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Abstract

The problem of stability for systems governed by partial differential equations (cou-
pled wave equations, coupled Euler-Bernoulli equations, transmission wave equations) with
delay terms in the boundary or internal feedback is considered. Under some assumptions
exponential stability is established. The results are obtained by introducing an appropriate
energy function and by proving a suitable observability inequality.
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Introduction

Time delay exists in many practical systems such as engineering systems (see Abdel-
Rohman [2], [3], Agrawal and Yang [4],[5], Phohomsiri et al [35]), biological systems (
Batzel et al [6]), etc... It may be a source of instability. In fact, it is by now well known
that certain infinite-dimensional second order systems are destabilized by small time delay
in the damping (Datko et al [9], Datko [8]). On the other hand, it may have a stabilizing
effect and it could improve the system performances, (see Abdallah et al [I], Chiasson and
Abdallah [7], Niculescu et al [31], Kwon et al [14],... ).

Thus, the stability analysis of time delay system is an important subject for investigations
from both theoretical and practical point of view. The stability analysis of control systems
governed by ordinary differential equations with constant or time-varying delays has been
studied by many researchers (Kolmanovskii and Myshkis [13], Niculescu [30], Richard [37],
Gu et al [11],... ). Two methods, one is based on Lyapunov-Razumikhin functional and the
other is based on Lyapunov-Krasovskii functional | are widely used in order to find a delay
independent or a delay dependent stability conditions.

Stability of partial differential equations with delay has also attracted the attention of many
authors. Datko et al [9] analyzed the effect of time delay in boundary feedback stabilization
of the one-dimensional wave equation. They showed that an almost arbitrary small time
delay destabilize the system which is exponentially stable in the absence of delay. In Datko
[8], the author presented two examples of hyperbolic partial differential equations which
are stabilized by boundary feedback controls and then destabilized by small time delays in
these controls. Li and Liu [20] proved that stabilization of parabolic systems is robust with
respect to small time delays in their feedbacks, however stabilization of infinite-dimensional
conservative systems is not. Xu et al [39] established sufficient conditions ensuring the
stability of one dimensional wave equation with a constant time delay term in the boundary
feedback controller using spectral methods. More precisely, they split the controller into
two parts: one has no delay and the other has a time delay. They showed that if the
constant gain of the delayed damping term is smaller (larger) than the undelayed one then
the system is exponential stable (unstable). When the two constant gains are equal, they
proved that the system is asymptotically stable for some time delays. This result have
been extended to the multidimensional wave equation with a delay term in the boundary or
internal feedbacks by Nicaise and Pignotti [28]. Similarly to (Xu et al [39]), they established
an exponential stability result in the case where the constant gain of the delayed term is
smaller than the undelayed one. This result is obtained by introducing an appropriate
energy function and by using a suitable observability estimate. In the other cases, they
constructed a sequence of time delays for which instability occurs. Nicaise and Rebiai [29]
considered the multidimensional Schrédinger equation with a delay term in the boundary or
internal feedbacks. Adopting the approach of (Nicaise and Pignotti [28]), they established
stability and instability results.

Shang et al [38] investigated the stability of one dimensional Euler Bernoulli beam with
input delay in the boundary control by using spectral analysis and Lyapunov method.

The purpose of this thesis is to study the stability and stabilization of some distributed
parameter systems with time delays. We begin with compactly coupled wave equations
with delay terms in the boundary or internal feedbacks. In the second chapter, the system



Introduction

of transmission of the wave equation with a delay term in the boundary feedback is con-
sidered, whereas chapter three treats the transmission wave equation where both boundary
and internal feedbacks contain a delay term. Coupled Euler-Bernoulli equations with delay
terms in the boundary feedback controller are studied in chapter four. Finally chapter five
is devoted to coupled Euler-Bernoulli equations with distributed controllers containing a
delay term. Under some assumptions exponential stability is established.

The results are obtained by introducing an appropriate energy function and by proving a
suitable observability estimate.
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CHAPTER 1

Stability and instability of compactly coupled wave equations
with delay terms in the feedbacks

1.1. Stability of compactly coupled wave equations with delay terms in the
boundary feedbacks

1.1. Introduction. In this section, we study a stability problem for compactly coupled
wave equations with delay terms in the boundary feedbacks.
Let © be an open bounded domain of R™ with boundary T of class C? which consists of two
non-empty parts I'y and I'y such that, I' = I'; UTy with Ty N Ty = 0.
Furthermore we assume that there exists a scalar function ® € C?(Q) such that
(H.1) ® is strictly convex in Q; that is, there exists A > 0 such that

H(z)0.0 > X |0 Vz e, ©€eR",

where H is the Hessian matrix of ®.

(H.2) h(z).v(z) <0 on Iy, where h(z) = V®(z) and v is the unit normal on I' pointing
towards the exterior of €.

In 2, we consider the following coupled system of two wave equations with delay terms in
the boundary conditions:

(L.1) ug(x,t) — Au(x,t) + l(u(z,t) —v(z,t)) =0 in 2 x (0, +00),

(1.2) v (z,t) — Av(z, t) + l(v(x, t) —u(z,t)) =0 in  x (0, +00),

(1.3) u(z,0) = up(z), ue(z,0) = uy () in Q,

(1.4) v(z,0) = vo(x), ve(z,0) = vi(2) in Q,

(1.5) u(z,t) =v(x,t) =0 on I'y x (0, 400),
ou(z,t)

(1.6) 5 —oqu(x,t) — coug(x, t — 1) on I's x (0, 4+00),
ov(z,t)

(1.7) 5y = —Brog(z,t) — Povg(x,t — 7) on I'y x (0, 400),
ur(z,t —7) = g(x,t —7) on I'y x (0, 7),
ve(x, t —7) = h(x,t — 1) on I's x (0,7),

where [, a1, ao, f1 and [y are positive constants, 7 > 0 is the time delay, ug, u1, vg, v1, g and
h are the initial data, 8% is the normal derivative.

In the one-dimensional case, v and v may represent the displacements of two vibrating
objects measured from their equilibrium positions, the coupling terms +{(u —v) are the dis-
tributed springs linking the two vibrating objects. In the absence of delay (i.e. ag = 2 = 0),
the solution (u,v) of —decays exponentially in the energy space H%l () x L2(Q)x
Hlll(Q) x L?(2) (Najafi et al [27], Komornik and Rao [15]).

Stability problems for the wave equation with a delay term in the feedback has been stud-
ied by Xu et al [39] in the one-dimensional case and by Nicaise and Pignotti [28] in the
multidimensional case.

The subject of this section is to investigate the uniform exponential stability of the system
— in the case where the boundary damping coefficients ai, a2, 81 and (3o are
strictly positive.
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Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

1.2. Main result. We assume as in [28] that
(1.10) a1 > ag, B > Po.

and define the energy of a solution of (1.1) — (1.9) by

B(0) =3 [ [IVu(e.0 + ud(o.0) + Vol ) + oB(a,t) + Uulzt) = o(a, )] da

(1.11) +;/F2 /01 [pi (z,t — 7p) + &vf (z,t — 7p)] dpdT,
where p and £ are positive constants satisfying

Tag < pu < 7201 — a),
and

TP <& < T(261 — B2).

We show that if {,I';,T'2} satisfies (H.1) and (H.2), then there is an exponential decay
rate for E(t). The proof of this result is based on Carleman estimates for a system of
coupled non-conservative hyperbolic systems established by Lasiecka and Triggiani in [16]
and compactness-uniqueness argument.

The main result of this section can be stated as follows.

THEOREM 1.1. Assume (H.1), (H.2), (1.10) and (L.11). Then the coupled wave equa-
tions system (1.1) — (1.9) is uniformly exponentially stable, i.e., there exist constants M > 1
and w > 0 such that

E(t) < Me “'E(0).
Theorem [I.1]is proved in Subsection In Subsection we study the well-posedness
of the system — by using semigroup theory.
1.3. Well-posedness. Inspired from [28] and [29], we introduce the auxiliary variables
y(x, p,t) = w(x, t — mp), z(x, p, t) = ve(x,t — 7p) x €Ty, pe(0,1),t>0.
Note that y and z verify the following equations on I's for 0 < p <1 and t > 0

( yt(x7p7t) + T_lyp(xa pvt) = 07
zi(x, p,t) + T‘lzp(x,p, t) =0,
y(xuovt) = ’U,t(.f,t),Z(J),O,t) - Ut(xvt)7

y(fL’,p, 0) = g(ZL', —Tp),z(l’,p, O) = h(l‘, —Tp).

page 12



Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

Then, the system (1.1]) — (1.9)) is equivalent to

(1.12) up(z,t) — Au(x,t) + l(u(x,t) —v(z,t)) =0  in Q x (0,400),

(1.13) ye(x, p, )+7‘ Yp(x,p,t) =0 on I'y x (0,1) x (0, +00),

(1.14) vg(x,t) — Av(x,t) + l(v(z, t) —u(x,t)) =0  in Q x (0, +00),

(1.15) 2z, p,t) + 7 2,(w, pyt) = 0 on I's x (0,1) x (0, +00),

(1.16) u(z,t) = ( z,t) =0 on I'y x (0, 400),
Ou(x,t)

(1.17) 0 = —oqug(x,t) — aoy(x, 1,1) on I'y x (0, 4+00),

(1.18) 8”((9“;’ D B, t) — Ba(w, 1,1) on T's x (0, +00),

(1.19) u(z,0) = up(x), ur(z,0) = uy (z) in €,

(1.20) v(z,0) = vo(x), ve(z,0) = vy (x) in ©,

(1.21) y(x,0,t) = w(x,t), 2(x,0,t) = vz, t) on I'y x (0, 400),

(1.22) y(x, p,0) = g(z, —7p), 2(x, p,0) = h(x,—7p)  on I'y x (0,1).

Denote by ‘H the Hilbert space
H =Hp (Q) x L*(Q) x L*(T'2; L*(0,1)) x Hp () x L*(Q) x L*(T'9; L*(0,1)),

where
H%l(Q) ={uc HY(Q):u=0o0nT}.
We equip H with the inner product

> = (V@) 52w + (@)t do

T
sSSP R S N

¢
n
0
0
X
v

1 ~ ~

+M/F /0 0(z, p)0(z, p) dde+/Q(v¢(x).v¢(x)+X($)>7(x))d$
1 ~

+§/F /0 Y(z, p)Y(z, p) dpdrH/Q(g(x) — ¢(2))(C(x) — d(x)) da.

Define in H a linear operator A by

D(A) ={(¢,n,0, 6, x,%)" € (BE(A, L*(Q)) N Hp, (Q)) x HE () x L*(Ty; H'(0,1))

(B(A,L*(Q)) N H () x HE () x L*(T9; H'(0,1)) ; gi = —a1n — azf(.,
(1.23) n=10(.,0) on I'y; 99 = —B1x — Po(, 1), x =¢(.,0) on I's},

ov
where

E(AL*(Q) ={ue H(Q): Aue L*(Q)}.

(124) A(C? 7, 97 (Z)v X w)T = (777 AC + l¢ - l(? _7—_10/)7 X A¢ - l¢ + lCa _T_ldjp)T'

Then we can rewrite (1.12)) — (1.22]) as an abstract Cauchy problem in H
aw
—(t) = AW (t

{ W)= aw),

W (0) = W

(1.25)

where

1),
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Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

W(t) = (u(x7 t)’ ut(x7 t)’ y(x7 p’ t)7 'U(x, t)? Ut(x, t)? Z(x7 p? t))T7
WO = (’LL(], Ui, 9(7 _'T)> Vo, V1, h’(7 _'T))T'
We verify that A generates a strongly continuous semigroup in H and consequently we have

THEOREM 1.2. For every Wy € H, the problem (1.25|) has a unique solution W whose
reqularity depends on the initial datum Wy as follows:
W() € C([0,400);H) if Wy € H,
W(.) € Cl([O,—I—oo);H) NC([0,400); D(A)) if Wy € D(A).

Proor. We will show that the operator A defined by (1.24)) with the condition (1.10)
generates a strongly continuous semigroup in H by using Lumer-Philips Theorem (see for

instance [34], Theorem 1.4.3).
First, we prove that the operator A is dissipative.

Let,
= (Cv n, 9, Qb, X5 ¢)T € D(A)Then
U ¢
AC+ l?f —I¢ U
_ -7 0 0
AW W) = X e >
A¢p—lp+1¢ X
_Tilwp (0

1
— [ 191(0)-9(@) + (A¢(a) + Loo) ~ 16C@D(a)) do— 77 [ [ 6,00, p)0(ap) dpdr
Q I's JO
1
+ /Q V(). Vé(x) + (Ad(x) — 1¢(x) + I¢(x)x(x)] de — 7€ /F /0 oz, ) (z, p) dp dT
o /Q (n(x) — x(@))(C(x) — b() do.

Applying Green’s Theorem, we get

<AW,W)—/F2 (z )8€ ar —r /F/ 0,(x, p)0(x, p) dpdl’

0

(1.26) # [ @2t [ e vt apar.
Integrating by parts in p, we obtain

1 1
(1.27) / 2 [ oo pydpar =5 [ 1)~ (e 0],
and

1 1
(1.28) / 2 /O nle, e dpdr = 5 [ 1) — U, 0T

Inserting (1.23]), (1.27) and (1.28) into (1.26)), we find

-1
(AW, W) = — 041/ n?(z)dl —as [ 6(z,1)n(x)dl — - 62(z,1)dl
I Iy 2 Jn,
-1

#I [rt@r—py [ @ar s [ v )y dr

T Tl
2 2 ),

q/) (z,1)dl + x?(z) dT.

page 14



Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

Therefore, by Cauchy-Schwarz’s inequality we have
-1
042 T Y
(AW, W) <(~ 2 [ @)
1)

1
e TN [ e (G

From ([1.10), we conclude that (AW, W) < 0, thus A is dissipative.
Now we show that A\ — A is onto for a fixed A > 0.
Let (f,g,h,k,m,p)T € H, we seeck a W = ((,n,0,¢,x,%)" € D(A) solution of

()‘I - A)W = (fagv hv ka mvp)Tv

52 5

) w< 1) dr

or equivalently

(1.29) AC—n =,
(1.30) A —AC+IC—1p =y,
00
1.31 M+7 1 —=h
(1.31) g, =
(1.32) Ap—x =k,
(1.33) AX —Ap+1p— 1 =m,
N
1.34 A 1o =
(1.34) v+ a9p ~ P
Suppose that we have found ¢ and ¢ with the appropriate regularity, then
(1.35) n=A—f
(1.36) X = )\¢ — k.

Consequently we can determine 6 from ) with (| and v from ) with (| -

In fact, 0 is the unique solution for x € I'y of the 1n1t1a1 value problem
{ 0p(,p) = =7 M0(x, p) + Th(z, p), p € (0, 1),

9(1‘, O) = 77(90),

and 1 is the unique solution of the initial value problem :
{ wp(xup) = _T)‘w(xap) +Tp(l’,p)7 MRS FQ? P S (07 1)7

Y(x,0) = x(z).
Therefore

p
0(x, p) = n(x)e P + Te’\Tp/ h(z,0)e*do, x € Ta, p € (0,1),
0
and
p
U(z, p) = x(2)e P + 7'6_)‘7—9/ p(z,0)eNdo, x € Ty, p € (0,1),
0

and in particular

(1.37) 0(z,1) = Xe M((2) + 2o(x),
and
(1.38) Y(w, 1) = Ae V() + 21 (),

with zg and 21 defined by
1
20(z) = —f(x)e ™ + Te)‘T/ h(z,0)e’do, x €Ty,
0

1
21(z) = —k(z)e ™ + Te_)‘T/ p(z,0)eNdo, x € Ty.
0

page 15



Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

From (1.35)), (1.30), (1.36) and the functions ¢ and ¢ are verify
N ACHIC—1p =g+ M,

{ A2 — Ad + I — IC = m + k.

Problem can be reformulated as

(1.39)

/ (N2 = ACH ¢ — 1p)wy da + / (N2p — A¢ + 1p — 1O)wy dx

Q Q

(1.40) = /(g + Af)wy dx + / (m + A\k)ws dz, (w1, wsy) € H%l (Q) x H%l(Q)
Q Q

Using Green’s Theorem and recalling (1.37) and (1.38)), we rewrite the left hand side of
L) s

/ (N2¢ = AC +1C — 1gp)wy da + / (N2¢ — Ag + 1 — 1) wo dx

Q Q

= /()\2C’LU1 + VCle) dzr + / |:041()\C — f) + Oéz()\e_)\TC + Zo):| wi dI'
Q 1)

" / (\2ws + V. V) di: + / [31(A¢ — k) + Baheo + zl)} wy dT’
Q T

2

+ /Q(ZC — o) (w1 — we) dz.

Therefore

/Q()\QCwl + V(. V) do + /

AMag + a26_)‘7)(jw1 dl’ + / (A2¢w2 + V¢.Vws) dx
To Q

+ / (B + Bae ™)y dT + / (¢ = 6) (w1 — ws) da
' Q

—/(g+)\f)w1dx+/(m+/\k)wgda:—i-al fwldI‘+51/ kwq dT
Q Q

F2 1_‘2

- 042/ zowy dI' — 52/ z1wo dI’ V(wi,we) € H%l(Q) X H%l Q).
F2 F2
(1.41)

Since the left-hand side of 1) is coercive and continuous on H%l(Q) X Hlll (Q), and the
right-hand side defines a continuous linear form on H%I(Q) X H%I(Q), the Lax-Milgram’s
Theorem guarantees the existence and uniqueness of a solution (¢, ¢) € H%I(Q) X H%I(Q)

of (A1),
If we consider (wy,ws) € D(Q) x D(Q) in (1.41), then (¢, ¢) is solution in D' () x D'() of

{ N2 — ACHIC— 1o =g+ N,

(1.42)
Ao — Ap+1p—1¢C =m + \k.

Thus (¢, 6) € E(A, L(Q)) x B(A, IX(9).
We obtain from (1.41)) after using Green’s Theorem and recalling (1.42))

0 0
A(B1 + B2e ™) pwo dT" + / —Cwldf + / —¢w2dF
Ty 8y r a

5 OV

/ Mo + age ™) Cwy dl + /
Iy

1)

=1 / fwidll — 042/ zo(:v)wl dl’ + 51 / kwsy dI' — 52/ 21 (x)wg dl.
Ty Iy I I
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Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

Hence

gi = —a1n — a26(., 1),

o¢

—- =— — S5 1).

ey Bix — B29(., 1)
So, we have found (¢,n,0, ¢, x,¥)T € D(A) which verifies (1.29) — (1.34). Thus, A is the
generator of a Cyp— semigroup of contractions on H. g

1.4. Proof of the main result. We prove the Theorem for smooth initial data.
The general case follows by a density argument.
First, we prove that the energy function E(t) defined by (1.11) is decreasing.

PROPOSITION 1.1. The energy corresponding to any reqular solution of problem (1.1)) —
(1.9), is decreasing and there exists a positive constant k such that,

d
(143 B0 <k [ {0 +ubot - 1)+ of(ot) + ot - )} I,
)
where
i Qz b p O Ba & & DB
k=minda; — — — —,~— — —= B — = — >, > - =1,
2 21 271 2 2 277 1 92

ProOF. Differentiating E(t) defined by (1.11]) with respect to time, we obtain

d
aE(t) :/ [VutVu + U + V’Ut.VU “+ v + l(u - U)(Ut — Ut)] dx
Q

1
+ / / [pu(z, t — Tp)ug(z, t — 7p) + Evp(x, t — Tp)ve(x, t — Tp)] dpdl’
I'2J0

:/Q [Vue.Vu + [Au — l(u — v)]us + Vor.Vo + [Av — [(v — w)]vg + 1(u — v)(uy — v)] dx

1
+ / / iteg (.t — 7p)us(z,t — 7p) + Evrg (,t — Tp)ve(a,t — 7p)] dp D
I'xaJO

Applying Green’s Theorem and recalling the boundary condition (1.5)) -(1.7)), we get

iE(t) =— oq/ u?(z,t) dl’ — ozg/ ug(x, t)ug(z, t — 7)dl’ — ,82/ v(z, t)vg(x, t — 1) dl
dt Iy Iy Ty

(1.44)
1
— b1 / v?(xz,t)dl + / / {pug(x, t — 7p)u(x, t — 7p) + Evy(x,t — Tp)ve(2,t — TP) }dpdl.
I I'2J0

Now, we have

ug(x, t —Tp) = —T_lup(m,t —7p),

"Ut(.’l?,t - Tp) = _Tilvp(x7t - Tp):

which lead to

ug(z,t —Tp) = T_Qupp(l“a t—1p),
v (@, t — 7p) = T 20,p(z,t — Tp).

Therefore

1
/ / {pup(x,t — mp)ur(x, t — 7p) + Evy(w, t — Tp)ve(x, t — Tp)} dpdl
I'yJ0

1
= —7'3/F /0 {pupp(z,t — Tp)uy(x,t — 7p) + Evpp(z,t — Tp)vy(x,t — 7p)} dpdl
2

-3 -3
=T QMAQ{ui(x,t—T) —up(z, )}l — é/rg{vg(x,t—T) — v2(x, 1)} T,
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Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

that is,

1
[ [ meatant = mppuste.t = 1) + €vulit = 7o)t = 7)) dpr =
I'2JO

T 2 2 T 2
(1.45) {ug(z,t) —ui(x,t —7)}dl' + {Uf (x,t) — v (x,t — 1)} dl.
2 Ty 2 T'o
Introducing (1.45)) into (|1.44]), we get
d
—FE(t) =— al/ u(x,t) dl’ — [31/ v?(z,t)dl — ag/ ut(x, t)ug(z,t — 1) dl
dt T» Ts Iy
7'_1,u
— ,82/ ve(x, )y (x, t — 7)dl + / {uf(a:, t) — u?(x,t —7)}dl
F2 2 F2
I 2
(1.46) + 5 {vt (z,t) —v;(x,t —7)}dl.
1)

From ((1.46)), applying the Cauchy-Schwarz inequality we obtain
d —1 —1
LBt <(—ar+ 224 1T )/ Wty dD + (22 HT )/ (.t —7)dT
dt 2 - 2 2 '),

-1
e 280 [penar (2 -0 [ et

which implies

d
th( )< —k {uf(mt) + u?(a:,t —7)+ vtz(:z:,t) + vtz(x,t —7)}drl,
s

with k positive constant verifies,
k:min{al—%—u,u—aaﬁl_ﬁ?_g 6_52}‘

0

Now, we give an observability inequality which we will use it to prove the exponential
decay of the energy E(t).

PROPOSITION 1.2. For any regular solution of problem (.1 -, there exists a pos-
itive constant C depending on T such that

(1.47) E(0) §C/T {uf(z,t) + i (2, t — 1) + v} (2, t) + vi(z, t — 7)} dT dt.
1)

Proor. We rewrite
E(t) = &E(t) + Ea(t),

where
E(t) = ;/Q {|Vu($,t)\2 + u(x,t) + \Vv(:r,t)]Q +02(z,t) + l(u(z,t) — v(x,t))Q} dz,

and

/F/ [l (2.t — 7p) + €0 (2.t — 7p)} dpdT.

E,4(t) can be rewritten via a change of variable as

t+7
=5 / N {;mt ) + &v2(z, s — 7)} dl'ds.

From the above equality, we obtain

(1.48) ) < C/ {uf(z ) +vi (2,8 — )} dl'ds.
Iy
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Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

for 0 <t+ 7 <7T. Here and throughout the rest of the section C' is some positive constant
different at different occurrences.
We have from ([16],[19] and [25], see the Appendix B), for T sufficiently large and for any

e>0
mgcAéA{B<xw2

2 2
+ C {||u||L2(0’T;H1/2+e(Q)) + ||U||L2(O,T;H1/2+€(Q))} )
Inserting the boundary conditions (1.6) and ([1.7) into the above inequality, we have

—l—uf(a:,t) + ‘gZ(x,t)

2
+ vi(, t)} dT dt

T
£(0) SC/ {u?(ac, t) 4+ u(z,t — 1) 4+ v2(x,t) + vi(z, t — )} dldt
1)

(1.49) + C LIl 20 rsmvzveqeyy + 10120,z rzveqay b -
Combining (|1.48]) with (1.49)), we obtain

T
(0) §C’/ {uf(azjt) +u(x,t — 1) 4+ vi(x,t) +vi(x,t — 7)} dU'dt
2

(1.50) + C{HUH%2(O,T;H1/2+€(Q)) + HU|@2(0,T;H1/2+6(Q))} .

To obtain the desired estimate 1} we need to absorb the lower order terms ||u||iQ(O,T;H1/2+€(Q))
and Hv||%2(0 T:H1/2+¢(q)) O the right-hand side of 1) We do this by a compactness-

uniqueness argument.
Suppose that (1.47) is not true. Then, there exists a sequence (uy, v,) of solution of problem

(EI)-([L9) with,

U (2,0) = ud (x), Unt (2,0) = ul(x), up(2,t —7) = ¢2(2,t — 7)
v (,0) = v2(2), vnt(x,0) = vl (), vp (2, t —7) = WO (2, t — 7).
Such that

(1.51) E,(0) > n/OT g {uit(x,t) + unt( t—7)+ Unt(ac t) + vnt( —7)}dl'dt

where FE,,(0) is the energy corresponding to (uy,,v,) at the time 0.

