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Abstract
In  this  thesis,  DFT  method  was  used  to  calculate  thermodynamic  properties  of
intermediate  phases  and  compounds  in  Cd-Sc,  Ru-Sc,  Os-Th,  Os-Y, and  Dy-Zn
systems which are difficult to be treated experimentally due to high reactivity of its
compounds. The PAW method was used to achieve the accuracy of the FP-LAPW
method while  maintaining  the efficiency of  the  pseudo-potentials.  This  study was
carried out to obtain the structural and energetic properties of the various compounds.
The ground state was determined by confirming several phases and discarding others
while proposing explanations to several experimental facts. The results obtained are
very satisfactory and show very good agreement with the thermodynamic properties
obtained from experimental results. Finally, a new CALPHAD modeling is presented
taking into account the Ab-Initio results.

ملخص
في هسسذه الأطروحسسة، اسسستعملت أطريقسسة المبسسدأ الول لحسسساب الخصسسائص الترموديناميكيسسة للأطسسوار الوسسسيطة و

Os-Yالمركبات في الأنظمة   ،Os-Th  ،Ru-Sc  ،Cd-Sc و  ،Dy-Znبب  التي يصعب دراستها تجريبيا بس
ة PAWتسسم اسسستخدام أطريقسسة . مركباتها عالية التفاعل ة أطريق ق دق ةFP-LAPW لتحقي ى فعالي اظ عل ع الحف  م

تم تحديسسد. أجريت هذه الدراسة للحصول على الخصائص البنيوية والطاقوية لمختلف المركبات. الكموأنات الزائفة
.الحالة الساسية من آخلل تأكيد عدة أأطوار وتجاهل البعسسض الآخسسر مسسع اقسستراح تفسسسيرات لعسسدة حقسسائق تجريبيسسة
النتائج التي تم الحصول عليها مرضسسية جسسدا و تظهسسر اتفسساق جيسسد جسسدا مسسع الخصسسائص الترموديناميكيسسة السستي تسسم

ارCALPHADوأآخيرا، تم تقسسديم أنمذجسسة . الحصول عليها من النتائج التجريبية ن العتب ذ بعي ع الآخ دة م  جدي
.لنتائج المبدأ الول

Resumé
Dans  cette  thèse,  la  méthode  DFT  a  été  utilisée  pour  calculer  les  propriétés
thermodynamiques des phases intermédiaires et des composés dans les systèmes Cd-
Sc, Ru-Sc, Os-Th, Os-Y et Dy-Zn qui sont difficiles à traiter expérimentalement en
raison  de  haute  réactivité  de  ses  composés.  La  méthode  PAW a été  utilisée  pour
obtenir  la  précision  de  la  méthode  FP-LAPW tout  en  maintenant  l'efficacité  des
pseudo-potentiels. Cette étude a été réalisée pour obtenir les propriétés structurales et
énergétiques  des  différents  composés.  L'état  fondamental  a  été  déterminé  en
confirmant plusieurs phases et  en rejetant d'autres en proposant des explications à
plusieurs faits expérimentaux. Les résultats obtenus sont très satisfaisants et montrent
un  très  bon  accord  avec  les  propriétés  thermodynamiques  obtenues  à  partir  des
résultats expérimentaux. Enfin, une nouvelle modélisation CALPHAD est présentée
en tenant compte des résultats Ab-Initio.

Keywords:  Thermodynamic; Ab-Initio; CdSc; RuSc; Os−Th; Os−Y; Dy-Zn; Phase
diagram; CALPHAD;
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Introduction

In materials science and many other fields, scientific investigations are carried out ac-
cording to the two classical axes: (i) theoretical research and (ii) experimental research.
Since the appearance of computers and the computing power they offer, a third axis has
expanded dramatically; digital modeling allows to describe a real system through math-
ematical models. The aim is that the description can reproduce the studied properties
within the limits of the desired precision, which constitutes a validation of the model.
The model which is validated becomes a predictive tool capable of enriching scientific
knowledge by providing information that may not be accessible by experience or theory.
This enrichment opens the way to other experimental and theoretical investigations that
will in turn influence numerical modeling; this indicates the complementarity between
the three research axes.

Numerical modeling depends on two limiting factors: the statistical accuracy of the
model which makes it possible to judge its domain of reliability, and the efficiency that
determines the computing resources required with this model. In other words, the value
of a model is determined by the quality of its results and at what price we obtain them.

In the solid state, the origin of the macroscopic properties, in their diversity, lies in the
nature of the interactions at the atomic scale, and more precisely, under ordinary condi-
tions, in the behavior of valence electrons. The wavelengths of the order of interatomic
distances which imposes a purely quantum processing characterize the wave nature, this
is why modeling on this scale will quickly find its limits as long as the problem of elec-
tronic structure does not consider the framework of quantum mechanics. So, formally,
the electron structure of a system of atomic nuclei with their electrons is obtained by
passing through the solution of the Schrödinger equation. Unfortunately, the exact ana-
lytical solution is known only for the hydrogen atom with a single electron, and already for
helium with two electrons, there is no analytical solution, this is called the n-body prob-
lem. Schrödinger equation solution, Ψ(r1,r2, . . . ,rn , t ) is function of 3n variables which
represent the coordinates of each electron plus the time variable. If we consider a wave
function of a single electron, which is defined over the whole space, we would need, for
a mathematical description, a discretization that requires m points. For two electrons
the discretization requires m2 points and for n electrons mn points, a figure that quickly
becomes astronomical, indeed, even a digital solution quickly becomes prohibitive. It
is evident that this difficulty is due to the fact that the fundamental magnitude in the
Schrödinger equation is the wave function; The framework of the Density Functional The-
ory (DFT) largely avoid this difficulty, which is a reformulation of quantum mechanics. It
is clear that the electron density of the ground state is an equally fundamental quantity as
the wave function and whose determination is possible. In principle, to determine all the
properties of the studied system, there is no need to find the n-body wave function. We
replace the problem by finding the electron density of the ground state which represents a
scalar field that can be discretized as a function of only four variables: x, y , z and t ; Which
is an obvious advantage from the digital point of view. It is a great simplification of the n-
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body problem which has made it possible in our days to make high-quality calculations
starting only from the atomic number of a system; This is called Ab Initio.

From a thermodynamic point of view, the topology of a phase diagram is entirely de-
termined by energy considerations. More specifically, when the variables considered are
temperature and pressure, the Gibbs, G = U+PV −TS free energy governs the stability of
the phase. A stable phase is the result of the minimization of its energy. Therefore, it is the
free energy of Gibbs which ultimately determines the phase diagram by process of min-
imization at constant temperature and pressure. So, the Ab Initio calculations naturally
find their place in the determination of phase diagrams by allowing the evaluation of the
free energy of Gibbs under well-defined conditions.

The most straightforward case is where the temperature and pressure are zero with
a fixed composition. The internal energy G = U confound with the free energy of Gibbs
where it is directly accessible by the Ab Initio calculations if we neglect the residual vi-
brations at 0K. In practice, it is possible to obtain the equilibrium volume of a phase
by minimizing this energy concerning the volume. The difference between the energies
evaluated to the minimum for each phase determines the relative stability of these two
phases. The most stable phase is that which ensures the minimum energy. The intro-
duction of the pressure adds the term PV, and G becomes confounded with the enthalpy
G = H = U + PV. Nature favors the phases which reduce the volume by increasing the
pressure, so it becomes possible to reverse the relative stability between two phases by
increasing the pressure. The effect of temperature introduces the term −TS which favors
the phases that show the most disorder (which have a higher entropy). Among the differ-
ent forms that disorder can take in a system are the vibrations of atoms that deviate from
their positions of equilibrium.

Phase diagrams have always been an essential source of information for the devel-
opment and design of new materials; this has led to considerable improvements in ex-
perimental techniques which have now reached a very high level of accuracy. However,
considering the increasing demands of high-tech materials that are very complex, it is
crucial that theoretical predictions guide the experimental work. Such a possibility is to
apply the principles of physical-chemistry to calculate the polyphase equilibria of multi-
constituted systems. Such an approach proves to be very powerful in defining experi-
mentations, which are expensive and can also reduce the number of experiments. The
use of numerical modeling is the approach that addresses the current need to charac-
terize complex thermodynamic systems; it has been made possible by developments in
computing and by the development of thermodynamic computing software.

Literature Review

Among the materials that have found remarkable development and progress over the last
few years are the magnetic materials based on Transition metal (TM). These compounds
form a wide range of materials which are used in the field of permanent magnets of high
performance.

The origin of these exceptional magnetic properties is due mainly to the coexistence
of two parallel types of magnetism: the itinerant magnetic magnetism of the electrons 3d
of the TM such as Iron and Nickel and the localized magnetism characteristic of the elec-
trons 4 f of the RE. In this way, the crystals are strongly anisotropic due to the interactions
between their orbital moment and the crystalline field. The 3d metals provide high mag-
netization and a high Curie temperature (higher than 350−500°C), thanks to the critical
interactions between the elements 3d . The combination of the two magnetic behaviors
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of the elements 3d and 4 f may lead to compounds which exhibit exceptional permanent
magnet properties. The atomic radius of the RE elements is much higher than that of the
TM which is favorable to the formation of a series of intermetallic compounds of which
the most interesting crystallize in a hexagonal or rhombohedral structure and where such
magnetic compounds may exhibit exceptional permanent magnet properties [1].

The RE represent the group of lanthanides (Elements with atomic numbers between
57 and 71, lanthanum to lutetium), to which yttrium (Y) and Scandium (Sc) are added
due to similar chemical properties (same column of the periodic table). We distinguish
the ceric earths (Lanthane (La), Cerium (Ce), praseodymium (Pr ), neodymium (Nd) and
Samarium (Sm)) and heavier earth (The other RE). The RE forms the largest group of
elements with a consistent chemical behavior [2] due to their electronic configuration.
Throughout the lanthanide series, from La (atomic number 57) to Lu (atomic number
71), electrons are added to the internal electron layer 4 f rather than to an outer layer.
The electrons 4 f are thus protected by the electrons in the outer layers 5s and 5p and
consequently, do not participate in the chemical bonds. Because of this shielding, the
ionic radius of RE decreases progressively with increasing atomic number (from 102 µm
for (La) to 86µm for (Lu)), an effect known under Name of "contraction of the lanthan-
ides" [3]. In the last fifteen years, RE have become indispensable to the development of
high-tech products that are critical for energy or military applications [4–7]. Initially, they
were a tiny market, but the development of clean technologies in the 1990s, initiated by
developed countries, led to an explosion of demand (metal alloys for batteries, perman-
ent magnets for wind turbines, Luminophores for low energy lighting) [4, 8–11]. In 2011,
China abruptly reduced its export quotas, replacing the Chinese industry with a brutal
but rather late stage of China’s monopoly position ( It provides 97%) [12]. Beijing, which
has in fact measured the danger of the environmental damage created by their intens-
ive extraction, also wishes to find external supplies. Also, it wants to take advantage of
its organic growth to ensure the supply of the best-finished products in its market, and
definitively take a position as a world leader in clean technology products. Such as elec-
tric vehicles (magnets NdFeB with composition Nd2Fe14B), hybrid vehicles (Nickel Metal
Hydride batteries Ni MH), wind turbines (magnets NdFeB), and low energy fluorescent
bulbs (Yttrium, Europium, and Terbium). Many other products which contain RE-based
components such as jet aircraft, military equipment, pollution control of combustion en-
gines, medical imaging, radiotherapy and other electrical or electronic equipment such as
ceramic capacitors, superconductors, computers and smartphones [13–15] (see figure 1).

The compounds RE-TM have found a remarkable and numerous studies, either for a
practical purpose such as the improvement of the magnetic properties [17–20], or from
a more fundamental point of view such as the determination of the existing compounds,
their stability domains and their crystallographic structures in order to deepen the under-
standing of the magnetism of these compounds [21, 22]. The most studied properties are,
for example, the exchange interactions [23–27], the magnetocrystalline anisotropy [28].
These compounds are in particular good candidates for the appearance of a perpendic-
ular anisotropy, highly sought for increasing the storage density in magnetic recording
systems.

The recycling of RE metals from permanent magnet waste becomes inevitable to main-
tain a balance between supply and demand. Since the process of recycling magnetic ma-
terials has not established yet, fundamental research on the thermodynamic behavior of
RE magnetic materials and on the chemical reactions between magnetic materials and
the solvent medium is essential to understand and improve the recycling process of RE.

In this perspective, a modern approach lies in the use of the phase diagram calcula-
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Figure 1 – Breakdown of RE tonnage used in their main applications [16].

tion method CALPHAD [29]. To design an efficient recycling process for the alloys of RE
and TM, we need to develop a thermodynamic database containing the model paramet-
ers which describe the thermodynamic properties of the phases involved as a function
of temperature and the composition. The thermodynamic database with Gibbs free en-
ergy minimization software such as Thermo-Calc [30] through the PARROT [31] module
will help us in the processing of the phases and the proposed variables, which are oth-
erwise obtained by trial and experiment representing a substantial investment in money
and time. The word software suggests that the computation is self-sufficient, whereas
the determination of complex equilibria requires constant assistance from a competent
thermodynamicist, to avoid this nuance, one speaks of computer-aided computing [32].

