ ᇱݔݔ2 െ ᇱ൯ݕݕ2
ଶ
൏ 1. With 

keeping only the first two terms in expression (III.27), |ݎԦ െ |Ԧᇱݎ ൎ ݎ ൅ ଵ
ଶ௥
൫ݕᇱଶ െ ᇱݔݔ2 െ

 :ᇱ൯, and thenݕݕ2

,Ԧݎ଴ሺܣ ߱ሻ ൎ
௔
௥
݁௜௞௥ sinc ቀ௞௫௔

ଶగ௥
ቁ ׬ ݁௜௞

೤ᇲ
మ
షమ೤೤ᇲ

మೝ ᇱݕ݀
್
మ
ି್మ

                          (III.29) 

 

The 2D integral in the expression (III.24) is reduced to a 1D integral. The remaining 

integral has to be done numerically. Note that the sinc function is a result of 

ignoring the term ൫ݔᇱଶ ⁄ݎ2 ൯. If this last cannot be ignored, i.e., the width of the array 

element is much larger than ߣ, then the integral in the ݔᇱ direction must also be 

done numerically [38]. 

 

III.7 FOCUSING 

The essence of focusing an ultrasound beam is to align the pressure fields 

from all parts of the aperture to arrive at the field point at the same time. This can 

be done through either a physically curved aperture, through a lens in front of the 

aperture, or by the use of electronic delays for multi-element arrays. All seek to align 

the arrival of the waves at a given point through delaying or advancing the fields 

from the individual elements. The delay (positive or negative) is determined using 

ray acoustics. The path length from the aperture to the point gives the propagation 

time and this is adjusted relative to some reference point. The propagation time ݐ௜ 

from the center of the aperture element to the field point is: 

 

௜ݐ ൌ
ଵ
௖
ට൫ݔ௜ െ ௙൯ݔ

ଶ ൅ ൫ݕ௜ െ ௙൯ݕ
ଶ ൅ ൫ݖ௜ െ ௙൯ݖ

ଶ                           (III.30) 

 

Where ൫ݔ௙, ,௙ݕ ,௜ݔ௙൯ is the position of the focal point, ሺݖ ,௜ݕ  ௜ሻ is the center for theݖ

physical element number ݅, and ܿ is the speed of sound. 

A point is selected on the whole aperture as a reference for the imaging process. The 

propagation time for this is: 

 

௖ݐ ൌ
ଵ
௖
ට൫ݔ௖ െ ௙൯ݔ

ଶ ൅ ൫ݕ௖ െ ௙൯ݕ
ଶ ൅ ൫ݖ௖ െ ௙൯ݖ

ଶ                           (III.31) 
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Where ሺݔ௖, ,௖ݕ  ௖ሻ is the reference center point on the aperture. The delay to use onݖ

each element of the array is then: ∆ݐ௜ ൌ ௖ݐ െ  .௜ݐ

Notice that there is no limit on the selection of the different points, and the 

ultrasound beam can, thus, is steered in a preferred direction. 

The arguments here have been given for emission from an array, but they are 

equally valid during reception of the ultrasound waves due to acoustic reciprocity. 

At reception, it is also possible to change the focus as a function of time and thereby 

obtain a dynamic tracking focus. For each focal zone, there is an associated focal 

point and the time from which this focus is used. The arrival time from the field 

point to the physical transducer element is used for deciding which focus is used. 

Another possibility is to set the focusing to be dynamic, so that the focus is changed 

as a function of time and thereby depth. The focusing is then set as a direction 

defined by two angles and a starting point on the aperture. In UFIELDU program, the 

focusing is dynamic and changes as a function of depth in tissue or corresponding 

time [18]. 

 

III.9 SINGLE ELEMENT CIRCULAR TRANSDUCER 

Ultrasonic pulse echo systems encompass a large number of configurations 

which include both single element and multi-element ultrasonic transducers. In 

ultrasound imaging, the output of such systems can be represented in several types 

of display mode, and in each mode the transducer defines the limitation in terms of 

sensitivity and resolution [39]. In the case of a single element circular transducer, 

the integral in equation (III.11) becomes: 

 

,ߩሺܣ ሻݖ ൌ ׬  ௔଴ ׬ ௘೔ೖหೝሬሬԦషೝሬሬԦ
ᇲห

|௥Ԧି௥Ԧᇲ|
ଶగ
଴  ᇱ                                  (III.32)ߩᇱ݀ߠᇱ݀ߩ

The cylindrical coordinate system is used in this situation. ݎԦሺߩ, ,ߠ  ,ሻ is the field pointݖ

and ݎԦ′൫ߩ′, ߠ ′, ݖ ′൯ is the source point. 

Equation (III.32) describes the ultrasound pressure field from a flat unfocused 

transducer. To approximate a focused transducer with a focal distance ݀, a phase 

factor ݁ି௜௞
ටௗమାఘᇲమିௗ ൎ ݁ି௜

ೖഐᇲ
మ

మ೏  can be added to the integral. Therefore, for a focused 

transducer, the Rayleigh integral becomes: 
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,ߩሺܣ ሻݖ ൌ ׬  ௔଴ ׬ ௘೔ೖหೝሬሬԦషೝሬሬԦ
ᇲห

|௥Ԧି௥Ԧᇲ|
ଶగ
଴ ݁ି௜

ೖഐᇲ
మ

మ೏  ᇱ                               (III.33)ߩᇱ݀ߠᇱ݀ߩ

 

Moreover, this can be further simplified by a parabolic approximation: 

 

Ԧݎ| െ |Ԧᇱݎ ൌ ටݎଶ ൅ ᇱଶߩ െ ᇱߩߩ2 cosሺߠ െ ᇱሻߠ ൎ ݎ ൅ ఘᇲమ

ଶ௥
െ ఘఘᇲ ୡ୭ୱ൫ఏିఏᇲ൯

௥
               (III.34) 

 

Where  ݎ ൌ |Ԧݎ| ൌ ඥߩଶ ൅  .ଶݖ

With the help of equation (III.34), equation (III.33) reduces to a 1D integral as: 

 

,ߩሺܣ ሻݖ ൌ ߨ2 ௘೔ೖೝ

௥ ׬ ଴ܬ ቀ
௞ఘఘᇲ

௥
ቁ௔

଴ ݁௜௞ቀ
భ
మೝି

భ
మ೏ቁఘ

ᇲమ
 ᇱ                         (III.35)ߩᇱ݀ߩ

 

Where ܬ଴ is the zero degree Bessel function and, expression (III.35) can be evaluated 

using numerical methods [40]. 

 

III.10 APODIZATION 

Often ultrasound transducers do not vibrate as a piston over the aperture. 

This can be due to the clamping of the active surface at its edges [18]. The 

apodization term designates the reduction of the vibration amplitude towards the 

edge of the transducer face. It is used for reducing sidelobe levels and thereby 

increases the dynamic range of the image. The apodization can be dynamic and 

changes as a function of depth in tissue or corresponding time. Applying a Gaussian 

apodization will significantly lower sidelobes and generate a field with a more 

uniform point spread function as a function of depth. Apodization can be found by 

writing [41]: 

݄ሺݎԦଵ, ሻݐ ൌ ׬  ఝమ
ఝభ

׬ ܽ௣ሺݎ, ߮ሻ
ఋቀ௧ିೃ೎ቁ

ଶగோ
ௗమ
ௗభ

 (III.36)                                ߮݀ݎ݀ݎ

 

Where ܽ௣ሺݎ, ߮ሻ is the apodization function over the aperture. Using the same 

substitutions as above yields: 

 

݄ሺݎԦଵ, ሻݐ ൌ
௖
ଶగ ׬  ఝమ

ఝభ
׬ ܽ௣ଵሺ߬, ߮ሻߜሺݐ െ ߬ሻ௧మ
௧భ

݀߬݀߮                              (III.37) 
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In which, ܽ௣ଵሺ߬, ߮ሻ ൌ ܽ௣ ቆටሺܿ߬ሻଶ െ ,௣ଶݖ ߮ቇ. The inner integral is a convolution of the 

apodization function with a Dirac function and readily yields: 

 

݄ሺݎԦଵ, ሻݐ ൌ
௖
ଶగ ׬ ܽ௣ଵሺݐ, ߮ሻ

ఝమ
ఝభ

݀߮                                          (III.38) 

 

The response for a given time point can be found by integrating the apodization 

function along the arc with a radius of ݎ ൌ ටሺܿݐሻଶ െ  ௣ଶ for the angles for the activeݖ

aperture [41]-[43]. Any apodization function can therefore be incorporated into the 

calculation by employing numerical integration [18]. 

 

III.11 SIMULATION RESULTS 

 Simulation results are realized for a single element of diameter 14mm, an 

excitation frequency of 2.5MHz. 

 

III.11.1 Unfocused Circular Transducer 

 In figure (III.5) is shown the excitation waveform (Gaussian waveform), and 

figure (III.6) shows the variation of the ultrasound field pressure along the 

propagation axis (axis of the transducer). 