From (L50),

T
En(0) < C’/ (02, (2, 8) + (@, £ — 7) + 02, (2, ) + 2, (2, — 7)} dT dt
o

2 2
(1.52) Ol by * 10012, }

From (1.51)) together with (1.52)), yields

T
n/ {uli(,t) +upy (2, t — 7) + vy (. t) + vy (x, t — )} dl dt
'y

2(0,T; H7+5(Q))

T
< C/ {uit(:z:, t) + uit(:z, t—71)+ U?Lt(l‘, t) + vit(x, t—7)}dldt
Iy

+Cllunl?, + [lvn|? }

OTH2+5(Q)) L2(0TH2+€(Q))

That is

T
(”_C)/ . {uy(z,t) +upy(w,t — 7) + iy (2,t) + v}y (z,t — 7)} dD dt
2

(1.53) < C{JJunl?

2
L2(0,T;H3+(Q)) i "H

2

2(0,T; H2+5(Q))
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Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

Renormalizing, we obtain a sequence (uy,vy,) of solution of problem (1.1)) — (1.9) verifying

2 2 =
(1.54) im0 sy 1 o g3 egy = 1
and
(1.55)
T
/ {up(,0) + uny (2,8 — 1) + vpy(2,8) + vy (2, t — )} dT dt < n forall n>C,
0 JTg .

From ([1.52)), (1.54) and (1.55)), we deduce that the sequence (u2, ul, g% v0 vl hY)isbounded

n ny Ynsr'in

in H. Then there is a subsequence still denoted by (ul,ul, g% v9 vl hO) that converges

weakly to (u®,ut, g% 0% vl h0) € H Let (u,v) be the solution of problem (1.1)) — (1.9) with
initial condition (u”,u', g% v% v, h%). We have from Theorem

(u,v) € C([0,+00); H, () x C([0, +00); Hf, ().

Then
(tn, vn) — (u,v) weakly in L2(0,T; H%I(Q)) x L*(0,T; H%I(Q))

Since H%l(Q) is compactly embedded in H %Jre(ﬂ), there exist a subsequence which for
simplicity of notation, we still denote by (un,v,) such that,

(tn, ) — (u,v) strongly in L2(0, T; Hz2+5(Q)) x L2(0, T; H2¢(R)).

So, (1.54) leads to
2 2 —
(1.56) ||u||L2(o,T;H%+5(Q)) * HU”L2(0,T;H%+E(Q)) =1
and from ([1.55)), we have
T
/ {uf(z,t) +ui(z,t — 1) +vi(z,t) + vf(z,t —7)} dT dt = 0.
0 Jrs
Then
ug(x,t) = ve(z,t) =0 on Ty x (0,7),
e du(z,t) _ 9u(,1)
u(z,t v(x,t
= - =0 r 0,7).
v v on T2 (0.7)
setting ¢ := wg, ¥ 1= vy, thus (@, 1)) satisfies

(Ptt(xat) - A‘P('x?t) + l((p(&?,t) - ¢(9C775)) =0 in Qx <O7T)7
Y (z,t) — Av(x,t) + 1(Y(x,t) — e(x,t)) =0 in Qx(0,7T),

(1.57) o(z,t) =z, t) =0 on I x(0,7),
do(x, oY(x,
Soé:z t) — w(;i t) =0 on ]__‘2 X (O,T)

Problem ([1.57) implies to
(0 +P)u(z,t) = Al +9)(z, 1) =0 in 2 x(0,7),

(p+9)(x,t) =0 on T x(0,7),
‘Wzo on Ty x (0,7).

Therefore, from Holmgren’s uniqueness Theorem (see [21], p.92, Chap.I, Theorem 8.2), we
conclude that

o(z,t) +(z,t) = 0.
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Chapter 1. Coupled wave equations with delay terms in the boundary feedbacks

So, we can rewrite the problem (1.57) as
ou(z,t) — Ap(x,t) + 2lp(z,t) =0 in Qx(0,7),

o(z,t) =0 on I'x(0,7),
Ov(x,t
“1{(91/):0 on Ty x (0,T).

We conclude from [19] and [40] that
oz, t) =Yz, t) =0 in Qx(0,7).
This implies
u(z,t) = u(z),v(z,t) = v(x).

Thus (u,v) verifies

u(z) =v(x) =0 on I,
Ou(z) Ov(x)
pu— = F .
ov v 0 on 2
The solution of the above problem is (u,v) = (0,0), which contradicts (1.56)). Then, the
desired inequality (1.47) is proved. O

Now, we show the exponential decay of the energy

From , we have
E(T) - E(0) < —k /OT A {uf(z,t) +uf (v, t — 7) + 07 (2,t) + vf (v, — 1)} dT dt,
and the observability inequalit; leads to
E(T) < E(0) < C/OT A {uf(z,t) + uf(z,t — 7) + 07 (2,t) + vf(z,t — 1)} dT dt
2

< Ck™H(B(0) — E(T)),
S0
Ck~!
< — .
14+ Ck! E©)
Since we have 0 < C/(k + C) < 1, the desired conclusion follows now from ((1.58]).

(1.58) E(T)
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Chapter 1. Coupled wave equations with delay terms in the internal feedbacks

1.2. Stability of compactly coupled wave equations with delay terms in the
internal feedbacks

1.1. Introduction. In this section, we study a stability problem of compactly coupled
wave equations with delay terms in the internal feedbacks.
Let Q be an open bounded domain of R” with a boundary I of class C? which consists of
two non-empty parts I'; and I's such that, I' =1y UT» with TNy =0.
Furthermore we assume that there exists a scalar function ® € C?(Q) such that
(H.1) ® is strictly convex in Q; that is, there exists A > 0 such that

H(z)0.0 > X |0 Vz e, ©eR",

where H is the Hessian matrix of ®.

(H.2) h(z).v(z) <0 on Iy, where h(z) = V®(z) and v is the unit normal on I' pointing
towards the exterior of (2.

We consider in €2 the following coupled system of two wave equations with delay terms
occurring in both internal feedback:

u(z,t) — Au(z, t) + l(u(x,t) — v(z,t))
)

(1.59) + a(x) (rue(x, t) + asug(x, t — 7)) =0 in Q2 x (0, +00),
v (2, t) — Av(z,t) + 1(v(z, t) — u(z,t))

(1.60) + a(x) (Brve(z, t) + Pavg(x, t — 7)) =0 in  x (0, +00),

(1.61) u(z,0) = up(z), ur(z,0) = uy(z) in Q,

(1.62) v(z,0) = vo(x), ve(z,0) = vy (2) in Q,

(1.63) u(z,t) =v(x,t) =0 on I'y x (0,400),

(1.64) 8“;‘1"]/’ b _ &’gi’t) =0 on Ty x (0, +00),

(1.65) ug(x,t —7) = gz, t — 1) in Q x (0,7),

(1.66) ve(z,t —7) = h(z,t — 1) in Q x (0,7),

where [, a1, as, 1 and By are positive constants, 7 is the time delay, ug, u1,v9,v1,9 and h
are the initial data, % is the normal derivative, a(.) is a function in L% () such that

a(z) >0 ae. in Q and a(z)>a >0 ae in w,

where w C € is an open neighbourhood of T's.
The subject of this section is to investigate the uniform exponential stability of system

(1.59) — (1.66]) in the case where the interior damping coefficients a, g, 1 and [y are
strictly positive.

1.2. Main result. We assume as before that

(1.67) a1 > g, B> P,
and define the energy of a solution of (1.59) — (1.66) by
1
F(O) = [ [I9ule 0 + i (o.0) + [Fo(a, ) + 6P a,t) + L (ula,t) — v(z,0)*] dao
)
1 1
(1.68) + 2/ a(ac)/ (i (.t — 7p) + v (z,t — 7p)] dpdz,
Q 0
where

Tag < < 17(200 — ),
and

T2 < § < T(261 — B2).
We show that if {Q,T'1,T'2} satisfies (H.1), (H.2), then there is an exponential decay rate
for F(t).
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Chapter 1. Coupled wave equations with delay terms in the internal feedbacks

The proof of this result as for the problem with boundary feedback by using a suitable
observability estimate and using a compactness-uniqueness argument.
The main theorem of this section can be stated as follows.

THEOREM 1.3. Assume (H.1), (H.2), (1.67) and (1.68). Then the coupled wave equa-
tions system (1.59) — (1.66|) is uniformly ezponentially stable, i.e., there exist constants
M > 1 and w > 0 such that

F(t) < Me “'F(0).

Theorem [1.3]is proved in Subsection In Subsection we study the well-posedness
of system ([1.59)) — (1.66]) by using semigroup theory.

1.3. Well-posedness. We set
y(x, p,t) = w(x, t — mp), z(x, p,t) = v(x,t —7p) € Q, pe(0,1),¢t>0.

Problem ([1.59) — (1.66]) is equivalent to

ug(z,t) — Au(x, t) + l(u(z, )—v(a: t))

(1.69) + a(z)(aque(z, t) + ay(z,1,t)) = in Q x (0, +00),

(1.70) yi(z, p,t) + 17 1y, p,t) = 0 in Q x (0,1) x (0,4+00),
v (z,t) — Av(z, t) + l(v(x,t) —u(x t))

A7) +a@)(Broa t) + Bre(a, 1 t)) in Q x (0, +0),

(1.72) zi(w, pt) + 7 2y (w, pot) = in 2 x(0,1) x (0, +00),

(1.73) u(z,t) =v(x,t) =0 on I'1 x (0,400),

(1.74) (9uéa;, 2 = (%éa;, 2 =0 on I'y x (0, 4+00),

(1.75) u(x,0) = ug(z), ug(x,0) = uq(x) in Q,

(1.76) v(z,0) = vo(x),v(x,0) = vy () in Q,

(1.77) y(,0,t) = ug(x,t), 2(2,0,t) = ve(x, t) in Q x (0, +00),

(1.78) y(xz, p,0) = g(x,—7p), 2(x, p,0) = h(x, —7p) in Q x (0,1).

Denote by H the Hilbert space
H =H} (Q) x L*(Q) x L*(; L*(0,1)) x HE () x L*(Q) x L*(Q; L*(0,1)),

where
Ht (@) ={ue H(Q):u=0o0nT;}.
We endow H with the inner product

0 >: [ (V@58 + i) de

—
TEX I N
RSN

/ / 0(z, p)i(x. p) dp di + / (Vé(2).Vé(x) + x(@)F(x)) dx
. /Q a(z) /0 bz, p)P(e, p) dpde +1 /Q () — (@) (x) — d(x)) da
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Defined in H a linear operator A by
D(A) ={(¢,n.0,¢,x,9)" € (H*() N Hr, () x Hr, () x L*(Q; H'(0,1)) %

(H*(Q) N H () x HE () x L*( HY(0,1)); gi gf =0on I'y
(1.79) n=0(.0),x = %(.,0) in 2}.
A(C? 7, 97 (b: X Qp)T = (777 AC + l¢ - lC - a(aln + 0629(., 1))7 _T_lgpa
(1.80) X A =16 +1¢ — a(Bix + Bavo(, 1)), =7 1)
Then we can rewrite — as an abstract Cauchy problem in ‘H
d
(1.81) { SW(D) = AW (0)
W(0) = Wy,
where

W(t) = (u(x, ), ur(z,t), y(@, p,t), v(x, ), ve(, 1), 2(x, p, 1)),
WO = (uo, ui, g(., —.7'), Vo, V1, h(., —.T))T.
We verify that A generates a strongly continuous semigroup in ‘H and consequently we have

THEOREM 1.4. For every Wy € H, problem (1.81) has a unique solution W whose
reqularity depends on the initial datum Wy as follows:

W() € C(]0,400);H) if Wy € H,
W() e CY[0,400);H)NC([0,400); D(A)) if Wy € D(A).

PrOOF. We will show that the operator A defined by with the condition
generates a strongly continuous semigroup in H by using Lumer-Philips Theorem (see for
instance [34], Theorem 1.4.3).

First, we prove that the operator A is dissipative.
Let,

W =(¢,n,0,0,x,¥)" € D(A). Then
(AW W) =/Q [Vn(2).V{(z) + (A¢(x) + lp(x) — I{(z) — a(z)(aan(z) + a2b(z, 1))) n(x)] dz

+ /Q [Vx(@).Vé(z) + (Ad(x) — l¢(x) + 1¢(x) — a(z)(Bix(x) + P2ip(z, 1)) x(2)] dx

1
T /Q (n(x) — x(2))(C(x) — d(x)) dz — 7~ Lp / o(z) /O 0,(x, )0, p) dp da

Q
1
— 776 [ ata) [ wnle it ) dp e
By using Green’s Theorem, integrating by parts in p and recalling (1.79)), we get
(AW, W) = — a1/ a(x)n*(z) dz — a2/ a(x)n(x)f(x, 1) dx — ﬁl/ a(x)x?*(x) dx
Q Q Q

-1

_ /82/a(:c)x(x)¢}($, 1)dx — T 5 s /Qa(x) 0%(z,1) — 6%(x,0)] dz
_15

2)[W? (2, 1) — ¢*(z,0)] dz,
from which follows using the Cauchy-Schwarz inequality

« 71 « 1
(AW, W) <(—ay + =2 M)/Qa(x)UQ(x) do + (22 — M)/Qa(a:)QZ(x,l)dx

2 2 2 2

,1 7_71
(o 2+ 758 [a@n@de s (2 -5 [ a@ ) ds
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From (1.67)), we conclude that (AW, W) < 0, thus A is dissipative.
Let’s show now that Al — A is onto for a fixed A > 0.
Let (f,g,h,k,m,p)T € H, we seek a W = ({,n,0,6,x,%)" € D(A) solution of

(M — AW = (f,g,h,k,m,p).

or equivalently

(1.82) X—n=],
(1.83) A — AC+1¢ = lg + a(ann + azb(., 1)) = g,
de

1.84 = =
(1.84) AN+ T i h,
(1.85) Ap—x =k,
(1.86) AX — Ad+1p — I+ a(Bix + B2¢(., 1)) = m,

1 dy
1. 127 .
(1.87) M)+ T ap D
Suppose that we have found ¢ and ¢ with the appropriate regularity, then
(1.88) n=A -1
(1.89) X = Ao — k.

Consequently we can determine 0 from (1.84) with (1.79) and + from (1.87) with (1.79).

In fact, 6 is the unique solution of the initial value problem :
0p(x,p) = —7M(x, p) + Th(z,p), z € Q, p € (0,1),
0(z,0) =n(x), z € Q.

And 1 is the unique solution of the initial value problem
¢p(xap) = 77—)‘1#(277/)) + Tp(:E,p), T e Qv Y € (Oa 1)7
P(x,0) = x(x), z € Q.

Therefore

p
0(x, p) = n(x)e P + Te_’\Tp/ h(z,0)eNdo(z), z € Q, p € (0,1),
0

and

p
Wz, p) = x(@)e P + e / p(@,0)do(z), w € Q, p e (0,1),
0

and in particular
0(z,1) = Xe M¢(x) + 20(x),
(1) = AV G(@) + 21 (x).
with zg and z; defined by

1
20(x) = —f(2)e ™ + Te_)‘T/ h(z,0)e*do(z), © € Q,
0

1
z1(x) = —k(x)e ™ + Te_)‘T/ p(z,0)eNdo(z), = € Q.
0

From (1.83), (1.86), (1.88) and the functions ¢ and ¢ verify
{ NC—ACH I — 19+ alaan + a20(.,1)) = g+ Af,
26— Ap+1p—1¢ + a(Bix + B, 1)) = m+ Ak.

(1.90)
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Problem can be reformulated as
/Q (2¢(x) — AC(@) +1¢(x) — 16(x) + a(@)(o1n(z) + a20(z, 1)) (x) da
" /Q (26(x) — Ad(x) +16(x) — IC() + a(@) (Brx(z) + Batb(z, 1)))wn(z) de

- /Q (9(2) + M (@))wi () d + /Q (m(x) + Ak(@))wa(x) dz,  (wn,wn) € HE (Q) x HE (©)

Using Green’s Theorem and recalling (1.79), we rewrite the left-hand side of the last equality
as follow

/Q (N*¢(2) = A¢(x) + 1¢(x) — Ig(x) + alz) (aan(z) + az0(z, 1)) wi (z) dx
+ /Q ()\qu(x) — A¢(z) + lp(x) — () + a(x) (Bix(z) + B2)(z, 1))) wa(z) dx
= / (NCwy + VC.Vuwy) da +/ a (al()\C — )+ as(Me™¢ + z0)> wy dz
Q Q
+ /Q()\Q¢w2 + Vé.Vws) dx + /Q a (51()\¢ — k) + Ba(Ne M x + zl)> wo dx

+/Q(zg—z¢>)w1 das+/g(l¢—l<)w2 da.
Therefore

/Q(A?g‘wl + V¢ V) do + /

Aa(ag + age_)‘T)Cwl + / ()\2925102 + V¢.Vws) dx
Q Q

+/ Aa(B1 + Bae™ ) pws dx+/l(§—¢)(w1—w2)da:
Q Q
—/Q(g—l—)\f)wld:n—i—/Q(m—&-)\k:)wgdx—i-oq/

afwidx + By / akwsy dx
0

Q
- ag/ azow dr — Bg/ azywy dr V(wy,ws) € H%I(Q) X H%I(Q)
Q Q
(1.91)

Since the left-hand side of 1) is coercive and continuous on H%l(Q) X H%l (), and the
right-hand side defines a continuous linear form on Hlll(Q) X H%l(Q), the Lax-Milgram’s
Theorem guarantees the existence and uniqueness of a solution (¢, ¢) € H%I(Q) X Hlll(Q)
of (1.91).

If we consider (w1, ws) € D(Q) x D(Q) in (L.91)), then (¢, ¢) is a solution in D' (Q) x D'(Q)
of

{ A2 = ACHIC =1+ alan + az0(., 1)) = g + \f,
(1.92)

Ao —Ap+16 —1¢+a(Bix + Bot(, 1)) = m + k.

Thus (A¢, Ag) € L?(Q2) x L3(Q) .
From (1.91)) after using Green’s Theorem and recalling (1.92)), we obtain

¢ _ 09
—=——=0 [s.
dv  Ov on 2
So, we have found ({,n,0, 6, x, )" € D(A) which verifies (1.82)) — (1.87).
By Lumer-Phillips Theorem, A generates a Cp— semigroup of contractions on H. ]

1.4. Proof of the main result. We prove the Theorem for smooth initial data.
First, we prove that the energy function F'(t) defined by (1.68) is decreasing.
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PROPOSITION 1.3. The energy corresponding to any regular solution of problem (1.59)) —
(1.66)), is decreasing and there exists a positive constant C' such that,

(193 5F0 = =C [ ao) i)+ et = 1)+ o) +of (ot = 1)} da,

C:min{al—aQ—M M—%,ﬁl—&—f,g_ﬁz}.

ProOF. Differentiating F(t) defined by (1.68) with respect to time, applying Green’s
Theorem and recalling the boundary condition (1.73|) and (1.74)), we obtain
d
th( ) =— al/ a(z)u?(z,t) de — ag/ a(z)ug(z, t)u(x, t — 1) dz
Q

Q

- 52/ a(x)vi(x,t) dz — By /Q a(z)ve(z, )vy(x,t — 7) dx

where

(1.94) // x){pup(x,t —p)ur(x,t —7p) + vy (z,t — Tp)ve(x,t — 7p)}dp da.
Now, we have
1 1
// ug(x,t — Tp)uy(z,t — 7p) dpdx + // v(x, t — Tp)vy(x,t — Tp)dpdx =
QJOo

-1 —1

(1.95) 77 Q{uf(x,t)—uf(x )}dlurT A {v2(z,t) — v2(z,t — 7)) du.

Insertion (1.95) into (1.94) and applying Cauchy-Schwarz inequality, yields

1 (67 1
d a )/Qa( z)ul(z,t) dx + (72 _H )/Qa(a:)u?(a:,t—ﬂ dx

ZF(t il
dt () =(-a +2+ 2 2 2

Bo &7

+(= 2 2

@—ETil axv2$ — T7)dx
) [atantte.nde+ (2 -0 [ a@piet -

which implies
d

th( ) < —C/Qa(;v){uf(x,t) +u(z,t — 1) 4+ v (x,t) + vi(z, t — 1)} da,

C:min{al—az—'u ﬂ—%,ﬁl_&_i ‘5_52}

with

0

Now we give an observability inequality which we will use it to prove the exponential
decay of the energy F(t).

PROPOSITION 1.4. There exists a time T such that for all T > T%, there exists a
positive constant C (depending on T) such that

T
(1.96)  F(0) < C/o /Qa(af) {uf(z,t) +uf (2, t — 7) + 07 (2,t) + vf (v, t — 1)} dx dt,

for any regular solution of problem (1.59) — (|1.66]).

PROOF. We rewrite F(t) = Fy(t) + Fy(t),
where

R0 =5 [ [IVul@ 0 + @) + Vol +oF(e.t) + lu(e. ) — v(a, )] da,

and

1
Fit) = 5 [ ata) [ et = o)+ odat = o) dpo.

page 27
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By a change of variable, we obtain for T" > 7

(1.97) F4(0) < C’/ a(x) / {Ut ) +vi(x,t —7) )} dt du.
Q
Now, we decompose the solution (u,v) as follows
u=y+y,v==z+2,

where (y, z) solves

ytt(xvt) —Ay(:c,t)—l—l(y(x,t)—z(m )) =0 InQx ( —|—OO),
zi(x,t) — Az(z,t) + 1(z(z,t) — y(z,t)) =0 in Q x (0, +00),
(1 98) y(ZL‘,O) = UO(:E)ayt(x> O) = ul(x) in €2,
' 2(%,0) = vo(x), 2e(x,0) = vi(w) in €,
y(x,t) = z(z,t) =0 on I'y x (0, 400),
Qi) _ Ozzi) _ on Ty x (0, +00),

and (7, z) is the solution of :
(1.99)
( y]tt — Ay + 1y —2) + a(z)(aque(z, t) + ague(z,t — 7)) =0 in Q x (0,400),
Zuw — AZ + 1(Z —y) + a(z)(Brv(z, t) + favg(z,t — 7)) =0 in Q x (0, 400),
0
0

(.CE 0) - yt( 70) in Qa
Z(x,0) = z(z,0) = in 0,
y:z:o OnF1X(O,+OO),

%22%20 on I'y x (0, +00),
Denote by £(t) the standard energy of (1.98)), that is

1
£lt) = / {IVy(@ ) + 97 (2, 8) + V@, O + 22 (2, 6) + U(y(@, 1) — 2(x,1))*} da,
Q
and by £(t) the standard energy of (1.99),

/{|Vy 2 O+ T )+ [VE@ D + () + 1§, 1) — Fa, 1)) da
Concerning £(0), we have the following result

PROPOSITION 1.5. There exists a time Ty such that for all T > Ty, there exists a positive
constant Cy (depending on T) for which

T

(1.100) £(0) < Cl/ /{yf(x,t) + 27 (2, 1)} dx dt,
0 w

for any regular solution (y, z) solution of (1.98)).

PROOF. We proceed as in Nicaise and Pignotti [28].
So, let wp, w1 be open neighbourhoods of I's such that

(1.101) wDwy Dwy DIy
Let ¢ be a smooth function such that
(1.102) 0<ep(x) <1, =0 on  Q\wo, p=1 on wi.
Then (¢y, pz) verifies,
(ey)u — Alpy) = F(y) + f(2),
(p2)u — Alpz) = F(2) + f(y),

(py) = (pz) =0 on I't x (0, 400),
(1.103) a((;oyy) - 8(8‘7) =0 on T x (0, +-00),

where F(y) = —yAp —2Vy.Vo —lye and f(y) = lyp.
We apply to (¢y, pz) Proposition 2.2.1. of [16]. Let us recall some notation from ([16],
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[18]).
Denote
1
—_P 5
(1.104) Ty =2 <w> ,
where X as in assumption (H.1). Define the function ¢ : Q@ x R — R by
T\ 2
(1.105) d(x,t) = P(x) —c (t - 2> ,

where T' > Ty is fixed and ¢ is a constant chosen as follows. From ([1.104)), there exists a
constant 0 > 0 such that

max & () + 46 < T2

el

For fixed d, there is ¢ such that
(1.106) max ®(z) +46 < cT?,  ce (0,)).

z€eQ
Note that
(1.107) ¢(z,0) < =6 < 0;¢9(x,T) < =5 <0, uniformly in z € Q.
We remark that ¢ satisfies:

T
(1.108) dr(x,t) = —2¢(t — 5)7 b = —2¢;  ¢(x,0) =cT; ¢(x,T) = —CT,
div(e?®h) = e¥[y|h|*> + divh],  V(e7?) = 7??V¢.