Aims and Objectives of the Work

Our work aims at calculating thermodynamic properties for compounds and phases of
the five binary systems Cd −Sc, Ru −Sc, Os −Y, Os −Th, and Dy −Zn using the Ab Initio
methods. These results and all available thermodynamic data and phase diagrams for the
Os −Y, Os −Th, and Dy −Zn binary systems will be evaluated critically, where Gibbs free
energies of all phases will be represented by the appropriate model equations. The para-
meters of these models will be obtained by an optimization procedure using the Swedish
software Thermo-Calc. The prepared database of thermodynamic properties in this work
can be integrated with other binary and multi-component systems to provide a complete
multi-component database for transition metals.

In this work, structural and thermodynamic properties of alloys of the transition metal
system were calculated using the Special Quasirandom Structure (SQS) and the Super-cell
approaches along with density functional theory. Local Density Functional (LDA) and
Generalized Gradient Approximation (GGA) were also used to investigate formation en-
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ergy of transition metal alloys and their vibrational properties. This work was carried out
by the assessment of the transition metal phase diagrams using the obtained properties
from Ab Initio calculations. The primary objectives of performing this study are as follows:

* To investigate the structural and defect structure and defect formation enthalpy of
transition metal alloys using SQS and super-cell approaches along with density functional
theory (DFT) at absolute temperature.

* To study the structural and defect structure of transition metal alloys using Schottky
model.

* To study the structural, formation energy, and vibrational properties of transition
metal alloys using density functional theory (DFT).

* To assess the phase diagrams of transition metal using CALPHAD method and ob-
tained results from Ab Initio calculations.

Outline of Thesis

In addition to this general introduction which discussed the inspirations and motivations
to perform the current study of transition metal materials, the structure of this thesis con-
sists of three chapters, briefly described below, followed by a general conclusion.

The first chapter (1) presents the DFT approach, used for the calculations of thermo-
dynamic properties. The presentation of the principles and the calculation software that
was used for the calculation of properties of our systems are presented.

The second chapter (2) presents the CALPHAD approach, used for the modeling of
phase diagrams. The presentation of the principle and the calculation software that was
used for the modeling of our systems are presented and gives a detailed account of the
different thermodynamic models of which we were interested in during the optimization
of the various phases of the considered systems in the framework of this thesis.

Finally, in the third chapter (3) we presented and discussed the results of Ab Initio
calculations of defects enthalpies of intermetallic compounds in the binary systems based
on Sc: Sc–TM (TM= Cd ,Ru) using the SQS and supercell methods. Also, the third chapter
(3) deals in detail with thermodynamic calculations of the phase diagrams of the binary
systems: Os–Y, Os −Th, and Dy −Zn based on the realized Ab Initio calculations during
this work.

The main results proposed in this manuscript are summarized and discussed in con-
clusion.
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1.1. AB INITIO APPROACH

1.1 Ab Initio approach

1.1.1 Introduction

Classical mechanics failed to predict experiments on atomic and molecular phenomena;
black body radiation, the photoelectric effect, radioactivity, relativity, the nuclear atom,
the Bohr atom, the wave mechanical atom [33]. Quantum mechanics which incorporates
the wave-particle duality can explain previous phenomena and deal with small systems.

The term Ab Initio refers to a family of theoretical concepts and computational meth-
ods that treat the many-electron problem from the beginning [34]. In other words, Ab Ini-
tio calculations rest on solving the Schroedinger equation using the principles of quantum
mechanics and not using empirical or other extrapolated information, interpolated or
transferred from other systems (adjustable variables) [35].

The primary uses of the Ab Initio methods are calculations of molecular geometries,
energies, vibrational frequencies, spectra, ionization energies, etc. Among these meth-
ods, DFT is based on the two Hohenberg-Kohn theorems, which state that the electron
density determines the ground state properties of a molecule. Nowadays, DFT calcula-
tions have become one of the leading computational methods in computational physics
and physical-chemistry due to their high degree of accuracy without the use of any fit-
ting parameters. Interest has been growing in the engineering disciplines to exploit these
properties to predict new materials with desired material properties, significantly accel-
erate the prototyping of materials over experimental methods with a degree of accuracy
which is not available in other computational methods [36–39].

1.1.2 The many-electron problem

The corresponding time-independent Schrödinger equation for a non-relativistic many-
body of an atomic, molecular or solid system comprising M atoms and N electrons will
be:

Ĥψ ({r } , {R}) = Eψ ({r } , {R}) (1.1)

{r } = {r 1,r 2, ...,r N} et {R} = {R1,R2, ...,RM} are the postion vectors of the nuclei and elec-
trons (nuclear and electronic degrees of freedom), respectively; Ĥ is the exact many-
electron Hamiltonian:

Ĥ = T̂N + T̂e + V̂e−e + V̂N−N + V̂e−N (1.2)

The terms denote (in atomic units):
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1.1. AB INITIO APPROACH

T̂N = −1

2

M∑
i

∇2
i

Mi
kinetic nuclear energies (1.3)

T̂e = −1

2

N∑
i
∇2

i kinetic electronic energies (1.4)

V̂e−e =
1

2

N∑
i< j

1∣∣r i − r j
∣∣ electron-electron repulsions (1.5)

V̂N−N =
1

2

M∑
i< j

Zi Z j∣∣Ri −R j
∣∣ nucleus-nucleus repulsions (1.6)

V̂e−N = −
N∑
i

M∑
j

Z j∣∣r i −R j
∣∣ attractive electron-nucleus interactions (1.7)

Whereas the Schrödinger equation for a hydrogen atom can be solved exactly, an exact
solution is not possible for any molecule because the simplest molecule consists of three
particles (two nuclei and one electron). The nuclei mass exeeds that of electrons by a fator
of one thousand or more, and their movements are slow relatively and may be treated as
stationary while the electrons move in their field [40]. Therefore, Born-Oppenheimer pro-
posed an approximation ([41]) to neglect the coupling between the nuclei and electronic
motion. This allows the electronic part to be solved with the nuclear positions as para-
meters, and the resulting Potential energy surface (PES) forms the basis for solving the
nuclear motion. The major computational effort is in solving the electronic Schrödinger
equation for a given set of nuclear coordinates [41], where equations (1.1) and (1.2) be-
come:

Ĥeψe ({r }) = Eeψe ({r }) (1.8)

Ĥnψ ({R}) = Eψ ({R}) (1.9)

Ĥe = T̂e + V̂e−e + V̂N−N + V̂e−N (1.10)

Ĥn = T̂N +Ee ({R}) (1.11)

In order to determine the corresponding (ground-state) many-electron wave-function
ψ ({r } , {m}), where {m} = {m1,m2, ...,mN} stands for a set of electronic spin variables, which
is the solution of a Schrödinger equation with the Hamiltonian of equation (1.8), one usu-
ally falls back on a related variational principle [34, 42]:

E0({R}) = min
ψ({r },{m})

E({R}) = min
ψ({r },{m})

〈
ψ ({r } , {m}) |Ĥe |ψ ({r } , {m})

〉〈
ψ ({r } , {m}) |ψ ({r } , {m})

〉 (1.12)

In general, the resulting electronic wave-functionψ ({r } , {m}) will be some approxima-
tion to the real antisymmetric wave-function of the corresponding many-electron system.
The art of Ab Initio will simply consist of finding ingenious ways to numerically determine
an approximate wave-functions [34].

1.1.2.1 The Hartree SCF method

Hartree’s method ([43, 44]) was to write a plausible approximate polyelectronic wave-
function for an atom as the product of one-electron wave-functions:
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1.1. AB INITIO APPROACH

ψ0 ({r }) =
N∏
i
ψ0 (r i ) (1.13)

This function is called a Hartree product. Here ψ0 (r ) is a function of the coordinates
of all the electrons in the atom, ψ0 (r i ) is a function of the coordinates of electron i . The
one-electron functions ψ0 (r i ) where i is a range from 1 to N, are called atomic orbitals
(molecular orbitals if we were dealing with a molecule). The initial guess, ψ0, is the initial
approximation to be refined with the Hartree process for k cycles till we have a wave-
function ψk and/or an energy calculated from ψk that are essentially the same (accord-
ing to some reasonable criterion) as the wave-function and/or energy from the previous
cycle. This happens when the new one-electron wave-functions are identical with the old
ones, where the the electron-electron potential has (essentially) ceased to change, so the
fields of cycle k and previous cycle k −1 are consistent, and so the Hartree procedure is
called the SCF procedure [35].

The problem with Hartree product of equation (1.13) is that doesn’t respect Pauli ex-
clusion principle; the Hartree product is symmetric, where the theory with the results of
experiment predictions show that electronic wave-functions are actually antisymmetric
with respect to exchange [35, 41]:

ψ
(
r 1,r 2, ...,r j , ...,r k , ...,r n

)
= −ψ(

r 1,r 2, ...,r k , ...,r j , ...,r n
)

(1.14)

1.1.2.2 The Hartree-Fock method

The symmetry of the Hartree product was corrected by Pauling (1928) and Slater (1929).
Pauling and Slater showed that as a first approximation at least a wavefunction can be
written as a determinant of spin orbitals. Although Slater’s publication appeared in the
year after Pauling’s, this determinant is called a Slater determinant [35].

1.1.2.3 Slater Determinants

The Hartree wavefunction is product of one-electron functions called spatial orbitals,
where the Slater wavefunction is composed of spin orbitals, not just of spatial orbitals. A
spin orbital ψ(spi n) is the product of a spatial orbital and a spin function (α or β). Unlike
most other functions, α or β have only one eigenvalue, which are 1

2 (h/2π) or −1
2 (h/2π),

respectively, associated with the spin operator Ŝz , and have as their variables a spin co-
ordinate, sometimes denoted ξ or ω, their peculiar property is zero unless ξ = 1/2 (α spin
function) or ξ = −1/2 (β spin function). The delta function is a function that is zero every-
where except at one value of its variable (invented by Dirac) [35].

Suppose we wish to write a Slater determinant for a N-electron closed-shell system.
We need ν spatial molecular orbitals (N = 2×ν), since each can hold a maximum of two
electrons; each spatial orbitalψ(spati al ) is used to make two spin orbitals,ψ(spati al )α
and ψ(spati al )β. Along the first (top) row of a determinant we write successively the
first α spin orbital, the first β spin orbital, the second α spin orbital, the second β spin
orbital, ... up to, the ν-th α spin orbital, and the ν-th β spin orbital, using up our occupied
spatial (and thus spin) orbitals. Electron one is then assigned to all N spin orbitals of
the first row–in a sense it is allowed to roam among these N spin orbitals. The second
row of the determinant is the same as the first, except that it refers to electron two rather
than electron one; likewise the third, ... and N rows refer to electrons three, ... and N,
respectively. The result is the determinant of equation (1.15):
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1.1. AB INITIO APPROACH

ψ0 ({r }) =
1p
N!

∣∣∣∣∣∣∣∣∣
ψ1 (r 1)α(r 1) ψ1 (r 1)β(r 1) · · · ψν (r 1)α(r 1) ψν (r 1)β(r 1)
ψ1 (r 2)α(r 2) ψ1 (r 2)β(r 2) · · · ψν (r 2)α(r 2) ψν (r 2)β(r 2)

...
...

. . .
...

...
ψ1 (r N)α(r N) ψ1 (r N)β(r N) · · · ψν (r N)α(r N) ψν (r N)β(r N)

∣∣∣∣∣∣∣∣∣ (1.15)

The 1/
p

N! factor ensures that the wavefunction is normalized. This Slater determ-
inant ensures that there are no more than two electrons in each spatial orbital, since for
each spatial orbital there are only two one-electron spin functions, and it ensures that
ψ is antisymmetric (equation (1.14)) since switching two electrons amounts to exchan-
ging two rows of the determinant, and this changes its sign. Note that instead of putting
the electrons successively to rows, we could have placed them in columns: ψ′

0 of equa-
tion (1.16) = ψ0 of equation (1.15). Some authors use the row format for the electrons,
others the column format [35]:

ψ′
0 ({r }) =

1p
N!

∣∣∣∣∣∣∣∣∣∣∣

ψ1 (r 1)α(r 1) ψ1 (r 2)α(r 2) · · · ψ1 (r N)α(r N)
ψ1 (r 1)β(r 1) ψ1 (r 2)β(r 2) · · · ψ1 (r N)β(r N)

...
...

. . .
...