 

 
Figure III.5: Excitation waveform 
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Figure III.6: Piston ultrasound field pressure variation 
 

 

 
 
 

Figure III.7: Diagram pattern in x-z plane 

 

 

Figures (III.7, 8) show how the ultrasound field intensity is distributed, the main 

lobe and the sidelobes.  
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Figure III.8: Beam energy ditribution 

 

 

III.11.2 Focused Circular Transducer 

 For the focused transducer example case, we have chosen the case of the 

echocardiography. The heart is located at 60mm in-depth of the thoracic cage. To 

construct echocardiographic images, the ultrasonic field from the transducer must 

be focused at the heart depth. Figure (III.9) shows a focused ultrasound field at 

heart depth. Figures (III.10, 11) show the field diagram pattern in x-z plane, and the 

concentration of the emitted energy at the focalized point. 
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Figure III.9: Focused ultrasound field at 60mm (heart depth) 
 
 

 

 
 
 

Figure III.10: Diagram pattern in x-z plane 
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Figure III.11: Beam energy ditribution for 60mm focused transducer 

 

 

III.12 EXAMPLE OF B-MODE IMAGE  

 

 

 
 

 
 

Figure III.12: Example of B-mode image (fetus of 22 week) 
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Harmonic Ultrasound Imaging 
 
 
 
IV.1 INTRODUCTION  

 An ultrasound imaging system includes transmitting ultrasound waves into a 

human body, collecting the reflections, manipulating the reflections, and then 

displaying them on computer screen as images. Traditionally ultrasound imaging 

operates in a linear mode. The standard approach is to use the fundamental 

frequency from the reflected signal to form images. However, it has been shown that 

images generated using the harmonic content have improved resolution as well as 

reduced noise, resulting in clearer images.  

Until recently, the development of medical ultrasound operated under the implicit 

and convenient assumptions of infinitesimal acoustics where ultrasound waves were 

assumed to propagate in a linear fashion. Unfortunately, these assumptions became 

invalid at biomedical frequencies and intensities used nowadays. Today, it has been 

proven that ultrasound waves undergo gradual distortion in almost every medical 

use. The distortion is due to slight nonlinearities in sound propagation that 

gradually deform the shape of the wave, and results in development of harmonic 

frequencies, which were not present at the source. Selective imaging of these 

harmonic frequencies turned out to considerably improve ultrasound images. This 

technology called tissue harmonic imaging, which has emerged as a major imaging 

modality over the past years, exploits the generation of harmonic frequencies, called 

native harmonic signals, as ultrasound waves propagate through tissue. These 

nonlinear propagation effects have become of major interest in diagnostic 

ultrasound, by reducing unwanted artifacts in ultrasound images and, thus, 

enabling physicians to make more precise diagnoses than was possible before. Thus, 

the choice to use harmonic imaging to image tissue began as a result of recent 

experimentation in which it was unexpectedly seen that harmonics are generated 

when ultrasound waves travel through tissue. 
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Harmonic ultrasound imaging takes advantage of the fact that a finite amplitude 

acoustic waveform propagating through a medium gradually distorts. Among other 

effects, this results in greater attenuation losses, particularly in a tissue-like 

medium. In the past, the presence of harmonic signals was essentially ignored in 

the simple envelope detection schemes utilized in clinical scanner signal processing. 

Current harmonic image signal processing captures and displays as images the 

harmonic echo signals produced by these nonlinearly distorted pressure waveforms. 

Major recent improvements have been achieved in medical ultrasound imaging by 

exploiting the characteristics of nonlinear fields with the utilization of harmonic 

frequencies. Harmonic generation has been used to create images offering 

improvements over conventional B-mode images in spatial resolution, great 

penetration, and more significantly, in the suppression of acoustic clutter and side-

lobe artifacts [44], [45]. 

 

IV.2 HARMONIC ULTRASOUND IMAGING  

 Harmonic ultrasound imaging is based on nonlinear acoustics, and is more 

difficult to model than conventional linear ultrasound imaging. Nonlinear 

phenomena were first described for biological tissues in the early 1980’s [46]-[48]. 

Although there were several early attempts to measure and display nonlinear 

parameters of tissue, most of the early work in this area involved effects of nonlinear 

propagation on measurements of the output level of scanners. 

Many diagnostic and therapeutic ultrasound systems employ excitations for which 

the small signal approximation is not valid. Although linear analysis of propagation 

is a good first order approximation, nonlinear effects are often non-negligible. 

Disturbances which are large enough to invalidate the small signal approximation 

are often referred to as finite amplitude waves. Finite amplitude wave propagation is 

a nonlinear process, and is a good deal more complicated than linear wave motion. 

A sound beam travelling through a medium will involve the effects of diffraction, 

absorption, and nonlinearity, and the sound beam can be thought of as interacting 

with itself as it propagates. 

High amplitude sound waves often exhibit nonlinear effects, which linear acoustic 

theory cannot predict. In addition to the diffraction and attenuation effects 
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considered in linear acoustic theory, the nonlinearity of the media has to be take 

into account. 

Because sound waves behave nonlinearly, it is clear that frequencies other than the 

transmitted frequency are produced within a propagating sound wave. Thus, 

reflections from the sound wave at boundaries are also at harmonic frequencies, 

which are multiples of the fundamental frequency. Imaging that extracts the 

harmonic frequencies from a reflected signal and uses those for imaging is called 

harmonic imaging. Harmonic imaging is advantageous over the standard mode of 

imaging because images tend to have less noise and higher resolution, and 

consequently improved image clarity. 

 

IV.3 BENEFITS OF HARMONIC IMAGING  

 Ultrasound imaging plays a vital role in modern medicine. It is applications 

are constantly expanding, with breakthroughs in ultrasound science and technology 

occurring every year. Linear and phased array are widely used in modern medical 

ultrasound imaging systems. They enable beams to be electronically steered and 

focused on both transmission and reception. 

Harmonic imaging takes advantage of the fact that a finite amplitude acoustic 

waveform propagating through a medium gradually distorts. In medical ultrasound, 

the waveform distortion is encountered where intense sound beams are employed. 

In the past, the presence of harmonic signals was essentially ignored in the simple 

envelope detection schemes utilized in clinical scanner signal processing. In 

contrast, current harmonic image signal processing captures and displays as images 

the harmonic echo signals produced by these nonlinearly distorted pressure 

waveforms. 

A demonstrated advantage of harmonic imaging is a substantial reduction in 

acoustic noise resulting from reverberations and phase aberrations when the 

incident sound pulse penetrates the patient’s body wall and tissue structure. 

Harmonic imaging results in cleaner images with greater contrast, particularly for 

large, overweight patients [38] [49]. 
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IV.4 NONLINEARITY IN WAVE PROPAGATION 

 Effects due to the nonlinearity of the medium can be understood as a 

dependence of the speed of sound with temperature and pressure.  The medium 

(water, tissue) is not a completely incompressible medium; the compression phase of 

acoustic wave will cause a local increase in pressure and temperature compared 

with the rarefaction phase (expansion) in where the temperature decreases. Locally, 

an increase in pressure and temperature causes an increase in the speed of sound. 

Thus, the compression phase of a wave travels faster than the rarefaction phase. 

Thus, this change in the temperature of the medium influences the propagation 

speed of sound. Indeed, the positive cycle of the wave propagates a bit faster than 

the negative cycle, leading to a slight deformation in the shape of the wave. This 

deformation accumulates with propagation distance and is more significant for high 

acoustic pressure. The waveform distortion is encountered in medical ultrasound 

where intense sound beams are employed.  

The slope of a graph of pressure versus density, is thus not a straight line, but is 

rather a curve, where the local slope is proportional to the square of the speed of 

sound. The general propagation speed of sound can thus be written as [50]: 

 
డ௣
డ௭
ൌ ܿ଴ ൅  (IV.1)                                                                     ݑߚ

 

 :is the parameter of nonlinearity. We will show in section (IV.5.2) that ߚ

 

ߚ ൌ 1 ൅ ஻
ଶ஺

                                                                       (IV.2) 

 

Where first term (unity) is due to convection and the second term ሺܣ2/ܤሻ is a 

parameter related to the nonlinear relationship between pressure and density. In the 

case where ݑ is very low, the speed of sound reduces to ܿ଴, the small signal speed. 

Convective and nonlinear effects can collectively be referred to as nonlinear effects, 

as both these effects will contribute a nonlinear term in the differential equations 

describing nonlinear propagation. These nonlinear effects can contribute to 

distortion of a given initial waveform. The compression phase of a sinusoid, for 

example, will have a propagation speed greater than that of the rarefaction phase, 

see figure (IV.2). 
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The sinusoid distorting in the process of nonlinear propagation transforms a 

monofrequency source at fo, into an entire spectrum of harmonics, at fo, 2fo, 3fo, 4fo… 

as shown in Figure (IV.1). 
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Figure IV.1: Spectrum of harmonics of a 1 MHz monofrequency source resulting from 
nonlinear propagation 

 

 

IV.5 THEORY OF HARMONIC GENERATION  

 Harmonic generation results from the physics of sound waves and their 

interactions with the media through which they travel. As sound waves propagate 

through a medium, they compress and expand the medium. Sound waves travel at a 

faster speed in compressed regions than in expanded regions. Consequently, as an 

ultrasound wave propagates through a medium, the shape of the sinusoidal wave 

that was initially pulsed into the medium transforms. This transformation indicates 

that there is an introduction of harmonic information into the propagating 

ultrasound wave. 