We have
T T Py
/0 /F ewa(g’;y) [V (py).h — ¢i(@y)s] dT dt + /0 /F ewa(g’;)w(@z).h — ¢i(p2)4] dT dt
1 [T 1t
+ 2/0 /FeWS [(gpy)? - ]V(gpy)m h.vdl dt + 2/0 /Few [(goz)f — |V(<pz)|2} h.vdl dt
T T
= / / CHYV (py).V(py) dz dt +/ / P HY (02).V(pz) dx dt
0 Q 0 Q
17 . 17 _
w5 | [ ent = IVenPlav@m drdee g [ [0 = 9(2)) div(en) do i
T T
w3 | [t +19nP] @ ondzarr g [ [ Tt + 19627 @000 dadt

T

0

—27/T/ 6”¢h-V(¢y)¢t(ys@)tdmdt+W/T/ e’ (h.V(py))? dfﬂdt—% [/Qe”%tlv(soy)\%}
T

—27/ /ew’hv 0z)Pe(z0)t dxdt—i—’y/ /ew 2 dxdt — ; [/ew@w(w)\? dx}
Q 0

v [ (h Vi) - 0r(en) ) de v [ (h Vip) - joute) (soz»dx]T

0

/ / 2)] €7 [V(py).h — ¢e(py):] du dt
(1.109)

- /0 /Q F(2) + f)] % [V(p2).h — dulip2)i] dadt.
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Inserting the boundary conditions (1.103]) on the left-hand side of (1.109)), we obtain

1 1
BTwlx, 22/ ew(%)%-” d¥ + / e (y; — |Vyl*)hvdS
1 v 2 Yo

1 0z 1
— [ () hvde / V(22 — Hhvdx.
+2/Ele (81/) v +2 226 (zf — |Vz|9)hv
Then

T T
BTwlrx o) <c /0 [V P + 192+ /0 [+ ava

T
(1.110) +c/ /{;f + 22} dt dz 4 e707E(0).
0 Jo
Now, consider another smooth function ¢ such that
(1.111) 0<¢(x) <1, =0 on Q\w, =1 on  wo.
We have

T T
/ /(ytt — Ay)pye? da dt = / /l(z — y)hye?® dax dt.
0o Ja 0 Ja

Integrating by parts, we obtain
T T T
/ /¢|Vy|267¢dmdt: - [/wyytewda:} +/ /yf@bewdazdt
0 Ja Q 0 0 Jo
T T
+/ /vyﬂﬂye”%t dl'dt—/ /Vy.V(weW’)ydxdt
0 JOQ 0 JQ
T
+/ /l(z—y)wyewda:dt
0 JQ
T T
= - [/ Yyyre?? dl} +/ /y,?@bew’ dz dt
Q 0 0o JQ
T T
+/ /vytwyW%t diUdt—?/ /ewy\/JV(\/a).Vyd:vdt
0 Ja 0 Jo

T T
—/ /way.Vew da:dt—i—/ /l(z—y)wyew’ dx dt.
0 JQ 0 JQ

Applying Cauchy-Schwarz inequality together and Poincaré’s inequality and recalling the
fact that the energy £(.) is conserved, we obtain

T T
//w{wyu\Vz|2}ev¢dxdtgce—5vg(0)+;/ /w{\Vg/!Q—HVz\g}ewdmdt
0 Q 0 Q

T T
+c/ /{yf—sz}dxdt—kc/ /{y2+z2}da¢dt.
0 Jw 0 JQ

T T
/ / {IVy|? + V2|2 e dz dt < ce™TE(0) + c/ /{yt2 + 22} da dt
0 wo 0 w

Consequently

T
—i—c/ /{y2 + 22} da dt.
0 Jo
Inserting the last inequality in (1.110)), gives
T T
(1.112) BTwls, <c/ /{yf + 22} da dt + c/ /{y2 + 22} dt dx + e 97E(0).
0 Jw 0 Jo
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From Proposition 3.3. of [16], we have

0 0z
BTw(y, z)|s = BTw(y)|s + BTw(z)|s + KTJ,C,(;/ \—yyt + —2z|d%,
» ov ov
and
BTw(y, 2)|s + constr{19ll&o.mr2y) + 12180122000} > KE(O),
2C
where K = (1 — ¢ — —=L)Kyy 4, ¢" — C1Te (1 + €Cr7T).
T
Then
(1.113) BTwls, > K&(0) — ConStT,T{HZ/H%’([O,T];LQ(Q)) + HZH%‘([O,T};L?(Q))}'

From (1.112)) and (1.113) we obtain

T
(L114) 0 <1 [ [ Rant) + 2t dode+ Ol raeny + 12l mon

Now, we prove by a compactness-uniqueness argument that there exists a constant C7; > 0
such that

T
(1115 ol + 1lEormen <€ [ w0 + e}
Assume that there exists a sequence (yn, z,) of solutions of problem with
Yn(,0) = Yo (@), yne (2,0) = yp(2), = €Q,
2n(2,0) = 22(x), 20¢(2,0) = 2L (), = €.
such that

2 2
lynllco 2@ + 1znllcorzeoy =1 n=1,2,.;
T
(1.116) /0 / {ygt(x,t) + zgt(x,t)} drxdt — 0 as n — 400

Since each solution satisfies (1.114)), we deduce from (1.116]) that the sequence (y9, 3}, 20, z1)
is bounded in H} (Q) x L*(2) x H}: () x L*(€2). Hence there is a subsequence still denoted

by (2, yk, 20 21) which converges weakly to (y°,y%, 2%, 21). Let (y,z) be the solution of

problem (|1.98)) corresponding to such initial conditions. We have
(y:2) € C(0,T; Hy, () x C(0,T; H, ().
It then follows that
(Yn, 2n) — (y, z) weakly in C(0,T; Hlll (Q)) x C(0,T; Hlll (Q)).

Since H%I(Q) is compactly embedded in L?(), there exist a subsequence which for sim-
plicity of notation, we still denote by (yn, z,,) such that,

(Yn, 2n) — (y, 2) strongly in C(0,T; L*(Q)) x C(0,T; L?(£2)).

So, (1.116)) leads to

(1.117) HyH?)(o,T;m(Q)) + HZH?J(O,T;L?(Q)) =1,

and

T
/ /{yf(:c,t) b 2(2, ) }da dt = 0.
0 w
Then
y(z,t) = z(x,t) =0 in wx(0,7),
which means
y(x,t) = z(x,t) =0 on T x (0,7),
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setting ¢ := y, 1 := 2, thus (p,¢) satisfies
eu(z,t) — Ap(z,t) +1(p(z,t) —¢(z,t)) =0 in Qx(0,T),
’lﬁtt(l',t) - Alﬁ(x,t) + l(w(xat) - QO(.T,t)) =0 in Qx (OvT)a

(1.118) o(x,t) = p(z,t) = 0 on I'x(0,7),
gf(x,t):gqf(x,t):() on Iy x(0,7).

We conclude from the previous chapter that the solution of the above problem is (¢, %) =

(0,0) and (y, z) = (0,0), which contradicts (1.117). Then, the desired inequality (1.100)) is
proved.

O

Completion of the proof of Proposition
We have

F(0) = F5(0) + F4(0) = £(0) + F4(0),
If we take T' > T* := max {1y, 7}, we get from (1.97)) and ((1.100)

<Cl/ /{ytxt +ztxt}dxdt+(]// o) {ul(z,t —7) +vi(x,t — 1)} dadt
<01// D)2 (2,8) + 22(2, ) + 12z, t — 1) + 0t — 1)} du dt

< 01/ /a(x) [2(2,0) + 02 (2, 8) + T, ) + Pl t) + wd(at — 1) + 02 (et — 7)) dedt.
0 Q

It remains to estimate the term fOT Joa(@) {vf(z,t) + 22 (x,t)} ddt
We differentiate the energy function £(t) with respect to ¢, we obtain

80 == [ at){enii(e. (e, t) + ool (et = 7)

+ Brzi(x, t)ve(z, 1) + B2Z (@, t)ve(x,t — 7))} da,

from which we get after using Chauchy-Schwarz inequality

—5 <C'/ {utxt —|—vt(zn t)—|—yt(x t)—|—zt(ac t)+ut( —T)+vt2(x,t—7)}d:n

/{yt (z,t) + 22(z, t)} da.

From the definition of 6 , we obtain

jtg _|_C/ {uta:t —i—vt(a: t)-i—ut( _7')+Ut2(377t_7')}dx'

Multiplying the last inequality by (e™!) and integrating over (0,t), we get
<Ce// o) {ul(z,t) +vl(x,t) +ul(z,t —7) + vl (x,t — 1)} da dt.

We conclude for ¢ € ( , that is

<C/ / o) {ul(x,t) + vi(z,t) +ui(x, t — 7) +0vf(x,t — 1)} de dt,

which gives

//{yt$t+ztxt}d:cdt<0// o) {u?(z,t) + v} (x,t) +ul(z,t — 1) +vi(x,t — 1)} do dt.
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Consequently we have

T
(1.119)  F(0) SCl/O /Qa(x) {uf(z,t) + v (z, ) + ui(z,t — 7) + vf (2,8 — )} du dt.

From , we have

F(T) - F(0) < C/ / ) {uf(z,t) +ui(z,t — 1) +vi(z,t) +o(z,t — 1)} dedt,
which together with ( E ) leads to
(1.120) Py < ¢

-~ 1+CC1
Since we have 0 < C;/(C 4 C}) < 1, the desired conclusion follows now from (1.120)).

F(0).
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1.3. Instability
_ b

o
In this section we show that when as > aq and 5y > (1 with — —, the system
)

(1.1) — (1.9) loses the property of stability for some arbitrary small time delay.
We proceed as in [28], We seek a solution of (1.1)) — (1.9) in the form

u(z,t) = eMp(z), v(z,t) = e Mp(a), A e C,
where
A=1a a € R.
Then (p, 1) is a solution of the problem

“Ap(a) - a?ple) + Up(@) — (@) =0 mQ,
—Aw(x) — a?(@) + () — (@) =0 inQ,
(1.121) p(z) =9¢(z) =0 on I'y,
&p(x) = —ia(ay + e ) on I'y,
dw(x) —ia(B1 + Boe™ )1 on I'y,

which can be reformulated in a variational form as

—a2/ o(z)o(z dm—l—/ Vo(2).Vo(z) dr + ialeq + ase™ )/ o(z)o(z) dD

Ty

—a /w dx—i—/gsz(x).Vw(:r) dx +ia(B1 + Bae™'T) i (z)w(z)dl

(1.122) —I—/ﬂl(gp(x) —Y(x))(v(z) —w(x))dx =0 Y(v,w) in H%I(Q) X H%I(Q)

Assume that

—a1  —p
1.123 cos(at) = —— = ——.
( ) (am) ) B2
Then
agsin(ar) =\/a3 —a?; Posin(ar) =4/B3 — 7.

Under these assumptions ([1.122)) is equivalent to

—a / da:+/Vg0 )-Vo(zx dx—l—a\/aQ—ozl/ z)dl — a? /ZZJ

(1.124)
+ [ Vole).Vule) do + ay/5 - 57 / vle)ua)dr + [ Ue@) = @) (o) - () do = 0
In particular for v(z) = ¢(z) and w(z) = ), (1.124)) becomes

/ d:v—i—/|V<p |2d3:—|—a\/a2—a1/ dF—a/w
(1.125) /|w} )|? dz + ay/ B3 — Bl/w2 dPH/(() () de =

We assume
(1.126) lell3 +llvl3 =1,
then (|1.125)) can be rewritten as

(1.127) a? — amfm(@) —ay\/ B3 — Biqo(¥) — q1(p,¢) = 0,

where

(1.128)
aoli) == / o) dT'; (1) = /Q V()2 de + /Q V()P de+1 /Q (p(2) - (2)) da.
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We distinguish two cases :
Case 1 : a1 = ag, f1 = [o.

(1.127)) becomes

(1.129) = qi(p,¥).
Define
(1.130) a? = min q1 (w1, wa).

(wlvw2>EH%1 (Q)><H%1 Q)

lwa |3 +(w2ll53=1
If (p,) verifies
(1.131) q1(p, ) = min a1 (w1, ws).

(wl,wz)eH%l(Q)xH%l(Q)

llwr [I3+[|we]3=1
Then (¢, ) is a solution of (1.124)), and consequently
(u(z, 1), v(z,1)) = ('p(x), e P(z))
is a solution of ([1.1)-(1.9)), whose energy is constant. In fact
a2
B() =2+ 5 [ {ulo()? + ot} ar
2

Assumption ((1.123) implies that (¢, 1) is a solution of

—Ayp(@) — a®p(z) + 1(p(z) — P(z)) =0 in €,
—Ai(z) — a®P(z) + U((z) — (x)) =0 in €,
o(r) =1(x) =0 on I'y,
e s

which on turn implies that ¢ + 1 is a solution of

—A(p + 1) (@) — a?(p +9)(x) =0 in €,
(o +¥)(x) =0 on I'y,
W(w} =0 on T's.

This is an eigenvalue problem for the Laplacian with Dirichlet-Neumann boundary condi-
tion. Therefore, a takes an infinite number of values ag, a1, ao, ... defined by
az = \p, n € R,
where A, are the eigenvalues of the Laplace operator with Dirichlet-Neumann boundary
condition.
It is known that A, are positive and lim M\, = +oc.
—+00

n
Now assumption ((1.123)) holds if
anT = (2p+ )7 pe N
So, we have obtained a sequence of time delays

2 1
Tnp = wﬂ- n, p c N’
an
which may be arbitrarily small or large and for which the corresponding solution of the
problem is not asymptotically stable.

Case (2) : a1 < ag, B < fa.

We have
@® — ay/a3 — a2o(y) — ay/BF — FRao(w) — a1 (. ) = O,
o= 5 (Vo3 = atante) + /5~ Baotw) = VBG9)).

then
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where

2
A(wy, wp) = (\/ o3 — afqo(wi) + /B3 — 5%6]0(102)) + 4q1 (wy, wo).
Define

1 .
(L.132) a= 2 (un wQ)eH?I&)XH% (Q)\/ a3 — ajgo(wi) + \ B3 — Biao(wz) £ v/ Awr, ws).
’ 1 1

We show that if (¢, 1)) verifies

Va3 — aZao()+/B2 - Bao() + V/Alp, )
(1.133)
_ . 2 2 + 2 _ 132 + A , .
(w1,w2)€HII{11(I§12)><H11*1(Q) qu(wl) \/ﬂqo(w2) (wl U)g)

then (¢, ) is solution of ((1.121)) with a defined by ([1.132)).

Take for € € R,

wy =@ +ev;  with vy € H%I(Q) such that / ov; =0,
Q
(1.134) wy =1 +evy with vy € HF (Q) such that / vy = 0.
Q
Then
(1.135) w3 + [lw2ll3 = 1+ &% ([lvi |13 + lval3) -
Let

_ 1 2 2 2 52
o) = T g o) V4~ 20+~ Bl )
2
(1.136) + \/(\/ a5 — aiqo(p +evt) + 1/ 85 — Biao(v + 6”2)) +4q1(p +evi, 9P + ev2) ),

From (|1.133)), we get

2
g9(e) > 9(0) = \/a3 — aiqo(p) + 1/ B3 — Biao(¥) + \/(\/ af —alqo(p) + /83 — B%Qo(w)) +4q1(p, ),

then, we have
dg(e)
de

‘EZO - 07

which gives

V@.Vvldx+/Vi/).vadx—l—a\/oﬂ—az/ v dF+a\/62—62/ pug dI’
/Q 0 2 1 T 1 2 1 T,

(1.137) +/Ql(g0—¢)(v1—v2)d33:0.

Any function (v, 72) in H} (Q) x Hf (Q) can be decomposed
v =vp+v, YER v € Hlll(Q) with / pv; =0,
Q

Uy = fyqﬂ +v9, vE R, Vo € Hlll (Q) with / Uy = 0.
Q

(1.137) and (L.125)) yield (p,) that satisfies ((1.124) with a defined by (1.132]), so we have

found a sequence of delays defined by

—a
ar = arccos(—~) +2pm, peEN

a2
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for which the solution of problem is not asymptotically stable.
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CHAPTER 2

Stability of the transmission wave equation with a delay term
in the boundary feedback

2.1. Introduction

We investigate in this chapter the problem of exponential stability for the system of
transmission of the wave equation with a delay term in the boundary feedback. Let € be an
open bounded domain of R” with a boundary I of class C? which consists of two non-empty
parts I'y and I'y such that Ty NTy = (. Let Iy with To N Ty = Ty N Ty = () be a regular
hypersurface of class C? which separates €2 into two domains Q1 and Qs such that I'y C 0
and I's C 0.

Furthermore, we assume that there exists a real vector field h € (C%(Q2))" such that:
(H.1) The Jacobian matrix J of h satisfies

[ Jax@c@ana [ o

for some constant a > 0 and for all ¢ € L*(Q; R");
(H.2) h(z).v(xz) <0on I';

(H.3) h(z).v(xz) > 0 on Io.
where v is the unit normal on I' or I'g pointing towards the exterior of  or ;.

Let a1, a2 > 0 be given. Consider the system of transmission of the wave equation with
a delay term in the boundary conditions:

(2.1) yu(x,t) — div(a(z)Vy(z,t)) =0 in Q x (0, +00),
(2.2) y(2,0) = y°(2), y:(2,0) = y' () in €,
(2.3) yi(xz,t) =0 on I'y x (0, 400),
Oy2(z,t)
2.4) —, = —py2,e(x,t) — poyai(x,t — 1) on I's x (0,4+00),
(2.5) yi(z,t) = ya(z, t), on I'p x (0, 4+00),
t t
(2.6) alayla(f ) 0 8928(:’ ) on Tg x (0, +00),
(2.7) yat(x, t —7) = fo(z,t —7) on I's x (0, 7).
where
[ ]
. ai, ITE Ql,
(2.8) a(:):) - { as, x € .
| yi(z,t),  (z,t) € Q4 x (0,400),
° y(z,t) = { oz ),  (2.8) € O x (0, +00).
° % is the normal derivative.
e 11 and pg are positive real numbers.
e 7 is the time delay.
e 40 y! and f are the initial data which belong to suitable spaces.

From the physical point of view, the transmission problem ({2.1)) — (2.7) describes the wave
propagation from one medium into another different medium, for instance, from air into
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glass (see [22]).
In the absence of delay, that is ug = 0, Liu and Williams [23] have shown that the solution

of || — 1) decays exponentially to zero in the energy space H%l () x L?(Q) provided
that

(2.9) ap > az,

and {Q,T,T'1, T2} satisfies (H.1), (H.2), (H.3), and h(x).v(z) >~y > 0 on I's.
The purpose of this chapter is to investigate the stability of problem (2.1) — (2.7) in the
case where both p; and ug are different from zero. To this end, assume as in [28] that

(2.10) H1 > 2.
and define the energy of a solution of (2.1) — (2.7) by

1
@11) B0 = [ [0+ @) [Vi.oP] dot || st =royapar.
where

(2.12) aoTpe < & < asT(2u1 — p2),

2.2. Main result

We show that if in addition to and (2.10), {Q,To,T'1, T2} satisfies (H.1), (H.2) and
(H.3), then there is an exponential decay rate for E(t). The proof of this result combines
multipliers techniques and compactness-uniqueness arguments.

The main result of this chapter can be stated as follows.

THEOREM 2.1. Assume (H.1), (H.2), (H.3), (2.9) and (2.10). Then there exist constants
M >1 and w > 0 such that

E(t) < Me “'E(0).

Theorem is proved in Section In Section [2.3] we investigate the well-posedness of
system (2.1) — (2.7) using semigroup theory.

This chapter is an expanded and revised version of the conference paper by Rebiai [36]
2.3. Well-posedness

Inspired from [28] and [29], we introduce the auxiliary variable z(z, p,t) = ya2(x,t — 7p).
With this new unknown, problem (2.1)) — (2.7)) is equivalent to

(2.13) yu(x,t) — div(a(x)Vy(z,t)) =0 in 2 x (0, +00),

(2.14) zi(x, p,t) + 7 2p(w, pyt) = 0 on I'y x (0,1) x (0, 400),

(2.15) y(@,0) =y (@), (@, 0) = y'(x) in Q,

(2.16) yi(z,t) =0 on I't x (0, 4+00),
0 t

(2.17) yg(f) = —my2s(x,t) — paz(z,1,t) on I'y x (0,4+00),

(2.18) y1(x,t) = ya(x, t) on 'y x (0, 400),

Oyi(z,t)  Oya(x,t)

(2.19) @ = = Ao on I'g x (0, 400),

(2.20) 2(2,0,t) = ya(z,t) on I's x (0, 4+00),

(2.21) z(z, p,0) = folx, —7p) on I'y x (0,1).

Now, we endow the Hilbert space

H =Hp (Q) x L*(Q) x L*(T'y; L*(0, 1))
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with the inner product

u 1
<( : ) ;( )> | @@ Vu@) V@) + oot do € [ o)z pdpar.

and define a linear operator in ‘H by

D(A) = {(U,U,Z)T € HQ(QhQQ?Fl) X Hlll (Q) X LZ(F%HI(Oa 1))a
%
ov

w2

(2.22) = —pv — p2z(.,1),v = 2z(.,0) on I'a},

(2.23) Au,v,2)t = (v, div(a(z)Vu), —T_lzp)T .
The spaces used for the definition of H and D(A) are

Hp (Q)={ue H(Q):u=0o0nT4},

6u1 (3UQ
E
Then we can rewrite — as an abstract Cauchy problem in ‘H

Ly (t) = AY (t),
(2.24) { dY(O():Yo, (

where

HQ(Ql,QQ,FI) ={u; € HQ(Ql) cu=0o0nT4, uy = us and a; on I'p}.

Y(t) = (y, 1, 2)" and Yo = (yo, 1, fo(., —.7))".

PROPOSITION 2.1. The operator A defined by (2.22)), (2.23) and (2.10) generates a
strongly continuous semigroup on H. Thus, for every Yo € H, problem (2.24]) has a unique

solution Y whose reqularity depends on the initial datum Yy as follows:

O € G0 I
€ C([0,400); D(A)) N CY([0,+00); H) if Yo € D(A).
PrROOF. Let Y = ) . Then
AV YY) = [ ala)Vu(z) . Volz) de + / o(z)div(a(z)Vu(z)) dz
Q Q
§ 1 Zo\ L Z\T
(2.29 —//O o(,)2(, ) dp T

Applying Green’s Theorem and recalling (2.22)), we obtain

: _ du(x)
/lev(a(:E)Vu(x))v(x) dr =ay /1“1 v(x) ey dl' — a; Vu(z).Vo(x)d

Q1
+ ag/ v(x) du(z) dl’ — as Vu(z).Vo(z)dz

Iy ov Q2
(2.26) = ag/ v(z){—pv(r) — poz(x, 1)} dl — / a(x)Vu(z).Vu(x) dz.

Iy Q
Integrating by parts in p, we get

1
1
(2.27) [ [ ezt papar =5 [ 221) - 2oppar.
ry Jo 2 Jr,
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Inserting (2.22)), (2.26)) and (2.27) into (2.25) results in
(AY.Y) :_am/ 2(y )dF—ag,ug/ o(z)2(x, 1) dT
1)

5 1)dr + —
2’7’ 1'*2

from which follows using the Cauchy inequality

(2.28)  (AY,Y) < —(asp1 — “22“2—%) /F2 v*(z) dl — (% - “22“2) /F2 22(z,1)d.

(2.28)) together with (2.12)) implies that

(AY,Y) < 0.

Thus A is dissipative.
Now we show that for a fixed A > 0 and (g, h, k)T € H, there exists Y = (u,v,2)’ € D(A)
such that

or equivalently

(2.29) Au—v=g,
(2.30) Av — div(a(x)Vu) = h,
(2.31) Az + lzp = k.

T

Suppose that we have found w with the appropriate regularity, then we can determine z.
Indeed, from (2.22)) and (2.31) we have

{ Zp(l‘,p) = —)\Tz(a:,p) + Tk(l‘,p),
z(x,0) = v(x).

The unique solution of the above initial value problem is

p
2(z, p) = e MPu(x) + Te_)‘”’/ Ak (x, 5) ds,
0

and in particular
2(2,1) = Ae ™ Mu(x) + 20(x), = €Ty,
where
1
zo(x) = —e Mg(z) + Te_AT/ Ak (z, 5) ds.
0
By (2.29) and (2.30)), the function u satisfies
(2.32) Ny —div(a(z)Vu) = h + Ag.
Problem (2.32) can be reformulated as

(2.33) /Q()\Qu —div(a(z)Vu)w dr = /Q(h + Agwdzx, we H%I(Q)

Using Green’s Theorem and recalling (2.22]), we express the left-hand side of (2.33]) as follows
/ (N — div(a(z)Vu)w dr = / (Nuw + a(z)Vu.Vw) dr + ag / {1 (A\u — g)w
Q Q Iy

+ pa(Ae ™ u(x) + 20(x))w} dT.
Therefore (2.33), can be rewritten as

/Q()\zuw + a(z)Vu.Vw) dx + as /

(11 4 poe™ ) Auw dT' = / (h+ Ag)wdl’
s Q

(2.34) + agul/ gwdl' — azm/ zowdl',  Vw € Hy, ().
FQ FQ
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Since the left-hand side of 1} is coercive on H%l(Q), the Lax-Milgram Theorem guar-
antees the existence and uniqueness of the solution u € Hlll(Q) of 1} If we consider
w € D(N) in (2.33), then y is a solution in D'(Q) of

(2.35) My — div(a(z)Vu) = h + Mg,

and thus div(a(z)Vu) € L?(1).