ψν (r 1)α(r 1) ψν (r 2)α(r 2) · · · ψν (r N)α(r N)
ψν (r 1)β(r 1) ψν (r 2)β(r 2) · · · ψν (r N)β(r N)

∣∣∣∣∣∣∣∣∣∣∣
(1.16)

1.1.2.4 The Variation Theorem

The molecular energy is expressed by the Hartree-Fock in terms of the total wavefunction
ψ, and to be minimized with respect to each of spin orbitalsψα andψβ (equation (1.12)).
The derivation of these equations needs considerable algebraic manipulation which have
been summarized by A and Beveridge [45], Pople and Nesbet [46], and Lowe [47].

From the Schrödinger equation, energy of a system is given by:

E =

∫
ψ∗ Ĥψdτ∫
ψ∗ψdτ

=

〈
ψ|Ĥ|ψ〉〈
ψ|ψ〉 (1.17)

ψ∗ is the wavefunction complex conjugate, which ensures that E, the energy of the
molecule, will b real. Ifψ is complex thenψ2dτwill not be a real number, whileψ∗ψdτ =
|ψ|2dτ will. Integration is with respect to spatial and spin coordinates (dτ = d xd yd zdξ).
Using a normalized wavefunctions, equation (1.17) can be written as:

E =
∫
ψ∗ Ĥψdτ =

〈
ψ|Ĥ|ψ〉

(1.18)

Substituting Slater determinant in equation (1.15) for ψ (and ψ*) and explicit expres-
sion for the electronic Hamiltonian into equation (1.18), using a closed-shell system with
N = 2×ν electrons and M atomic nuclei (the Mth nucleus has charge ZM) gives:

E = 2
ν∑

i =1
Hi i +

ν∑
i =1

ν∑
j =1

(
2Ji j −Ki j

)
(1.19)

for the electronic energy of a N-electron molecule. The terms in equation (1.19) have
these meanings:

Hi i =
∑
ψ∗

i (r )Ĥcor e (r )ψi (r )dr (1.20)
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where

Ĥcor e (r ) = −1

2
∇2

r −
M∑

j =1

Z j∣∣r −R j
∣∣ (1.21)

The operator Ĥcor e is so called because it leads to Hi i , the electronic energy of a single
electron (r ) moving simply under the attraction of a nuclear "core", with all the other
electrons stripped away. Ĥcor e (r ) represents the kinetic energy of electron (r ) plus the
potential energy of attraction of that electron to each of the nuclei M. The integration in
equation (1.20) is respect to spatial coordinates only (dr = d xd yd z, not dτ) [35].

Ji j =
∫
ψ∗

i (r 1)ψi (r 1)

(
1

|r 1 − r 2|
)
ψ∗

j (r 2)ψ j (r 2)dr 1dr 2 (1.22)

J is called a Coulomb integral; it represents the electrostatic repulsion between an
electron inψi and one inψ j ; J and K integrals allow each electron to experience the aver-
age electrostatic repulsion of a charge cloud due to all the other electrons [35].

Ki j =
∫
ψ∗

i (r 1)ψ∗
j (r 2)

(
1

|r 1 − r 2|
)
ψi (r 2)ψ j (r 1)dr 1dr 2 (1.23)

K is called an exchange integral; mathematically, it arises from Slater determinant ex-
pansion terms that differ only in exchange of electrons. The K integral can be regarded as
a kind of correction to J [35].

The energy calculated from equation (1.18) is the expectation value of the energy op-
erator Ĥ. Of course, this energy will be the exact (true energy of the molecule) only if
the wavefunction ψ and the Hamiltonian Ĥ are exact; unfortunately, they are not. The
variation theorem states that:

Theorem 1 The energy calculated from equation (1.18) must be greater than or equal to
the true ground-state energy of the molecule [35].

The variation theorem assures us that any ground state energy we calculate "variation-
ally" must be greater than or equal to the real energy of the molecule (the lower, the bet-
ter).

The variational principle, again, allows us to obtain the equations of Hartree-Fock:

[
−1

2
∇2

i −
∑

j

Z j∣∣r i −R j
∣∣ +∑

µ

∫ ∣∣ψµ

(
r j

)∣∣2 dr j∣∣r i − r j
∣∣
]
ψλ (r i )

−∑
µ

[∫
ψ∗
µ

(
r j

) 1∣∣r i − r j
∣∣ψλ

(
r j

)
dr j

]
ψµ (r i ) = Eψλ (r i )

(1.24)

We can see a term (third term) similar to the term obtained in the formulation of
Hartree which represents the electrostatic interaction of the electron with the mean field
of electron density. The fourth term is a new purely quantum term that stems directly
from the antisymmetry constraint (Pauli’s exclusion principle). A final term, however, re-
mains missing in this approximation: it is the correlation between the electrons. Indeed,
in this description, the free electron which feels only the average electrostatic field of the
other electrons misses the correlation between the electrons which makes each electron
tend to remain as far as possible from the other electrons individually. Noting, finally, that
the method of Hartree-Fock quickly becomes prohibitive when the number of electrons
increases which limits its use in physics of the solid.
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1.1. AB INITIO APPROACH

1.1.3 Density Functional Theory (DFT)

1.1.3.1 Hohenberg et Kohn Theorem

The Hohenberg-Kohn [48] theorems relate to any system consisting of N electrons moving
under the influence of an external potential υext . Stated simply they are as follows:

Theorem 2 The external potential υext , and hence the total energy, is a unique functional
of the electron density n0 (r ).

The energy functional E[n(r)] alluded to in the first Hohenberg-Kohn theorem can be
written in terms of the external potential n0 (r ) in the following way,

E [n (r )] =
〈
ψ

∣∣Ĥ∣∣ψ〉
=

〈
ψ

∣∣T̂e + V̂e−e +υext
∣∣ψ〉

= F[n (r )]+
∫
υext n (r )dr (1.25)

F[n (r )] =
〈
ψ

∣∣T̂e + V̂e−e
∣∣ψ〉

(1.26)

where Ĥ is the system hamiltonien, F[n (r )] is the electronic Hamiltonian consisting
of a kinetic energy operator T̂e and an interaction operator V̂e−e ,

The electron operator F[n (r )] is the same for all N-electron systems, so Ĥ is com-
pletely defined by the number of electrons N, and the external potential υext . The ground-
state density uniquely determines the external potential υext , to within an additive con-
stant. Stated simply, the electrons determine the positions of the nuclei in a system, and
also all ground state electronic properties, because as mentioned earlier, υext and N com-
pletely define Ĥ.

Theorem 3 The ground state energy can be obtained variationally: the density that min-
imises the total energy is the exact groundstate density.

Any density n (r ) that is not that of the ground state will always give an energy greater
than the energy corresponding to the density of the ground state:

E [n (r )] > E [n0 (r )] (1.27)

The Hohenberg-Kohn theorems do not offer a way of solving the Schrödinger equa-
tion. About one year after the original DFT paper by Hohenberg and Kohn, Kohn and
Sham [49] devised a simple method for carrying-out DFT calculations, which retains the
exact nature of DFT. The next section describes this technique.

1.1.3.2 Kohn-Sham equation

So far the theory is formally exact, the only problem is that the universal functional is
unknown; to try to exploit these two theorems, Kohn and Sham [49] proposed to replace
the external electrons-potential system by another system of fictitious electrons which
are free electrons under the action of a potential of Kohn-Sham. The condition being
that the charge density of the ground state of the new system must be the same as that
of the real system. The main feature of the Kohn-Sham equation is that the electrons
are independent, and the electron-electron interaction of the real system is replaced by

12



1.1. AB INITIO APPROACH

an effective potential. For this, the universal functional in Kohn-Sham system can be
decomposed as follows:

F[n (r )] = T [n (r )] + EH [n (r )] + Exc [n (r )]

=
N∑

i =1
−1

2

∫
ψ∗

i (r )∇2
i ψi (r )dr + 1

2

∫ ∫
n (r 1)n (r 2)

|r 1 − r 2|
dr 1dr 2 +Exc [n (r )]

(1.28)

The first term T [n (r )] is the kinetic energy of the Kohn-Sham electrons. The second
term is the classic Colombian contribution which is the sum of the Coulomb interactions
of the charge density of the infinitesimal volume at the point r 1 and the charge density
at the point r 2, It is the energy of Hartree EH. These two contributions can be calculated
exactly for the Kohn-Sham electrons which are independent. The last contribution in
this functional is Exc [n (r )] remains unknown and should be processed approximately. It
encompasses all the complexity of the n-body problem. It counts the energy of exchange
and correlation and another part which is the difference between the kinetic energy of
the real system and that of the free electrons. The interesting point is that it is relatively
small compared to the other terms, which means that much of the physics of the system
is already taken into account in the first terms which explain the great success of this
approach.

The second theorem gives us a variational principle to minimize the functional energy
(equation (1.28)) under the constraint of a determined number of electrons. The Lagrange
multiplier method gives:

δ

[
E [n (r )]−ε

(∫
n (r )dr −N

)]
= 0

⇒ δ

[
F[n (r )]+

∫
υext n (r )dr −ε

(∫
n (r )dr −N

)]
= 0 (1.29)

⇒ δF[n (r )]

δn (r )
+υext (r ) =

δT [n (r )]

δn (r )
+υKS (r ) = ε

where υKS (r ) Is the Kohn-Sham potential which takes the following form:

υKS (r ) = υext (r )+
∫

n
(
r ′)

|r − r ′|dr ′+ vxc (r ) vxc (r ) =
δExc [n (r )]

δn (r )
(1.30)

This result is identical to the equation obtained for an electron in an effective potential
υe f f (r ):

δT [n (r )]

δn (r )
+υe f f (r ) = ε (1.31)

The problem is reduced to solving N equations similar to the Schrödinger equation of
an electron in an effective Kohn-Sham potential:[

−1

2
∇2

i +υKS (r )

]
ψ(i ) (r ) = εiψ

(i ) (r ) et n (r ) =
∑

i

∣∣∣ψ(i ) (r )
∣∣∣2

(1.32)

As in the Hartree approach, the ψ( j )(r ) solution for the j particle depends on the ef-
fective potential υKS (r ) which depends on the density of this ψ( j )(r ) orbit and all Other
ψ(i )(r ) orbitals at the same time. The solution depends on the actual potential, and the
effective potential depends on the solution. It is a self-consistent problem in which, once
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1.1. AB INITIO APPROACH

solved, the effective potential used to solve the equations is equal to the effective po-
tential obtained by the solution. In practice, the solution is obtained after several iter-
ations, starting with an initial density which is modified during the iterations until the
self-consistency is reached.

1.1.3.3 Exchange and Correlation Functional

To do the computation, we now need an approximation for the Vxc (r ) exchange and cor-
relation term, is the last term for which we do not know any expression as a function of
density or orbital. Finding the precise approximation for the exchange and correlation is
still valid, and we present here only the standard functionals, which have already been
widely used [39].

1.1.3.4 Local Density Approximation

The most common approximation to calculate the term of exchange and correlation is
LDA. This approximation assumes that the density fluctuates quite slowly. It replaces the
potential of exchange and correlation at each point of space by that of a regular gas of
interacting electrons. The electron gas is taken at the same density as the density at the
calculated position; this makes it possible to give an exact expression by interpolating
Monte-Carlo calculations, and it was done at the beginning of the 80 [50]. The LDA is
often an efficient approximation, even when the density fluctuates non-negligibly. How-
ever, there are some particular disadvantages, such as a systematic underestimation of
the cohesion energy of the solids and the mesh parameters [51, 52]. The error on the
structural parameters is often low (on the order of 1 to 2 %), but can become significant
when Van der Waals type bindings are in account [39].

The system energy is the sum of the energies of these calculated points of space:

ELDA
xc [n (r )] =

∫
n (r )εxc (r )dr (1.33)

εxc (r ) Being the exchange and correlation energy of a free electron gas whose density
is equal to the charge density n (r ) on point r .

The approximation of the local density LDA is the most important and indeed most
used approximation to solve the problem of the functional correlation exchange. The
approximation LDA completely ignores the exchange-correlation corrections to be per-
formed when the electronic density is no longer locally homogeneous. However, the LDA
is particularly useful and its application to atoms and molecules is justified by the success
of these digital applications [53].

1.1.3.5 Generalized Gradient Approximation

The most natural way to improve LDA is to take into account the inhomogeneity of the
electron density by introducing terms which depend on the gradient of the density into
the exchange and correlation energy. The GGA [54] introduces a combination of local
terms and gradient-dependent terms. It gives good results and makes it possible to im-
prove the cohesive energies and the mesh parameters. However, the improvement over
LDA is not always systematic because GGA sometimes overcorrects the LDA [55, 56]. There-
fore, in the results section of this thesis, we have systematically compared the relative sta-
bilities of the phases as well as the elastic constants obtained in GGA and LDA [39].