Thus, when treating sound waves as having finite amplitudes, the explanation for 

the nonlinear behavior of sound waves is quite simple. Ultrasound waves behave as 

pressure waves compressing and expanding the medium that they pass through 

with the compressed regions having increased density and the expanded regions 

having decreased density. The speed at which a wave propagates through a medium 

depends partly on the medium’s density with waves traveling faster in denser media. 
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Consequently, the compressed regions of a medium propagate sound waves faster, 

and the expanded regions propagate sound waves slower. As a result, sound waves 

experience a gradual physical change of the shape of a sound wave similar to the 

one that is shown in Figure (IV.2), [51]: 
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Figure IV.2: Effect of nonlinear distorsion of a plane sinusoidal wave. (a) Initial 

waveform. (b) Showing the distortion of  the initial wave after propagation 
 

 
 

A linear propagation of the sound wave would mean that the transmitting wave 

would propagate in the physical shape shown in figure (IV.2.a). Thus, the physical 

change seen in figure (IV.2.b) indicates that there is a growing addition of harmonics 

to the propagating sound waves. In conclusion, we can say that all finite amplitude 

ultrasonic waves undergo a degree of nonlinear distortion when travelling through 

real media. This manifests itself in the frequency domain by the appearance of 

additional harmonic signals at integer multiples of the original excitation frequency, 

figure (IV.1). 
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Figure IV.3: Effect of the excitation intensity over the harmonic generation 
 

 
Figure (IV.3) shows the effect of the excitation intensity over the generation of the 

additional harmonics. The excitation frequency is of 2MHz, and the additional 

harmonics have amplitudes proportional to the excitation intensity. 

 

IV.5.1 Variation of Wave Speed in a Wave  

 In linear sound theory, the speed of sound is assumed to be independent of 

the sound intensity. This assumption is valid only for low intensity sound waves. In 

Figure (IV.2), it is clear that the wavelength of the sound waves remains constant 

regardless of the degree of distortion occurring from point to point within the wave 

form. Thus, assuming a linear sound wave where the frequency of the sound wave 

remains constant during propagation, it makes sense that the speed of the sound 

wave should be the value determined by ݒ ൌ .ߣ ݂. This speed is called ܿ଴. However, it 

is clear that the wave speed varies for different phases of the sound wave and this 

indicates that there is an addition of harmonics to the sound wave. Two non-linear 

factors contribute to the speed variation within the waveform. Firstly, convection 

affects individual particle behavior introducing the particle velocity ݑ into the phase 

speed, and secondly, the relationship between pressure variation and density 

variation in a medium is nonlinear introducing a speed that depends on the 
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properties of the medium into the phase speed [51]. A shock wave is a very abrupt 

change in the pressure and particle velocity. For a plane wave travelling in a non-

attenuating medium, a shock wave forms when the maximal slope of the wave 

becomes infinite. 

The material nonlinearity results from nonlinearity in the equation of state, the 

relationship between pressure and density of the material. When compressed, the 

bulk compressibility of most materials decreases, making it progressively harder to 

compress them further. This effect causes the speed of sound to increase with 

increasing sound intensity. The rate of development of the second harmonic 

component is proportional to the square of the pressure amplitude of the 

propagating wave [52]. In a propagating sound wave, regions of high pressure 

correspond to regions of high particle velocity, so that: 

 

ܿ ൌ ܿ଴ ൅ ݑ ൅ ஻
ଶ஺
ݑ ൌ ܿ଴ ൅  (IV.3)                                        ݑߚ

 

Where ߚ is the coefficient of nonlinearity of the medium is, ݑ is the particle velocity 

of a point in tissue, and ሺܣ/ܤሻ is a material constant. 

As an initial step to development of the full 3-D nonlinear wave equations, consider 

the simple case of a finite amplitude plane wave of normal particle velocity ݑ in a 

dissipationless medium. One peculiarity of nonlinear acoustics is that the 

propagation speed of a wave depends on the amplitude of excitation.  While it is true 

that the beginning and end of a pulse propagate with the small signal speed ܿ଴, 

within the pulse, the propagation speed varies.  The variation of propagation speed 

with initial amplitude is actually due to two separate effects: convection, and 

nonlinearity of the medium.  

Convection effects can be thought of as being like an oscillating wind travelling with 

the wave. Overall, the oscillation propagates with small signal speed ܿ଴, however, the 

peak of the oscillation will also have a local particle velocity ݑ above and beyond the 

wave velocity ܿ଴.  

 

IV.5.2 Paramete /A  r B

 The ratio ܣ/ܤ has its origin in the Taylor series expansion of the variations of 

the pressure in a medium in terms of variations of the density [53]. The 
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thermodynamic relationship between pressure and density is in general not a linear 

one. The pressure-density relation can be written as in equations (III.1) and (III.2). A 

Taylor series expansion can be done: 

 

ଵܲ ൌ
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The first order measure of nonlinearity, B/A, is the parameter of nonlinearity [50]. 

The coefficient of nonlinearity is defined as: 

 

ߚ ൌ 1 ൅ ஻
ଶ஺

                                                     (IV.6) 

 

Table (IV.1) shoes some biomedical media and their corresponding ሺܣ/ܤሻ values It 

should be noted that for a linear medium ߚ ൌ 0.  

 

Biomedical medium 2B࡭/࡮ value 

Water 4.96 

Whole blood 6.1 

Nonfat soft tissues 6.3-8.0 

Fatty soft tissues 9.6-11.3 

 

Table IV.1: Media and their B/A values 

 

Although a larger value of ሺܣ/ܤሻ indicates that a greater amount of harmonics are 

generated by a medium, it will be seen that this value is not sufficient in itself to 

indicate how effective harmonic imaging will be in a particular medium. 

 

IV.5.3 Amount of Wave Distortion 

 Something further that can be seen in Figure (IV.2) is that sound wave 

distortion increases with time. This is because the effects of convection and the 
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nonlinearity of the pressure-density relation accumulate with propagation distance. 

More specifically, the distortion occurring at any location merely adds to any 

distortion that was already present [54]. The equation (IV.7) is a computation that 

allows for the amount of sound wave distortion to be discerned [51]: 

 

ߪ ൌ  (IV.7)                                                 ݖ݇ߝߚ

 

Where ݖ is the distance the wave has traveled, ߝ is the Mach’s number at the source, 

and ݇ is the wave number. Thus, the amount of harmonics generated is linearly 

dependent on the distance the sound wave travels, the coefficient of nonlinearity, 

the pressure intensity at the source, and the excitation frequency. Furthermore, a 

medium with a higher ሺܣ/ܤሻ value results in richer amounts of harmonics. Since 

harmonic generation requires that the amplitude of the propagating wave be large 

enough, a larger acoustic pressure at the source contributes to larger amounts of 

harmonic generation. 

 

IV.5.4 Goldberg’s Number  

 The amount of harmonics generated can be viewed as a battle between two 

forces: harmonic generation arising from the nonlinear nature of sound waves and 

attenuation. Both of these values can be input into an equation from which the 

amount of harmonics can be estimated [51], [55]: 

 

Γ ൌ ℓೌ
ℓ೏

                                                    (IV.8) 

 

Γ is the Goldberg’s number, ℓ௔ is the absorption length, and ℓௗ is the distance at 

which a shock first forms in the absence of dissipation. The Goldberg’s number 

indicates the importance of nonlinear effects relative to dissipative effects. It is used 

to characterize the relative influence of absorption and nonlinear effects. Values of 

the Goldberg number less than one signify that attenuation effects dominate the 

propagation of the wave form, equaling one signify that the contributions from the 

nonlinearity and attenuation are about equal, and exceeding one signify that the 

nonlinear effects dominate. This last case is desirable for harmonic imaging. 
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IV.5.5 Mechanical Index 

 The mechanical index (MI) is defined as the peak rarefactional (that is, 

negative) pressure, divided by the square root of the ultrasound frequency as: 

 

MI ൌ ௉ష
ඥ௙

                                                     (IV.9) 

 

Ultrasound scanners marketed in the USA are required by the Food and Drugs 

Administration (FDA) to carry an on-screen label of the estimated peak negative 

pressure to which tissue is exposed. In clinical ultrasound systems, this index 

usually lies somewhere between 0.1 and 2.0. Although a single value is displayed for 

each image, in practice the actual MI varies throughout the image. In absence of 

attenuation, the MI is maximal at the focus of the ultrasound beam [56]. The 

mechanical index is one of the most important machine parameters, it is usually 

controlled by means of the output power control of the scanner. Ultrasound 

scanners are required to carry an on-screen label of the estimated peak negative 

pressure to which tissue is exposed. 

 

IV.6 EQUATION OF PROPAGATION  

 To identify limitations and domains of applicability associated with model 

equations of nonlinear acoustics, it is very important to understand the 

assumptions and ordering procedures on which the equations are based, and the 

need to understand the physical processes involved in the propagation of finite 

amplitude sound beams. 

For nonlinear acoustics many developments and considerations were carried out on 

the basic equation of propagation before arriving to the Burgers model. The Burgers 

equation is the simplest model that describes the combined effects of nonlinearity 

and losses on the propagation of plane progressive sound waves. This derivation 

begins with high amplitude sound waves often exhibit nonlinear effects, which linear 

acoustic theory cannot predict. In addition to the diffraction and attenuation effects 

considered in linear acoustic theory, the nonlinearity of the media has to be take 

into account. To understand nonlinear wave propagation, many analytical and 

numerical methods have been developed [38]. 
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IV.6.1 Lossless Burgers Equation 

 Lossless Burgers equation is an equation which describes the propagation of 

a finite amplitude plane wave in a lossless fluid. The propagation of the plane wave 

in the positive ݖ direction can be obtained by discarding the diffraction and 

absorption terms in the KZK equation as: 

 

డ௉
డ௭
ൌ ఉ

ଶఘబ௖బయ
డ௉మ

డ௧ᇲ
                                               (IV.10) 

 

Equation (IV.10) is often referred to as the lossless Burgers equation. The exact 

solution of equation (IV.10) for waves without shocks is [57]: 

 

ܲ ൌ ଴݂ܲሺ߮ሻ,       ߮ ൌ ᇱݐ ൅ ఉ௉௭
ఘబ௖బయ

                                    (IV.11) 

 

Where ݂ is an arbitrary function. Equation (IV.11) which is referred to as Poisson 

solution indicates that wavelets with larger pressure amplitudes propagate faster 

than those with lower amplitudes. The differences in propagation speed result in 

distortion of the profile of the wave. The source waveform, however smooth initially, 

eventually steepens into a shock even if the source pressure amplitudes are very 

small excluding the case of pure expansion waves. The formation of shocks in the 

waveform is inevitable since viscosity and heat conduction, which exist in a real 

medium, are not taken into consideration in equation (IV.10). Figure (IV.2) above 

shows a distorting waveform. 