Combining ([2.34)) together with (2.35)), we obtain after using Green’s Theorem

0
ag/ (1 —i—,uge_)”))\uwdl“—i—ag —uwdF :ag,ul/ gwdF—ag,ug/ zow dl,
Ty T2 81/ 1) 1)

which implies that
Ou(x
YD) () — oz 1)
So, we have found (u, v, 2)T € D(A) which satisfies (2.29) — (2.31). Thus, by the Lumer-
Phillips Theorem (see for instance [34], Theorem 1.4.3), A generates a strongly continuous
semigroup of contractions on H. ]

2.4. Proof of the main result

We prove Theorem for smooth initial data. The general case follows by a standard
density argument.

We proceed in several steps.
Step 1.
We differentiate the energy defined by (2.11)) and apply Green’s Theorem. We obtain

d Oyo(x,t !
236) S50 = [ ety 2E a0 e [ [ gt - rolmatet - ) dpar.
Iy v 'y JO

after using the boundary condition (2.3) and the transmission condition (2.5), (2.6).
Now, it follows from

1
yt(Ivt - Tp) = _;yp(xvt - Tp),

and ,
ytt('r?t - Tp) = ﬁypp(fv,t — Tp)7
that
' 1
/ / yQ’t(x’t_Tp)y27tt(x’t_7p)d/’dr:_73/ / y2,0(, t = 7p)y2,pp(x,t — 7p) dp dT’
I'> JO
= 1// {42 (2,t —7p)} dpdl’
Ty dp T
1 9 )
~ 9.3 /Fg{ylp(%’t —7) = y3,(z,t)}dl,
that is

! 1
@37 [ [ aslot = oot = o) dpdl = o [ {43 (0.0) — o3 (ot~ )}
Iy JO T JTs

Substituting (2.4]) and (2.37)) into (2.36)), we obtain

d
—E(t)=- ,ulag/ yg’t(x,t) dl’ — ,ugag/ Yo (x, t)y2e(x,t — 1) dl + = y2t x,t)d
dt Iy Iy I,
§
- E Iy y%,t(xﬂt - T) dr?

from which we get after using the Cauchy inequality

d
—B(t) < —k | {yh(x,t) +y3,(x,t —7)}dl,

2.38
(2.39) - A
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where
o Cagpr & & agpe
k=minfazn — == —on, 50—k

Step 2.

Set

E(t) = E(t) + Ea(?),
where
1
&0 = 5 [ {a(o) [Vy(a. O + o0} o

and

1
E t)zg/ / ys (.t —7p) dpdl.
2 ), o 77

E4(t) can be rewritten via a change of variable as

(2.39) Eat) = &

t+T1 5
—71)dl'ds.
o | [ e - myaras

From ([2.39), we obtain

(2.40) <C/ /th 7)dl ds,

for 0 < t+ 7 < T. Here and throughout the rest of the chapter C is a positive constant
independent of T different at different occurrences.
Step 3.

We multiply both sides of (2.1) by 2h(x).Vy(z,t) + (divh(z) — a)y(z, t) and integrate over
Q x (0,7);

/ /ytt x,t)h(x).Vy(x,t) dx dt—l—/ /ytt z,t)(divh(z) — a)y(z,t) dz dt—
(2.41)
/ / divh(a(z)Vy(z,t))h(z). Vy(z,t) dz dt / / divh(a(z)Vy(z,t))(divh(z) — a)y(x,t) dzdt = 0.

We compute each term of (2.41)) separately.

e Term 2f0T Jo ytt(x,t)h(a;).Vy(x,t) dx dt
Integration by parts in ¢ yields

T

/ /ytt z,t)h(z).Vy(z,t) dvdt = 2 [/Q yi(z, t)h(z).Vy(z,t)dz| —

0
/ /yt z, t)h(z). Vy(z,t)de dt =

(2.42) 2 [/Qyt(:n,t)h( ). Vy(z, 1) dx] / / V(y2(x, 1)) da dt.

Applying Green’s theorem to the second integral on the right-hand side of (2.42)),
we obtain

T

/ /ytt z, (). Vy(z,t) dz dt =2 [/Qyt(x,t)h(:n).Vy(x,t) da

T
(2.43) _ /0 /F V2 (2, ) h(x).v(x) dT dit+ /0 /Q y2(z, )divh(z) dz dt.
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o Term [, [o, yu(z, ¢)(divh(z) — @)y(z,t) dz dt
Using again integration by parts with respect to t, we obtain

T

/ / it (2, 1) (divh(z) — @)y, t)dwdt = [ / (2, 1) (divh(z) — a)y(z, t) do

0

(2.44) / /yt z,t)(divh(x) — «) dx dt.

o Term [ [, div(a(z)Vy(z, t)h(z).Vy(z, t) de dt
We have by ,

T
/ / div(a(z)Vy(z,t))h(x).Vy(x,t) dx dt = 2a1/ Ay (x,t)h(x).Vy (x,t) de dt+
0o Jo
- 1
(2.45) 2a2/ Ays(z,t)h(x).Vya(x,t) dx dt.
0o Ja,

From Green’s Theorem, we obtain for the first integral on the right-hand side of

&),

T T
2aq / Ayi(z,t)h(x).Vyi(z,t) de dt = 2aq / / Mh(x).Vyl (x,t)dl’ dt+
o Jo, o Jr, v

(2.46)
T
2a1/ /F 83/1 (=, t x).Vyy(z,t)dldt — 2a1/0 A Vyi(x,t).V(h(z).Vyi(x,t)) dz dt.
Applying the identity
Vw(x).V(h(z).Vw(z)) = J(z)Vw(z).Vw(z) + %h(:v).VﬂVw(:v)]Q)

to the last integral on the right hand side of (2.46)), we find

T T
2a1/ Ayl(x (). Vi (2, t) do dt = 2a1/ ) ) Ty (e, £) dT it

0 r 8V

0
2aq / 6y1 & t x).Vyi(x,t)dl dt — 2a1/ / z)Vyi(x,t).Vy(z,t)) de dt—
To Q1

/ /Q (Vi (2, ).

Another use of Green’s Theorem yields

T T
2a1/ Ay (z, t)h(x).Vyi(z,t) dmdt:Qal/ / Mh(w).Vyl(x,t) dr’ dt+
0 Jo, o Jr, Ov

Tr oy (x,t) T
2a1/ ah(w).Vyl(:r,t)dth—Qal/ / J(2)Vy(z,t).Vyi(z,t)) do dt—
0 /I v o Jau

T T
a / Vi (z, 8)[2 h(z)(z) dT dt — ar / V(. 6)[2 h(z)v(z) dT di+
o Jr, o Jro

(2.47)

T
a / (Vs (x,t)|? divh(zx) dz dt.
0 951
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For the second on the right-hand side of (2.45)), we proceed as above to find

T T
2a2/ Ayg(x t)h(x).Vya(z,t) dedt = 2a2/ Oyal, )
0 s 81/

0
0 t
2a9 / y2 Z, x).Vys(x,t)dl dt — 2&2/ / x)Vya(x,t).Vys(x,t))dx dt—
1) o

h(x).Vya(z,t)dl dt—

T
as / Yy, ) b)) dT dt + a / Yy, ) b)) dT di+
0 FQ 0 1—‘()
(2.48)

T
CLQ/ (Vs (a, t)|* divh(z) dz dt.
0 Qo

Substitution of (2.47) and (2.48)) into (2.45) yields

Tr oyi(z,t)
d1v z)Vy(z,t))h(z). Vy(z,t) dedt = 2a; Th(w).Vyl (x,t)dl dt+
0o Jry

r Oy (x,1) T
2a1 / Th(x).vw(x,t) dl' dt — 2a, / / J(l‘)vyl(x,t).Vyl(gp’t))dw dt—
0 JTo v o Jo

T T
o / V()] h(@)v(x) dT dt — ay / Vo (2, )| h(w).v(a) dT di+
0 Fl 0 1_‘0

al/ IV (2, t)|? divh(z )dmdt—|—2a2/ / Mh(l’).vyg(l',t) dl dt—
Ql 1)
8y2 x, t
2az x).Vya(x,t)dl'dt — 2@2/ / x)Vya(z,t).Vya(z,t)) dr dt—
FO Q2

T
ag/ (Vo (z,t)|? h(zx).v(x) dfdt+a2/ (Vo (x, t)|* h(z).v(x) dT di+
0 FQ 0 1—‘0
(2.49)

T
o / Vo (z, )2 divh(z) da dt.
0 Qo

We conclude from the boundary conditions and . ) that

Oyi(x,t) ,

(2.50) V(. t) = = (),

on I'] X (O,T),

and

8(:1/2(%', t) - yl(xv t))
ov

V(yg(ﬂj‘,t) - yl(mvt)) = V(:L')v on FO X (OvT)

then
2 _ 2 o (2, o On o\ O Dy2 YN
V(e 0 = V(e 0 +2 (52600 = Gren)) St + (2wt~ S

V(@ )+ (‘?f(x,t))Q _ <%y1(1:,t))2, on T % (0,7)

14

page 46



Chapter 2. System of transmission of the wave equation with a delay term in the
boundary feedback

so on T’y x (0,7),

2a aai/j (2, )h(2).Vy (z,t) — 2@%’5(3;, H)h(z). Vys(z, t)
(2.51) —ay |V (2, t)|? h(x).v(z) + ag Vo (z, t)]* hz).v(z)

- 2a1%yyl (2, )h(2). Vi (2, ) — a1 |V (z, )| h(z).v(z)

— %az aay (z,1) <Vy1(ﬂs7t) + @?f(x, t) — aayyl(x,t)) y(g;)> h(z)

+ as (]Vyl(x 2 + (%y; (x,t)>2 - <%yyl(x,t)>2> h(z).v(z)

2
= —2a1(— -1) (%yl (m,t)) h(z).v(z) + (ag — ar) |Vyi(z, ) h(z).v(z)

a9 1%
a3 Y1 2
#0 - a) (Gen)) o)
a2 — a 2 2
(2.52) = (ag — a1) |Vyi(z,8)|* h(z).v(z) — (a2 - V <%3§(x,t)> h(z).v(z)

Insertion of and (| into results in

//dw 2)Vy(z,t)) ()Vyxtdxdt—al//r<ayl ) v(x)dl dt—

<a1_a2>/ V(1) 2 ) () D i — (22— ) //F< ) ) dT di+

2a 2/ /F2 8y2 (x, t x).Vya(z,t)dl dt — ag/ Vi, t)|* h(x).v(x) dT dt—
(2.53)
/ / ) Vy(@, 1) Vy(z, 1) da:dt—i-/ / ) [Vy(z, 1) divh(z) dz dt.

e Term fo Jo div(a(z)Vy(z,t))(divh(z) — a)y(z,t) dz dt
From , we may write

T T
/ / div(a(z)Vy(z, ) (divh(z) — a)y(x, t) do dt —ay / A (2, 8)(divh(z) — )y (. 1) da di
0 Q 0

951

T
+ a9 / Ayo(z,t)(divh(x) — a)ya(z, t) dx dt.
0 Ja,
It follows from Green’s Theorem that

T . ‘ . T ayl (‘T’ t)
/0 0 div(a(z)Vy(z,t))(divh(z) — a)y(z,t) dedt = a; /o /rl

(divh(z) — a)y1(z,t) dl dt+

T
al/ / 8y1 d vh(z) — a)yi(z,t)dl’ dt — al/ (Vi (z, t)|* (divh(z) — a) dz di—
0 JTo o Ja

T
al/ / y1(x,t)Vyi(z,t).V(divh(z) — o) dz dt +ag/ / Oyz(a )(divh(a;) — a)yz(x,t)dl dt—
0 Ql FZ

Q

T 8y2 T
) / / ) (divh(z) — a)ys(a, £) dT dt — a3 / Vya(o, )2 (divh(z) — ) dz di—
0 Fo 0 QQ

T
ag/ / ya2(z, t)Vya(z,t).V(divh(z) — o) dz dt.
0 Ja,
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Thus from (2.3), (2.5) and (2.6)), we conclude that
T T
/ / div(a(z)Vy(z,t))(divh(z) — a)y(z,t) de dt = (Iz/ / %W(divh(:v) — a)yz(x,t)dl dt—
0 JIy v

(2.54)
/ / ) [Vy(a, t)|? (divh(z) — o) da dt —/ / y(x,t)Vy(z,t).V(divh(z) — «) dz dt.

From (2.41), (2.43), (2.44)), (2.53) and (2.54). We obtain

/ / 2V, ). Vy(x, t)d:rdt+oz/ /{yt 2,1) — a(@) [Vy(e, £)[2} do dt =

T

[/ {2y(z, t)h(2). Vy(z,t) + (divh(z) — a)yt(x,t)y(x,t)}dx}

0

/ / y(@, t)Vy(z, ).V (divh(z) — a) dz dt + a; / a‘”‘/17“)) h(z).v(z) dT dt—
I
6y1
(a1 — a») / V(. )1 h(a) () dT dt — / / () I di+
To To
8y2 x, t
yQt x,t)h x)dl dt 4 2as / / x).Vya(x,t)dl dt—
To 1)
2 55)

T 1 oya(x,t), .
a2/0 . \Vy2(x,t)| h(z).v(x)dl dt + ag/o /FQ T(dlvh(m) — a)ya(z, t) dL dt,

after using the boundary conditions (2.3)), (2.5) and (2.6).
It follows from (2.9) and Assumption (H3) that

/ / 2)Vy(z,t).Vy(z, t)dxdt—l—a/ /{yt x,t) — a(z) |Vy(z, t)*} do dt <

T

0

[ / (200, O (x). V(. 1) + (divh(z) —a)yt(x,t)y(x,t)}dm]

/ / y(z, t)Vy(z, ).V (divh(z )—a)dmdt+a1/ /Fl (Pl >) h(z).v(z) dT dt+

/ / y2t x,t)h x)dl' dt + 2a / / 3y2 > t x).Vya(x,t)dl dt—
Fz 1—\2
(2. 56
83/2
as |Vya(z,t))? h(z).v(z) dT dt + as — a)ys(x,t) dl dt.
T2 Iy

We now estimate both sides of (2.56). From (H1), we have
/Qa(x)J(x)Vy(:U,t).Vy(:z:, t)dx = /Q J(x)(v/a(x)Vy(z,t)).(\/a(x)Vy(z,t))d
2
> oz/ﬂa(x) \Vy(z,t)|” de.

Hence
(2.57)

/ / x)Vy(z,t).Vy(z,t) dmdt—i—a/ /{yt z,t)—a(z) |[Vy(z, t)*} dedt > 20E(1).
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For the terms on the right-hand side (RHS) of (2.56)), we have by the Cauchy inequality

T
(2.58) [/ {2y(z, t)h(2). Vy(z,t) + (divh(z) — a)ye(z, t)y(z, 1) } dm} < C(E(T)+E£(0)).
Q 0
(x,t)Vy(z,t).V(divh(z) — o) dz dt' / / ) |Vy(z, t)|? dadt
(2.59) +/ /yQ(:z:,t) dx dt.
nJo Ja
2
2as / / 83/2 28 (@) Vo, 1) dth' <0/ / <3y2 m,t)) dr dt
Ty 'y
T
(2.60) + ay / Vs (2, t)|? dr dt.
0o Jrp
and from the Poincaré inequality combined with the trace inequality in H'({2), we obtain
83/2 © 0 (Givh(x) — a)ys (. 1) dth‘ / / (am x,t) dr dt
Ty Iy
(2.61) +7]C/ / ) [ Vy(z, t)|? dx dt.

In (2.59) and (2.60), n is a positive constant that will be fixed later.
We also have

T T
(2.62) / / Y 1 (z, t)h(z).v(z) dl dt < C/ / y3 (. t) dl dt,
0 T 0 Iy

T T
(2.63) ag/ \Vyo(x,t)|? h(z).v(x) dT dt < c/ \Vyo(x,t)|* dT dt.
0 s 0 I

Inserting (2.57)) — (2.63) into (2.56) and recalling Assumption (H2), we obtain

RHS of (2.55) <C{&(T) +E£(0)} +n(= +C// ) [Vy(a, t)|* dadt

+C/ /yQ(a;,t) dxdt—i—C/ |y, (z, t)|* dT dt
0o Jo 0o Jry

T T
(2.64) +C/ / (W)le“dt+0/ Wy (z, 1)) dT dt.
Iy v 0 JIy
- together with ( and (| - ) leads to
(o —n( —|—C / / ) [Vy(z,t)|? dedt <C{E(T) + £(0 }+C/ / (x,t) dzdt

+c/ [ et + (e >) T dt

- 0/ \Vyo(z,t)|* dU dt.
0 s

We choose 7 sufficiently small to make a — (l + C) > 0, we obtain

/5 )dt <C{E(T) + £(0 }+C/ /{ytht (yz( 7t)>2}d1‘dt

(2.65) +C/ Vo (z, )| dth—i—C/ /yz(x,t) dx dt.
0 Iy 0 Q

page 49



Chapter 2. System of transmission of the wave equation with a delay term in the
boundary feedback

Using the fact that

Ay 2
958y = G+ Vol

L2(T2)
where V,y is the tangential gradient of y, “ ) becomes

/8 )dt <C{&E(T)+ £(0 }+C/ {ytht)+<%y;(x,t)>2}dth

T
(2.66) +C/ Voo (z, )] det+C/ /yQ(w,t) da dt.
0 Iy 0 Q

Step 4.

For fixed € > 0 small we apply estimate (2.66) over the interval (¢,7 — €) rather than
(0,T). We obtain

/6T_€8(t) dt SC{E(TE)+5(€)}+C/ET_E /Fz{y%t(x,t) + <%yu2(x’t)>2}drdt

T—e T—e
(2.67) +C/ Vo (z,t)]? dth+C/ /y2(x,t) dz dt.
€ Iy € Q

We eliminate the tangential gradient from (2.67) by using the following estimate due to
Lasiecka and Triggiani (Lemma 7.2 in [16])

T—e T 2
[ [ Wewtop avascesni] | {(3yg<m’t)) 42, (x,0)} dT dt
€ I 0 JI ov ’

2
T Y7207 17245 0)) >

where § is an arbitrarily small positive constants and C(e, d,T) denotes a positive constant
that depends on €,d and T. We obtain

T—e T 2
| ewascer-gre@ o [ | {(%"j(x,t)) T4, )} dT dt
€ 0 I'o
(2.68) + C(e,0,T) ||yH%2(O7T;H1/2+5(Q)) )
since the H/?*9_norm dominates the L?—norm.

Step 5.

We differentiate £(¢) and apply Green’s Theorem to obtain

d B Oya(z,t)
dtg( ) an A2 vat(x’t)T drdt

Integration of both sides of ([2.69) from € to T — e, yields
T—e )
Ele)=E(T —¢ —ag/ / ygtxt dI dt.
I's

Application of the Cauchy inequality gives

(2.69)

T
(2.70) E(€) <ET —e) + a2/ (e e o oy arae.
2 0 T's (97/ ’
Insertion of (2.70]) into (2.68)) results in
T—e
/ E(t)dt <CE(T — €) 4 Cle, 5, T) / { 8y2(9(y )) +y3,(x,t)} dT dt.

(2.71) + C(€,6,T) ”?JHLZ(O,T;HI/2+5(Q)) -
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Step 6.
Since E(t) is non-increasing and E(t) = &£(t) + E4(t), then (2.71]) together with (2.40)
implies that

Oya(x,t)

(T —2e)E(T —¢€) <CE(T —€) + C(€,0,T) /T {( )2+ yit(fc, t)}dl dt+
0 I

T
2.72) Cle.s. 1) Wl rprmssioy + 7C [ [ shuat = r)arae,
2

for T large enough. Thus invoking again the identity E(t) = £(t) + E4(t) and recalling the
boundary condition (2.4)), we obtain from (2.72))

T
(T — 2 — OVE(T — ¢) <C(e,5,T) / {422, t) + 42, (.t — 7)}dTdt
0 o

(2.73) +C(&,6,T) 9l 7201 m11/245 ) -

We deduce from (2.73) that for T sufficiently large
(2.74)

T
E(T) < C(e, 4, T)/o . {yg,t(xvt) + y%t(:ﬁ,t —7)}dl'dt + C(e€,6,T) H?J”%?(O,T;Hl/wé(n)) .
2

Step 7.
We prove by a compactness-uniqueness argument that there exists a constant C' > 0 such
that

T
(2.75) Hy||%2(o,T;H1/2+6(Q)) < C/o . {yg,t(xvt) + Z/g,t(ﬂfvt —7)}dl dt.
2
Assume that there exists a sequence y, of solutions of problem (2.1]) — (2.7]) with
Yn(z,0) = yg(iﬂ),ynt(l‘,o) = yrll(l')a z €,
yn(z,t —7) = foolz,t—7), x€Q,te(0,71).

such that
(2.76)

T
HynH%Q(O’T;Hl/QH(Q)) =1, n=12,..; / /F {Y3n.s (@, )+ Y3 4 (@, t—7)}dDdt — 0 as n — +00
0 2

Since each solution satisfies (2.74), we deduce from (2.38)) and (2.76|) that the sequence
Y = (32, yk, fno) is bounded in H. Hence there is a subsequence still denoted by Y¥ which

converges weakly to some Y = (y° y!, fo). Let y be the solution of problem (2.1)) — (2.7)
corresponding to such initial conditions. We have from Proposition (2.1)

y € C(0,T; Hy, () N CH(0,T; L* ().

Then

Yn — y in L(0, T H%l(Q)) weak-star.
This fact along with the compactness Hf () — HY?13(Q) implies that there exists a
subsequence still denoted by y, such that 3, — y strongly in L°(0,T; H/?>*%(Q)). Then
we have from (|2.76])
(277) ||y||L2(07T;H1/2+6(Q)) = 1,
and

T
| [ ety + ot = mparae —o.
0 JTs
Thus y satisfies
ye(z,t) =0 on Ty x (0,T),

and
y(z,1)

ov

=0 onTyx(0,7).
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Let u(z,t) = y(x,t). Then

u(z,t) — div(a(z)Vu(z,t)) =0 (z,t) € Qx(0,T),
u(z,t) =0 (x,t) € T x(0,7),
(2.78) ulzt) _ (z,t) € Ty x(0,7),
uy (z,t) = uz(z,t) (z,t) € Tox(0,T),
a1 781%(;,15) = a278u%(yx,t) (x,t) € I'px (O,T).
The solution of (2.78)) can be written as
 ua(z,t) (x,t) € Qx(0,7),
(2.79) ““@—{uuaw (1) € Qux(0.7),
where ug and w; satisfy respectively
ug(x,t) — agAug(z,t) =0 (x,t) € Qx(0,T),
(2.80) ug(w,t) =0 (x,t) € T x(0,7),
Jualzt) _ 9 (z,t) € Tyx(0,7),
and
ur(z,t) — a1 Aug(z,t) =0 (x,t) € Qx(0,7),
9281 ul(xat) =0 ('Tvt) € I'1 x (OaT)7
(2.81) wi(z,1) = ua(a, 1) (,t) € Tox(0,7),
al aula(yz,t) = as 8u28(yz,t) (a:, t) € Iy x (0, T).

From Holmgren’s uniqueness theorem applied to problem (2.80), we obtain
ug(x,t) =0, (z,t) € Qx(0,7),

and hence

Ouy(x,t)

ov
We have again from Holmgren’s uniqueness theorem applied this time to problem (2.81))

ui(x,t) =0, (x,t) € Q x (0,7).

(2.79) together with (2.80) and (2.81) implies that
u(z,t) =0, (z,t) € Q@ x (0,7T),

ui(x,t) = =0, (x,t)elyx(0,T).

and consequently

Thus y verifies
—div(a(x)Vy(z)) =0 x € £,
Y1 (l‘) =0 z € Iy,

(2.82) Gualn) _ x € Ty,
y1(x) = y2(x) z € Ty,
aliayéim) = a2 Lygy‘) z € Ty,

and so y(z) = 0 for z € Q, and this contradicts (2.77)).

Step 8.

The estimate ([2.38)) together with (2.74) and (2.75) yields

2.83 E(T) < E0

(2.83) (1) < 52 B(0)

The desired conclusion follows now from 1D since 0 < H% < 1 (see [10], page 299,
Proposition 1.7).
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CHAPTER 3

Stability of the transmission wave equation with delay terms
in the boundary and internal feedbacks

3.1. Introduction

In this chapter we investigate stability of the transmission wave equation with a delay
terms in the boundary and internal feedbacks.
Let © be an open bounded domain in R™ (n > 1) with smooth boundary 9 = T" which
consists of two parts I'y and I's such that I' = I'y UT, with Ty NTy = () and T’y # 0. Let
Iy be a smooth hypersurface which separates 2 into two subdomains €27 and €29 such that
I’y € 901 and I'y C 090s.
Let w be a subdomain of €2 such that I'y C w and w; = w N $; with i=1,2.
Furthermore, we assume that there exists a real vector field h € (C%(Q))" such that:
(H.1) The Jacobian matrix J of h satisfies

[ T c@in = o [ (P

for some constant a > 0 and for all ¢ € L?(Q; R™);

(H.2) h(z).v(x) <0on I'y;

where v is the unit normal on I' or I'g pointing towards the exterior of 2 or ;.