The energy is calculated by considering the gradient of the density:

14
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EGGA
xc [n (r )] =

∫
fxc (n (r ) ,∇n (r ))dr (1.34)

1.1.3.6 Calculations in the solid with plane waves

We have an approximation allowing us to calculate the total energy of a system using the
Kohn and Sham approach of the DFT and note that the Kohn-Sham Hamiltonian has the
network periodicity of Bravais lattice. The Bloch theorem then allows us to look for the ei-
genvectors in the form of a plane wave multiplied by a function which has the periodicity
of the Bravais lattice:

ψk (r ) = e i k.r uk (r ) avec uk (r +R) = uk (r ) (1.35)

If one replaces this form of the wave equation in one of the Kohn-Sham equation (1.32),
an equation for the periodic part is obtained for each vector Of wave k [57]:[

−1

2
(∇i + i k)2 +υKS (r )

]
uk (r ) = εk uk (r ) (1.36)

This last equation is an eigenvalue equation but with the advantage that uk (r ) has the
network periodicity and it becomes possible to restrict the study on a mesh instead of
working on the whole crystal. This periodicity constraint allows us to expect a quantiza-
tion of the eigenvalues εnk . In the equation (1.36), it can be seen that the wave vector k
occurs parametrically; a continuous variation of k should produce continuous variation
of the energies εnk to give a set of functions εn(k), each of which describes the variation
of an energetic level as a function of k. This spreading of each energy level constitutes a
band of energy.

Strictly, the vector k is a continuous variable and takes all possible values in C3. How-
ever, the mathematical trick of periodic boundary conditions gives us the possibility of
discretizing this variable and constraining it to real values. The periodic boundary con-
ditions consist in imposing on the eigenvectors to be periodic on a crystal composed of
N1, N2 and N3 meshes in the directions of the vectors of the primitive mesh a1, a2 and a3

respectively. This is written:

ψnk (r +Ni ai ) =ψnk (r ) (1.37)

By replacing equation (1.35) in this last equation we find:

e i Ni k.ai = 1 (1.38)

The projection of k on the vectors of the primitive lattice of the reciprocal lattice bi

allows us to write k =
∑

i xi bi , knowing that bi .ai = 2πδi j , we obtain:

e2πi Ni xi = 1 (1.39)

This requires:

xi =
mi

Ni
avec mi entier (1.40)

The wave vector k will then have real and discrete components and take the form:

k =
∑

i

mi

Ni
bi (1.41)
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This result shows that each vector k corresponds to a volume in the reciprocal space:

δV =
1

N
b1. (b2 ×b3) (1.42)

N = N1N2N3 is the number of meshes in the crystal and b1.(B2 ×b3) is the volume of
the primitive cell in the reciprocal lattice; this means that the number of vectors k in the
primitive mesh of the reciprocal lattice is the number of meshes in the crystal. By increas-
ing the size of the crystal, the discrete values of the components of k become increasingly
close to one another. They tend to the limit of the continuous values when the crystal
size tends to the ideal crystal (which is infinite); this means that the choice of periodic
boundary conditions should not matter when the crystal is large enough.

While the wave vector k can take an infinity of values in IR3, under the constraint
(equation (1.42)), it is possible to restrict the study to the first zone of Brillouin which is
the mesh of Wigner-Seitz in the reciprocal network. Indeed, any vector k ′ which is not in
the first Brillouin zone can always be written as the sum of a vector G of the reciprocal
lattice and a vector k in the first Brillouin zone k ′ = k +G. We can then write:

ψk ′ (r ) = e i (k+G)·r uk ′ (r ) = e i k·r
[

e i G·r uk ′ (r )
]

(1.43)

But u(r ) = e i G.r uk ′(r ) has the periodicity of the Bravais lattice, exploiting the relation-
ship which define The reciprocal lattice e i G.R = 1, one can write:

u (r +R) = e i G·(r+R)uk ′ (r +R) = e i G·Ru (r +R) = u (r ) (1.44)

The wave function corresponding to k ′ can always be brought to a wave function with
the wave vector k by multiplying the part which has the periodicity of the Bravais lattice
by the factor e i G.r . So all the information is already present in the first zone of Brillouin,
and it is sufficient to restrict the problem to this zone. In practice, the wave vectors in
the first Brillouin zone are discretized according to a given sampling scheme with a given
point density. The higher the dot density is, the closer it gets to the ideal crystal and the
more accurate the results. A convergence study is then necessary to obtain the best pos-
sible compromise between points density in the Brillouin zone and the precision of the
calculation, or the standard way to choose the plane wave base is to consider all plane
waves, Kinetic energy is less than a certain limit, the cut-off energy:

K2 +G2 ≤ Ecuto f f (1.45)

So to get a complete base, it is enough to increase Ecuto f f ; this is one of the great forces
of wave-plane methods because it allows us to reduce the study of the convergence of the
base to the variation of a single parameter [39].

1.1.3.7 Stress and Force calculations

With energy, we have access to an essential set of physical properties, such as equilibrium
mesh parameters, which minimize energy, equations of state, or relative energy between
different phases.

The stress tensor and the forces exerted on the atoms are also deduced from the total
energy by:

σi j =
1

V0

(
∂E

∂εi j

)
(1.46)
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Fαi =
∂E

∂ωαi
(1.47)

Where i and j are the cartesian indices, σi j is a component of the stress tensor, εi j is
a component of the strain tensor, Fαi is a component of the vector of the force exerted on
the atom α, and ωαi a component of the vector of the position of the atom α; definitions
are extended in section 1.2.

1.1.4 Utility and physical sense of pseudo-potentials

The idea of using pseudopotentials stems first from the observation that the free electron
models (Drude) give mostly reasonably good descriptions of the metal properties [58].
Even if the potential being affected by electrons in metal consists of a superposition of
atomic potentials; which assume large values in the vicinity of the nucleus. The real po-
tential is therefore very far from the practically constant potential implied by the Drude
model. This paradox is solved by introducing the concept of valence electrons and elec-
trons. Core electrons closely related to the nucleus are barely affected by the chemical
environment of the atom and describe very efficiently the potential created by the nuc-
leus. This concept is not limited to metals but is generalized to all materials. The minerals
also have the additional feature that the description of the valence electrons of the nuc-
leus and the core electrons is very efficient, so the valence electrons have a much less
kinetic attraction.

Therefore, it is the valence electrons that mainly determine the properties of materials
by forming chemical bonds and by delocalizing in the solid. The interaction of the valence
electrons with the set nucleus and core electrons can then be described by an effective
potential, much less attractive than the potential created by the nucleus. This effective
potential is in our case approached by a pseudopotential.

Since valence electrons behave practically as free electrons, at least in metal, and a
solid is modeled by a periodic arrangement of atoms, the natural basis for making the
numerical calculations is the plane wave base [58]. However, in the region near the nuc-
leus, the valence states cannot be close to a plane wave. Indeed, the valence states are
orthogonal to the core states and therefore have many zeros also called nodes. These fast
oscillations require a massive number of plane waves to be able correctly represented and
consequently a very long computation time.

To avoid this problem, the valence wave functions and the potential are then softened
in the region near the nucleus. The model then loses its relevance in this area. However,
an astute construction of the pseudopotential makes it possible to conserve the more
significant part of the information as soon as one moves away from the region of core
[59].

For the pseudopotential to be interesting to use, it must be transferable. That is, once
created in a given chemical environment, usually the isolated atom, it must be able to
provide accurate calculations for other chemical environments, such as the solid. Thus,
the pseudopotential can be generated in a simple configuration and then transferring it
into much more complex arrangements. The pseudopotential makes it possible to reduce
the number of electrons to be taken into account in the calculation and also to reduce the
number of plane waves necessary for describing the wave functions of the solid.
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1.1.5 PAW Method

Projected-Augmented Wave (PAW) is a very practical and very popular approach to solv-
ing the Kohn-Sham equations is to express the wave functions |ψ〉 as a linear combination
of waves Planes

∣∣φn
〉

: ∣∣ψ〉
=

∑
n

Cn
∣∣φn

〉
(1.48)

This choice is based in the fact that the wave functions in a solid are delocalized, and
their decomposition in plane waves is perfectly adapted, in the sense that a delocalized
function requires only a very restricted number of waves Planes to be expressed with great
precision. Another advantage is the simplicity of the analytical calculation with plane
waves (for example the Laplacian and gradient evaluation). Thus, the Kohn-Sham equa-
tion is written: ∑

n
CnĤ

∣∣φn
〉

=
∑
n

ECn
∣∣φn

〉
(1.49)

By multiplying the equation by 〈φm | and exploiting the orthogonality of plane waves,
the Kohn-Sham equation becomes:∑

n
Cn

〈
φm

∣∣Ĥ∣∣φn
〉

= ECm (1.50)

〈φm |Ĥ |φn〉 matrix elements being known, the problem is reduced to solve a simple
linear equation system where solution determines the coefficients cn .

On the other hand, on the other hand, the difficulty facing the plane waves is that the
wave functions of the valence electrons in a solid have a completely different signature
in the zone where the chemical bond is formed and the zone Surrounding the core. In
the chemical bonding zone the wave function is delocalized, but around the nucleus, it
oscillates strongly to ensure orthogonality with the wave functions of the core electrons
that are localized. The description of these strong variations around the nucleus requires
a large number of plane waves; this is a major disadvantage. To solve this problem, the
PAW method proposed by Blöchl [60] defines a spherical augmentation region around
the ions in which plane waves are augmented by localized functions. These augmented
functions allow us to define a linear inversion T which connects the real wave function
|ψ〉 to a wave pseudo-function |ψ̃〉: ∣∣ψ〉

= T
∣∣ψ̃〉

(1.51)

An important property is that the pseudo-function |ψ̃〉 does not have the expensive
oscillations inside the spherical augmentations, it is a soft function. But externally it is
identical to |ψ〉. It is then possible to make less costly calculations with the |ψ̃〉 function
and to go back to the real wave function through the transformation T. This transforma-
tion must modify |ψ̃〉 only within the spherical augmentations, which leads us to express
it as an |ψ̃〉 and

∣∣ψ〉
being identical outside the spheres) plus a sum of localized contribu-

tions in the spheres:

T = I+∑
R

SR (1.52)

Where SR is a local term defined for each sphere R which adds to |ψ̃〉 the contribu-
tion necessary to get |ψ〉. Inside each sphere we define a base composed of the par-
tial functions |φi 〉, these functions are generally chosen as the solution of the equation
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of Schrödinger of isolated atom. For each partial function, partial pseudo-functions are
defined |φ̃i 〉 which must be soft but join the partial functions

∣∣φi
〉

to the limit of the spher-
ical augmentation. If we define the operator SR in a sphere R:

SR
∣∣φ̃i

〉
=

∣∣φi
〉− ∣∣φ̃i

〉
(1.53)

We can then write:

∣∣φi
〉

=
∣∣φ̃i

〉+ ∣∣φi
〉− ∣∣φ̃i

〉
=

∣∣φ̃i
〉+SR

∣∣φ̃i
〉

(1.54)

= (I+SR)
∣∣φ̃i

〉
On the other hand, if the base |φ̃i 〉 is complete, we can write in each sphere:∣∣ψ̃〉

=
∑

i
ci

∣∣φ̃i
〉

(1.55)

The coefficients ci can be determined by defining the projector functions |p̃i 〉 which
satisfy 〈p̃i |φ̃i 〉 = δi j which gives I =

∑
i |φ̃i 〉〈p̃i | and let us write:

|ψ̃〉 =
∑

i
|φ̃i 〉〈p̃i |ψ̃〉

SR |ψ̃〉 =
∑

i
SR |φ̃i 〉〈p̃i |ψ̃〉 (1.56)

=
∑

i

(|φi 〉− |φ̃i 〉
)〈p̃i |ψ̃〉

The index i notes the functions in the same sphere. The equations (1.52) and (1.56)
give us the transformation T as follows:

T = I+∑
i

(∣∣φi
〉− ∣∣φ̃i

〉)〈
p̃i

∣∣ (1.57)

And the real function |ψ〉 is obtained from the pseudo-function |ψ̃〉 by:∣∣ψ〉
=

∣∣ψ̃〉+∑
i

(∣∣φi
〉− ∣∣φ̃i

〉)〈
p̃i |ψ̃

〉
(1.58)

The i index traces the functions in all spheres. The other approximation used in the
PAW method is frozen core approximation [61]. In this approximation, it is considered
that the configuration of the core electrons, strongly linked to the nucleus, is independ-
ent of the environment of the atom and remains frozen when passing from a free atom to
a solid, for example. The electronic structure is rearranged essentially at the level of the
valence electrons. The wave functions of the electrons of the core are very localized, in
contrast to the wave functions of the valence electrons which are extended. In the pas-
sage from a free atom to a solid, the overlap between the wave functions of the valence
electrons is considerable while it is negligible for the electrons of the core, which leaves
them practically unchanged. As a consequence, the electron energy and electron density
of the core in the solid and the isolated atom can be expected to be identical; this greatly
reduces the computing effort that focuses on valence electrons.
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1.1.6 Successes and limitations of DFT

DFT is often able to obtain, at lower cost, results with a precision close to that obtained
from the post Hartree-Fock calculations. Also, it can be used to study relatively large sys-
tems, contain up to several hundred electrons, which the post-Hartree-Fock calculations
can not process; this explains why DFT is now widely used to study the properties of mo-
lecular or even biological systems, sometimes in combination with conventional meth-
ods.