 

IV.6.2 Burgers Equation  

 In the early 18th century, Poisson [58] predicted the shock and multi-valued 

wave formation from a plane wave in a lossless medium. Experimental development 

of the shock and multi-valued wave predicted by that theory is physically 

impossible, however, due to the effects of absorption in any real medium [38]. Later, 

the Burgers equation was developed for describing finite amplitude plane waves in a 

lossy thermoviscous fluid [59]. 

A real fluid exhibits thermoviscous absorption. This absorption, however small, 

prevents a waveform from becoming discontinuous. The equation which describes 
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the propagation of nonlinear progressive plane waves in a thermoviscous medium in 

the positive ݖ direction is obtained by neglecting the diffraction term in the KZK 

equation as: 

డ௉
డ௭
ൌ ஽

ଶ௖బయ
డమ௉
డ௧ᇲమ

൅ ఉ
ଶఘబ௖బయ

డ௉మ

డ௧ᇲ
                                         (IV.12) 

 

Equation (IV.12) is the Burgers equation [59]. An integral solution of the Burgers 

equation is also obtained by transforming the nonlinear equation into a linear 

diffusion equation. Burgers equation can be solved by applying the spectral method 

as the case of many problems in nonlinear acoustics. The spectral methods for 

solving the Burgers equation are based on solutions of the Fourier series form as: 

 

ܲ ൌ ∑ ሻ݁௝௡ఠబ௧ᇲெݖ௡ሺ݌
௡ୀିெ                                        (IV.13) 

 

Where ݌௡ are the complex spectral amplitudes, and ܯ is the number of harmonics 

retained in the expansion. 

 

IV.6.3 Sound Beams and KZK Equation 

 The waveform distortion is encountered in medical ultrasound where intense 

sound beams are employed. When an acoustic source of finite size radiates into free 

space, the effects of diffraction must be considered. The KZK (Khokhlov, 

Zabolotskaya, and Kuznetsov) nonlinear parabolic wave equation is known to 

describe very accurately the propagation of a finite amplitude sound beam by 

including, to the lowest order, the combined effects of diffraction, absorption, and 

nonlinearity. Zabolotskaya and Khokhlov derived the lossless of the KZK equation 

(sometimes called KZ equation), and Kuznetsov subsequently included the effect of 

thermoviscous absorption [60]-[62].  

The KZK equation which models the ultrasound propagation in the z direction for a 

finite source in the x-y plane is given by: 

 

డమ௉
డ௭డఛ

ൌ ௖బ
ଶ
ଶ்ܲ׏ ൅

ఋ
ଶ௖బయ

డయ௉
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൅ ఉ
ଶఘబ௖బయ

డమ௉మ
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                                (IV.14) 
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ଶ்׏  is the Laplacian in the plane perpendicular to the axis of the beam and it is given 

by: 

ଶൌ்׏
డమ

డ௫మ
൅ డమ

డ௬మ
                                              (IV.15) 

 

ܲ is the sound pressure, ݖ is the axis of propagation, ߬ ൌ ݐ െ ݖ ܿ଴⁄  is the retarded 

time, ܿ଴ is the speed of sound, ߜ is the diffusivity of sound corresponding to 

thermoviscous absorption, ߩ଴ is the ambient density of the medium, and ߚ is the 

coefficient of nonlinearity. For circular sources (axisymmetric beams), the operator 

ଶ்׏  is given by: 

ଶൌ்׏
డమ

డ௥మ
൅ ଵ

௥
డ
డ௥

                                              (IV.16) 

 

The first term on the right side of equation (IV.14) represents diffraction, the second 

term accounts for thermoviscous attenuation (absorption) and the third term 

accounts for nonlinearity. 

The KZK equation describes accurately the propagation of sound fields produced by 

directive sound sources. However, since this equation is based on a parabolic 

approximation, its accuracy is limited to distances beyond a few source radii and in 

a region close to the axis of the transducer [63]. 

 

IV.7 MODELING OF NONLINEAR MEDICAL ULTRASOUND  

 All finite amplitude ultrasonic waves undergo a degree of nonlinear distortion 

during propagation through ream media [64]. This manifests itself in the frequency 

domain by the appearance of new harmonic signals at integer multiples of the 

transmitted frequency. Since the medium (water, tissue) is not completely 

incompressible medium, 

Nonlinear effects have many applications and implications for medical ultrasound 

imaging. Harmonic imaging quickly became routine practice in the ultrasound clinic 

because of its improved image quality compared to conventional imaging [65].  For 

the design and engineering of new technologies and techniques that exploit the 

nonlinear properties of the ultrasound field, it is primordial to be able to model the 

physical process with sufficient accuracy. Doing this, we can predict the 
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consequences of certain design choises before we try to implement them and 

therefore the cost of design of new instrumentation can be reduced significantly. 

For the design and engineering of new technologies and techniques that exploit the 

nonlinear properties of the ultrasound field it is primordial to be able to model the 

physical process with sufficient accuracy. This can predict the consequences of 

certain design choices before their implementation. Many attempts have been 

undertaken in literature to obtain an accurate model of the acoustic beam of 

medical transducers and the nonlinear effects playing a role in it. Up to now, most 

of the models are based on the KZK equation. This is a parabolic approximation of 

the Westervelt equation, which describes the ultrasound field in a thermoviscous 

fluid, thereby including the largest loss and nonlinear terms [3]. 

 

IV.7.1 Medium Under Consideration  

 For medical ultrasound applications, the acoustic field propagates through 

the human body, and therefore it would be appropriate to use the human tissue as 

the medium when modeling the ultrasound propagation. We should account for the 

different layers in the tissue, like the skin, fat layers and muscle layers. In the 

development of echographic instrumentation it is common use to start with water as 

the medium. The use of these measurements in water to predict the fields in tissue 

is called derating, and there have been proposed several tissue models for this 

purpose [3]. These models work well for situations where linear theory applies. 

However, for the investigation of nonlinear effects, extrapolation of water data to 

tissues becomes much more complex. Using water, the medium can be considered 

homogeneous and isotropic. We can still use it as a first approach for the 

development of a good model for nonlinear acoustic effects, but the step from tissue 

to water cannot be made without some caution. Table (IV.2) shows some constants 

for water (ܶ ൌ ܲ ,ܥ20° ൌ  .[68]-[66] (ݎܽܤ 1
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Parameter Sy bolm  Value 

density ߩ଴ 0.9982×103 Kg/m3 

Parameter of nonlinearity 5 ܣ/ܤ 

Small-signal sound speed ܿ  ଴ 1.482×103 m/s 

Shear viscosity 10-3×1.002 ߟ Kg/ms 

Dilatational viscosity ߟᇱ 2.815×10-3 Kg/ms 

Adiabatic compressibility ߢ௦ 5.559×10-10 Pa-1 

Isothermal compressibility 10-10×4.591 ்ߢ Pa-1 

Thermal conductivity 0.5984 ்ߪ J/Kms 

Heat capacity at constant 

pressure 

ܿ௣ 4.182×103 J/Kg K 

Heat capacity at constant 

volume 
ܿ௩ 4.153×103 J/Kg K 

 

Table IV.2: List of constants for water 

 
 

IV.7.2 Nonlinear Numerical Methods 

 Harmonic imaging is based on nonlinear acoustics, and is more difficult to 

model than conventional linear ultrasound imaging. Nonlinear phenomena were first 

described for biological tissues in the early 1980’s [38], [46]-[48]. Although there 

were several early attempts to measure and display nonlinear parameters of tissue, 

most of the early work in this axis involved effects of nonlinear propagation on 

measurements of the output level of probes. 

Pressure waveforms from diagnostic ultrasound devices undergo substantial 

distortion during propagation. High amplitude ultrasound waves often exhibit 

nonlinear effects, which linear acoustics theory cannot predict. In addition to the 

diffraction and attenuation effects considered in linear acoustic theory, the 

nonlinearity of the medium of propagation must be taking into account [69], [70]. 

Many numerical methods have been developed in the literature to solve the 

generalized nonlinear process in both frequency and time domain [71]-[74]. Hybrid 

methods were also used when an inefficiency of one method or another is noticed 

[75], [76]. Quasilinear analytical solutions have been developed for cases in which 
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the nonlinearity is weak. Quasilinear solutions assume the pressure field consists of 

a fundamental pressure field describes by linear theory along with the second 

harmonic added as a small correction. The second harmonics are assumed to be 

weak, and thus, do not generate further higher order harmonics. Thus, quasi-linear 

theory does not describe the higher order harmonics that are produced by an 

intense acoustic source [38]. Quasilinear theory is not suitable when the 

nonlinearity is strong or the higher order harmonics are of interest. Therefore, 

numerical methods must be developed to solve the full nonlinear models for these 

cases. 