In Q, we consider the problem of transmission of the wave equation with time delay terms
in both internal and boundary feedbacks

yu(x,t) — div(a(z)Vy(z,t))

(31) +Xw($){061yt(x,t)+042yt<$,t—7')} =0 inx (07+OO)7
(32)  y(@,0) =y°(2),ye(x,0) = y'(2) in Q,
(3.3) yi(z,t) =0 on I'; x (0,4+00),
(3.4) %yj (x,t) = =Pryae(x,t) — Poyos(z,t — 7) on I'y x (0, 400),
(35)  wi(z,t) = ya(z,1) on I'g x (0, +00),
(3.6) alzyyl(:v,t) = Qaayj (z,1) on Tg x (0, +00),
(37 wlet—7)= [zt —7) in wy x (0,7),
(38) y?,t(x)t_T) :go(x7t_7—) on I' X (077—)7
where
] oar, e Qy,
* a(x) = as, x € s,

B (z,t), (z,t) € Q1 x (0,+00),
y(z,t) = { Z;@,t), (z,t) € Q; i (0, +00).
(
(

70 = { f{)(x,t—T), in wy X

077-)7
fg(l‘,t—T), in wy x(0,7).

— 1is the normal derivative.

v
7 is the time delay.
Y0, 9yt fO and ¢° are the initial data which belong to suitable spaces.
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It is well known that in the absence of delay (i.e. as = B2 = 0), the solution of problem

(3.1) — (3.8]) decays exponentially to zero (see [22]).

In this chapter we investigate the uniform exponential stability of the system in the case
where the internal and boundary damping coefficients are strictly positive such that the con-
dition a; > ag, contrary to the previous chapter, is not needed to establish the exponential
stability.

3.2. Main result

Assume that
(3.9) ar > ag, B > P,

and define the energy of a solution of (3.1]) — (3.8) by

1
B(0) =3 | [of) Vol +e.0)] do+ [ o) [ abGent=ro)doda
1
(3.10) - g/F /O Yy 1(z,t — 7p) dpdl
where
(3.11) Tag < pu < 7(200 — a),
(3.12) azTPe < & < apT (261 — Po).

We show that if in addition to (3.9), {2, To,T'1,T2} satisfies (H.1) and (H.2), then there is
an exponential decay rate for E(t). The proof of this result combines multiplier technique
and compactness-uniqueness arguments.

The main result of this chapter can be stated as follows.

THEOREM 3.1. Assume (H.1), (H.2) and (3.9). Then there exist constants M > 1 and
w > 0 such that

E(t) < Me “'E(0).

Theorem is proved in Section [3.4] In Section , we study the well-posedness of
system (3.1)) — (3.8]) using semigroup theory.

3.3. Well-posedness
Set

u(z, p,t) = ye(x,t —7p), x€w, pe(0,1),
U(%P» t) = yZ,t($>t - 7-)0)7 T e F27 pE (Oa 1)
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With these new unknowns the problem (3.1]) — (3.8]) equivalent to

yur(x,t) — div(a(x)Vy(z,t))
(3.13) + xw(@){a1y(x,t) + agu(z, 1,t)} =0 in Q x (0, +00),
(3.14) w(z, p,t) + 7 tuy(z, p,t) =0 in w x (0,1) x (0, +00),
(3.15) vz, p,t) + 1 v,(2, p,t) =0 on I's x (0,1) x (0, +00),
(3.16) y(x,0) = y"(z),4:(w,0) = y' () in Q,
(3.17) yi(z,t) =0 on I'y x (0,400),
(3.18) Eggf(x,t) = —Syi(x, t) — fav(z, 1,t) on I'y x (0, 400),
(3.19) yi(z,t) = ya(x,t) on I'g x (0, 400),
(3.20) alaayyl(a:,t) = agi)y;(x,t) on I'g x (0,400),
(3.21) u(x,0,t) = ye(x,t) inw x (0,7),
(3.22) v(z,0,t) = yai(z, 1) on I'y x (0,7),
(3.23) u(x,p,0) = fO(a,t —7) inw x (0,7),
(3.24) v(z,p,0) = ¢z, t — 1) on I'y x (0, 7).

Denote by H the Hilbert space
H =H} (Q) x L*(Q) x L*(€; L*(0,1)) x L*(T'2; L*(0, 1)),

where
H} (Q)={ue H'(Q):u=0o0nT4},

endowed with the inner product

¢

(|

(8

. 1
>—/(a(x)VC(w)-VC(w)+n(w)n(9€))dw+u/ xw(x)/ o(x, p)o(z, p) dp dx
Q Q 0

< 6| |

v [ 2 / e, (. ) dp

Define in H a linear operator A by
D(A) :{(C’UMPJMT € H2(97F0) X Hll‘l (Q) X Lz(QaHl(Oa 1)) X L2(F2; Hl(oa 1))

0
(3.25) 8—5 = —p1n — Po(.,1),n =¢(.,0) in w, n =1(.,0) on Ty},
(3:26)  A(¢,m 0, 9)" = (n,div(a(z) V() = xw(@){arn + azp(., )}, =7, =7 14,) ",
where 5 5
H2(Q,To) = {u; € H*(S;): u=0 only, wu;=wus and al% = ay 2 onTo}.

ov
Then we can rewrite (3.13) — (3.24) as an abstract Cauchy problem in #
au
—(t) = AU (?);
. " 1) = av o)
U(0) = Up.
where
U(t) = (y(z,t), ye(z, t), u(x, p, 7), v(z, p, t))Ta
and UO = (yov ylv fo(‘a _'7—)7 gO(" _'T))T'

We verify that A generates a strongly continuous semigroup on H and consequently we have

page 55



Chapter 3. Transmission wave equation with delay term in the boundary and internal
feedbacks

PROPOSITION 3.1. For every Uy € H, problem (3.27) has a unique solution U whose
reqularity depends on the initial datum Uy as follows:

U() € C(0,+00);H) if Uy € H,
U() € CH[0,+00);H) N C([0,+00); D(A)) if Uy € D(A).

PROOF. Let (¢,7,¢,1)" € D(A). Then
(AU;U) :/Q [a(2)Vn(2). V¢ (@) + div(a(z) VE(2))n(x) — xw(@){an® (@) + azp(e, V)n(z)}] dz
(3.28)
1 1
[ et [t et pydodr = [ [ uy(e ppote ) dpr
Applying Green’s Theorem and recalling , we get
(3.29)
/ div(a(z)V{(x))n(x) de = — a2ﬁ1/
Q

n?(x)dl — agBe | (x, )n(z)dT — / a(x)Vn(z).V{(z) dx.
Iy Iy Q

Integrating by parts with respect to p, we obtain

1 1
T‘lu/ﬂxw(:ﬂ)/o P, p)p(z, p) dde+T_1§/FZ/O Yo(@, p)Y(x, p) dpdl’ =
er!

-1

) G [ Pen -l S [ e - e

Inserting (3.29)), (3.30) into (3.28) and using Cauchy-Schwarz inequality, we get

(AU, U) < (—ay + 22 4 T8 / o) da + (22 - T / 2(2,1) da

2 2 2 2
—1 -1
(<ot 22+ T8 [ p@yar ¢ (52 -1 [ pe yar

From (3.11) and (3.12), we conclude that (AU,U) < 0. Thus A is dissipative.
Now, we show that A — A is onto for a fixed A > 0, that is for (f,g,h,p)T € H , there
exists U = (¢, n, p,%)T € D(A) solution of

(A =AU = (f,9,h,p)

or equivalently

(3.31) A —n=T,

(3.32) An — div(aV¢) — xw(@){oan + a2p(, 1)} = g,
(3.33) Ap+ 7 g, = h,

(3.34) M+ 171, = p.

Suppose that we have found ¢ with the appropriate regularity, then
(3.35) n=X—/,

consequently we can find ¢ from (3.33)) with (3.25)) and + from (3.34) with (3.25).

In fact, ¢ is the unique solution of the initial value problem
SOP(:L"p) = 77—)‘90(x’p) + Th(‘r?p)v T € Qv 1Y € (Oa 1)7
o(w,0) = n(a), z € Q.

given by

P
mamznuw*W+mﬁw/hwmwmwmwe@pemﬂx
0
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and in particular
(3.36) o(x,1) = Ae ™ ¢(x) + 20(2),
with zg defined by
1
20(x) = —f(2)e ™ + 7'6_)‘7/ h(zx,0)e* do,
0
and 1 is the unique solution of the initial value problem

¢p($,,0) = —T)\@Z’(l‘ap) +7-p($7p)7 WS F2> p e (07 1)7
¢($70) = "7(1')7 T e F2-

given by

1
z,p) =nx)e NP +1e NP | p(z,0)e’ do,
P n
0
and in particular

(3.37) Y(x,1) = Ne M¢(2) + 21(2),
with z; defined by

1
z1(z) = —f(x)e ™ + Te/\T/ p(z,0)eN do(x), x € Ty,
0

From ([3.32)) and ({3.35)), the function ¢ verifies
(3.38) N((x) — div(a(z) Vu(@)) — xw(z){an(z) + azp(z, 1)} = g(z) + Af (@),
Problem (3.38) can be reformulated as

/Q [N¢(2) = div(a(z)Vu) — xw(@){a1n(z) + azp(e, 1)} w(z) dz

= /Q(g(;c) + A f(2)w(z)dz Yw e HE ().

We rewrite the left-hand side of last equality after using Green’s Theorem and recalling
(3.35), (3.36) and (3.37)

/Q (X2¢(x) — div(a(@)Vu) — xu(@){arn(@) + asp(e, 1)})w(z) de
- /Q (22w (z) + a(e) V(@) V) da
~ar [ (@) - Fa)ula)do - as / (Me™C () + 20(x))w(z) da

+ az/F [510\((@ — F@))w() + Bo(Ae N C(x) + 21 (2))w(z)| dr.

Therefore
(3.39)

/ (A2 (@)w(z) + a(2)Ve(x). V() dz — / Mo + ase=)C () da
Q

—|—/F as\(B1 + Bae )¢ (x)w(z) dT = /Q(g(:v) + A (z))w(z)dr — ay / f(x)w(z)dz
(3.40)
+ o /w 2o(z)w(x) de — aszf . f(z)w(zx)dl' — azf2 /1“2 z1(x)w(z) dl’

Since the left-hand side of 1) is coercive and continuous on H%l (Q), and the right-hand
side defines a continuous linear form on Hlll (Q), the Lax-Milgram Theorem guarantees the
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existence and uniqueness of a solution u € Hp. (Q) of (3.40).
If we consider w € D(Q) in (3.40)), then ( is a solution in D'(2) of

(3.41) N((@) = div(a(2)V((2)) = xw(@){an(z) + azp(z, 1)} = g(z) + Af(z)

and thus div(a(z)V() € L*(Q).
Combining (3.40) together with (3.41)), we obtain after using Green’s Theorem

a2/ (81 + ﬂgef)‘T))\Cw dl’ + ag/ %w dl' = —asf fwdl — CLQBQ/ ziwdl

Ty Iy ov s )
which implies that

0

875 = —pin — Bap(., 1)
So, we have found (¢, 7, ¢,%)" € D(A) which satisfies (3.31)) — (3.34). Thus, by the Lumer-
Phillips Theorem, A is the generator of a Cp— semigroup of contractions on H. O

3.4. Proof of the main result

We prove Theorem for smooth solution. The general case follows by density argument.
We proceed in several steps.

Step 1.

We first show that the energy E(t) defined by is decreasing.

We differentiate E(t) with respect to time and recall the boundary condition in (3.3)-(3.6)),
we obtain

d
%E(t) =— al/yf(az, t)dr — g / ye(z, )y (x, t — 1) dx — agﬁl/ yg’t(x, t)dl’
w w 1—‘2

1
— a252/ Yot (z,t)yae(z,t — 7)dl' + u/ / Yie(z,t — Tp)ye(x,t — 7p) dp da
I’y wJ0

1
(3.42) + {/ / yo.ut(z,t — Tp)y2(z,t — Tp) dpdl.
I'2J0

Now, we have

1 7_—1
343 [ [ et romtet — o dpdo = T [ {sR(et) ~ oiat - 1)} do.
wJO w

and
! T 2 2
(3.44) / / Yo,ue(z,t — Tp)y21(w,t — 7p) dpdl’ = by {y2,t(xv t) — y2,t(95a t— T)} dr,
I'2J0 I

Applying Cauchy-Schwarz inequality after inserting (3.43) and (3.44) into (3.42)), we get

d o9 uT_l o9 uT_l
$E(t) <(—a1 + 5 + 5 )/wyf(w,t)dx—l— (7 - 2)/wyt2(w,t—7')dx
1 -1
+ (—azf + 612262 + é}2 )/ Y (2, t) dl + (a2262 - 5T2 )/ yo,i(z,t —7)dL,
To T2
which implies
(3.45)
d
GE0<-a{ [Ohwn ket - dos [ (Fe0 + ot - npar).
w 2
where
1 -1 -1 —1
o S Ty T _agfy &7 _agfy &7
Cl—mln{(al 5 5 ), ( 2+ 5 ), (a2B1 5 5 ), ( 5 + 5 )¢ -
Step 2.
We rewrite

EB(t) = £(t) + Eq(t) + Ey(t),
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where

&0 = 5 [ {a(o) [Vy(a. O + o0} o

1
But) = [ x(@) /0 VR (,t — ) dpde,

1
T
' JO

With a change of variable we can rewrite

L t+7
= 27_/t /wa(m)yf(m, s —71)dxds,
/ / s ( 7)dI'ds.
from which we deduce

(3.46) e / / Y2 (z,t —7)dz dt,

and

(3.47) t) < Cy / / y3 (2,5 —7)dT dt.
1)

for 0 < § <t <T and T large enough. Step 3.

Concerning £(.), we multiply both sides of by 2h.Vy + (divh — o)y and integrate over
Q2 x (S,T), we obtain

(3.48)

T
/S /Q (yu — div(aVy) + xw{a1ye(x, t) + agye(x,t — 7)}) (2h.Vy + (divh — a)y) dx dt = 0.

and

and

From the previous chapter, we have

T
/ / (yu(x, t) — div(a(z)Vy(z,t))) (2h.Vy + (divh — «)y) dzdt

:_2/ / 2)Vy(a, £).Vy(a, t)da:dt—a/ /{yt 2,8) — alx) [Vy(e, £)[2) do dt
T

‘ [/ {2y¢(x, t)h(z).Vy(z,t) + (divh(z) — @)ye(z, t)y(z,t)} dac]

S

/ / y(2, ) Vy(a, ).V (divh(z) — o) dz dt

—|—a1/ / {2a1— (2, t)h(x). Yy (z,t) — ay |V (2, 1) hov } dT dt
I'1

+2a1// xtthldth—Qag// yQa:t)thngdt
FO FO

T
—al/ V1 (2, t)]? hydI‘dt+a2/ Vs, t)|* hov dD dt

3 t
/ / yQt z,t) hl/dth+2a2/ / Oyel,t) (x).Vya(z,t)dl dt—
T'a s
(3.49)

t
a2/ / Vo (z, )] hvdth+a2/ / 83/2 (28) (divh(z) — a)ya (e, t) dT dt.
'y
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Insertion into ([3.48) yields

/ / B t)dxdtm/ /{yt z.t) = a(x) [Vy(e, )’} do dt
U 120z, t)hiz) Va(a, B) + (divh(z) —Oé)yt(x,t)y(x,t)}dw]z

/ / y(2, ) Vy(a, 1)V (divh(z) — o) dz dt

+ al/ {Qal??yl(x, tYh(x). Vi (z,t) — a1 |Vyi (@, )|* b }dT dt
I

+ 241 / O (o )8V dT dt — 2as / Y2 (0 11Ty dT it
S JTIg

ov s Jr, Ov

T T
—al/ Vo (2, )2 hudI‘dt+a2/ V(. 0)|? hov T dt
To

//yththudth—l—Qa/ / 6y2$t x).Vya(z,t)dl dt—
T'o 1)

/ Vs (x, t)? hudth+a2/ / 8y2 zt) dvh(x)—a)yg(m,t)dfdt
S

(3.50)
T
+ /S /w{alyt(l', t) + aoy(x, t — 7)} (2h.Vy + (divh — a)y) dz dt.

Now, we estimate both sides of (3.50). From (H.1), we have

/Qa(ﬂv)J(:L‘)Vy.Vydac: /QJ(JJ)(\/a(:U)Vy).(\/a(x)Vy) dx

(3.51) > a/ a(z) |Vy(z, t)| d,
Q
then, for the term on the left-hand side of (3.50) we have
(3.52)
/ / x)Vy(z,t).Vy(z,t)dr dt + a/ /{yt z,t) — a(z) |Vy(z, t)|*} de dt > 20E(t).

For the terms on the right-hand side of (3.50) -, we have by the Cauchy Schwarz inequality

(3.53)
T

<C(EM)+E(9))

[ / (2u(x, h(2).Vy(z,t) + (divh(z) — a)yt(x,t)y(x,t)}dx}

S

y(z,t)Vy(z,t).V(divh(z) — a) dx dt‘ / / ) [Vy(z,t)|?* dadt

(3.54) - / /yg(:r,t) dx dt,
nJs Jao
2a2/ /ay2 ).V (z, 1) dth' <C/ / (ay? xt) dT dt
F2 F2
(3.55) + ag/ |Vys(x,t)|* dT dt,
S JTI'g
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T
[{rmlant) + aam(a.t = 1)} (20.Vy + (@ivh — a)y) da dtl <o /S / a(z) |Vy(z, 1) dT dt

356

/ /{yt (z,1) + y2(z —T)}dxdt—i—C’/:/QyQ(m,t)dxdt.

By using the fact that y;(x,t) =0 on I'y x (0,7) and h.v <0 on I';, we get

g oy 2 g I ?

/ {2a1==(z,t)h(x).Vyi(z,t) — a1 |Vyi(z,t)|" h.v } dl' dt :/ / ax < (, t)) h.vdldt

S r 81/ S r 8u
<0

and from the Poincaré inequality combined with the trace inequality in H'(£2), we obtain

/OT . ay2a(j,t)(divh(9c) — a)ya(z,t) dl dt' SC’/T /F2 <(9y2(x7t)>2 Al dt

(3.57) —1—170/ / ) [Vy(z, t))? da dt.

In (3.54), (3.56) and (3.57)), n is a positive constant that will be fixed later.
We have also

(3.58)

yththl/dth’<C’/ / yQtJ:tdth
Fz F2

(3.59)

ag/ |Vya(x, t)|* h. Vdth' < C/ \Vyo(x,t)|* dT dt.
S JTI'g
Inserting (3.53) — (3.59) into the right-hand side of ([3.50) and using (3.52) leads to

T
2 2
(a +2o // ) IV, )2 dxdt§0(5(5)+€(T))+C/S /w{yt(w,t)—l—yt(m,t—f)}dwdt
T T
[ ] e it -ryaraec [ ] 2 e

0
/ / {20157 (2, )h(2)- Vi (1) — a1 [Ty (2, 8) B
F0

- 2a2 ey (ZL‘ (). Vi (x,t) + ag |[Vya(z,t)|* h.v} dl dt
r 9y2 2

+ {200 5 (xz,t)h(x).Vya(z,t) — ag |Vya(z,t)|" h.v} dl dt.
S JI'o

We choose 7 sufficiently small to make a — n(% +2C) > 0, we obtain

T T
/ E(t)dt < C(E(S) + E(T)) + c/ /{yf(x, £) + 2z, t — 1)} dodt
S S w

T T
+/ / {yit(:z:,t) +y§’t(x,t—7)}dfdt+0/ / y*(x,t) dx dt
S s S Q

T
0
+/ {2a1—y1 (z,t)h(z).Vyi(z,t) — ay \Vyl(x,t)|2 h.v

S Iy 8u

— 2a9 %‘yj (2, t)h(x). Vya(2,t) 4+ ag |Viya(x, t)|* ho} dT dt
T
(3.60) +C / {zagng(x,t)h(x).vyg(x,t) — ag |Vya(z,t))? h.v} dl dt.
S JI'g
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Step 4.
Choose open subsets w" and w” of  and the vector field m on  such that

m=h on I,
suppm C W',
Wcw cw cw cw.

and then multiply both sides of (3.1)) by 2m(x).Vy(x,t) and integrate by parts over (S,T') X

. We obtain from ({3.50))

9 9
2a; / / YL (2, 1) h(x). Vs dT dt — 2as / / 92 (4 4)h(). Ve dT dt
F() I—‘0

—al/ Vo (2,0 h(x )dedt+a2/ Vo (z, 1)] h(w).vdl dt
S Ty

:—2/ / 2)Vy(z, t).Vy(z, t)dmdt—a/ /{yt x,t) — a(z) |Vy(z, t)[2} dz dt
T

‘ [/ {2y¢(z, t)m(z).Vy(z,t) + (divm(z) — a)yt(w,t)y(x,t)}dx]

S

/ / y(x, t)Vy(z,t).V(divm(z) — o) dz dt
(3.61)

+ / /{alyt(:ﬂ, t) + agy(z, t — 1)} (2m(x).Vy + (divm(z) — a)y) dz dt,
S w
where M is a Jacobian matrix of m. Therefore

T
/ (201 2% (o O h(@) Vi (2 £) — a1 [V (a0, 6)[2 hov — 25 222 (2, ) (). Vol 1)

s Jro, L Ov v
+ ag |Vya(z,t)|* hv} dU dt < C(E(S) + E(T +c/ / z) | Vy(z, t)|* dedt
(3.62)
+C/ /{thJJt +yQt( t—7)}dxdt.
Step 5.

Let 0 be a smooth function defined on 2 such that
O(z)=1, =z¢€ w/,i
0(z) =0, zeQ\w’,
()12
LGOI

mi
zew”

Multiplying both sides of (3.1)) by 6(x)y(z,t) and integrating by parts over (S,T") x €, we
obtain
(3.63)

/ / yi(x,t) — div(a(x)Vy(z,t)) + xw(@) {1y (x, t) + coye(x, t — 7)}) (6(z)y(z,t)) dedt = 0.

Integrating by parts, we get
(3.64)

//ytt:vt y(z,t) de dt = [/Qyt(a:,t)e() xtdx] //9 x)y?(z,t)d
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/ /le z)Vy(z,1))0(x)y(z,t) de dt = / / y(z, t)VO(z).Vy(x,t) dx dt

(3.65) / / ) [Vy(z,t))? da dt.

Insertion (3:64) and (3:65) into (B63) yields
/ / 2) |V, )2 dxdt:—[/yt(x,t)e() a:tdx] / /9 2)y2(x, 1)
/ / (2, 8)V0(2).Vy(z, 1) de dt
_ /S /Q o (@) {arye (1) + aon (@, £ — )30y, 1) da .

We have by Cauchy schwarz inequality

/ / ) [Vy(z, )] dedt <C(E(S) +C/ / 0(x) {7 (z,t) + yi (v, t —7)}
+/ /a(x)y(m,t)(1V9(x)).(\/29(x)Vy(x,t)) dx dt
S JQ

V/20(x)

T
—I-/ / y?(x,t) dx dt.
S w//

Application of Cauchy schwarz inequality again gives

/ / |Vyact)\ dx dt <C(E(S)+E(T +C/ / {yt (z,t) +yt( —7)}
(3.66) - / / y*(x,t) dz dt.
S w//
From (3.62) we deduce
r oy 2 0y2
/ / {2ala—(az, Hh(z).Vyi(z,t) — a1 |Vyi(x,t)|* hov — 2a—==(x,t)h(x).Vya(x,t)
S To v 61/

T
a3 [Vya(w, ) b} dTdt < C(E(S) + E(T)) + c/ / V2 (2, 1) da dt

T
e / / (8 (. t) + 3 (.t — 7)) dudt.
S w

Step 6.
We rewrite the estimate established in Step 3 over [e, T — €] rather than [S,T] and apply
the results of Steps 4 and 5, we obtain

T—e T—e
/ E(t)dt < C(E(€) + E(T — ) + c/ /{gﬁ(m, B+ 2 (2, — 1)} dedt
T—e T—e
+ / Fg{yit(a«n t) +ys(x,t —7)}dl dt + C / /Q y*(z,t) dz dt

T—e
+ C/ {2a2 %(a: tYh(z).Vya(z, t) — ag |Vya(x,t)|* h.v} dU dt.
Iy

Step 7.
Noting that
ay |2

A o R 2T A

L2(T'2)
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where V,ys is the tangential gradient of y, and using the following estimate due to Lasiecka
and Triggiani [16]:

T—e T 0y
/ Voy(a, O] dos dt < O(T, €,6){ / / (|22
€ Ty 0 s

o, 1

2
+ y%,t(xv t)}dla dt

(1)

2(0;T;HEH9(Q))

where € and ¢ are arbitrary positive constants, and C(T)€,d) is a positive constant which
depends on T, € and §, then we can estimate the last term of the inequality in Step 6 as
follows

T—e
/ {2@%(% (). Vya(z,t) — as |Vya(z, t)|> hv } dT dt

Tfa [/ [ (2

from which, we obtain

9

(@.) \ F Op

T—e T—e
/ S(t)dtSC(E(ﬁ)—i—S(T—e))—i—C(T,e,é)/ /{ytz(x,t)—f—ytz(él?,t—T)}dxdt
(3.67)

T—e
2
L O(T,¢,0) / / (o) + ot = DALt Oyl s

since the H2+%-norm dominates the L2-norm.
Step 8.
We differentiate £(t) and apply Green’s Theorem to obtain

d Oys
368 560 =ar [ porte0?2D ara - [ fanpo,t) + aae (ot - 7)) do
2 w

Integration of both sides of (3.68) from € to T — ¢, yields

B T—e Oya(x,t) 9
E(e) =E(T—€)—az yo.t(z,t) 5 dU dt+ [ {ory; (z,t)+aoy(x, t)y(x, t—7)} dx dt.
€ I's w

Application of the Cauchy inequality gives
(3.69)

Ee) < 5(T—e)+a22/0T g {(WV—Fy%’t(az,t)}dth—i—C/{yf(:c,t)—i—yf(x,t—ﬂ}dwdt.