Many works carried out in the last few years show that the DFT calculations give good
results on very diverse systems (metallic, ionic, organometallic, etc.) for many properties
(molecular structures, vibration frequencies, Ionization, etc.).

However, these methods still suffer from several defects. On the other hand, the good
or bad results of the DFT on some systems are not always understood and there are no real
criteria to chose a functional rather than another. It is also challenging to find approaches
to improve a given functional, which sometimes makes the use of DFT difficult.
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1.2 Thermodynamic properties from Ab-Initio study

1.2.1 Ab-Initio study of thermodynamic properties at absolute temper-
ature

1.2.1.1 Formation enthalpy at 0k

The energy of formation at T = 0K (which also corresponds to the enthalpy of formation)
for the binary compound AxBy is obtained by the equation:

∆E
(
AxBy

)
= E

(
AxBy

)−xE (A)− yE (B) (1.59)

where E
(
AxBy

)
, E (A), and E (B) are the total energy for AxBy , pure lelements at Stable

Element Reference (SER) (A and B) at T = 0K, respectively.

1.2.1.2 Special quasi-random structure method (SQS)

The random structures of an alloy A1−xBx are usually generated by random pulling. Each
lattice site has the probability 1− x to be occupied by an atom A and x to be held by an
atom B. There is a method for generating structures closer to the utterly random struc-
tures [62]. To do this, we need to define correlation functions.

A σ configuration is discretized into interactions figures f = (k,m) of k neighboring
me sites. On each site i , the occupancy variable Ŝi takes the value −1(+1) if the site is oc-
cupied by the species A(B). For a perfectly random A1−xBx solid solution, the correlation
function for the f figure is:

〈∏
f

〉
al éatoi r e

=
〈∏

k,m

〉
al éatoi r e

(1.60)

=
〈

Ŝi
〉k

(1.61)

= [(+1)(x)+ (−1)(1−x)]k (1.62)

= (2x −1)k (1.63)

The principle of SQS is to construct a configuration such that its 〈∏k,m〉SQS correlation
function tends to the correlation function of the perfect random solution 〈∏k,m〉al éatoi r e

for the maximum number of figures f :〈∏
k,m

〉
SQS

∼=
〈∏

k,m

〉
al éatoi r e

(1.64)

Practically, we generate a large number of concentration structures x where their cor-
relation functions

∏
k,m are calculated. The arrangement with the correlation functions

closest to the correlation function in the equation (1.63) of an entirely random solid solu-
tion is then selected.

To analyze the substitutional disorder of an alloy AB1−xCx it is necessary to construct a
super-cell which naturally includes the random alloy statistic. Such a supercell must con-
tain all the first neighboring polyhedra according to their percentages of occurrence. The
large size required for such a cell does not make it possible to be treated by DFT Ab Initio.
To avoid this pitfall, Zunger et al. [62], Wei et al. [63], Lu et al. [64, 65] and Ruban et al. [66]
proposed a super-cell determination method that simulates the statistical characteristics
of a random alloy with controlled accuracy. The method is called SQS.
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Figure 1.1 – Figures (pairs a, triplets b and four sites c) in a two-dimensional lattice.

Figure 1.2 – Representation of a random substitution of an alloy Ax B1−x .

In the SQS method we define geometrical figures that connect the sites of the occu-
pation of the atoms. The figures are associated with the occupation sites according to
their symmetry ranging from the simplest figures formed by a single site, a pair of atoms,
a three-body figure to the polyhedra defined by a growing number of sites (see figure 1.1).
The figures are defined by two indices: an index k which represents the number of sites
in the figure and an index m which specifies the distance between the sites (or bodies).
Each site i is assigned a pseudo-variable of spin Si : example Si = −1(+1) if an atom A(B)
occupies the site i - see the figure 1.2.

One type of figure F(k,m) is characterized by its correlation function
∏

k,m obtained
by taking the product of the spin variables on all the sites of the figure and averaging on
All the figures of equivalent symmetry. For a perfect random alloy, the pair and multisite
functions satisfy the relation [62–65]:〈∏

k

〉
≈

(∏
k,m

)
SQS

(1.65)

(∏
k,m

)
SQS Represents the correlation function associated with the F(k,m) figures of

the supercell. When an alloy is described by super-cells of finite size which repeat peri-
odically; non-existent or erroneous correlations are introduced beyond a certain distance.
However, since interactions between close neighbors are more important than those between
more distant neighbors, we can construct SQS structures that exactly reproduce the func-
tions of a random alloy between the nearest neighbors. It is trivial that the smaller the
number of atoms minus the correlation functions that correspond to the perfect alloy.
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1.2.1.3 Super-cell method

The supercell approach has been widely used in the literature to study defects in materials
[67, 68]. Such an approach is usually carried out by introducing one defect in a given
supercell to study the point defects regarding first-principles calculations. In the present
work, we have used two supercells; a 16-atom 2×2×2 cubic B2 and a 32-atom one [69],
each one contains one single point defect (Tr vacancy, Sc vacancy, Tr anti-site, or Sc anti-
site) per supercell. In the 16-atom supercell, the periodically arranged point defects form
a simple-cubic SC lattice with a lattice parameter of 2a, while the point defects in the
32-atom supercell form a face-centred-cubic FCC lattice with a lattice parameter of 4a,
where a is the B2 lattice parameter.

The formation enthalpies of point defects in the supercell approach are obtained by
means of finite differencing, as follows [70]:

Hd =
∂Hd

∂υd
≈ ∆Hd −∆HTr Sc

υd
(1.66)

where∆Hd is the formation enthalpy per atom of a 16-atom (32-atom) B2 Tr Sc supercell
containing one point defect of type d and ∆HTr Sc is the formation enthalpy of ordered
B2 Tr Sc (Tr = Cd , Ru), and υd is the atomic concentration of defect d . For the 16-atom
supercell, we have υd = 1/16 for anti-sites and υd = 1/15 for vacancies, and for the 32-atom
supercell, we have υd = 1/32 for anti-sites and υd = 1/31 for vacancies.

1.2.2 Ab-initio study of thermodynamic properties at finite temperat-
ure

1.2.2.1 Phonon

In the harmonic approximation, phonons are considered as independent of each other.
However, the vibrations of a real crystal are not purely harmonic, meaning that the concept
of independent phonons breaks down. This section covers the ab initio methods to cal-
culate the phonon characteristics. The partition functions of statistical physics enable
calculation of the Gibbs energy of the system. The harmonic approximation is used in the
evaluation of the vibrational Gibbs energy.

The total potential of the crystal can be written concerning the inter-atomic potentials
assuming multi-body interactions over the sums of two-body terms. Here we will consider
two-body interactions only. If an atom whose equilibrium position at lattice site R moves
a small distance u(R), its new position is given by:

r (R) = R+u(R) (1.67)

If the contribution to the total potential of the crystal, U, from two atoms at position
R and is given by the potential can be written as [58];

U =
1

2

∑
RR′

φ
(
R−R′+u(R)−u(R′)

)
(1.68)

Expanding the above relation about the equilibrium position as a three-dimensional
Taylor series we get:

Uhar m =
1

2

∑
RR′
µν

uµ(R) fµν(R−R′)uν(R′) (1.69)
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Where fµν is the force constant matrix which, for pair potentials, can be written as:

fµν(R−R′) = δRR′
∑
R"

[
φµν(R−R")−φµν(R−R′)

]
(1.70)

The finite displacement phonon calculations were carried out to calculate the vibra-
tional properties of optimized structures [71] after performing the geometry optimiza-
tion. In a finite displacement calculation, each atom is displaced by a small amount along
the Cartesian direction; then a self-consistent field calculation is carried out to evaluate
the forces on the perturbed system. Both positive and negative displacements are applied
in each direction so that corresponding force constants can be calculated using the cent-
ral force differences. Using the harmonic approximation; vibrational frequencies can be
evaluated from the force constants. The number of computed spectra is 3N, where N is
the number of atoms in the unit cell. As, there is three center of mass translations along
the x, y and z directions, there are, in total, 3N-3 modes of vibration.

To construct the dynamical matrix, set of rules should be fulfilled [72]. The force con-
stants can be used in Equation 1.69 to get the potential energy.

The displacement of atoms to calculate the force constant destroys the periodic bound-
ary conditions. To treat this problem in practical terms; a supercell is chosen, which con-
sists of a considerable number of primitive cells such that interaction of an atom outside
this cell with the displaced atom in the primitive central cell can be regarded as being
negligible. The accuracy of phonon calculation depends upon the size of the supercell.
By using a massive supercell in force calculations, we can include more inter-atomic in-
teractions and reduce the error in this interaction cut-off approximation.

1.2.2.2 Wagner-Schottky model

Thermodynamic models used to calculate equilibrium point defect concentrations in ox-
ide materials, in general, are often based on the law of mass action. In this formalism,
originally developed by Wagner and Schottky [73] using the Kröger and Vink formalism
[74], the mass-action type equations describing equilibria between electronic and ionic
defects are written under the assumption that defects are noninteracting and infinitely
diluted. With this approximation defect activities are simply expressed regarding defect
concentrations. To complete the model; electroneutrality and site conservation equations
on both sublattices are added. The success of this theory is however mitigated by some
important shortcomings [75, 76]:

• The mass action law assumes defects as non-interacting species. However in oxide
systems defects are usually charged and as a result subject to long-range Coulomb
interactions.

• Because the mass action law generally assumes infinite dilution, the configurational
entropy contribution of the different defects in the Gibbs Gibbs energy of the system
reduces to site fractions (i.e., the probability that an anion or cation site is occupied
by a defect of a particular anionic or cationic type). However, for high defect con-
centrations, defects are no longer statistically uncorrelated because the presence of
a defect excludes others from sharing the same region in the lattice; this is known
as the site exclusion effect and becomes increasingly relevant as the defect concen-
tration in the material rises (high deviations from stoichiometry).
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2.1 Thermodynamic modeling of type CALPHAD

2.1.1 Introduction

The term CALPHAD is an acronym for "CALculation of PHAse Diagram". The abbrevi-
ation CALPHAD also designates a scientific journal and an annual international confer-
ence to optimize software and databases to improve understanding of several thermodynamic-
dependent physical system characteristics (species distribution, geochemistry, Cement,
etc.). CALPHAD is a method for obtaining a mathematical description of a phase diagram
and the thermodynamic data that are related to this diagram. This modeling focuses on
the evaluation of the fundamental quantity which is the Gibbs energy of Gibbs G of the
different phases of a system (pure element, binary system, ternary system, ...) and its
evolution as a function of temperature, concentration, and pressure.

From a thermodynamic point of view, the topology of a phase diagram is completely
determined by energy considerations. More specifically, when the variables considered
are temperature and pressure, it is the Gibbs energy of Gibbs, G = U+P×V −T×S, which
governs the stability of a phase. A stable phase is the result of the minimization of this
energy. It is, therefore, the Gibbs energy of Gibbs which completely determines the phase
diagram by process of minimization at constant temperature and pressure. Once the
Gibbs free energies are determined, it is possible to know the phases present in the sys-
tem and their proportions under the desired conditions by minimizing the Gibbs energy
of the system. The minimization of Gibbs free energy is a considerable advantage since
a good description makes it possible to obtain, by interpolation or extrapolation, essen-
tial information which can be very difficult or impossible to obtain experimentally; this is
particularly true when it comes to the complex systems commonly found in the industry
that can easily contain a dozen elements.

In practice, to describe the Gibbs energy of Gibbs G, a mathematical parametric model
is assigned to each of the phases in the system. The parameters of each model are then
optimized to reproduce the phase diagram and the thermodynamic data of the system
by minimizing the Gibbs energy of Gibbs of the whole system. The calculation then con-
sists in conducting a least squares fit which reduces the quadratic errors concerning the
available data. In this case, the CALPHAD method is a semi-empirical method. It offers
numerous advantages such as the rationalization of an experimental plan (limitation of
the number of experiments and their costs), the study of multi-constituted systems by
extrapolation of simple subsystems, but also the simplicity of calculating isothermal or
isopleths sections. The outcome of the optimization gives us a set of mutually consistent
data.

The CALPHAD method, which prevails in this field and is used in the laboratory, was
introduced by Kaufman and Bernstein [29]. It is very well described in many books such as
Saunders and Miodownik [77] and Lukas et al. [78]. In this paper, there is a lot of inform-
ation about this, from the basics of thermodynamics to a concrete example of modeling.
Note that the history of the CALPHAD method is published by Spencer [79] in a recent
article.

The aim of this chapter is not to establish a state of the art of this method but rather to
give the principle and to present the software of calculation that was used for the model-
ing of our systems.
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Figure 2.1 – Phase diagram (with eutectic reaction) and Gibbs free energies.