 

IV.7.3 Finite difference Analysis for Ultrasound Modeling  

 In many engineering problems, either the structure geometry is complicated 

or some critical material properties and behaviors are not uniform. Thus, an 

analytical solution can not be found, or involves too many simplifying assumptions, 

which degrade the accuracy of the resulting solutions. In these situations, 

numerical analysis provides an alternative solution for many engineering problems. 

Finite difference is a numerical analysis technique that obtains piecewise 

approximate solutions for many engineering problems. It divides the structure in 

problem into a large number of small regions. Finite difference Analysis provides an 

approximation solution of the general governing equations at all the nodes. It has 

higher accuracy as the density of grid points increases. Finite difference is capable 

to handle extraordinary complex three dimension device geometries.  

It was widely accepted by engineering from structural analysis of airplanes or 

bridges to heat conduction, fluid mechanics, and even transient, highly nonlinear 

investigations of weapons. It has been many years since the finite difference analysis 

method was introduced into acoustic engineering areas. Finite difference was 

frequently used for ultrasound transducer designing, modeling, optimization, as well 

as ultrasound energy propagation and acoustic field investigations.  
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IV.8 NUMERICAL SOLUTION OF KZK EQUATION  

 The KZK equation can be solved like several problems in nonlinear acoustics 

by applying the spectral method which based on solutions of the Fourier series. 

Aanonsen and Coworkers [73] sought a solution of the KZK equation in terms of 

sine and cosine series as: 

 

ܲ ൌ ଴݌ ∑ ݃௡ሺݎ, ሻݖ sin ݊߱଴ݐᇱ ൅ ݄௡ሺݎ, ሻெݖ
௡ୀଵ cos ݊߱଴ݐᇱ                        (IV.17) 

 

The resulting coupled sets of partial differential equations are solved by finite 

difference methods or others. The KZK equation can be solved in a number of ways 

using time domain, frequency domain, or combined time-frequency domain 

algorithms. All of the approaches are based on the time-integral of the KZK equation 

in retarded time [80]. 

In the present thesis, a time-domain numerical algorithm for solving the KZK 

(Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is used for 

pulsed, finite amplitude sound beams in thermoviscous fluids. The time domain 

algorithm is used to investigate waveform distortion and shock formation in 

directive sound beams radiated by pulsed circular piston sources. The algorithm is 

developed mainly for sound beams radiated by unfocused sound sources, and it is 

modified to facilitate calculation for focused sources. For unfocused beams, a 

coordinate transformation is applied to the KZK equation to improve the 

computational efficiency in the farfield. The transformed coordinate system provides 

a geometry that follows the eventual spherical spreading of the beam [81]. With or 

without the transformation, the KZK equation has three individual terms, which 

account for diffraction, absorption, and nonlinearity. The equation is solved 

sequentially, at each range step, as follows: first the diffraction term, then the 

absorption term, and finally the nonlinear term. The diffraction term is integrated 

with a finite difference method in space and a trapezoidal rule in time. Energy 

dissipation that accompanies propagation over the same distance is then included 

by integrating the absorption term with a finite difference method in time. Finally, 

nonlinearity is included. The simulation is able to determinate the ultrasound field 

at any point in space and gives information about localized maximun and minimum 

energy produced by the transducer. Figure (IV.4) shows these computational 
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procedures in terms of the axial coordinate z. Although the three effects are included 

independently over each increment in space, the use of sufficiently small steps 

preserves the mutual interactions. 

 

 
Figure IV.4: Computational procedure in terms of axial coordinates z 

Include diffraction due to 
propagation from z to z+Δz 

Include absorption due to 
propagation over same 
interval from z to z+Δz 

Include nonlinearity due 
to propagation over same 

interval from z to z+Δz 

z = z+Δz 

Output sound pressure 

z = zout 
No 

Yes 

Input sound pressure in 
source plane 



Chapter IV                                                                               Harmonic Ultrasound Imaging

 

 

 
 

77 

IV.8.1 Boundary Conditions 

We begin with the transformation with the following variables: 

ߪ ൌ ௭
௭బ

                                                    (IV.18) 

 

ߩ ൌ ௥ ௔⁄
ଵାఙ

                                                   (IV.19) 

 

߬ ൌ ߱଴ݐ െ
ሺ௥ ௔⁄ ሻమ

ଵାఙ
                                             (IV.20) 

 

ܲ ൌ ሺଵାఙሻ௣
௣బ

                                                  (IV.21) 

 

Here ܽ the characteristic radius of the source, ߪ is a dimensionless range coordinate 

in terms of the Rayleigh distance ݖ଴ ൌ ߱଴ܽଶ 2ܿ଴⁄  at the characteristic angular 

frequency ߱଴, ߩ is the dimensionless transverse coordinate, ߬ is a dimensionless 

reta me, and ݌଴ is a chara r s c ource pressure amplitude. rded ti cte i ti   s

For ߪ ب is proportional to tan ߩ ,1 ߠ ൌ ݎ ⁄ݖ , where ߠ is the angle with respect to the 

axis of the beam, i.e., 

 

tan ߠ ൌ ଶ
௞௔
ሺ1 ൅ ~ ߩ ଵሻିߪ ଶఘ

௞௔
ߪ      ,   ب 1                             (IV.22) 

 

The transverse coordinate ߩ thus provides the proper geometry for the spherically 

radially spreading sound in the farfield. For ߪ ب 1, ߬ reduces to ߱଴ሺݐ െ

ݖ ܿ଴ െ ଶݎ 2ܿ଴ݖ⁄⁄ ሻ, for which a surface of constant phase describes, within the parabolic 

approximation, a sphere centered at the origin ሺݎ, ሻݖ ൌ ሺ0, 0ሻ. 

The time coordinate ߬ is therefore convenient for tracking pulses that are localized in 

time, so that time windows of reasonable length can be used to encompass pulses at 

off-axis points in the numerical computations. The transformed dimensionless 

pressure ܲ has the spherical spreading factor 1 ⁄ݖ  factored out. 

Figure (IV.5) shows the finite difference grids in the (a) transformed and (b) 

untransformed coordinate systems. A rectangular region in the transformed 

coordinate system corresponds to an expanding region in the original, 

untransformed coordinate system. Note that the axial step sizes increases with 
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distance from the source. Smaller axial step sizes are required in the nearfield of 

piston sources, where the sound pressure exhibits a highly oscillatory behavior, and 

therefore high spatial resolution is needed. In the farfield, where the nearfield 

oscillations have disappeared and the sound exhibits properties of spherical 

wavefields, larger step sizes can be used in order to reduce computation time. Note 

also that a constant transverse step size ∆ߩ in the transformed coordinate system 

corresponds to a transverse step size ∆ݎ that increases with ݖ in the untransformed 

coordinate system. Less transverse resolution is needed in the farfield, where the 

sound beam has a nominally constant angular distribution. 

The KZK equation for an axisymmetric sound beam that propagates in the positive ݖ 

direction can be written in terms of the acoustic pressure ܲ as following [60]: 

 

డమ௉
డ௭డ௧ᇲ

ൌ ௖బ
ଶ
ቀడ

మ௉
డ௥మ

൅ ଵ
௥
డ௉
డ௥
ቁ ൅ ஽

ଶ௖బయ
డయ௉
డ௧ᇲయ

൅ ఉ
ଶఘబ௖బయ

డమ௉మ

డ௧ᇲమ
                             (IV.23) 

 

Here ݐᇱ ൌ ݐ െ ݖ ܿ଴⁄  is the retarded time variable, ݐ is the time, ܿ଴ is the small signal 

sound speed, ݎ ൌ ඥݔଶ ൅ axis, ߲ଶ ݖ ଶ is the radial distance from theݕ ߲⁄ ଶݎ ൅ ሺ1 ⁄ݎ ሻ ߲ ⁄ݎ߲  

is the transverse Laplacian operator, and ߩ଴ is the ambient density of the medium. 

Furthermore, ܦ ൌ ߞ଴ିଵൣሺߩ ൅ ߟ4 3⁄ ሻ ൅ ൫1ߢ ܿ௩⁄ െ 1 ܿ௣⁄ ൯൧ is the sound diffusivity of a 

thermoviscous medium, where ߞ is the bulk viscosity, ߟ the shear viscosity, ߢ the 

thermal conductivity, and ܿ௩ and ܿ௣ the specific heats at constant volume and 

pressure, respectively [83]. The coefficient of nonlinearity is defined by ߚ ൌ 1 ൅ ܤ ⁄ܣ2 , 

where ܤ ⁄ܣ  is the parameter of nonlinearity of the medium [50]. In the derivation of 

the equation (IV.23), the sound waves are assumed to be collimated about the ݖ 

axis, and local nonlinear effects due to finite source displacement are ignored. The 

first term on the right-hand side of equation (IV.23) accounts for diffraction, the 

second term for absorption, and the third term for nonlinearity [71]. 

The time-domain numerical algorithm is developed on the basis of the following 

equation: 

డ௉
డ௭
ൌ ௖బ

ଶ ׬ ቀడ
మ௉
డ௥మ

൅ ଵ
௥
డ௉
డ௥
ቁ ᇱᇱݐ݀ ൅௧ᇲ

ିஶ
஽
ଶ௖బయ

డమ௉
డ௧ᇲమ

൅ ఉ
ଶఘబ௖బయ

డ௉మ

డ௧ᇲ
                         (IV.24) 
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Figure IV.5: Finite difference grids in (a) transformed and (b) untransformed 
coordinate systems 

 

 

For unfocused sound beams, it is advantageous to use transformed coordinates that 

follow the eventual spherical spreading of the beam when computing the farfield of 

the diffracting sound beam. 