Insertion of (3.69)) into (3.67) results in

/TGS(t)dt < CE(T— &) +C(T,e 5)/“/{% (2,8) + y2 (@, t — 7} da dt

T—e
2
+Oe) [ [ i bt -l O,

T—e
(T —26)E(T —¢) <CE(T —¢€)dt + C’(T,e,é)/ /{yf(m,t) +yi(z,t —7)}dadt

T—e¢
2 2 2
2O [ [ e skttt CT I,
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which means

(T —2¢—C)E(T —¢) < C’(T,e,&)/T_g/{th(x,t) + vy (z,t — 1)} da dt
(3.70)

T—e
2 2 B 2
c0@ed) [ [ Ghie 0kt = b OT eI,

We deduce from (3.70)) that for T sufficiently large

T T
E(T) < C(T,¢,06) {/O /{yf(as,t) +y?(x,t—¢)}d:cdt+/0 A {y3,(2,1) +y%,t(x,t—r)}drdt}

2
(3.71) + O MY o i3+ 0y

Step 9.
We drop the lower order term on the right hand-side of (3.71]) by a compactness-uniqueness
argument to obtain

(3.72)
T T
sy <o{ [ [t it -npacars [ [ G0+ dotee-nyararf.
0 w 0 '

Suppose that (3.72]) does not hold. Then, there exists a sequence y,, of solution of problem
B-1)-(BF) with,

yn(x,O) = yg($)>ynt(1‘v 0) = yé(l‘),

Ynt(z,t —7) = ozt—71) zew, te(0,7),

Yont(z,t —7) = Pz, t—7) zely te(0,7),

such that
(3.73)

T T
E,(T) zn{ | [+t - myasars [ {y%n,tu,t)+y§n,t<x,t—7>}drdt},
0 w 0 FQ

denoting by E,(T') the energy F related to y, at the time T.

From (3.71)) and (3.45), we have

T T
Enmsc{ | [witen+ it —mpaas [ {yén,t<x,t>+y§n,t<x,tﬂ}dfdt}
0 w 0 FQ

(3.74)

Cllynl| :
Ol b

Then, from (3.73]) and (3.74),

T T
[ [eten+ee-masas [ [ @B +dutec-n)yaal
0 Jw 0 JTs
C
<
~—n-—-C
Renormalizing, we obtain a sequence of solution of problem ({3.1)—(3.8) verifying

2 _
(3.75) Hyn|’L2(O;T;H%+5(Q)) =1, forall n > C

lyn n>C

2
HLZ(O;T;H%”(Q)) ’

(3.76)

T T
[ [ttan+iee-masas [ [ @ +duee-maal< Lo nsc
0 w 0 o -
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From (3.74)),(3.75) and (3.76)), it follows that the sequence (y2,%l, % g%) is bounded in
H. Then there is a subsequence still denoted by (2, yl, f2,¢%)) which converges weakly
to (y°,y', f%, ¢°) € H. Let y be the solution of problem 1} with initial condition
(%, yt, 9, ¢"). We have from Proposition

y € C(0,T; Hy, (2)) N C'(0,T; L*(Q))

Then
Yn — y in L0, T} Hlll(Q)) weak-star

Since the embedding H%l (Q) — HY?19(Q) is compact, then there exists a subsequence still
denoted by ¥, such that y,, — y strongly in L>°(0,T; H'/?+%(Q)). Then we have from 1)

(3.77) HZ/||L2(0,T;H1/2+5(Q)) =1

and from (3.76]),we have,

T T
/ / (s, t) + (e, t — 7)) dwdt + / (2. t) + 4, (et — 7)}dTdE = O
0 w 0 FQ

Thus y satisfies
yr(x,t) = ye(z,t —7) =0 inwx(0,7)
t
yQ,t(JTat) = %28(11/:’) =0 on I'y x (0,7)

Hence, we conclude from the previous chapter that y(z,t) =0 in € x (0,7). This is in
contradiction with . The desired inequality @ is therefore proved.

We are now ready to end the proof of Theorem [3.1]
End of the proof of Theorem We have from

d

Go0 <=0 { [+t —nyde+ [ o0+ oot - npar}.

Then

T T
{ / / (W@, t) + (et — 7)) drdi + / (83 (x.t) + 93 (.t — 1)} dT dt} < CY(E(0) - E(T))
0 w 0 FQ

which together with (3.72) yields

(3.78) By < G0

—=1 __FE(0).
“1+c0;t ©

Since 0 < L < 1, the desired conclusion follows now from (3.78]).
C+Cy
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CHAPTER 4

Stability of coupled Euler-Bernoulli equations with delay
terms in the boundary feedbacks

4.1. Introduction

In this chapter, we investigate the problem of exponential stability for a linear system
of compactly coupled Euler-Bernoulli equations. Let €2 be an open bounded domain of R"
with a regular boundary I' which consists of two non-empty parts I'g and I'y such that
LonTy =0.
Furthermore, we assume that there exists xg € R” such that:
(H.1) h(z).v(z) <0 on Ty,
where h(r) = x — x¢ and v is the unit normal on I pointing towards the exterior of .
In Q, we consider the following coupled system of two Euler-Bernoulli equations with delay
terms in the boundary conditions:

(4.1) ug(x,t) + A%u(z, t) + lu(z,t) —v(z, 1) =0 in Q x (0, +00),
(4.2) v (x,t) + A%(x,t) + 1(v(x,t) — u(z,t)) =0 in Q x (0, +00),
(4.3) u(x,0) = ug(z), ug(x,0) = uq(x) in Q,

(4.4) v(z,0) = vo(x),v(x,0) = vy () in Q,

4.5 u(z,t) = auémy, ) =0 on I'p x (0, 4+00),
(4.6) Au(z,t) =0 on I'1 x (0,4+00),
(4.7) Mg(f’ D _ o, t) + asusa, t — 7) on Iy x (0, +00),
(4.8) v(x,t) = 81}((;;,15) =0 on I'g x (0, 400),
(4.9) Av(z,t) =0 on I'y; x (0,4+00),
(4.10) W = frvg(x, t) + Pove(z,t — T) on I'; x (0,4+00),
(4.11) u(x,t —71) = f(z,t —7) on I'y x (0,7),
(4.12) ve(z,t — 1) =gz, t — 1) on I'y x (0,7),

where t and x represent the time and space variables, respectively. [, a1, ag, 81 and By are
positive constants, 7 is the time delay, ug, u1, v, v1, f and g are the initial data.

In the one dimensional case, the coupled system — is known as coupled Euler-
Bernoulli beams, v and v represent then the vertical displacements of the beams measured
from the horizontal equilibrium positions and the terms +I/(u —v) are the coupling between
the two beams .

The problem of boundary stabilization of coupled Euler-Bernoulli beams has been considered
by Najafi et al [26] in the case where there is no time delay and by Datko [8] and Shang et
al [38] in the case where there is a time delay term in the boundary conditions.

The subject of this chapter is to investigate the uniform exponential stability of the coupled
multidimensional Euler-Bernoulli equation — in the case where the boundary
damping coefficients aq, ag, 81 and (o are strictly positive.
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4.2. Main result

We assume
(4.13) ai > az, i1 > P,

and define the energy of a solution of (4.1)) — (4.12) by

E(t) :;/Q[|Au(:c,t)]2+uf(x7t)+|Av(1:,t)|2+Ut2(x,t)+l(u(x,t)—v(q:,t))Q da

1 1
(4.14) t3 / / [pug (z,t — 7p) + &uf (z,t — 7p)] dpdr,
r, Jo

where

(4.15) Tag < pu < 7200 — ag),
and

(4.16) The < & < 7(2B1 — B2).

The main result of this chapter can be stated as follow.

THEOREM 4.1. Assume (H.1), (4.13), (4.15) and (4.16]). Then the system (4.1) — (4.12)
is uniformly exponentially stable, i.e., there exist constants M > 1 and w > 0 such that

E(t) < Me “'E(0).

Theorem is proved in Section In Section [£.3] we study the well-posedness of
system (4.1)-(4.12) using semigroup theory.

4.3. Well-posedness

We set
y(z, p,t) = ug(z, t — 7p), z(x,p,t) =vi(z,t — Tp) rxely, pe(0,1),t>0.

Problem (4.1) — (4.12)) is equivalent to

(4.17) ug(x,t) + Au(z, t) + 1(u(z,t) — v(z,t)) =0 in 2 x (0, +00),

(4.18) yi(w, p,t) + 7 typ(z, pyt) =0 on I'; x (0,1) x (0, +00),
(4.19) v (z,t) + A%v(x,t) + l(v(z,t) — u(z,t)) =0 in Q x (0, +00),

(4.20) 2z, p,t) + 7 2p(w, p,t) = 0 on I'y x (0,1) x (0, +00),
(4.21) u(x,0) = up(z), ug(z,0) = uy(x) in Q,

(4.22) v(z,0) = vo(x),v(x,0) = vy () in Q,

(4.23) u(z,t) = 8uéi’ 2 =0 on 'y x (0, 4+00),

(4.24) Au(z,t) =0 on I'y x (0,4+00),

(4.25) E?Aggjc,t) = aque(x,t) + aoy(z, 1,t) on I'y x (0,4+00),

4.26)  o(x,t) = a”é";’t) —0 on Ty x (0, +00),

(4.27) Av(z,t) =0 on I'y x (0,400),

(4.28) Mg(f’t) = prvg(x,t) + Baz(x, 1,1) on I'1 x (0,4+00),

(4.29) ut(x,t) = y(z,0,t), vz, t) = 2(z,0,t) on I'y x (0,4+00),

(4.30) y(z, p,0) = f(z,—7p), 2z(x, p,0) = g(x, —7p) on I'; x (0,1).

Denote by ‘H the Hilbert space
H =HP, (Q) x L*(Q); L*(T'y x L*(0,1)) x HE () x L*(Q) x L*(T'y; L*(0,1)),
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where

HI%O(Q) ={uc H*(Q):u= gu _ 0 on I'p}.
v
We equip H with the inner product

0 > - / (AC() AL () + n(@)ii(x)) dut
Q

T
LTI N
ASS l

1 ~ -~ ~
n | /0 O, ). p) dpdl + [ (Ao(a) Ad(w) + X(@)T(a)) da+

1
¢ [ vt niendpdr i [ <@ - 6)Cw) - ) dr
Define in H a linear operator A by
(431) A(C’ n, 97 (,ZS, X 1/’)T = (777 _A2€ + l¢ - lC) _Tilem X _A2¢ - l¢ + le _Tilwp)Ta

D(A) :{(<7 1,0, 0, X, w)T M- (777 _AQC +1¢p — ¢, —7'_10/), X —A2¢ — 1o +1¢, —T_le)T € H;
OAC 29 _ Bix+ Bt 1), Ad =0,

o =ain+ a29('7 1)7 AC = 07 v

(4.32)
n= 0(70) ;X = ¢(a0) on F1}>
then we can rewrite (4.17) — (4.30)) as an abstract Cauchy problem in H
dw
(4.33) W(t) = AW (¢);
W(0) = Wy.

where

W (t) = (u(x, t),ue(x, t),y(z, p, t), v(w, t), ve(x, 1), 2(, p, 1) ",
and Wy = (uo, u1, f(., —.7),v0, v1,9(., _-T))T-

We verify that A generates a strongly continuous semigroup on H and consequently we have

THEOREM 4.2. Assume (4.13)), for any initial datum Wy € H, the problem defined by
(4.31) and (4.33) has a unique solution W (.) € C(]0,+00);H)

If in addition we assume that Wy € D(A), then the solution is more reqular
W(.) € CH([0,+00); H) N C([0,+00); D(A)).

PROOF. First, we prove that the operator A is dissipative, Let

W = (¢,n,0,0,x,%)" € D(A).Then

1
(AW, W) —/Q [AnAC + (=A% +1¢ — 1¢)n] dz — T_lu/r /0 6,0 dp dT

1
“A24 _ -1
+/Q[A><A¢+< A% — 16+ 10)] de — 7 a/rl/owpu}dpdr

+l/Q(n—x)(C—¢)dw-
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Applying Green’s Theorem and integrating by part with respect to p, we obtain

x x 1

(AW;W>:—/F7;($)8A;V( )dP+/FA§(a:)8g(V)dP— 2“/F [6%(2,1) — 6%(z,0)] dT
x x 1

a3 - (@0 [ap@ 2 ar - T [ ) - o).

Inserting (4.32) in (4.34) and using the Cauchy-Schwarz inequality, we get

-1 -1
W) < o+ G T [p@ar e (=T [ e yar
-1 -1
et a0 [ s (-5 [ ey

From (4.15) and (4.16), we conclude that (AW, W) < 0. Thus A is dissipative.
Now, we show that AI — A is onto for a fixed A > 0 and (f, g, h, k,m,p)T € H, there exists
W =(¢,n,0,0,x,9)" € D(A) solution of

(M — AW = (f,g,h, k,m,p)T,

or equivalent

(4.35) N—n=F.

(4.36) M+ A%C+IC—1p =g,

(4.37) N +7710,=h,

(4.38) Ap—x =k,

(4.39) M+ AZp+1p— 1 =m,

(4.40) My + 171, = p.

Suppose that we have found ¢ and ¢ with the appropriate regularity, then
(4.41) n=Xx -,

(4.42) X = A¢p — k.

Consequently we can find 0 from (4.37) with (4.32)) and ¢ from (4.40) with (4.32)).

In fact, 8 is the unique solution of the initial value problem
0,(x,p) = —7N0(x, p) + Th(z,p), x € T'1, p € (0,1),
0(x,0) =n(x), x € Ty,

given by

p
O(x, p) = n(x)e P + 7'6_’\”’/ h(z,0)e* do, z € Ty, p € (0,1),
0

and in particular
(4.43) 0(x,1) = Ae N ((z) + 20(z),
with zg defined by

1
20(z) = —f(x)e ™ + Te_’\T/ h(z,0)e) do, x €Ty,
0

and 1 is the unique solution of the initial value problem
¢p(x,p) = —T)\w(l‘,/?) + Tp(l‘,p), zel, pe (07 1)7
P(x,0) = x(z), v €Ty.

Given by
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1
P(z, p) = x(x)e P + Te_)‘Tp/ p(x,0)eN do, x € T,
0

in particular
(4.44) Y(x,1) = Ne Mo(x) + 21 (z),
with z; defined by,

1
z1(x) = —k(z)e > + Te_)‘T/ p(x,0)eN do, x €Ty,
0

From (4.41), (4.42)), (4.36) and (4.39)), the function ¢ and ¢ verify,
N+ A CHIC—1p =g+ N,
Ao+ A2¢p+1p— 1 =m + A\k.

(4.45)

Problem (4.45)) can be reformulated as
/Q (N2¢(2) + A% (2) + () — 16(x))wn (z) d + /Q (N26(z) + A%6(x) + lp(x) — I¢(x))wn(z) da

- /Q (9(2) + M (@))wr () dz + /Q (m(x) + Ak(2))wa(w) dz,  (wn,ws) € HE (Q) x HE,(Q).

We rewrite the left-hand of the last equality after using Green’s Theorem and recalling

-
/Q (N2 () + A%C() + 1¢(x) — 1p(x))un (z) i + /Q (N26(z) + A%6(x) + lp(x) — I¢(x))wn(z) da

= /Q (N2 ¢(2)w1(z) + A(z)Awy (2)) dx + / (al()\C(x) — f(z)) 4+ as(Ae ™ ¢(x) + zo(x))> wi (z) dl’

I'

+ [ ORo(@hun(a) + Adla)Aus(o) do+ [ (B106(2) = k(o) + BaOhe (@) + 21(2)) wa(a) X
Q T

+ /Q (I(x) — 16(x)yw () da: + /Q (16(x) — I¢(2))wn () da
Therefore

[ 03w a) + Ac@dw @) o+ [
Q

I'1

N+ aze ™)) (w) 0 + [ (€(a) = 16(a) () da

" / (X2¢(@)wn(z) + Ad(x) Awn(z)) dx + / A(By + Bae ) g(x)wn(z) dT + / (16(x) — 1¢(2))wn(z) de
Q Ty Q

Q

- / (9(2) + M (@))wr () de + / (m(x) + M(@))wa(r)dx —ay | f(x)wy(z)dT
Q I'1

T /F zo(@)wn () dT — By /F k()ws(z) dT + B / a1 (w)wn() T,

I't
(4.46)

Since the left-hand side of 1} is coercive and continuous on H%O(Q) X H%O(Q), the Lax-
Milgram Lemma guarantees the existence and uniqueness of a solution ({,¢) € H%O(Q) X

HE,(9) of (1.46).
If we consider (w1, wsz) € D(Q) x D(R) in (4.46), then (¢, ¢) is a solution in D' (Q) x D' (Q)
of

{ N4+ A2CHIC—1p =g+ N,
(4.47)

Np+ A%2p+1p —IC =m + \k.
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Thus (A%, A%¢) € L*(Q) x L*(Q).
Combining (4.46)) together with (4.47)), we obtain after using Green’s Theorem

Mai 4 age™ ) C(z)wi (z) dT 4+ [ N(By + Boe™ ) p(x)w: (z) dT — / GAaC(x)wl (z)dl
I I I v
v/ P Ay ar - A OBAL) () ar + A P2 N () dr = [ @) ar
—a /F o) (&) 4T+ /F klz)waa)dl — 5 /F 1) dr
which implies that
aﬁf(a:) = an(z) + a20(x,1) on I'y
OAP

5 (z) = Bix(z) + Bap(z,1) on Iy
Al(z) = Ag(z) =0 on Ty
So, we have found (¢, 7,0, ¢, x,¥)T € D(A) which verifies — . Thus, by the

Lumer-Phillips Theorem, A is the generator of a strongly continuous semigroup of contrac-
tions on H. m

4.4. Proof of the main result

Theorem will be proved for smooth initial data. First we prove that the energy
function E(t) defined by (4.14)), (4.15) and (4.16) is decreasing.

PROPOSITION 4.1. The energy corresponding to any regular solution of problem (4.1) —
(4.12), is decreasing and there exists a positive constant K such that,

d
(4.48) ﬁE(t) < -K {u%(w, t) + u?(m,t —7)+ U?(l‘, t) + Uf(x, t— 7')} dI’
ry
where

_ N N fo &, & Do
R: _—_— = — _—— —_— = — _— — .
mln{(al 2 27_)7(27_ 9 )aﬁl 2 27_)7(27_ 92 )
PRrROOF. Differentiating E defined by (4.14)) with respect to time, we obtain

;E(t)/ [Aug(z,t) Au(z, t) + [-A%u(z, t) — l(u(z,t) —v(z,t)]u(z, t) + Avg(z, t) Av(z, t)
Q

+ [ A%0(z,t) — L(v(z,t) — u(z, t))]vi(z, t) + L(u(z, t) — v(z, 1) (w2, t) — vi(z, 1)) do
1
+ /1“1/0 {pug(x,t — Tp)up(x, t — 7p) + Eve(x, t — Tp)vg(x, t — 7p) } dpdl.

Applying Green’s second Theorem, integrating by parts with respect to p and recalling the

boundary conditions (4.5)-(4.10), we obtain

d
—E(t)=- 041/ u?(z,t) dl’ — 042/ ug(x, t)ug(z,t — 7) dl
dt I r

—Bl/r v (x,t) dF—Bg/F ve(x, t)yuy(x, t — 1) dl

T 2 2 3 2 2
+ 5 {ui(z,t) — uj(z,t — 1)} dl + 5 {vi(x,t) — v (x,t — 1)} dTL.
Fl F1
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Applying the Cauchy-Schwarz inequality, we find

d -1 -1
CB() <(-a+ 2+ 17 )/Flut(xt)df—i—(;—ﬂg )/Fluf(x,t—T)dF
—1
I u )/Fl 2 nydr+ (2 - &7 )/Flvf(at,t—T)dF,

which implies

%E(t) < -K {uf(a:, t)+ u?(x,t —7)+ vf(x,t) + vf(x,t —7)}dl,
'
with
o Q2 py @ By B S0 B &
K_mln{(al 2 27_)7( 92 + 92 )7(51 2 2 )7( 92 + 27_)}
Since p and £ are such that (4.15)) and (4.16). O

We now give an observability estimate which will be used to prove the exponential decay
of the energy E(t).

PROPOSITION 4.2. For any regular solution of problem (4.1) — (4.12), there exists a
positive constant C (depending on T) such that

(4.49) E0) < C/T {uf(z,t) + i (2, t — 1) + v} (2, t) + vi(z, t — 7)} dT dt.
IR

Proor. To establish (4.49) we follow several steps
Step 1.
We rewrite the energy function E as

E(t) = £(t) + Ea(t),

where
&)= 5 [ 18ul@ 0P + ub(e.t) + |Av(a O +of(e,t) + lule.t) - v(a, 1))}
Q
and
1 1
5 [ [ et = 0+ et~ o} dpa,
I't JO

E4(t) can be rewritten via a change of variable as

t+1
0) < C/ {pu2(z,s — 1) + &vi(x,5 — 7)} dT ds,
t I

then

(4.50) ) < C’/ / ul(x )+ v2(x,s — 1) dl ds.
INT

for 7+t < T and T large enough.

Step 2.

Concerning £(t), We first introduce some notations

Q=0x(0,T], =T x (0,T], Do = Ty x (0,T] and By = Ty x (0, T].

We multiply both side of (4.1),(4.2) by h.Vu, h.Vov respectively and integrate over @ , we
obtain

(4.51) /Q(utt(m,t) + A?u(z,t))(h.Vu) dQ = Z/Q(v(:zs,t) —u(z,t))(h.Vu) dQ,

(4.52) /Q(vtt(:n,t) + A?%y(z, 1)) (h.Vv)dQ = Z/Q(u(x,t) —v(x,t))(h.Vv) dQ.

We compute each term of left-hand side of (4.51) separately
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e Term /utt(x,t)h(x).Vu(:p,t) aQ
Q
Integration by parts with respect to t yields

T
/utth.VudQ = [/uth.Vuda:} —/uth.Vut dQ.
Q Q 0 Q

Green’s Theorem gives

T
1 1
(4.53) / uph.VudQ = [ / uth.Vudx] — = / ulh.vdY + = / uZdivh dQ.
Q 0 2Js 2J)g

Q
o Term [ A%u(z,t)h(z).Vu(z,t)dQ.
Q
Applying Green’s Theorem, we obtain

/Nuh.vudQ = @h Vudy — /VAu(x,t).V(h.Vu) dxy
Q x v Q
_ Ea(iuh.VudE—/EAu(x,t)(ng g;‘k kaf:ng)uj s
2 2 2
e 0 G+ 25, G + i () 42
_ /E %h Vudy — EAug‘kuk s — / hiAu af:ng v dS.

d
2
+2/Q(Au) dQ—i—/Auhka k(Au)dQ

2
~ [ 92, Guas - /Auuk s — /hkAu Tu_, s
s Ov 8xk8x3
1
(4.54) + 2/ (Au)?dQ + / (Au)’h.vdy — / (Au)%divh dQ
Q 2Js 2/qQ
We have from the boundary condition (4.5
(4.55) 68;; - %yk —0, thus Vu=0 onl,
and
0%u 0%u
hAu———v; dX = hiA dx
/Eo F uaxkax] Y / k u@:pk@u

2
/ hkAua qu dx
%o v

0%u
:/ hkAuyk%ZV?dZ
o =

:/ hkAuykZTqudZ
%o — 0
J
(4.56) = / (Au)*h.vdX.
Yo
Insertion (4.6) together with (4.55)) and (4.56) into (4.54)) yields
A 1
/A%h.%d@: 02Uy Fuds — / (Au)2h.v dY.
Q > ov 2 Yo

2 1 2.1
+2/Q(Au) dQ — 2/Q(Au) divh dQ.
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So (4.51)) becomes

| n dAu
[/uth.Vudx} - /ufh.udz + /uf dQ+ | “=—h.Vud¥®
O 0 2 » 2 Q D] 8

1 U2 1% u2 _ﬁ u = v—Uu u
(4.57) —Q/ZO(A)h. d2+2/Q(A)dQ 2/Q(A)dc2 z/Q( )(h.Vu) dQ.

In similar manner, we obtain

T n dAv
[/ vih. Vv dx] — /v?h.y d¥ + /vf dQ+ | ——h.VvdE
Q 0 2 » 2 Q 1 81/

(4.58) - 1/ (Av)%h.v dS + 2/ (Av)2dQ — ”/ (Av)2dQ = z/ (u — v)(h.Vv) dQ.
2 /s, Q 2Jq Q
Summing up with , we get

T

1
[/ {uth.Vu + vh.Vu} dm] ~3 ), {u? + v2}hvdS + Z/ {u? + v — (Au)? — (Av)?} dQ
0 1

+2/{Au Av)}dQ—i—/ {@hv +88AhV}d2—/{Au (Av)?}h.v dS

= — (u—v)hudZ—l—/ u—v)dQ,
2 [,

which gives

2/T8(t) dt = — [/ {uth.Vu + vh.Vo} dx} / {u? + v} hvdY — / {u? +v? — (Au)? — (Av)?} d
0
/{ (Aw)? + (Av)?} dQ — {@h Vu+ %Ah.Vv}dZJr; ((Aw)? + (Av)2 ho dS)
14 PO

(4.59)

2 2 2 ! 2 In 2
—i—/Q{ut—i-vt—i-l(u—v) }dQ—2/El(u—v) h.udZ—l—z/Q(u—v) dQ.