2.1.2 Presentation of the CALPHAD method

The thermodynamic characterization of a system comes down to the study of potential
functions of the different phases of this system. The free enthalpy G is the essential ther-
modynamic function in thermochemistry since it plays the role of potential when the
pressure (P), the temperature (T), and the composition (number of moles ni of each con-
stituent i ) are the control variables of the system. The determination of the equilibria
between phases is done by minimizing the free enthalpy of the polyphase system as illus-
trated by Figure 2.1.

At the temperature T, the primary solid solution α is stable at 0 at. % B up to composi-
tion x1. Then, the two phases α and β are in equilibrium up to x2. Beyond x2, the primary
solid solution β is stable. These stability domains are due to the minimization of the free
enthalpy of the system on the composition domain at the temperature T. In each rich
zone in A or B, it is respectively the free enthalpy of the α or β phase which is the lowest
which corresponds to the stability of the relevant primary solid solution. In the central
zone, the minimization of the free enthalpy G leads to establishing the tangent common
to the two enthalpic functions. The two points of tangency delimit the composition inter-
val for which the equilibrium between α and β is observed.

The notion of Driving force per mole component (DGM) is vital to understand the
relation between the stability of a phase and its free enthalpy. The DGM is the affinity
that a chemical species has to react to an internal process. According to the second law of
thermodynamics, this internal process tends to approach equilibrium. For a phase, the
DGM is the shortest distance between the Gibbs energy surface of the phase and the plane
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Figure 2.2 – Schematic representation of the CALPHAD method including the different iterative
schemes [80].

joining the chemical potentials of the system components at steady state. This plane is
called the plane of the common tangents because it is the plane tangent to the surfaces of
the free energies of Gibbs of the stable phases. The DGM of a stable phase is zero. For an
unstable phase, it is more negative as the phase is unstable.

This concept is illustrated on Figure 2.1, for which we consider a binary system A−B
including a eutectic reaction.

A software can, therefore, follows the evolution of this quantity as a function of the
temperature and the composition and plot the phase boundaries in all the space defined
by the user.

The thermodynamic description of a system is not limited to its phase diagram, which
is only a mapping of the equilibria occurring there. The complete characterization of the
system is established only with the description of all its thermodynamic quantities; this
is possible from its modeling because it consists precisely in describing, for all its phases,
the Gibbs energy of Gibbs G which contains all the thermodynamic information.

According to the CALPHAD method, it is performed using mathematical formalisms
with adjustable coefficients determined from experimental information (and sometimes
from Ab Initio) calculations such as transformation temperatures, solubility limits, En-
thalpies of formation or calorific capacities. The modeling is carried out by optimizing
these parameters to obtain the best possible reproduction of all the experimental inform-
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ation (phase diagram and thermodynamic data) taken into account in the calculation.
The results of the modeling are then described by a data bank which contains, for all the
phases considered, the declaration of the model used as well as the numerical values ob-
tained for the different coefficients. The simplified flowchart of Figure 2.2 describes the
various steps of this method [80].

It is possible to distinguish two types of use of the CALPHAD method. The first is
to create thermodynamic databases from experimental data; this is called optimization
of phase diagrams. The second purpose is on the side of people who use databases to
calculate the balances that take place within a system. To figure a phase diagram, it is
necessary to use reliable experimental data and to model each phase with the appropriate
model. We shall discuss the parameters involved in the choice of experimental data and
selection of thermodynamic models, which will help to understand the modeling.

2.1.2.1 Data Selection

Thermodynamic modeling of a system requires information on the presence of different
phases in the system. Moreover, CALPHAD is a semi-empirical method that requires ex-
perimental input data for the optimization of variables appearing in Gibbs G Gibbs energy
models of constituent phases. Also, documentary research is the first step in the thermo-
dynamic modeling of a system.

The experimental determination of a system can go through many characterizations,
the nature of which depends mainly on the system. They depend, for example, on the
physical state of the elements or compounds of interest (solid, liquid, gas) in the tem-
perature or pressure range of interest, but also on the refractory or volatile nature of the
elements, etc.

Experimental information that may be useful for thermodynamic modeling of a sys-
tem can be divided into the following categories:

a) Phase Diagram Data

They include data on phase balances in a system; Such as the temperatures of the
invariant reactions, the gas phase, the liquidus, the solidus, solubility limits, as well
as invariant compositions, conjugation lines or tie-lines, pressure, etc.

The experimental techniques used are numerous. The most frequently encountered
are:

• The thermal analysis measurements (Simple Thermal Analysis (STA), Thermo-
mechanical Analysis (TMA), ...);

• Measurements of resistivity and dilatometry (Scanning Optical Microscopy (SOM),
Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM));

• Electron Probe Micro Analysis (EPMA);

• structural analysis (X-ray, neutrons, ...), ...

The experimental techniques used to characterize the equilibrium between phases
in a multicomponent system and the fundamental calculations have been detailed
in a book published by Lukas et al. [78]. The values of the Gibbs G Gibbs energy’s
adjustable parameters are optimal when the computation of the different equilibria
of a system best reproduces the diagrammatic data.
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b) Thermodynamic data

They contain thermodynamic information such as integral enthalpy of mixture, en-
thalpy of transformation, enthalpy of formation H, partial enthalpy Hp , activity ai ,
the chemical potential µi , the calorific capacity Cp , and so on. This type of data has
the advantage of being connected directly to the quantities that are modeled; The
Gibbs energy of Gibbs G or its enthalpic component H.

These data can be obtained either by potentiometric techniques Electromotive Force
Measurements (EMF). Also, calorimetry can be used to get information on forma-
tion enthalpy or of reaction as well as of specific heat.

c) Crystallographic data

The related information to the crystal structure of the constitutive phases such as
the space group, the site’s occupation, ... etc. are very important in selecting the
appropriate thermodynamic models for each phase.

d) Physical measurements

These are related data to specific heat or magnetism.

e) Calculated data

Information such as the enthalpy of formation or the enthalpy of mixing of the vari-
ous stable and meta-stable constituents can also be obtained through theoretical
calculations of the first-principle type Ab Initio, of electronic structure in the frame-
work of the DFT (see section 1.1), or the Miedema approach [81]. They are instru-
mental in the thermodynamic modeling of a system. The DFT is used to quickly
and accurately calculate the electronic and magnetic properties of various com-
pounds when coupled with a pseudo-potential approach and with the use of plane
wave function bases. As far as the phase boundaries are concerned, fundamental
calculations such as the Cluster Variation Method (CVM) method can be used as a
guide for the form of meta-stable phase boundaries [82–85]. Using CVM method,
Kikuchi [85] treated order-disorder transition phenomena. Also, CVM method and
the Monte Carlo method in combination with Ab Initio calculations have been used
[86].

The detailed examination of the literature gives a good overview of the system to be
studied. However, it is not surprising that we can find contradictions between the dif-
ferent experimental studies concerning the temperatures of the invariant reactions, the
solubility limits of the different phases, the presence of intermetallic phases in a binary or
ternary system, etc. In this case, these data must be chosen according to their credibility:

• a purity of the starting used components. Sometimes a tiny amount of impurities
can significantly alter the results (or stabilizing a non-equilibrium phase or create a
nucleation barrier to the precipitation of an equilibrium phase);

• The technique of preparation of the sample, the time and the annealing temperat-
ures, it means reaching the thermodynamic equilibrium, the characterization tech-
niques, the type of used equipment, the experimental conditions;

• The standard deviation of the results obtained by the same research group;

• The agreement between the data obtained from different research groups.
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Initial optimization trials can also help detect conflicting information and select ap-
propriate data for optimization. Depending on the accuracy and reliability of the experi-
mental data, different weights can be assigned to varying measurements during optimiz-
ation. Experimental data that are larger and reliable may have higher weights, while less
reliable data may have a lower weight, which in some cases may be zero.

Once the experimental dataset has been selected, it is advisable to choose the ther-
modynamic models adapted to the phases to be modeled.

2.1.2.2 Selection of thermodynamic models

Proper optimization of a system is synonymous with a choice of coherent models with
the physics associated with them. For this, first of all, it is necessary to know the nature
of the phase to be modeled, like its crystallographic data, the fact that it is stoichiometric,
ordered, etc. Then, it is essential to associate the right model. We will detail, in section 2.2,
the different models available to model a phase according to its nature. It is also useful,
when optimizing a system, to be interested in the compatibility of this system with other
optimizations involving common elements and phases; this allows the pooling of optim-
izations and consequently the construction of databases allowing to extrapolate balances
in multi-constituted systems. The selected models have adjustable parameters, and the
role of optimization is to determine the values of these parameters.

2.1.3 Optimization principle

The optimization consists in adjusting the parameters of the models by a method of least
squares. It is a question of determining the values of the interaction terms and of the
energies of formation of the compounds from the experimental data. Optimization of a
system (and / or execution of calculations) is done through specialized software modules
such as Thermo-Calc [30]], Pandat [87, 88], Factsage [89] or MTDATA [90], ... etc.

Proper optimization is based on numerous experimental data of good accuracy of the
system under consideration. On the choice of appropriate models, there is an infinite
number of optimizations of a system, these being dependent, among other things, on the
chosen experimental data set and the weight given to the different measurements, but
also on the selected models and their number of parameters. It is agreed that correct
optimization involves the minimum of parameters. It is considered that the optimization
is completed when all the experimentally selected data has been successfully described
with the minimum of parameters. The optimization methodology has been described in
detail by Kumar and Wollants [91] and more recently by Schmid-Fetzer et al. [92].

2.1.4 Calculation software

With the increasing needs to analyze the thermodynamic behavior of systems, to pre-
dict the relationships between phases or to evaluate thermodynamic properties for well-
defined compositions and temperatures, many computational software packages are avail-
able that cover several aspects for specific applications [93].

1 to the tabulation of the thermodynamic properties of the substances, their calor-
ific capacity, their enthalpies, their free enthalpies of formation or transformation,
equilibrium constants, partial pressures, ..., as a function of temperature and pres-
sure and their compositions;
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Figure 2.3 – Swedish software usage scheme Thermo-Calc [30].

2 to calculate the thermodynamic properties of metal mixtures, oxides, salts, semi-
conductor compounds, etc., such as activity, chemical potentials, partial pressures
of the various constituents as a function of temperature and pressure and compos-
ition;

3 For poly-constituted and polyphase systems, to calculate the equilibrium phase
compositions, the phase fractions or the volume fractions, as a function of tem-
perature;

4 To applications such as solidification paths, isotherms, isopleths or fraction of phases
during solidification.

Among these softwares are Thermo-Calc (including Parrot) [30], Pandat (PanOptim-
izer) [87, 88], Factsage (OptiSage) [89]. The Thermo-Calc, Pandat and Factsage programs
have been described in detail in a special issue of the Journal CALPHAD Volume 26, Issue
2, Pages 141-312 (June 2002). For this work, the Thermo-Calc program was mainly used.

Thermo-Calc [30] is a powerful and flexible software for a variety of thermodynamic
calculations and phase diagrams based on a powerful Gibbs energy minimization of Gibbs
G. It has earned the reputation of being one of the best software for these calculations.
The software Thermo-Calc was originally developed by the Swedes in 1981 notably by
Professor Bo Sundman of the Royal Institute of Technology in Stockholm (KTH). In all
the continents of the world (except the Antarctic) a large number of researchers uses it
(several hundred). It is designed for the optimization of multicomponent solutions that
can contain up to 20 elements. The solutions may be metallic, aqueous, molten salts,
amorphous or gas. Thermo-Calc [30] can use several different thermodynamic databases,
especially those developed by Scientific Group Thermodata Europe (SGTE) [94].

The user of the Swedish software Thermo-Calc can develop its database by optimizing
the thermodynamic parameters. The use of the program is based on three main modules
as indicated by the Figure 2.3.

In Thermo-Calc [30], the part needed for modeling Gibbs Energy System (GES) is sep-
arated from the part that handles the calculation of the equilibria, this leaves the freedom
to the user to choose one of the models already incorporated in Thermo-Calc, or to intro-
duce a new adequate formalism to the problem to be treated.
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The interactive side of Thermo-Calc also resides in the explanation of all the instruc-
tions to which the user can access by typing "Help".

Thermo-Calc [30] consists of several modules for specific purposes and different tasks
that the user might be interested in performing them. The Thermo DataBase (TDB) mod-
ule is used to retrieve databases or data files. The GES module is used to enter system
information and thermodynamic data. The Equilibium Calculations (POLY) module can
compute various complex heterogeneous equilibria by fixing the conditions (T, P, ni , ...)
which reduce the optimization to the variance 1 . It also allows the calculation of the
thermodynamic quantities (H, S, G, ...) under the same imposed conditions. While the
Processing of various phase diagrams (POST) module is used to draw diagrams, phase
diagrams, thermodynamic quantities as a function of temperature and pressure, or to de-
velop post-script files with .ps extension. The PARROT module provides a powerful and
flexible tool for data optimization and evaluation of experimental data, from which Gibbs
G Gibbs energy functions can be calculated by optimizing the experimental data by the
least squares method. The user has the choice of axes system, given the choice of two
linked quantities.