 

IV.9 SIMULATION RESULTS USING CIRCULAR TRANSDUCER 

 The simulations are realized for both the two cases: low excitation pressure 

intensity, and high excitation pressure intensity in the aim to show the effect of this 

last. The simulations are realized for a focalized piston. 
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IV.9.1 Low Excitation Intensity 

 Figure (IV.6) shows an excitation of (P=50 Kpa, f=2 MHz, length=3 cycle), and 

its corresponding spectra. However, the distortion of the excitation waveform due to 

nonlinear propagation is no consequent, and only one additional harmonic, which 

appears at double of the excitation frequency is created, see figure (IV.7).  

 
 

Figure IV.6:  Waveform at transducer plane (top), 
and corresponding spectra (bottom) 

 
 

Figure IV.7: Waveform at focal depth distance (top), 
and corresponding spectra (bottom) 
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Figure (IV.8) shows a low axial pressure level of the created second harmonic, 
whereas in harmonic imaging application, a high second harmonic level is highly 
recommended.  
 

 
 

 
Figure IV.8: Axial pressure: fundamental component (dashed),  

and second harmonic component (solid) 
 
 

 
 
 

Figure IV.9: Normalized axial pressure: fundamental component (dashed), 
and second harmonic component (solid) 
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Figure IV.10: Radial pressure: fundamental component (dashed),  
and second harmonic component (solid) 

 

The radial second harmonic field is presented in figure (IV.10) as solid line. The 

figure shows that the second harmonic component is narrower that the 

fundamental. This means that the second harmonic image has a good lateral 

resolution than the fundamental one. In addition, second harmonic component 

presents lower level of sidelobes, and consequently the second harmonic image 

presents fewer artifacts. 

 

IV.9.2 High Excitation Intensity 

 The use of high intensity ultrasound in medical applications has considerably 

increased in recent years in addition of harmonic imaging. Nonlinear effects have 

become especially important at the acoustic intensity employed in lithotripsy, 

ultrasonic hyperthermia, or cavitation-induced tissue destruction [84]. Figure 

(IV.11) shows an excitation of (P=500 Kpa, f=2 MHz, length=3 cycle), and its 

corresponding spectra. In this case, the distortion of the excitation waveform due to 

nonlinear propagation is consequent, and a succession of additional harmonic 

appeared at integer multiples of the original excitation frequency, see figure (IV.12). 

Thus, the appearance of additional harmonic signals depends not only on nonlinear 



Chapter IV                                                                               Harmonic Ultrasound Imaging

 

 

 
 

83 

propagation, which depends on medium characteristics, but also on the excitation 

pressure intensity. 

 

 
 

Figure IV.11: Waveform at transducer plane (top), 
and corresponding spectra (bottom) 

 
 

 
 
 

Figure IV.12: Waveform distortion at focal depth distance (top), 
and corresponding spectra (bottom) 
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Consequent excitation pressure intensity implies a consequent axial pressure level 

of the created second harmonic, figure (IV.13). 

 

 
 
 

Figure IV.13: Axial pressure: fundamental component (dashed),  
and second harmonic component (solid) 

 
 

 
 
 

Figure IV.14:  Normalized axial pressure: fundamental component (dashed), 
and second harmonic component (solid) 



Chapter IV                                                                               Harmonic Ultrasound Imaging

 

 

 
 

85 

Second harmonic signal presents a relatively narrower beamwidth, and lower level 

at nearfield than the fundamental component, figures (IV.14, 9). This, led 

respectively to an improvement in axial resolution, and less in artifacts and 

reverberations of the resulting ultrasound image, see also figure (IV.16). Figure 

(IV.15) shows narrower second harmonic component with lower sidelobes levels in 

high intensity excitation, this explains a better lateral resolution and fewer artifacts 

in second harmonic resulting image. 

 

 
 
 

Figure IV.15:  Radial pressure: fundamental component (dashed),  
and second harmonic component (solid) 
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Figure IV.16: Focalized axial pressure field pattern: fundamental component (A), and 
second harmonic component (B). 

 

 

IV.10 GRATING LOBES 

Grating lobes, which are sound waves that get transmitted from the 

transducer at angles other than that of the ultrasound wave, are also source of 

reverberations and artifacts in ultrasound image. Figure (IV.17) shows grating lobes 

pattern of fundamental and second harmonic components in which, and another 

time, the second harmonic ultrasound imaging proves better quality than the 

conventional imaging. 
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 (A)         (B)  
 
 
 

Figure IV.17: Grating lobes pattern: Fundamental component (A) 
and second harmonic component (B) [84_2] 

 
 

 

IV.11 PENETRATION 

 The ultrasound second harmonic pressure field presents the advantage of 

greater depth of penetration than the fundamental component, see figure (IV.18).  

 

 
                                    (A) 
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                                                                                                                 (B) 

 

Figure IV.18: Illustration of difference in penetration between fundamental (A) 
 and second harmonic (B) ultrasound pressure fields 

 
 
 
IV.12 EXAMPLE OF COMPARATIVE IMAGES  
 
 

 
 
 
 

Figure IV.19: Clinic images Liver and Portal vein: note the improvement in 
penetration and contrast resolution with second harmonic imaging (*) 
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Figure IV.20: Clinic images Liver and hepatic veins: note the improvement in cystic 
clearing in this vessel with second harmonic imaging (*) 

 
 
 
 

 
 

 
 

Figure IV.21: Large renal cyst: note the improvement in contrast resolution that is 
achieved with the improved slice thickness available with second harmonic imaging (*) 
 

 

(*)  images from GE medical systems, ultrasound technology update review  
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Optimization of Harmonic Imaging 
 
 
 
 

V. 1 INTRODUCTION 

Major improvements have been achieved recently in medical ultrasound 

imaging by exploiting the characteristics of nonlinear fields with the utilization of 

harmonic frequencies. Harmonic generation has been used to create images offering 

improvements over conventional B-mode images in spatial resolution, and more 

significantly, in the suppression of acoustic clutter and side-lobe artifacts. The 

second harmonic beam generated at two times of the transmit frequency provide 

greater depth of penetration, greater resolution, and information content in the 

images. When these harmonics are not present in the transmitted pulse, they are 

mostly caused either by nonlinear propagation of the sound wave in the tissue or by 

the presence of a medium that is capable of reflecting the transmitted energy in 

nonlinear manner. In ultrasound imaging, an ongoing problem is that undesired 

signals are contained in the reflected waves, and that corrupt the image data. 

When evaluating the performances of an ultrasound imaging system, knowledge of 

the bandwidth is essential. Knowledge of the system bandwidth (transmitted 

bandwidth, received bandwidth, their variation, and overlap between them) is the 

subject of the present chapter which leads to such system quality. 

Harmonic received frequency band must not contain components from transmit 

frequency band, and its components must sufficiently be separable from 

fundamental spectral component. Thus, in harmonic imaging the corresponding 

band must be clearly received. Spectral overlapping in transmission between the 

fundamental and the second harmonic components must be minimal even null to 

avoid the transmission of the frequential component with 2f0 (f0 is the transmitted 

frequency), and consequently the contamination of the harmonic component, and 

the obtained image. 
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In second harmonic imaging it is essential to avoid receiving any spectral 

component around transmitted frequency (f0) which can contaminate the harmonic 

band around the received frequency (2f0), and consequently the contamination of 

the obtained image. Therefore, to effectively employ the information contained in the 

second harmonic of the received signal, this information should be properly 

extracted. As a consequence, several imaging modalities and techniques have been 

developed during the last decade, which are intended to acquire and process the 

harmonic information, or even to separate one kind of such information from 

another [55], [85]-[90]. In this chapter, a new technique for acquiring the proper 

second harmonic signal is presented. An optimization of the transmitted bandwidth 

is recommended to receive the purely second harmonic signal for harmonic imaging 

[91].  

 

V.2 IMAGE FORMATION IN TISSUE HARMONICS 

Tissue harmonic imaging operates by transmitting a fundamental beam that 

has a lower frequency.  This fundamental pulse, as it propagates through tissue 

inside the body, generates the higher frequency harmonic sound.  The key to 

understanding tissue harmonic imaging is that the image is formed only from the 

higher frequency harmonic sound.  Echoes from the fundamental frequency are 

rejected and thus, are not used in making the image.  Indeed, if the higher 

amplitude fundamental echoes are not eliminated, they degrade the image to the 

point that there is no benefit from tissue harmonic imaging.  The stronger 

fundamental echoes, if not eliminated, will mask the harmonics.  Obviously, 

sophisticated transmit beam formation and signal detection is required to produce 

good quality harmonic images.  It is possible that the ability to produce high quality 

harmonic images may be an interesting test of an ultrasound system’s overall 

capabilities. Ultrasound image quality has experienced a significant improvement 

with the utilization of harmonic frequencies. Several techniques are currently 

employed to detect harmonics and eliminate the unwanted fundamental echoes [87]-

[89]. Filtration techniques remove the echoes from the fundamental frequency and 

allow the harmonic frequencies to pass, so that the harmonic image can be formed.  

Other techniques cancel the fundamental echoes.  Some of these include pulse 

inversion [85], amplitude or power modulation, side-by-side phase cancellation, and 
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transmit pulse encoding [86].  All of these techniques require excellent transmit 

beamformer performance. 