By differentiating I = /{u(m, Hu(x,t) + v(x, t)ve(z, t)} de with respect to t and recalling
Q
(4.1), (4.2)) after using Green’s Theorem we obtain

dI OA IA
dt:/Q{uf—i-vf—(Au)Q—(AU)2—l(u—v)2}da:—/ {%u-ﬁ- !

v}dl.

We integrate both sides of the last equality over (0,7), we find

(4.60)

OAu 8Av T

/Q{u,? o = () = (B i)y de = [ (T

v} d¥ + [/uut + vy dx}
Q 0

From (4.60), we conclude that

OAu aAv T

/Q{ut2 + 02 + (Au)? + (Av)? +1(u — v)*} dx = {7u

v} d¥ + [/uut + vy dx]
Q 0

(4.61) +2/{ (Au)? + (Av) }dQ+21/Q(u—v)2dQ.
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Insertion (4.60) and (4.61]) into (4.59) yields

T T T
2/ Et)dt =— {/ uth.Vu + vth.Vo da:} +(1— ﬁ) {/ uug + vy dx]
0 0 2 Q 0

A A A Av
+(1—f) {a “ 8 Uords — /{ay“w + 98Y%, uyas

ov

1
+ = | {u?+v2h. VdE—l/ (u —v)?h.vd2
2 /s, 2 /s,

+ ZZ/Q(u —02dQ + L [ {aw? + (a0 hods.

2 o

We have from Assumption (H.1)

T T
/ E(t)dt < — L [/ uh.Vu + vih. Vo d:c] + 1(1 — ﬁ) [ wuu + Uy dx]
. 21/, . T2V T2
1 0Au 8AU 0Au
—|—2(1——) {— v}dZ 2/ {—yhv 8
(4.62) + E {u? + v} hvdY — l/ (u —v)*h.vd¥ + l/ (u —v)*dQ.
4 b5} 4 ] Q

Let
M), = max |h|, C}, = max|hl,
Q I'y

/u2 dx < Cp/ \Vul|? dz, u € H}(Q), C, = Poincaré constant
Q Q
/|Vu]2d:r < C’/ |Au|?dz,  Yu€ HZ(Q), (see [21], p.256).
Q Q
Then, for the tow first terms (I7) in the right-hand side of (4.62)) we have

1 T g
L = 3 [/ uth.Vu + vsh.Vo da:} +=(1+ ﬁ) [/ uuy + vy dﬂﬁ] <
Q Q

0 2 2 0
(L 30+ D) e + oI + e + e(0) )
(B 20 D) ITu(T) P + 90 29 u(0) P + [70(0) %))

Therefore
I < C{[lue(T) |1 + [[on(T)|1? + | Au(T) 1> + || Av(T)||?
+ us ()17 + [lve (0)1% + [[Au(0)[I* + [|Av(0)]1%}
(4.63) < CL(ET) + £(0))

For the third and fourth terms (I2) in the right-hand side of (4.62)) we use Cauchy-Schwarz
inequality and poincaré inequality we get

I = ’1( %) {@ aAUv}dZ‘ / 1{@h Vu + M”h.vv}dx'
5 5, 2 ov
Cp n, Cp 2 2 1 ny, Ch 0duf’ 198y
<[+ )+ T HIVulLem,) + 1Volm)} + [+ 5) + 4]/21 v o | 1=
Then
dAul*  |9Av]|?
4 B Ol 4 loPhonmay + 0 [ (5] + |G| Yz
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For the fifth term in the right-hand side of (4.62]) we have
(4.65) /Ql(u =) dz < 20 {|[ull* + [0]*} 20,7, 22(2))-

For the three last terms the right-hand side of (4.62), we obtain

l
/ (u —v)?h.v dZ’
¥

{u? + v2}hvd2| +
>

4
(4.66) < 03/ {uf + 07} dS + Cs{|lull® + [01*} 20,711 (01 ) -
Insertion — into (4.62) yields
/OTe(t) dt < Oy (E(T) + £(0)) + 02/21{ % 2 ‘aam Vs

+(Co + Ca){llull® + [11*} 2.0, oy + 20 Ll + [901%} 20,7220
+C3 {ut +Ut}d2
3
By trace Theorem we have

Ul + 1o oy < CUIE + 19012} 1 g 7

Then
r 2
/ E(t)dt < CL(E(T) + £(0)) +c2/ { 9Au ’am | ds
0 > ov o
(4.67) +@WN+MHUMM(+QJ{%H“@

Now, we differentiate £(t) with respect to ¢, and integrate over (0,t] with ¢ € [0,T], we get

t 8Au t 8Av
815—80:—/ / dI' dt.
(t) — £(0) ; r1 5, ; r1 5,

For ¢ € [0,T], we obtain

¢ _/ ((u 8Au) (o + 8A’U) vl dt
r v
0Av
L 2 2., .2 2
+2/0/Fl{ut+( L+ 0+ (ST

0A 0A
> —/ {uﬁ—u) + (v + S=0)2) dr dt
T 8V

Then

0A 0A
> —/ {ut+—u) +(ut+—v)2}drdt.
T 81/

By integrating the last estimate over (0,T], we get

A A
/8 t)dt >TE(0 —/ {(u a u) (vt+8av)}d1“dt
IR

which together with ( - gives

re0) -5 [ [t 220 4+ B0y < i) + £0)

+02/21{

OAu|?
ov

IS Calll® WP g+ O [ (0 072

' oA |?
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So
c 0A OA
(T — C1)E(0) < C1E(0) + 21 (w2 + ( 8u) oty (PR e
i v v
dAu|? OAv |
+02/21{8V ’ }dE + Ca{||ull® + [Jv]|? }LQOTHQ( ) +C’3/ {u? +v2}dx

0Au 0Av 4
2 2 2
7 [+ (G i (R

Then

0Au
ov

{

2
+‘6A“ }dy

(T — 2C1)E(0) < (+03+T/ {ut+vt}d2+(C+Cg+T)/ -

1

+ Ca{[Jul* + [Jv]|” }L2(0,T7H%(Q))'

For T assay large and (C5 depending to T), we conclude that
£(0) §C5/ {u?(z,t) + ul(z,t — 1) + v (x,t) + vi(x, t —7)} dE
1
(4.68) + Cs{Jlull® + [Jo[*}
From (4.50) and(4.68)) we obtain
T
0) gc/ (2@, ) + 12z, t — )+ v2(2,8) + v2(3, b — 1)} dT dt
INT
(4.69) +C{llull® + [lo]*}
Step 3.

L2(0,T,H3 ()

L2(0,T,H? ()

We prove by a compactness-uniqueness argument that there exists a constant C' > 0
such that

(4.70)

T
Ul 4 1012} gty <O [ (0@t (ot = 7)) + oot = 7))l .
1

Suppose that (4.70) does not hold. Then, there exists a sequence (uy,vy,) of solution of
problem (4.1)-(4.12) with,

Un (@, 0) = 1y (2), une (2, 0) = 1y (),

Un(2,0) = vp (), vne (2, 0) = v, (@),

Un(x,t —7) = fO(2,t — 7),v0(2,t —7) = ¢2(x,t — 7).

n

L2( OTH?

Such that

{Hu”H2+HU”H }L2 (0,T,H3 (Q)) =1 n=12,.;

T
(4.71) / {u2, (2, ) + w2y (w,t — 1) + 02, (x,t) + 02 (x,t — 7)Y dT dt — Oasn — +o0,
0o Jry

Since each solution satisfied (4.69)), we deduce from it and (4.71]) that the sequence (ul,ul, 2,09 vl g9)
is bounded in ‘H x H. Then there is a subsequence still denoted by (ug,u}l, fg,vg, U}l,gg)

which converges weakly to some (u®,u', f0,0°% v, ¢°) € H x H. Let (u,v) be the solution
of problem (4.1)-(4.12) with initial condition (u?,u', f9,v% v!, ¢°). we have from Theorem
4.2

(u,v) € C(0,T; Hi (Q) x C(0,T; H5 ()
Then,
(tn, vn) — (u,v) weakly in L2(0,T, H3(Q)) x L*(0,T, H3(9)).
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Since H3(Q) is compactly embedded in H %(Q), there exist a subsequence which for sim-

plicity of notation, we still denote by {uy, vy }n such that ,

(tn,vn) — (u,v) strongly in L2(0,T, H%(Q)) x L(0,T, H%(Q))

From (4.71), we get

2 2

(4.72) HUHLQ(O,T;H%(Q)) * HUHL2(0,T;H%(Q)) -
and
T
/ / {u?(z,t) +ui(z,t —7) +vl(x,t) + v (x,t — 1)} dl dt = 0.
o Jr,
Then

ut(z,t) = ve(z,t) =0 on I'y x (0,7)
8Au( 5 = 0Awv
v T o

thus (u,v) satisfies

setting ¢ 1= ug, 1 := vy,

pu(z,t) + A%p(x,t) + 1(p(z,t) —9(2,1)) =0 in
bu(,t) + A% (2, 8) + 1Y (@,t) — p(2,4)) =0 in
o(x,t) = 8@6()? b _ 0 on
(4.73) b t) = 81/1595, t) —0 on
Ap(z,t) = Ap(x,t) =0 on
0Ap(x,t)  OAY(x,t)
v B ov =0 on

Putting y = ¢(z,t) + ¢(x,t), then the problem (4.73)) implies

which solution is y=0 (see [2I]. p.276 lemme 3.6), we conclude that

(p(:L’, t) = _1/](‘777 t)

(x,t) =0 on Iy x(0,7)

yie(z,t) + A%y(z,t) =0 in Qx (0,7),

_ Oy(x,t)
y(x,t) = 5 0 on I'x(0,7),
Ay(z,t) = (%A(y?(f’t) =0 on Ty x(0,7).

Q% (0,7),
Q% (0,7),

I x (0,7),
I'x (0,7),
Fl X (07T)a

Iy x (0,7).

Problem (4.73)) becomes
oi(x,t) + A2p(x,t) + 2lp(z,t) =0 in Qx (0,7T),
@(x,t)zaﬁi’t):o on T x(0,T),
A t
Ap(a, 1) = 282D on Ty x (0,T),
v
which solution is ¢(z,t) = 0 (see Remark 4 of [18]).
Hence
ut(x,t) = ve(z,t) =0 in Qx(0,7).

This implies that

page 79



Chapter 4. Coupled Euler-Bernoulli equations with delay terms in the boundary feedbacks

u(z, t) = u(z), v(z,t) = v(x).

Thus (u,v) verifies

( A%u(z) + l(u(x) —v(z)) =0 in€Q,
A?v(z) + I(v(x) — u(x)) =0 in Q,
u(z) =v(x) = 81(;5;%) = 61(;(:) =0 onT,
Au(z) = Av(z) = aA{;f/(x) = 8Aavy(x) =0 onTl.

So (u,v) = (0,0). This is in contradiction with (4.72)). The observability inequality (4.49)
is therefore proved. U

From , we have
E(T) - E(0) < —K /OT A {u?(z,t) +ul(z,t —7) +ul(z, t) +vl(x,t —7)}dl dt
which together with lead; to
(4.74) Br) < K

——F
~1+CK-! ()
Since we have 0 < C/(K + C) < 1, the desired conclusion follows now from (4.74)).
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CHAPTER 5

Stability of coupled Euler-Bernoulli equations with delay
terms in the internal feedbacks

5.1. Introduction

The purpose of this chapter is to study the problem of stability for coupled Euler-
Bernoulli equations with delay terms in the internal feedbacks.
Let Q be an open bounded domain of R™ with regular boundary T
Let w C € be an open neighbourhood of a subset I'g of I' defined by

IFp={xzeTl: h(z)v(z) >0},
where v is the unit normal on I" towards the exterior of Q, and h(z) = z — x¢, ¢ € R™.

In ©, we consider the following coupled system of two Euler-Bernoulli equations with
delay terms in the internal feedbacks :

we(z,t) + A%u(2, ) + o (@) {arug (2, ) + agug(x, t — 1)}

(5.1) =l(v(z,t) — u(z,t)) in Q x (0, +00),
v, t) + A% (2, t) + xow(2){Brve(z, ) + Bove(x,t — 1)}
(5.2) = l(u(z,t) —v(z,t)) in  x (0, +00),
. u(z,0) = ug(x), u(z,0) = ui (x) in €,
(5.4) v(x,0) = vo(x), vi(x,0) = vi(x) in Q,
(5.5) u(z,t) = 6uéa;,t) =0 on I' x (0, +00),
ov(z,t)
(5.6) v(x,t) = 5 = 0 on I' x (0, 4+00),
(5.7) u(z,t —71) = f(x,t —7) inw x (0,7),
(5.8) vz, t —71)=g(x,t —7) inw x (0,7),

where x,(.) is the characteristic function of w, I, oy, ag, 1 and [y are positive constants,
7 is the time delay, ug, u1, vg, v1, f and g are the initial data.

In the absence of delay, exponential stability of the system — has been established
by Najafi et al [26] for one dimensional domain 2. In this chapter, we study the exponential
stability of the system — in the case where the interior damping coefficients
a1, a2, 1 and Be are strictly positive.

5.2. Main result

Assume
(5.9) ay > ag, B1 > P,
and define the energy of a solution of — by
E(t) :;/Q [|Au(:r,t)]2 +up (2, t) + |Av(e, )] + 0f (2, ) + Lu(z, t) — v(2,1)?| da
1 1
(5.10) +3 /wa(x)/o (i (z,t — 7p) + v (x,t — 7p)] dpdz,
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where

(5.11) Top < p < 7201 — az),
and

(5.12) TBa <& < T(281 — B2).

The main result of this chapter can be stated as follows.

THEOREM 5.1. Assume (5.9), (5.11) and (5.12]). Then the system (5.1) — (5.8)) is uni-

formly exponentially stable, i.e., there exist constants M > 1 and w > 0 such that
E(t) < Me “'E(0).

Theorem is proved in Section In Section [5.3] we study the well-posedness of
system (5.1)-(5.8)) using semigroup theory.

5.3. Well-posedness

We introduce the auxiliary variables
y(@, p,t) = we(w,t — 7p), 2(z, p,t) = vi(w,t —7p), €W, p€e(0,1),¢>0,

with these new unknowns, problem (5.1)) — (5.8) is equivalent to

(5.13) ug 4+ A%u = 1(v — u) — xo(z){aru(z,t) + aoy(z,1,1)} in Q x (0, +00),
(5.14) ye(x, p,t) + 7 typ(z, pyt) =0 inw x (0,1) x (0, +00),
(5.15) v + A% = 1(u — v) — Xo(2){Brve(z, t) + voz(z,1,1)} in Q x (0, +00),

(5.16) 2z, p,t) + 7 zp(x, p,t) = 0 inw x (0,1) x (0,4+00),
(5.17) u(x,0) = up(z), ug(x,0) = ug(x) in Q,

(5.18) v(z,0) = vo(x), ve(z,0) = vi(2) in Q,

(519)  u(wt) = a“é“;’ D _y on T x (0, +00),

(5.20) v(x,t) = 81}(%3];/, b _ 0 on T x (0,400),

(5.21) ug(x,t) = y(z,0,t) in w x (0,400),

(5.22) ve(x,t) = z(x,0,t) in w x (0,400),

(5.23) y(xz, p,0) = f(x,—7p) inw x (0,1),

(5.24) z(x, p,0) = g(x, —7p) inw x (0,1).

Denote by H the Hilbert space
H =HZ(Q) x L*(Q) x L*(w; L*(0,1)) x HZ(Q) x L*(Q) x L*(w; L*(0,1)),

where

H2(Q) = {u € H*(Q) :u:%:()on I'}.
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We equip H with the inner product

> - /Q (AC()AL(x) + n(@)ii(z)) dat

—
T O DI
SISy

J
(0
1 ~ ~ ~
" /Q Yol®) /0 0(z, p)i(x. p) dp i + /Q (A(2) Ad(z) + 9(2)d(x)) do+

1 ~
¢ /Q Yol@) /O (e, ) p) dp e + 1 /Q () — ¢(@) C(x) — B(x) do,
and define a linear operator A in H by

D(A) ={(¢,n,0,¢,9,¢)" € (HY(Q) N H§(Q)) x Hi () x L*(w; H'(0,1))x
(5.25) (H*(Q) N HZ(Q)) x HE(Q) x L*(w; HY(0,1)) ;17 = 6(.,0), ¥ = ¢(.,0) in w},

A(C7 m, 07 ¢7 197 ¢)T = (77’ _AQC + l¢ - lC - Xw{aln + Oége(., ]-)}7 _7719/»
(5.26) X =A% — 16 +1¢ — X {819 + Bt (., 1)}, =7 1)
Then we can rewrite ((5.13) — (5.24]) as an abstract Cauchy problem in H
aw
(5.27) (O = AW(1);
W(0) = W.

where

W(t) = (u(‘rvt)a ut(xvt)a y(x, p,t),v(:z:,t),vt(x,t), z(:c,p, t))Tv

and WO = (u07u17f('7 —-7'),’0(],’01,9(-, _'T))T'

We verify that A generates a strongly continuous semigroup on H and consequently we have

THEOREM 5.2. Assume (5.9), then for any initial datum Wy € H, the problem defined
by (5.27) has a unique solution W (.) € C([0,+o0); H)
If in addition we assume that Wy € D(A), then the solution is more regular

W(.) € CL([0,+00); H) N C([0, +o0); D(A)).
ProOF. First, we prove that the operator A is dissipative. Let

W = (¢,n,0,6,x,%)" € D(A). Then

(AW W) = /Q [A(@)AC(x) + (—A2¢(x) + 16(x) — IC(2))n(x) — xel(@){aan(z) + asb(z, D}n(a)] d
T /Q [AD(2) Ad(x) + (—~A%6(x) — 16(z) + 1)) — xu(@){B1(z) + fatb(z, 1)}0(2)] de
1 1
e /Q Yo(2) /0 6,(x. p)b(z, p) dpdax — 7€ /Q Yo() /0 oz, p)(z, p) dpda
" / (n(z) — 9(2)) (((x) — B(x)) do.
Q
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Using Cauchy-Schwarz inequality after applying Green’s Theorem and integrating by parts

with respect to p, we get

(AW; W) < (a1+—+T “)/ 2z)de+ (22 - T

2 2 2

1
sem 20T [+ (2T

2 2

_1“)/92(33 1) dz

15 /¢2$1

From (5.11) and (5.12), we conclude that (AW; W) < 0. Thus A is dissipative.

Now, we show that AI — A is onto for a fixed A\ > 0, that is for (f, g, h, k,m,p)”

€ H, there

exists W = (¢,n,0, ¢, x,v)’ € D(A) solution of

(M — AW = (f,g,h, k,m,p)",
or equivalently
(5.28) X —n=],
(5.29) M+ A%+ I~ 19+ xw{oan + a2f(., 1)} = g,
(5.30) N +7710,=h,
(5.31) Ap— 0 =k,
(5.32) A+ A0 + 16 — I+ xo{ 519 + Bot (-, 1)} = m,
(5.33) M+ 77, =p
Suppose that we have found ¢ and ¢ with the appropriate regularity, then
(5.34) n=A—f,
(5.35) =X p — k.
We have from with ( -,
(5.36) 0(z,1) = Ae M¢(2) + 20(x),

with zg defined by

(5.37)

and from (5.33) and (5.25)), we find
(5.38) Y(@,1) = AT V(@) + 21 (),
with z; defined by,

20(x) = —f(2)e ™ + Te_/\T/lh(:U, 0)e* do (),
0

1
z1(z) = —k(z)e T + Te)‘T/O p(z,0)e’ do(x).

From (5.29), (5.32), (5.36) and (5.38) the functions ¢ and ¢ verify

N2C+ A2C + Mxw(ar + aze )+ IC —

(5.39) {
N2+ A%+ Axw(B1 + B2 )b + 1 —
Problem (5.39) can be reformulated as

lp =g+ (vixw + A f + aaxw20,

I¢ =m~+ (Bixw + ANk + Baxwi-

[ (3¢ + 2%(@) + dala)(@r + 02 )C@) +1¢(a) ~ 16(a)) wr (@) da

+ /Q (W(2) + A%6(2) + Mval@) (81 + o )(x) +10(x) ~ IC(2)) w(a) da

- /Q (9(2) + (0w (2) + N f(2) + 02x0(2)20(2)) w1 (z) de
" / (m(2) + (Brxw(@) + Nk(@) + Bayw(@)21 (@) wa(z) dr,
Q

V(wl,wg) S HS(Q) X Hg(Q)
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We rewrite the last equality after using Green’s Theorem
/ (/\2C(ac)w1(x) + Al(x)Awq(x)) dx + / Xw(T) (o1 + 0426_’\T)C(x)w1(:):) dx
Q Q
+ [ @¢a) = to@)un@)do + [ (Co()un(a) + Ad()Aus(a) da
(540)  + /wa(w)/\(ﬁl + Bae ) (x)wa(x) da + /Q(lcf)(ﬂ«“) — I{(x))wa(x) dx
= [ 60 + (@rxe(a) + V(@) + e a)zofa)) wr (@) da
GA41)  + /Q (m(z) + (Brxw(@) + NE() + Baxw(@)2 (2)) wa(z) de.

Since the left-hand side of is coercive and continuous on HZ(2) x H3(Q), and the
right-hand side defines a continuous linear form, the Lax—Mllgram Theorem guarantees the
existence and uniqueness of a solution (¢, #) € HZ(Q2) x HZ(®2) of (5.39).

If we consider (w1, wz) € D(2) x D() in , then (¢, ¢) is a solution in D' () x D' (Q)
of

5.42) { A2+ A%+ Axwlon + age ™)+ IC— 1o = g+ (a1xw + M) f + a2xwo,
5.42

N2+ A% + Axw(Br + B2e ™ ) + 1 — I¢ = m + (Bixw + M)k + Baxw?1-
Thus (A2¢, A%¢) € L2(Q) x L3(9).

So, we have found (¢,7,0,¢,9,¢)T € D(A) which verifies (5.28) — (5.33). Thus, by the
Lumer-Phillips Theorem, A is the generator of a Cy— semigroup of contractions on H. [J

5.4. Proof of the main result

We prove Theorem for smooth solution. The general case follows by a standard density
argument. We first show that the energy function E(t) defined by (5.10)), (5.11)) and (5.12)
is decreasing.

PROPOSITION 5.1. The energy corresponding to any regular solution of problem (5.1) —
(5.8), is decreasing and there exists a positive constant K such that,

(5.43) %E(t) < —K/ {u?(m,t) +ul(z,t — 1) 4+ v (x,t) + vi(x, t — 7')} dz,

where

: N A B &, & DB
K = _22_ A2 P2 Sy 22
mln{(oq 5 27) (27 2),( 1 )5 ( )

ProOF. Differentiating E(t) with respect to time, applying Green’s Theorem, recalling
the boundary conditions (5.5)-(5.6)), and applying Cauchy-Schwartz inequality, we obtain
-1 -1

) [ xotpidat) o+ (F =250 [ vula)ud et =) da

7.—1
) [t (2 -0 [ttt - de

d T
E _Z
2 EW (a1+2+

IS e u

which implies

/ w2 (x,t) + ud(z, t — 1)+ v2(2, ) + v (x, t — 1)} da,
w

with

K =min{(ar- 2= 2 (2 - D -2 - D -
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0

We now give an observability inequality which we will use it to prove the exponential
decay of the energy E.

PROPOSITION 5.2. For any reqular solution of problem (5.1)) — (5.8)), there exists a pos-
itive constant C (depending on T) such that

T
(5.44) E(0) < C/ / {uf (2, t) +ui (v, t — 1) + v} (2, t) + vi(z,t — 7)} dadt.
0 w

To prove this result, we need to find an observability inequality for the homogeneous
coupled Euler-Bernoulli equations

vt (z,t) + A%y(z,t) + 1(y(x,t) — z(2,t)) =0 in Q x (0, +00),

zu(w,t) + A%z(z,t) + 1(2(2,t) — y(z,t)) =0 in Q x (0, +00),

y(z,0) = yo(z), ye(z,0) = y1 (z) in Q,
(545) 2(x,0) = zo(z), z¢(x,0) = 2z1(x) in Q,
y(x,t) = z(z,t) =0 on I' x (0, +00),

Oy(w,t)  Oz(x,t)
5~ o =0 on I' x (0, +00).