The Swedish software Thermo-Calc has several models to handle as many solutions as
possible. Among them, there are those based on a theoretical foundation and those that
use geometric or polynomial developments:

- Model of the ideal substitution solution,

- Model of the regular solution,

- Association model [95],

- Inden model [96] for ordered magnetic solutions,

- Model of Pitzer [97] for aqueous solutions,

- Kappor-Frohberg model [98] for the amorphous,

- Temkin sub-lattice model [99] generalized by Hillert and Staffansson [100],

- Muggianu geometric weightin [101],

- Geometric weighting of Kohler [102],

- Expansion polynomial of Redlich and Kister [103].

The choice of models to be used by the operator depends on several factors which are:

• The pure constituents of the system;

• The experimental phase diagram;

• Experimental thermodynamic data.

The best approach for optimization with the PARROT module is to create a "set-up"
file containing all the phase information, with the variables of the model parameters that
will be calculated. This is a text file with a .tcm extension and is executed with the "macro"
command in Thermo-Calc [30]. Additional information can be entered in this file for fu-
ture reference; thermodynamic model changes may also be indicated.

33



2.1. THERMODYNAMIC MODELING OF TYPE CALPHAD

For the construction of the "set-up" file, it is important to have at the beginning a
realistic description of the unknown phases (substitution mode, number of sub-lattices)
to obtain the most satisfactory results possible with Thermo-Calc, and the closest to the
experimental field. The experimental data are summarized in the file with .pop exten-
sion [78]. The data is entered in "Equilibrium" blocks. Each block has its own set of data
associated with it. All necessary data to optimize the phases have also been added.

2.1.5 Procedure for critical evaluation/optimization of systems

In the present work, the majority of the experimental information mentioned along with
the section 2.2 is selected. For all systems, the optimization of the various thermody-
namic parameters was carried out in the same way in three steps, taking into account or
not the magnetism of the different phases, as follows:

1 Obtain a set of model parameters for all present phases in the studied system in a
single operation, assuming first that the non-stoichiometric phase as a stoichiomet-
ric compound;

2 Once all equilibria were successfully calculated, the stoichiometric phase model
was then changed to a non-stoichiometric model with the appropriate sub-lattices,
with the parameters of the other phases being fixed;

3 An optimization of all the thermodynamic parameters of all the phases was carried
out simultaneously taking into account all the data selected to ensure the correct
fit.

Two types of calculation are possible:

I Calculation of the equilibria between phases, by choosing a good initialization point,
this choice is made by fixing equilibrium conditions (T, P, ni , . . . ) until the degree
of freedom is zero;

II Calculation of thermodynamic quantities: these calculations are done in the POLY
module and can be saved in several files with the extension .PL3.

In order to avoid the appearance of an inverted miscibility gap in the liquid phase
during the calculation of our systems, thermodynamic constraints are imposed during
optimization: with the Redlich and Kister [103] formalism, the curvature of Liquidus is
positive [91, 104] by imposing an additional constraint d 2G/d 2x ≥ 0 in the composition
domain 0 ≤ x(X) ≤ 1 (X= Os, Th, Y, Cd , Ru ou Sc) and every fifty degreesm From the
temperature of the liquidus to the temperature of 6000K, and with the recent model of
Kaptay [105, 106, 107], enthalpy and entropy must be of the same sign.

2.1.6 Conclusion

The CALPHAD method is a powerful tool for describing the thermodynamic properties of
the equilibria of multicomponent systems. It allows to determine and propose models to
explain the different phases of equilibrium in a system from experimental and theoret-
ical work. A database is then generated to store the parameters of these models for each
system. These databases can be used with different thermodynamic calculation software
(Thermo-Calc, Pandat, MTDATA, etc.) to plot phases diagrams and calculate the thermo-
dynamic properties of these systems and explore them for higher order systems.
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2.2 Thermodynamic models

2.2.1 Introduction

The choice of thermodynamic formalisms [108, 109] used for the description of a phase
depends essentially on structural considerations. We present in this chapter, with the
notations adopted by Thermo-Calc [30], the Ansara et al. [110] models retained for the
characterization of different phases of our systems.

2.2.2 Thermodynamic description of pure elements

In the absence of any absolute scale of enthalpy, unlike entropy, it is important that a
state of reference is defined in the description of the Gibbs energy of Gibbs G The one
commonly used comes from formalism developed by the SGTE which lists and compiles
the thermodynamic descriptions of the pure components referred to the enthalpy of its
stable state SER at 298.15K in databases such as Dinsdale [111] that was adopted in this
study. According to the SGTE, the Gibbs energy of a pure element i (Os, Th, Y, Cd, Ru or
Sc) 0GSER

i (T), referring to the enthalpy of its stable state SER at 298.15K, 0HSER
i (T) s sym-

bolized in GΦi (T), This quantity is given as a function of the temperature by the equation:

GΦi (T) =0 GSER
i (T)−0 HSER

i (298.15K)

= f (T)

= a +b ×T+ c ×T× lnT+d ×T2 +e ×T3 + f ×T−1 + g ×T7 +h ×T−9 (2.1)

The state SER is the state of the element in its stable crystallographic structure at a
temperature of 298.15K under a pressure of 105Pa. The coefficients a, b, c et d ,... etc. in
this expression were taken from the databse [111]. There are also additional contributions
taking into account the pressure [112] or the magnetic effects [113–115]. The pressure
dependence of condensed phases is ignored.

2.2.2.1 Magnetic contribution

Previous works of Inden [114, 115] have led Hillert and Jarl [113] to the definition of the
magnetic contribution to the Gibbs energy of Gibbs molar in the following way:

mag GΦ = R×T× ln(β0 +1)× g (τ) (2.2)

In this expression:
β0: The average magnetic moment per atom expressed in magnetron of Bohr µB.
g (τ): Calculated from the fraction of the total magnetic enthalpy from the short-range

order of the spins of the atoms, τ = T/T∗ with T∗ Being the critical magnetic temperature,
it means:

• Curie temperature TC For ferromagnetic materials: it is the transition from the ordered
magnetic state (ferromagnetic) to the disordered (paramagnetic) state. It repres-
ents the direct measurement of the interactions of exchange between the magnetic
atoms; these interactions depend mainly on the inter-atomic distances;

• At Néel temperature TN For antiferromagnetic materials: temperature above which
an antiferromagnetic or ferrimagnetic material becomes paramagnetic. Above this
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Figure 2.4 – Gibbs energy of the c. f . reference phase in a A−B binary system in the case where
the two elements A and B have different SERs. This diagram introduces the notion of the lattice
stability of the energy.

temperature, thermal energy is sufficient to break the microscopic magnetic order
of material.

2.2.2.2 Lattice Stability

We will see later that it is also necessary to describe the pure elements in common struc-
tures where they are unstable or metastable, it means the changes of reference state. The
Figure 2.4 illustrates the example where the B element would crystallize in a state other
than A in the state SER (eg c.c.). In this case, the Gibbs energy of Gibbs of B in form c. f .c is
higher and the difference between this energy and that in the state SER is called the lattice
stability of the energy. This energy can be expressed by an equation of the same type as
Equation 2.1.

2.2.3 Thermodynamic models used for solutions and compounds

In the CALPHAD approach, the different phases are described by using different thermo-
dynamic models. This part is intended to represent the applied mathematical formalism
for phases description.

2.2.3.1 Gibbs energy Modeling of Gibbs

The computation of the equilibrium between phases in a multi-constituted system re-
quires the minimization of the Gibbs energy G of all phases that exist in this equilibrium:

G =
∑np

i =1ni ×GΦi = minimum (2.3)

Where np represents the total number of system phases, ni is the number of moles,

and GΦi is the partial Gibbs energy of component i in the phase Φ.
Thermodynamic description of a system requires the assignment of thermodynamic

functions for each phase Φ. Contributions to Gibbs energy GΦ of a phase can be written
as:

36



2.2. THERMODYNAMIC MODELS

GΦ = GΦT (T, x)+GΦP (P,T, x)+GΦm(TC,β0,T, x) (2.4)

• GΦT (T, x): Contribution of temperature and composition,

• GΦP (P,T, x): Contribution of pressure,

• GΦm(TC,β0,T, x): A magnetic contribution that involves an expression using the Curie
TC (or Neel TN) temperature and the Bohr number β0 that represents the average
magnetic moment per atom.

The temperature dependence in the term GΦT (T, x) is usually expressed as a power
series of T:

GΦT (T, x) = a +b ×T+ c ×T× ln(T)+
∑
n

dn ×Tn (2.5)

a, b, c, and dn Are coefficients, and n is an integer taking generally the values 2, 3, −1
and 7 or −9. The absolute entropy as well as the calorific capacity are obtained respect-

ively from the first and second derivatives of GΦT (T, x) relative to the temperature.
The optimization of the experimental values of the measurements of Cp determines

the coefficients c, dn (dn= d , e, f and g or h). This expression is valid for a fixed tem-
perature range. The equations of the following models which describe the concentration
dependence, the coefficients of G can have such a temperature dependence. In general,
the first two terms are sufficient to describe the thermodynamic evolution of the system
when no data on calorific capacity is available [116]. Pressure dependence is generally
ignored.

The dependence of the Gibbs energy of a phase Φ is expressed by:

GΦT (T, x) = r é f GΦ+ i d GΦ+ exGΦ (2.6)

With:

• r é f GΦ: Free enthalpy of phase reference Φ, This free enthalpy designates the sum
of the free enthalpies of the different pure components i representing the situation
before mixing. For a ternary system, the sum is made on A, B, and C.

• i d GΦ: Free Enthalpy of the ideal mixture which denotes an absence of energetic in-
teractions between the constituents i . The unique contribution is then the entropy
of configuration the corresponding to the maximum disorder. For a ternary system,
the sum is made on A, B, and C.

• exGΦ: Excess free enthalpy of the mixture. This term defines the deviation of the free
mixing enthalpy from the ideal mixture. It takes into account the repulsive energy
interactions (mixing enthalpy Hmél > 0) or attractive (mixing enthalpy Hmél < 0)
between the different constituents. Also, it obviously considers the different en-
tropic contributions from the entropy of ideal configuration.

While the first two terms, r é f GΦ and i d GΦ, are perfectly defined according to the type

of solution, the excess term, exGΦ, can be described by different models that involve a
thermodynamic formalism as well as a determination of the appropriate adjustable coef-
ficients. Since Hildebrand [117] has presented its "regular solution" model to describe
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the interactions of different elements in a random solution, several models have been
proposed for the phases that deviate from this regularity to describe the Gibbs energy of
excess Gibbs energy. So, we show how to model the dependence in temperature and com-
position of different phases (substitutional solutions, insertional solutions, stoichiomet-
ric compounds, ...).

2.2.3.2 Disordered substitutional solutions models

The disordered substitutional model (the sites of the structure have the same occupancy
rates) is used for phases such as the gaseous phase or the liquid phase and the substitu-
tional solid solutions where the constituents can randomly mix on any Site in the phase
[77].

2.2.3.3 Ideal Solutions

The most straightforward description of the solution behavior is the ideal solution model.
The central assumptions of this model are: (a) the mixed components have the same crys-
tal structure, (b) the mixture is purely random, (c) the mixing energy (of interactions) is
nil.

The entropy due to the configuration can be easily calculated and it is related to the
probability of exchanges of the components. The entropy of configuration Scon f is given
by:

Scon f = β0 × ln
(
ωp

)
(2.7)

Where β0 is the Boltzmann constant and ωp is the number of configurations in which
the constituents can be arranged for a given state. For a multi-constituent system, it is
equal to the number of permutations given by:

ωp =
N!∏e

i =1 ni !
(2.8)

where

N =
e∑

i =1
ni (2.9)

ni is the number of constituents of i (i = 1,2, ...,e), And N is the total number of con-
stituents in the Φ phase. For one mole of elements, N is equal to the number of Avogadro.
Using the Stirling formula, Scon f is now equal to:

Scon f = kB ×
e∑

i =1
n × ln

(ni

N

)
(2.10)

The ideal molar entropy of the mixture of the phase Φ is given by:

ed SΦ = −N×kB ×
e∑

i =1
xi
Φ× ln xi

Φ (2.11)

Where xi is the molar fraction of the constituent i and e is the number of chemical
species. With the hypothesis that the interaction energy is zero, it is possible to substitute

the atoms without modifying the energy of this state and i d GΦ is given by:

38



2.2. THERMODYNAMIC MODELS

Figure 2.5 – Molar Gibbs energy of an ideal binary phase α, Illustrating the reference line.

i d Gm = −T×i d SΦ = R×T×
e∑

i =1
xi
Φ× ln xi

Φ (2.12)

Where R is the perfect gases constant. The molar Gibbs energy of an ideal solution Φ
will be:

GΦm =
e∑

i =1
xi
Φ×0 GΦi +R×T×

e∑
i =1

xi
Φ× ln xi

Φ (2.13)

With 0GΦi defining the Gibbs energy of the pure elements i in the studied crystal struc-
ture Φ.