 

V.3 SECOND HARMONIC EXTRACTION TECHNIQUES 

Tissue harmonic imaging is a new grayscale imaging technique.  It creates 

images that are derived solely from the higher frequency, second harmonic sound 

produced when the ultrasound pulse passes through tissue within the body. Tissue 

harmonics uses various techniques to eliminate the echoes arising from the main 

transmitted ultrasound beam (the fundamental frequency), from which conventional 

images are made. Once the fundamental frequencies are eliminated, only the 

harmonic frequencies are left for image formation.   Tissue harmonic imaging offers 

several advantages over conventional pulse-echo imaging, including improved 

contrast resolution, reduced noise and clutter, improved lateral resolution, reduced 

slice thickness, reduced artifacts (side lobes, reverberations) and, in many 

instances, improved signal-to-noise ratio. Indeed, the quality of the harmonic image 

is primarily dependent on the complete elimination of all echoes derived from the 

transmitted frequencies. To effectively employ the information contained in the 

second harmonic of the received signal, this information should be properly 

extracted. 

 

V.3.1 Filtration Technique  

Filtration to remove the fundamental frequency is the technique currently 

used most commonly to produce tissue harmonic images. Filtration uses 

sophisticated transmit beam formers to produce a narrower bandwidth and signal 

processing techniques to filter out the spectrum of frequencies that are likely to 

arise from the fundamental beam. The fundamental ultrasound pulse is not a single 

frequency, but is really a range of many frequencies that are distributed around the 

mean transmitting frequency (for example, a band of frequencies from 1.2 to 2.8 

MHZ for a 2 MHZ transducer centre frequency), see figure (V.1).  Because of this, 

there are frequencies at which the information from both the fundamental signal 

and the harmonic signal overlaps. 

If a system produces a broader bandwidth, then the overlap between the received 

harmonic signal and the fundamental signal is greater.  In this setting, filtration will 
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then result in the removal of significant harmonic information along with the 

unwanted fundamental echoes.  However, use of a narrower bandwidth will result in 

less overlap.  With narrow bandwidth beams, filtration can provide a much cleaner 

separation of the harmonic-related information from the fundamental signal. A high-

pass or band-pass filter must be designed to filter the spectrum of the received echo 

and pass the second harmonic. The ability of the filter to reject the fundamental is 

critical since its presence will contribute to a loss of contrast resolution. 

 

 
 
 

Figure V.1:  Illustration of the overlap between the fundamental (dashed),  
and second harmonic (solid) components 

 

 

Note that the second harmonic has reduced amplitude; this is due to the 

attenuation that higher frequencies experience during propagation within a 

medium. The overlap of the fundamental and the second harmonic frequencies 

means that any filtering will inevitably cut part of the second harmonic signal out 

while retaining part of the fundamental signal. Therefore, high-pass filtering 

provides a flawed means for extracting the harmonic signal from the reflected 

ultrasound data.  
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V.3.2 Pulse Encoding Technique 

Pulse encoding of the transmitted ultrasound beam is another technique to 

cancel the fundamental echoes and enhance harmonic detection [86]. Transmit 

pulse encoding uses relatively complex waveform sequences to give each a unique, 

recognizable signature or code.   This complex, coded pulse is sent into the body.  

The unique code is then recognized in the return waveform by a special decoder that 

is part of the equipment.  Because the linear, fundamental echoes have a specific 

code, they can be identified and canceled.  The remaining nonlinear harmonic signal 

is then processed to form the image.  This technique has proved especially useful in 

the near field. 

 

V.3.3 Pulse Inversion Technique 

Pulse inversion is a technique that adds the echoes from two opposite polarity 

pulses to cancel the fundamental (linear) echoes, leaving only the harmonic 

(nonlinear) information, see figure (V.2).  
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Figure V.2: Pulse inversion technique principle 
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An initial pulse is sent into the body and the returning echoes are recorded. This 

first pulse-echo cycle results in both fundamental and harmonic frequencies 

returning from the tissue and the data received are stored.  A second inverted pulse 

(opposite in phase) is then transmitted.  Fundamental and harmonic frequencies of 

the second cycle are received and added to the data received from the first cycle.  

Adding the data will then cancel the linear, fundamental echoes.  The nonlinear 

harmonic information remains, resulting in an unfiltered harmonic signal over the 

entire frequency bandwidth of the transducer. Simulation results have been realized 

with a circular transducer of 15mm of radius. The corresponding ultrasound beam 

is focalized at 60mm depth of axial distance, and excited with a 400KPa Gaussian 

waveform of three cycles at a centered frequency of 2MHz. Figure (V.3) shows the 

first excitation pulse (a) and its corresponding spectra (c). The inverted pulse and its 

corresponding spectra are shown in figures (b) and (d) respectively. 

 

 

 
 
 

Figure V.3: The two inverted pulses (solid & dashed) and their  
corresponding spectra in the pulse-inversion technique 
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Pulse inversion scheme has been proposed for rejection of the fundamental signal 

component in contrast harmonic imaging. In the pulse-inversion technique, and due 

to the nonlinear nature of harmonic frequencies, adding two echo signals that are 

generated by transmitting pulses out of phase by 180 degrees causes the linear 

portions as well as the odd harmonics to zero out while the even harmonics double, 

see figure (V.4). 

 
 

 
 
 

Figure V.4: Spectra of received signals: before (dashed), and  
after (solid) using the pulse-inversion technique 

 
 
 

Because the second harmonic component has less energy than the fundamental 

component, high sensitivity and wide dynamic range are needed in the receiving 

system to achieve an acceptable signal-to-noise ratio. The pulse inversion technique 

is used to reinforce the ultrasound pressure and increase the signal-to-noise of the 

second harmonic component in harmonic imaging. Figures (V.5) and (V.6), show 

respectively an increased intensity in axial and radial second harmonic signals of 

the ultrasound field after the use of the pulse-inversion technique. 
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Figure V.5: Axial second harmonic pressure: before (dashed), and 
 after (solid) the pulse-inversion technique  

 
 
 

 
 
 

Figure V.6: Radial second harmonic pressure: before (dashed), and  
after (solid) the pulse-inversion technique  
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V.3.4 Side-by-side Phase Cancellation Technique 

Side-by-side phase cancellation technique is similar to pulse-inversion 

technique cited above.  Instead of two firings of opposite phase ultrasound beams 

along the same line, this method sends both signals together at the same time with 

opposite phases.  These adjacent lines are then added.  The resulting cancellation of 

the fundamental opposite phase lines leaves the harmonics, from which images can 

be made.   Like pulse inversion, this technique preserves the bandwidth of the 

harmonic sound.  This technique is a spatial cancellation technique, while pulse 

inversion is a temporal cancellation technique. 

 

V.3.5 Power Modulation Technique 

Power-modulation is a harmonic imaging method in which the amplitude 

(and hence power) of every other pulse is transmitted into the body is changed (for 

example, doubled), see figure (V.7). The received echoes from each low amplitude 

pulses are then amplified more (doubled in this case) so that all linear echoes are 

equal. Sequential pairs of pulses are then subtracted. Linear echoes cancel, but 

nonlinear echoes do not, see figure (V.9). 

 

 

 
 
 

Figure V.7: Power-modulation technique principle 
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Figure (V.8) shows a full excitation pulse of a 400KPa (a) and its corresponding 

spectra centered at 2MHz (c). The half excitation pulse (200KPa) and its 

corresponding spectra are shown in figures (b) and (d) respectively. 

 
 

 
 
 

Figure V.8: The two pulses (full & half) and their corresponding spectra  
in the power-modulation technique 

 
 

 
 

Figure V.9: Spectra of received signals: before (dashed), and  
after (solid) using the power-modulation technique 
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Unlike the pulse-inversion technique, the power-modulation technique preserves all 

nonlinear harmonics but without increasing in their corresponding signal levels. 

Figure (V.9) shows a less signal levels of the nonlinear harmonics, and especially the 

second harmonic component in comparison with the pulse-inversion technique. 

 

 
 
 

Figure V.10: Axial second harmonic pressure focalized at depth of 60mm: 
 before (dashed), and after (solid) the power-modulation technique  

 
 
 

Figures (V.10) and (V.11), show respectively a decreased intensity in axial and radial 

second harmonic signals of the ultrasound field after the use of the power-

modulation technique in comparison with the pulse-inversion technique. 

 



Chapter V                                                                          Optimization of Harmonic Imaging

 
 

 
 

101 

 
 
 

Figure V.11: Radial second harmonic pressure: before (dashed), and  
after (solid) the power-modulation technique 

 
 
V.4 OPTIMIZATION OF HARMONIC IMAGING 

 Harmonic imaging creates images that are derived solely from the higher 

frequency, second harmonic ultrasound signal produced when the ultrasound pulse 

passes through tissue within the body.  

Tissue harmonics uses various techniques to eliminate the echoes arising from the 

main transmitted ultrasound beam, from which conventional images are made.  

Once the fundamental frequencies are eliminated, only the harmonic frequencies are 

left for image formation. Indeed, the quality of the harmonic image is primarily 

dependent on the complete elimination of all echoes derived from the transmitted 

frequencies 

In second harmonic imaging, an ongoing problem is that undesired signals are 

contained in the reflected waves, and that corrupt the image data, which leads to 

the contamination of the obtained image. 

An optimization of the transmitted bandwidth is recommended to receive the purely 

second harmonic signal for harmonic imaging [91]. Given a certain available 

bandwidth for the transducer, it must be decided in what band the transmitted 
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pulse may be sent at, and what band the second harmonic signal should be received 

at. 

Example (200KPa, 2MHz): Figure (V.12) shows an overlap of 275 KHz (bandwidths at 

-10dB) between the excitation and the received second harmonic bandwidths. The 

transmitted bandwidth is at 100%. Receive a purely harmonic signal component 

imply a transmission of only 72.5% of bandwidth. In this case, the second harmonic 

signal is purely nonlinear. 