Denote by F the standard energy for (5.45)), that is

1

F(t) =5 [ {1800 + (0.0 + [8s(@ 0 + e 0) + (o, 0) - 2(2. )} do

Note that F'(t) = F(0).

PROPOSITION 5.3. For all T' > 0, there exists a positive constant C' (depending on T)
for which

T
(5.46) F(0) < C/ / {vi(z,t) + 27 (2, t)} dadt,
0 w
for any regular solution (y,z) solution of (5.45))
PRrROOF. We follow several steps to prove the inequality (5.46)) .
Step 1.

We multiply both sides of the first two equations in (5.45)) by h.Vy, h.Vz respectively
and integrate over 2 x (0,7"), we obtain

(5.47)

T T
/ (yee(,t) + A2y(e, 1) (h(x).Vy(z, 1)) da dt = 1 / / (2(z,t) — (o, 1) (h(z) Vy(a, 1) da dt,
0 Q 0 [9]
(5.48)

T T
/ / (e (1) + A22(z, 1)) (h(2) V2, 1)) dar dt = | / / (@, ) — 2z, ) (h(2).V 2, 1)) da dt.
0 Q 0 Q

We compute each term on the left-hand side of ([5.47)) separately
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e Term / /ytt x,t)h(z).Vy(z,t)dedt
Integrating by parts with respect to ¢ and applying Green’s Theorem, we get

(5.49)
/0 Q?/tt z,t)h(z).Vy(z,t) de dt = ngt(x,t)h( )-Vy(x,1) dx} / /yt z,t)divh(z) dz dt.

e Term /T/Azy(:c,t)h(af).Vy(x,t) dx dt.

0 Q
Applying Green’s Theorem, we obtain

/ /AthVyda;dt / /aAyhv det—/ /Ayukdfdt
—/ /hAaQyu-dth+2/ /(A )2 dx dt
0 T k y@xkaxj J 0 0 y

1T 1T
(5.50) + / /(Ay)Qh.udF dt — / /(Ay)Qdivhda: dt.
2Jo Jr 2Jo Ja
We have from the boundary condition y = gy =0on I x(0,7),
v
0 0
a—jk—a—y v =0, thus Vy=0 onl x (0,7),
and
/T/ A aQy T (A )2
hAy———v; dl'dt :/ / y)“h.vdl dt.
o Jr dxydx; ’ o Jr
Hence

T T T T
/ /A2yh.Vydazdt = —1/ /(Ay)2h.udth+2/ /(Ay)2dxdt - 1/ /(Ay)2divhd:cdt.
o Ja 2Jo Jr 0o Jo 2Jo Ja

So (5.47) becomes:

T, T 1 /T T
[/ yth.Vy dx] + / /th dx dt — / /(Ay)2h.u dr’ dt + 2/ /(Ay)2 dx dt
0 Q

(5.51)

—//Ay da dt = // (@) — y(@, ) (h.Vy) da dt.

In similar manner, we obtain

T n T 1 T T
[/ zth.Vzdm] + / /yf dx dt — / /(Az)%.ydr dt+2/ /(Az)Qdaﬁdt
Q 0 Q

(5.52)

—/ /Az dr dt = // — 2)(h.Vz)dzdt.

Summing up (| with (5.52), we get

{/ {yth.-Vy + z:h.Vz} dac]T + n/T / {y? + 22 — (Ay)? — (A2)? —I(y — 2)?} da dt
c Ty JoWe T
(5.53)

_/ /{Ay Az)}hudl“dtJrQ/ /{Ay (A2} dedt = 0.
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Differentiating I = /{y(:p, Oy (x,t)+z(x, t)z¢(x, t) } do with respect to time ¢ and recalling
Q
(5.45]) after using Green’s Theorem, we obtain

= [ Ao+ 22— (20 - (822 ~ 1y — 2} da.

We integrate both sides of the last equality over (0,7"), we find

T
(5.54) / / {yi + 27 — (Ay)? — (A2)? = l(y — 2)*} dadt = [/ {yys + 2z} d:):]
Q 0
From (| , we conclude
/ / {y7 + 27 + (Ay)* + (Az)? 2)?} drdt = 2/ / Ay)? 2dx dt
T
(5.55) —|—2l/ /(y—z)dedt+[/ {yys + 224} da:} :
0o Ja Q 0
Insertion of (5.54) and (5.55)) into (5.53) yields
T T
2TF(0) = {/ {yth.Vy + 2h.Vz} dx] +(1- ﬁ) {/ {yye + 224} d:n}
0
/ /{ (Ay)? + (Az) }hudth—i—Ql/ / — 2)?dx dt.
We have from the definition of I'y
T T
2T F(0) < — U {yth.Vy + 2:h.V 2} dx] +(1 - g) U {yye + 22} dx}
Q 0 Q 0
e 2 2 g 2
+ = {(Ay)* + (Az)“}h.vdl dt + 21 (y — 2)*dxdt.
2Jo Jrg o Jo
Let
My, = m9x|h|,Ch = max R,
/u dr < C, /\Vu|2 dx, u € Hy(Q), C, = Poincaré constant
/yvu| dr < C/|Au]2d:r Vu € H2(Q), (see [21], p.256).
From Cauchy-Schwarz inequality and Poincaré inequality, we have
My 1 n 2 2 2 2
TF(0) <(% + 70+ DT + 1T + () + 12(0)]1%)
My Gy 2 2 2 2
+(+ 5 0+3 )){HV?J( I+ V2D + [[Vy(0)I7 + [V2(0)[7}
T

T
+ C’l/ ((Ay)? + (A2)?) dTdt + zch/ /{Vy|2 +V2[2} da dt
4 0 To 0 Q
Ch r 2 2
< CF(0) + — {(Ay)* + (Az)“} dI' dt.
4 Jo Jr
For T large enough, we get (C depending on T')

T
(5.56) F(O)gcfo /F{\Ay]2+]Az\2}dF.

For fixed o > 0 small enough we apply estimate (5.56|) over the interval («, T — ) rather
than (0,7"). We obtain
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T—a
(5.57) F(0) < c/ {|Ay[2 + |Az[2} dT.

a To
Step 2.
To estimate the right-hand side of (5.57), we use a multiplier technique again, by choosing
another multiplier ¢(z,t) = t(T — t)m(z), where m € (C? (©))" is a vector field (see [21])
that satisfies
m(x).v(z) =1on Ty, m(z).v(x) >0on T, supp m C we,

such that w. C w, where w;, is defined by (see [21])

O.= ] B(z,e), w.=0.n9Q,

x€lg

where B(z,¢) is the ball of center x and radius e.
We multiply both sides of first two equations in the problem (5.45) by (¢.Vy), (¢.Vz) re-
spectively and integrate over 2 x (0,7), we obtain

17T 17
2/ /q.v (JAy[* + |Az|?) dT dt = 2/ /divq (yi + 27 — |Ay)? — |Az]* = I(y — 2)?) dzdt
o Jr 0o Jo

T
+/ / (Aq.VyAy + Aq.VzAz) dxdt
0 Jo
T n
+ 2/ /Ay Z ajqkafky dx dt
0 J8 k=1

T n T
+ 2/ /Az Z ajqkaf-kz dx dt — / / (yeqe.-Vy + 2.V z) dz dt.
0o Ja 0 Ja

Jk=1

By the properties of m, we get

T-o T—o
a(T—a)/ /F (1Ayl? + |Azf?) drdtg/ /Fq.y(\Ay]Q—i—]Az\Q) dr dt
[e% 0 (e 0

T
g/ /q.y(|Ay\2+\Az|2) dr dt.
0 JI

We apply Young’s inequality in the previous identity and use the last inequality, we find

T—a T T
/ / (|Ay|* + |Az|?) dT dt < C{/ / (v? + 27 + |Ay)* +|Az?) dwdt+/ / (y* + 2%) dx dt
a To 0 We 0 We

T 1

—I—/ / <|Ay|2—|—17|Vy|2) dx dt
0 We n
T 1

—|—/ / (n]Az\2+an|2> dx dt
0 We

T 1 n
/O / (nmy%Az2>+nz<a?ky2+a?kz2> dz dt

J,k=1

_|_

g 1
+/0 / <n(y3+23)+n(!Vyl2+|Vz2)> dz dt}
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where 7 is a positive constant that will be fixed later.
From the last inequality we have for all n € (0,1)

T—a T
C
/ / (|Ay|* + |Az[?) dT dt <n/ / (yi + 27 + |Ay[* +|Az?) dz dt
« To 0 We

T
(5.59) 10 [ (IOl + 10 ) .
Using the fact that
fuwlfey < C [ [P da Ve HH®),
then, (5.58)) implies

T—a T
/ / (|Ay|* + |Az|?) dr dt gc/ / (y7 + 27 + |Ay|* + |Az|?) dwdt
o To nJo We

T
4 nc/ / (1AyP + |AzP) dudt.
0 Q

From the definition of the energy F'(t), the last inequality becomes
(5.59)

T—« T
/ /(|Ay|2~|—|Az|2) dthg(;/ / (v? + 22 + |Ay|* + |Az|?) dadt +nCTF(0),
« To 0 We

for all n € (0,1).

Using with yields

(1—-nCT)F(0) < C/OT/ (vi + 2¢ + |Ay|* + |Az[?) dz dt.
We choose 7 sufficiently small to make (1 — CnT > 0), we obtain
(5.60) F(0) < C/OT/ (vi + 27 + |Ay|* + |Az[?) dx dt.
Step 3. E

We have from (5.60) on (o, 7' — a) and in the domain we

T—«o
(5.61) F(0) = F(a) < c/ / (vi + 2¢ + |Ay|* + |Az?) da dt
« (/J%
Let
fl(x, t) = t(T - t)@&(x)y(ma t)a
52(‘T’ t) = t(T - t)@&(x)z(xa t)’
where ¢, € Woz’oo(Og) is defined (see [21])
1 on Oe¢,
2
e —2d(z))*
pe(r) = ( 64< ) on  Oe\Os,
0 elsewhere ,
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where d(z) is the distance from z to 0O¢. ¢ satisfies

(5.62) 0<p <1 in Q,
2
(5.63) ’v;fe < % in w,
€ €
Agc|?
(5.64) B¢ < 94 in we.
e

Now, we multiply both sides of two first equations of (5.45) by &1, & respectively and
integrate over  x (0,7), we obtain

/ /yt(p€ — )y + (T — 2t)y) da dt + / /Ayt — ) (Apey + 2V Vy + pAy) dr dt

/ /ztgoe —t)z + (T — 2t)z) de dt + / /Azt —t)(Apez + 2V Vz + pAz) dx dt

—2’2 — i = U.
+z/0 /Q(y V24(T — t)p. dzdt = 0

Since @, is zero outside w,, we get
T T
| [ 80P +182R) = Dpedodt= [ [ o = g+ (7~ 20)9) e
0 Q 0 We
T
— / Ayt( —1)(Apey + 2V Vy) dx dt
T
+ / / 21p(L(T — t)zy + (T — 2t)z) dx dt
0 w,

T
/ / Azt(T — t)(Apez + 2V Vz) dx dt
0 w,

T
l/ / (T—iﬁ)(,o6 dx dt,
0 We

T T
/ / (JAY[? + |Az]?) HT — t)pe(x) dx dt <C/ / Y + 27 +y* + 2%) dadt
0 Q 0 w

which implies

€

" Bed, |, [Ved
- oyaSZ ) ) de
Bed,, Ved
—i—/o wJAZ‘t( —1)1/@e( Vo |z + \V |) dx dt).

By applying Young’s inequality on the right-hand side of the last inequality, we obtain for
alln >0

T T
//(|Ay2+\Az|2)t(T—t)<p€(x)da:dtSC(/ / (yi + 27 +y* + 2%) da dt
0 Q

0 We
T
+ 7)/ / t(T — t)pe (|Ay\2 +|Az[?) dz dt

‘PE V@e
// "’2 SD|‘V’2

Ap, Ve
_|_‘ (p’|z|2+’ '

€ €

i |Vz|2)d:z: dt).
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Using (5.63) and (5.64)), we find

T T
/ / (|Ay\2 + \Az|2) t(T —t)pe(x) de dt <C( / yi + 27 +y* + 2%) dadt
0 Q We

0

T
+?7/ /t — e ( |Ay\2+\Az|)dxdt
0 We

1 /T
+7I/ /t — )W+ |Vy|? + 22 + |Vz|?) dz dt).
0 Jwe

We choose n sufficiently small to make (1 — Cn > 0) and recall that ¢, is zero outside w,
we obtain

T T
/ / (|AY)? + | A2*) U(T — t)pe(x) dz dt gC/ / (yi + 27 +y* + 2% + |[Vy[* + |Vz]?) dzdt.
0 Q 0 We

We use the fact that p.(z) =1 on we, the last inequality becomes
(5.65)

T—« T
/ / (JAy> + |Az|2) dx dt SC'/ / (yt2 + 27 +y* 4+ 22 + |[Vy2 + |Vz|?) dzdt.
a we 0 We

2
Insertion (5.65) into ((5.61)) yields
T
0) < C/ / (vi + 27 +y° + 2% + [Vy|* + |V2[?) dzdt.
0 We

Consequently, since w, C w

(5.66) y<of [ k) v+ IR + 1o n e

Step 4.

We prove by a compactness-uniqueness argument that there exists a constant C' such that
T

(567 ol + 1P ewrmgon < C [ [ 6 +22) duar

Assume that there exists a sequence (yp, z,) of solution of problem (5.45) with
yn(li)o) = ?/2(33)7 ynt(% O) = Z/:L(ﬂf)a T € Q)

2n(2,0) = 22(x),  zn(z,0) = 21 (2), x € Q,
such that
(5.68)
T
{lynll® + Nznl*Yommi) =1, 7 = 1,2, .5 /0 / (Yne(,t) + 25y (2, 1)) dwdt — Oasn — +oo.

Since each solution satisfies , we deduce from ) that the sequence (32, yt, 29, 29)
is bounded in H = H3(Q) x LQ(Q) x H3 o () x LQ(Q) Hence there is a subsequence still

denoted by (y9,4}, 20, 20) which converges weakly to some (y yt, 20 2h € H. Let (y,2)
be the solution of problem (5.45)) with initial condition (y°, z°). We have

(y,2) € C(0, T; H) x C(0,T; H).
Then
(Yn, 2n) — (y,2) weakly in L°°(0,T; HF(Q2)) x L>®(0,T; H3 ().
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Since HZ(?) is compactly embedded in H{ (), there exist a subsequence still denoted by
(Yn, zn) such that ,

(9 20) —> (y, 2) strongly in L=(0,T; H} (@) x L=(0,T; HY().
Then, we have from ([5.68)),

(5.69) Uyl? + 120 o = 1-
and
T
/ / (yi(z,t) + 27 (z,t)) dzdt = 0.
0 w
Then

Ayy=Az =0 on wx(0,T).
and therefore by taking the trace on I'g, we get

Ay, =Az =0 on Tyx(0,7).
Let u :=ys, v := 2, then (u,v) satisfies
ug (2, t) + A%u(z,t) + l(u(z,t) —v(z,t)) =0 in Qx (0,7T),
v (z,t) + A%v(x,t) + l(v(z,t) —u(z,t)) =0 in Qx(0,7),
Au(z,t) = Av(z,t) =0 on Tgx(0,T),
(5.70)
u(x,t)szO on T x(0,T),
v(z,t) = 61}2? ) =0 on I'x(0,T).

The problem (5.70) implies

(u+v)g(z,t) + A%(u+v)(z,t) =0 in Qx(0,7),

A(u+v)(z,t) =0 on Iy x(0,T),

(utv)(a, ) = 2@ on T x(0,T).
%

By proposition 2.1 of [21], we have

u(z,t) +v(x,t) =0
Then, problem ([5.70]) implies

ug(z,t) + A%u(z,t) + 2lu(z,t) =0 in Qx (0,7),
Au(z,t) =0

on Tox (0,T),
w(et) = 8yéﬂ; t) _ 0

on I'x(0,7).
We conclude from ([24])

u(z,t) =0,v(x,t) =0

in Qx(0,7).
This implies that

y(.ﬁl},t) = y(x>7 Z(mvt) = Z(:L')

page 93



Chapter 5. Coupled Euler-Bernoulli equations with delay terms in the internal feedbacks

Thus (y, z) verifies

We have from ([24]) (y, z) = (0,0). This is in contradiction with (5.69). Then

(5.71) F(0) < C/T/{yf + 22y dx dt.
0 w

Proof of Proposition [5.2
We decompose the solution (u,v) as follows

U:y+§,U:Z+g,
where (y, z) is solution of (5.45|) with the initial condition
y(@,0) = uo(x), ye(x,0) = us () in €,
z2(x,0) = vo(x), z¢e(xz,0) = v1(x) in Q.

and (y, z) is the solution of :
(5.72)
gtt(xa t) + A2§(l‘a t) + l(g(d?, t) -

Zu(z,t) + A%Z(2,t) + 1(Z(2, 1)

y(z,0) = g4(x,0) =0 in Q,

Z(x,0) = Z(z,0) =0 in Q,

y(x,t) = 2z(z,t) =0 on I' x (0, +00),

6gélai’t) = azgi’t) =0 on I' x (0, +00).
and define the energy function of (5.72]) by

1
2

Z(x,t)) + Xw(@)(arue(z, t) + asue(z,t — 7)) =0

—y(x,t)) + xw(x)(Broe(z, t) + Bovy(x,t — 7)) =0

in 2 x (0, +00),

in 2 x (0, +00),

Fy(t) =+ /Q (185, O + (1) + 185, ) + 2, 0) + U5, 1) — 3w, 0)?] da

We rewrite the energy E as
E(t) = £(t) + Ea(),
where
1

E(t) = 2/Q [18u(r, 0 + (e, t) + 1Az, 1) + o2, 1) + (1) — 2(2,0))?] da,

and
1
Falt) = 5 /Q (@) /0 (st — 7p) + vy, t — 7p)} dp .

Fy(t) can be rewritten via a change of variable as

(5.73) Fy(t) < C/OT/{uf(x,t—T) +vi(z,t —7)} da dt,
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for T large enough.
We have
E(0) =&(0) + E4(0) = F(0) + E4(0).

From (5.73) and (5.46)), we obtain
T T
0) SC’/ /{yf(az,t)—i—ztz(x,t)}da:dt—i—C/ /{u?(&t—T)—i-vf(a:,t—T)}dmdt
0 w 0 w

T
sc/ /{u3<x,t>+v§<x7t>+@?<x,t>+%’3<x,t>+u§<x,tT>+v§<x,t7>}dazdt.
0 w

It remains to estimate the term fOT [ 497 (2, t) + 27 (2, )} da dt.
We differentiate the energy function Fj(¢) with respect to ¢, we obtain

d

Gt = = [ xol@ oniie, e, ) + i, .t =)

+ Biz(m, t)ve(, 1) + B2 (z, )z, t — 7)} d,

from which we get after using Chauchy-schwarz inequality

%Fd <C’/{ut z t)—l—'ut(a: t)—l—yt(x t)—l—zt(x t)—i—ut( —T)+vt?(x,t—7)}dx

+ /Q (B, t) + ()} da

From the definition of F,;, we obtain

%Fd( 1) <Fy(t) + c/w{ug(x,t) b o2(a, ) + ul (@t — 1)+ 02w, b — 7)) da.

Multiplying the last inequality by (e™!) and integrating over (0,t), we get
Fy(t) SCet/t /{uf(m, t) 4+ vi(x,t) +ui(z,t — 1) +vi(x, t —7)} dadt.
We conclude for ¢ € ( , that is
<C/ /{ut x,t) +vi(x,t) +u(z,t — 1) +vi(z, t —7)} dedt,
which gives
T T
/ /{ﬂ?(ac,t) + 22(z,t)} dx dt SC’/ /{u?(x,t) + 02 (x,t) +ul(z,t —7) +vi(z,t — 1)} da dt.
C[z)ns:quently we have o
0) <C /T/{u?(x,t) +ul(z,t — 1)+ vi(x,t) + vi(x, t — 1)} dr dt.
Proof of the maoin :esult From , we have

T
E(T) — E(0) < —K/ / {uf(z,t) + uf (2, t — 7) + 07 (2,t) +vf (v, t — 7)} dadt,
0 w
and (5.44]) leads to

T
0) < C/ / {uf(z,t) +ui (2, t — 1) + v} (2, t) +vf(z,t — 7)} dadt
0 w

< CK~Y(B(0) - B(T)),

SO

CK—1
: <
(5.74) E(T) < 1+ CK-!

The desired conclusion follows now from 1} since 0 < KL_W <1

E(0).
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Conclusion

In this thesis we have studied stability problems for some systems governed by partial
differential equations:

e Coupled wave equations.
e Transmission wave equation.
e Coupled Euler-Bernoulli equations.

with time delays in the boundary or internal feedbacks.
The approach we adopted uses:

e An appropriate energy function.

e Observability estimate type for the corresponding homogeneous system whose
proof combines either classical or Carleman multiplier techniques and compactness-
uniqueness argument.

There are several extensions of the results obtained in this thesis. For example the following
questions can be considered for future work :

e Stability of coupled wave or Fuler-Bernoulli equations with delay term in one of
the boundary feedback without assuming that the constant gain of the delayed
term is less than of the undelayed one

e Stability of coupled wave or Euler-Bernoulli equations with time delays in the non
linear (boundary or internal) feedbacks.

e Stabilization of wave or Euler-Bernoulli system with time delays in the boundary
feedback by an internal feedback.
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Appendix A

In this appendix we recall some well known results from the theory of semigroup

DEFINITION 5.1. A one-parameter family T'(t) for 0 <t < oo of bounded linear operators
on a Banach space X is a Cy-(or strongly continuous) semigroup on X if

e T(0) =1, (I is the identity operator on X ).
o T'(t+s) =T(t)T(s) for every t,s > 0. (semigroup property)
o limy o ||T(t)x — || =0 for all x € X.
THEOREM 5.3. Let T(t) be a semigroup. There exist constants w € R and M > 1 such
that the following holds:

1T < Me**
If w=0 and M =1, then T(t) is called a Cy-semigroup of contraction.
THEOREM 5.4. (Lumer-Phillips)

Let A be a linear operator with dense domain D(A) in X.

o If A is dissipative and there is a Ao > 0 such that the range, R(Aol — A) of Aol — A
is X, then A is the infinitesimal generator of a Cy-semigroup of contractions on
X.

o If A is the infinitesimal generator of a Cy-semigroup of contractions on X then
R(A — A) =X for all A > 0 and A is dissipative. Moreover, for every x € D(A)
and every x* € F(x), Re(Ax,z*) <0.

DEFINITION 5.2. A semigroup (T(t))¢>0 on a Banach space X is called uniformly expo-
nentially stable if there exist constants C' > 0, M > 1 such that
1T < Me™“"
for allt > 0.

PROPOSITION 5.4. For a strongly continuous semigroup (T'(t))i>0, the following asser-
tions are equivalent.

o (T'(t))t>0 is uniformly exponentially stable.
o There exists to > 0 such that ||T(to)|| < 1.

99






Appendix B

Consider the following coupled system of two second-order hyperbolic equations in the
unknowns w(t, z) and z(t, z):
wy = Aw +F1(w) + Pl(z) in (O,T] xQ=Q),
Ztt Az + Fy(z) + P2(w)  inQ,
defined on a bounded domain 2 € R™ with smooth boundary I', where I}y, Fy, Pj,
P, are (linear) differential operators of order one in all variables t, z1, ..., Z,, with Lo (Q)-
coefficients, thus satisfying the point wise bounds

|Fi(w)? + |Po(w)* < er[w} + |Vul* +w?]  Viz€Q,

|Fo(2)* + [Pi(2)]? < erled +|Vz*+27]  VhaeQ,

PROPOSITION 5.5. (Lasiecka and Triggiani [16]) Let w and z be solutions of the above
problem in the following class

{ w,z € HY(Q) = Ly(0,T; HY(Q)) N HY(0,T; Lo(2))
we, 592t G € La(0,T; La(T)).
then the following inequality holds true for T sufficiently large:

e there exists a positive constant kg, > 0 such that

T ow '\ 9 97> 9
< - el
ks E(0) /0 /F [<8y> +wp + <8u> + 2

2 2
—+ COTLStT,TﬁO {”wHH%Jreo(Q) + HZHH%+EO(Q)} ’

dar' dt

or equivalently,

ko) + (D) < | ' / [(‘3”) Fu? (g) T2

9 2
+ constr - ¢ {|w||H§+eo(Q) + HZ”H%“U(Q)} ’

e If, moreover, w and/or z satisfy the boundary condition

dl' dt

wly, = 0,and/or, respectively, z|x, = 0, Yo =(0,T] x Iy,
where T'g 1s the portion of the boundary I' = To U1 defined by
I'p={xel:Vor(z)<0};

then the corresponding integral term for w and/or for z replaces I" with I'y.
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