 

 
 
 

Figure V.12: 100% transmitted bandwidth (dashed), and 
received second harmonic signal component (solid) 

 

V.4.1 Bandwidth 

 The bandwidth is the range of frequencies present in a signal. It is defined as 

that portion of the signal’s frequency spectrum between upper and lower frequency 

bounds. When evaluating the performances of an ultrasound imaging system, 

knowledge of the bandwidth is essential. Transmitted and received bandwidths are 

two factors, which can define an ultrasound imaging system, and consequently the 

image quality.  

Figure (V.13) shows the excitation waveform (a) and its distortion after propagation 

(b). In this section, only the fundamental and second harmonic bandwidths are for 
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interesting. Figures (V.13c, d) show respectively the spectra of an excitation of 2MHz 

and the second harmonic signals.  

 

 
 

Figure V.13: Excitation waveform, its distorted waveform after propagation, 
 and their corresponding spectra  

 
 

 
 

Figure V.14: Fundamental & second harmonic bandwidth  
as a function of excitation length  
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In figure (V.14) are represented the fundamental and the second harmonic 

bandwidths as a function of the excitation (case of 200KPa, 2MHz) length (number 

of cycle in excitation). It confirms that the bandwidth decreases with the temporal 

signal length. 

 
 

 
 

Figure V.15: Fundamental and second harmonic bandwidths 
 in function of the excitation frequency 

 
 

 
Figure V.16: Fundamental and second harmonic bandwidths 

 in function of the excitation pressure intensity  
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Figures (V.15, 16) show respectively the variation of the fundamental and the 

second harmonic components bandwidths as a function of the excitation frequency 

and pressure intensity. 

 
 

 
 

Figure V.17: Fundamental and second harmonic 
 bandwidths in percentage 

 
 

 

Figure (V.17) shows the fundamental and the second harmonic in percentage. 60% 

of fundamental bandwidth engenders 40% of second harmonic bandwidth, i. e: 

transmit bandwidth, BW=[1.4 — 2.6] MHz, and second harmonic bandwidth, 

BW=[3.2 —4.8]MHz, this means that the second harmonic component is purely 

nonlinear. 

 

V.4.2 Overlap 

 Spectral overlapping in transmission between the fundamental and the 

second harmonic bands must be minimal even null to avoid the transmission of 

frequential component with 2f0 (f0 is the transmitted frequency), and consequently 

the contamination of the harmonic band, and thereafter the obtained image. In this 

section, the overlap between the fundamental and second harmonic bands is 

computed for optimizing the transmitted bandwidth. 
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Figure V.17: Overlap between fundamental and second harmonic  
Bandwidths in function of the excitation frequency 

 
 
 

The overlap between the fundamental and the second harmonic components 

increases with the excitation frequency, figure (V.17). Overlap is very significant for 

high excitation frequencies. 

In figure (V.18), this same overlap decreases in function of the excitation pressure 

intensity, the overlap is not very significant for high excitation pressures. 
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Figure V.18: Overlap between fundamental and second harmonic  
Bandwidths in function of the excitation pressure intensity 

 
 
 
Due to the limited transducers bandwidths, the transmitted ultrasound waves must 

have narrow bandwidths for not overlap between fundamental and second harmonic 

bands. Therefore, the excitation bandwidth should be large enough to ensure 

resolution while overlapping with harmonic frequencies should be minimized. An 

optimization of the transmitted bandwidth is a compromise for each desired 

situation. 
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Figure V.19: Overlap between fundamental and second harmonic  
Bandwidths in function of the transmitted bandwidth 

 
Figure (V.19) shows the variation of the overlap between fundamental and second 

harmonic bandwidths as a function of the percentage of the transmitted bandwidth, 

case of an excitation of 200KPa, 2MHz. to receive a purely harmonic signal 

component, we must transmit only 72.5% of bandwidth. In this case, the second 

harmonic signal is purely nonlinear. 
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Conclusion & Future Works 
 
VI.1 CONCLUSION 

Until recently, the development of medical ultrasound operated under the 

implicit and convenient assumptions of infinitesimal acoustics where ultrasound 

waves were assumed to propagate in a linear fashion like studied in chapter III. 

Unfortunately, these assumptions became invalid at biomedical frequencies and 

intensities used nowadays. However, it has been proven that ultrasound waves 

undergo gradual distortion in almost every medical use. The distortion is due to 

slight nonlinearities in sound propagation that gradually deform the shape of the 

wave, and results in development of additional harmonic frequencies which were not 

present at the source. 

Selective imaging of these harmonic frequencies turned out to considerably improve 

ultrasound images. This technology called tissue harmonic imaging has emerged as 

a major imaging modality over the past years. 

Ultrasound harmonic imaging, which exploits nonlinear tissues properties, has the 

advantage in reduced reverberations and artifacts due to reduced sidelobes and 

grating lobes levels, greater depth of penetration at high frequencies, and better 

resolution of the resulting image due to narrower beams. Decreased noise from 

sidelobes improves signal-to-noise ratios and consequently reduces artifacts as 

shown in chapter IV. Deleterious effects of the body wall are also reduced. It was 

seen that a clearer image could be synthesized by processing the second harmonic 

frequency instead of the frequency of the emitted pulse. 

Due to nonlinear tissues properties, these nonlinear propagation effects have 

become of major interest in diagnostic ultrasound, by reducing unwanted artifacts 

in ultrasound images and, thus, enabling physicians to make more precise 

diagnoses than was possible before. The advantages of native tissue harmonic 

imaging were recently demonstrated in various clinical applications, and a long list 

of literature is already available on that subject. In Radiology for example, it has 

showed that selective imaging at harmonic frequencies enhances the liver-lesion. 
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They also demonstrated the usefulness of harmonic imaging in obstetrics where 

clear depiction of fetal anatomy is obtained. In cardiology, it has proved that noise 

and clutter artifacts are reduced and endocardial borders are enhanced when 

imaging is made in harmonic mode. These observations clearly confirmed that 

tissues nonlinearities have a significant effect on acoustic beams used in medical 

ultrasound, and therefore bring the need to predict the influence of such nonlinear 

effects in the medical use. 

In this thesis, numerical simulation of the ultrasound propagation applied to 

medical imaging is carried out by a finite difference model of the nonlinear wave 

equation. In order to characterize the harmonic beam, a time domain solution of the 

parabolic nonlinear wave equation is used. KZK equation is traditionally applied in a 

propagation direction along the central transducer axis, and has been shown to 

model the pulse propagation satisfactorily. 

In chapter IV, the characteristics and performances of the second harmonic acoustic 

beam from a focused piston aperture are described and the physical principles 

behind tissue harmonic imaging are computed. The field properties are then 

discussed regarding image quality. 

For the full three-dimensional model, the time domain algorithm for the KZK 

equation developed by YS-Lee is used. The KZK equation is known to accurately 

describe the propagation of a finite amplitude ultrasound wave including the effects 

of nonlinearity, absorption and diffraction. The time domain algorithm has been 

shown as an accurately model of the solution of the KZK equation for the pulsed 

source. The solution is an efficient computer model for simulating nonlinear 

ultrasound propagation in tissue. This model shall enable accurate modeling of 

finite amplitude effects in modern clinical ultrasound scanners, and in particular, 

may be useful as a tool for optimizing the design of tissue harmonic imaging 

systems. 

In ultrasound harmonic imaging, an ongoing problem is that undesired signals are 

contained in the reflected waves, and that corrupt the image data which leads to the 

contamination of the obtained image. Harmonic received frequency band must not 

contain components from transmit band, and its components must sufficiently be 

separable from fundamental spectral component.  Thus, to effectively employ the 

information contained in the second harmonic of the received signal, this 
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information should be properly extracted. As a consequence, several imaging 

modalities and techniques have been developed, which are intended to acquire and 

process the harmonic information, or even to separate one kind of such information 

from another. In chapter V, five techniques are presented in where two of them, 

pulse inversion and power modulation techniques, are developed. In this chapter, a 

new technique for acquiring the proper second harmonic signal is presented. An 

optimization of the transmitted bandwidth is recommended to receive the purely 

second harmonic signal for harmonic imaging. Given a certain available bandwidth 

for the transducer, it must be decided in what band the transmitted pulse may be 

sent at, and what band the second harmonic signal should be received at. 

Spectral overlapping in transmission between the fundamental and the second 

harmonic bands must be minimal even null to avoid the transmission of frequential 

component with 2f0 (f0 is the transmitted frequency), and consequently the 

contamination of the harmonic band, and thereafter the obtained image. 

 

VI. FUTURE WORKS 

1. Modern medical ultrasound systems have a very high relative bandwidth, 

so that the emitted pulse can be just a few wavelengths long, giving high range 

resolution. In addition, the development of promising technologies such as 

capacitive micromachined ultrasonic transducers (cMUT) as an alternative to the 

currently used piezoelectric materials will most likely bring great changes to medical 

ultrasound imaging systems. In this way, a future work can be envisaged. 

 
2. Emboli classification is of high clinical importance for selecting appropriate 

patient treatment. Several ultrasonic methods using Doppler signal processing have 

been used for emboli detection and classification as solid or gaseous matter. 

The ultrasound radio-frequency signal backscattered by the emboli contains more 

information about the embolus than the Doppler signal, especially, the nonlinear 

components. Future research can be oriented to the analysis of the radio-frequency 

signals using artificial neural networks methods and Support Vectors Machines 

(SVM) in order to classify microemboli as gaseous or particulate matter. 
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