The first summation of the terms in the Equation 2.13 represents the average of the
references for the constituents, and this summation can be considered as the reference
frame for the mixture. For a binary solution, it can be viewed as a reference line. This is
illustrated on the Figure 2.5.

Second summation terms are negative because all molar fractions are less than unity.
They represent the distance between the Gm curve and the reference line. The Figure 2.6
demonstrates the same situation for an ideal ternary solution. The triangle represents the

reference plane
∑e

i =1 xi
Φ×0 GΦi .

For gases case, the ideal mixture is often assumed, and this assumption can often be
quite reasonable. However, in the condensed phases, there is always some interaction
between the constituents.

2.2.3.4 Regular and non-regular solutions

The simplest non-ideal solution model is the regular solution model. The hypotheses for
this model are; (a) random distribution of atoms, (b) the number of nearest neighbors (co-
ordination) is equal to z for all constituents, (c) only interactions between closest neigh-
bors are taken (D) the binding energy Ei j is independent of composition and temperature
[104].

Under these assumptions, the total energy Etot of a solution in a binary system A−B
is equal to:
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Figure 2.6 – Gibbs energy of an ideal ternary phase α, illustrating the reference plane.

Etot =ωAA ×EAA +ωBB ×EBB +ωAB ×EAB (2.14)

Where ωAA , ωBB and ωAB are the number of bonds of the type A−A, B−B and A−B,
EAA, EBB and EAB, are the corresponding binding energies.

With the assumption of the random distribution of the atoms and the coordination
number of the solution which is equal to z for all constituents, the number of each bond
type can be calculated as follows:

ωAA =
1

2
×N× z ×x2

A

ωBB =
1

2
×N× z ×x2

B (2.15)

ωAB =
1

2
×N× z ×xA ×xB

Where xA, xB are the molar fractions of A and B, and N is the total number of particles
in the solution. From the equations (2.14) and (2.15), the mixing enthalpy Hmél can be
calculated as follows:

Hmél = xA ×xB ×Ω (2.16)

Where:

Ω =
N× z

2
× (2×EAB −EAA −EBB) (2.17)

Ω is called the regular solution parameter. For a mole of atoms, this parameter is
obtained for N =Nav . If the energy of the bonds depends on the temperature, there will
also be an excess entropy of mixing. The excess Gibbs energy of mixing can be written as:

exGm = xA ×xB ×Ω (2.18)
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WhereΩ is a temperature-dependent interaction parameter, usually expressed as: (a+
b×T). Ω in this case is not a regular solution parameter. Generaly this excess energy, for
a multi-constituent system, is added to the ideal energy in the equation (2.12), the total
molar Gibbs energy of the solution is obtained by:

GΦm =
e∑

i =1
xi
Φ×0 GΦi +R×T×

e∑
i =1

xi
Φ× ln xi

Φ+
e∑

i =1

∑
j>i

xi
Φ×xΦj ×Ωi j (2.19)

Although it is very simple and straightforward, the regular solution model can be used
to obtain a better understanding of the general topological features of phase diagrams.

In the regular solution model, binding energy is assumed to be independent of the
composition. This hypothesis is too basic when modeling real systems. This led to the
development of the sub-regular solution model [29], where the interaction energies are
assumed to be linearly modified with the composition. This leads to the following expres-

sion for the molarexcess Gibbs energy of mixture exGΦm :

exGΦm = xi
Φ×xΦj ×

(
Ωi

i j ×xi
Φ+Ω j

i j ×xΦj

)
(2.20)

A more complex composition dependency of Ω can also be used. Generally this is
done using series development forΩ. The most common method is based on the Redlich
and Kister [103] polynomials and the equation (2.19) then becomes:

GΦm =
e∑

i =1
xi
Φ×0 GΦi +R×T×

e∑
i =1

xi
Φ× ln xi

Φ+
e∑

i =1

∑
j>i

xi
Φ×xΦj ×

e∑
i =1

Lv
i , j ×

(
xi
Φ−xΦj

)v
(2.21)

Lv
i , j is a binary interaction parameter as a function of the value of v . Since Ωi j can

be temperature-dependent and can be written as (a +b×T) with a and b which are ad-
justable coefficients of optimization development, using the available experimental data.
The equation (2.21) becomes equal to the regular solution model, equation (2.19), when
v = 0 and to the sub-regular model when v = 1. By modifying the order of development of
the parameter v , it is possible to modify the contribution of the excess Gibbs energy term
according to the figure 2.7.

2.2.3.5 Disordered interstitial solutions models

The difference between substitutional and insertional solution models lies in the entropy
of disorder. In an insertional solution the large atoms are interchanged, but the small ones
swap their positions with vacancy spaces. Such a solution is saturated with interstitial
atoms when x = 0.5. If we consider that in the solution there is nB insertional atoms in the
lattice of atoms A, then nA −nB empty interstitial sites exist, the number of permutations
of the atoms B with the vacancy sites is:

(nB +nA −nB) !

nB !× (nA −nB) !
=

nA !

nB !× (nA −nB) !
(2.22)

The entropy of disorder is written in the form:

S = kB × ln

(
nA !

nB !× (nA −nB) !

)
(2.23)

Using the Stirling approximation we obtain:
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Figure 2.7 – Influence of parameter order v LΦA,B on the Gibbs energy termG.

S = kB × (nA × lnnA −nB × lnnB − (nA −nB)× ln(nA −nB)) (2.24)

This formula is written using the molar fraction x of the constituent B:

S = −R×
(

x × ln
( x

1−2x

)
− (1−x)× ln

(
1−x

1−2x

))
(2.25)

2.2.3.6 Thermodynamic description of stoichiometric compounds

Like the pure elements, the free enthalpy of stoichiometric compounds is only temperat-
ure dependent. Using the hypothesis of Kopp-Neumann [116], the heat capacity of a com-
pound is the weighted sum of the calorific values of the pure elements: Cp =

∑
i ai ×Cpi ,

molar free enthalpy (per mole of atoms) of a compound 0Gcomp (T) is defined as follows:

0Gcomp (T)−0 HSER
comp (298.15K) = a +b ×T+∑

i
ai ×GSER

i (T) (2.26)

With

0HSER
comp (298.15K) =

∑
i

ai ×0 HSER
i (T) (2.27)

Where ai is the mole fraction of the element i in one mole of compound denoted
comp and 0HSER

i (T0) is the enthalpy of a mixture of pure elements in their state SER to
obtain the composition of the given compound at T0 = 298.15K.

In this description, a+b×T) is the free enthalpy of formation of the compound comp
formed from the pure elements in their state SER. a represents the formation enthalpy of
the compound comp and the meaning of the parameter b is described in ??. In this work,
the Gibbs energy of the various binary stoichiometric compounds with the formulation
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Ap Bq present in the various binary systems, denoted by 0GAp Bq (T), was expressed as a
linear function of temperature:

0GAp Bq =
p

p +q
×0 GA + q

p +q
×0 GB +a +b ×T+mag GAp Bq (2.28)

In the case of a ternary system A−B−C, the Gibbs energy of ternary stoichiometric
compounds with the formulation Ap Bq Cr , denoted by 0GAp Bq Cr (T), is given by the fol-
lowing formula:

0GAp Bq Cr =
p

p +q + r
×0GA+ q

p +q + r
×0GB+ r

p +q + r
×0GC+a+b×T+mag GAp Bq Cr (2.29)

Where 0GA, 0GB and 0GC are the Gibbs free energies of pure components; a and b
are parameters to be determined. mag GAp Bq Cr is the magnetic contribution to the Gibbs
energy described by equation (2.2).

2.2.3.7 Ordered phases model; Sublattices model

The model of disordered solutions is probably the simplest model to describe the ther-
modynamic behavior of a solution. The Gibbs energy of the reference states in this model
is based on the assumption of random mixing of constituents on the simple lattice, which
is not appropriate to apply this model for solutions that show an important order, such as
intermetallic or ionic compounds and ionic liquids. The different elements constituting
preferentially these phases adopt different crystallographic sites. They are usually pro-
cessed by the sublattice model. This model is based on the fact that each crystallographic
site from the structure must be described with a sub-lattice (figure 2.8). So, it is possible
to use the regular solutions model which assumes the random mixing within each sublat-
tice. The idea of the sublattice model comes from Temkin [99] for ionic solutions, assum-
ing that two sublattices exist in the ionic crystal. The configuration entropy is described
for cations and anions separately. The model was then used for metal systems by Hillert
and Staffansson [100], Hillert and Waldenström [118] and adapted for several sub-lattices
by Sundman and Ågren [119].

Figure 2.8 – Centered cubic structure B2 of type CsCl ,Representing the interpenetration of two
simple cubic lattices.
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An intermetallic phase is often non-stoichiometric (existence of a domain of homo-
geneity), it can present a domain of composition well extended. Consider such a phase
A1−d B1+d . Sublattices normally occupied by the A and B atoms will be called the A sub-
lattice and the B sublattice, respectively. The deviation at the stoichiometry (where d = 0)
can occur by the formation of defects such as antisite atoms (the A atoms occupy the B
and the reverse sites), vacancies occupying interstitial sites, etc. One type of defects will
predominate for solutions with an excess of A and another type will predominate for solu-
tions having an excess of B.

The power of the sublattice model lies in the fact that most other models, such as the
substitutional model, are individual cases of the model. On the other hand, the model
can be applied more specifically to a complex ordered crystal structure, such as the sigma
phase, or used to describe disorder-order relationships between similar phases. There-
fore, it treats many different phases with different structures. Which facilitates the devel-
opment of software and databases; because many types of solutions can be interpreted as
cases of a general formalism.

(A,B, . . . )a(C,D, . . . )b . . .

A pair of parentheses symbolizes each sublattice. They contain, for each sub-lattice,
the present species on the crystallographic site associated with the sub-lattice. These spe-
cies may be atoms, charges (ions, etc.) or vacancies; Depending on the type of concerned
phase. The first sublattice contains the species A, B, ..., while the second sublattice con-
tains the species C, D, ..., and so on. a, b, ... represents the number of sites per unit cell
on the first and second sublattices, etc.

2.2.3.8 Sites fraction defenition

The molar fractions in a phase are generally defined by the following relationship:

xi =
ni∑c

j =1 n j
=

ni

n
(2.30)

Where ni and n j are the moles of the elements i and j , respectively, and n is the total
number of moles in the phase. The number of species is c. It is convenient to introduce
a variable of similar composition for each sub-lattice if the phase is composed of two or
more sub-lattices:

y s
i =

ns
i

ns
(2.31)

The exponent s denotes the sub-lattice considered, y s
i represents the fraction of sites

of the species i of the s, ns
i sublattice, The number of i of the s and ns sublattice is the

total number of sites in the s sublattice. Each sublattice s has the condition:
∑

i y s
i = 1 This

can be generalized by including vacancy sites that are important to consider in interstitial
phases or interstitial defects in the phase which are important, equation (2.31) becomes:

y s
i =

ns
i

ns
Va +

∑
i ns

i

(2.32)

Where ns
Va is the total number of vacancy sites in the s sublattice. One can then define

the fraction of vacancy sites and obtain the relation:

y s
Va = 1−∑

i
y s

i (2.33)
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It is often convenient to consider vacancy sites in a sublattice as a constituent and
include them in the sum for the sub-lattice in the equation (2.32), but not in the sum for
the entire phase in the equation (2.30). We also define as , the site fraction corresponding
to the s sublattice by:

as =
ns

n
(2.34)

Where the as are given by the number of sites in the elementary mesh, so:
∑q

s=1 as = 1.
Q is the number of sublattices and n is the total number of sites. The fractions of sites can
be arranged in a q × c matrix if there exist q sublattices and c constituents:

y1
1 y1

2 y1
3 · · · y1

c
y2

1 y2
2 y2

3 · · · y2
c

...
...

...
. . .

...
y q

1 y q
2 y q

3 · · · y q
c

 (2.35)

Each row represents a sublattice and each column is a constituent. Since most com-
ponents do not enter all sublattices, many components are null. The overall composition
of the phase thus described is related to the site fractions (from a given matrix y) as fol-
lows:

xΦi =
ni∑

i 6=Va ni
=

∑q
s=1 as × y s

i∑q
s=1 as × (

1− y s
Va

) (2.36)

Where xΦi is the mole fraction of the i element in the Φ phase with
∑

i 6=Va xΦi = 1.

2.2.3.9 Molar Gibbs energy

The sublattice model defines the Gibbs energy of one mole of sites in the Φ, 0GΦms phase
by an equation similar to that used for substitutional solutions:

0GΦms = r é f GΦ+ i d GΦ+ exGΦ (2.37)

1 Entropy ideal mixing

To calculate the ideal mixing entropy S of a phase with the sublattices model, we
can apply the hypothesis of random mixing of the elements on each sub-lattice and
the contributions of the different sub-lattices are added. Indeed, the number of
possible arrangements of the species present on the s sublattice is:

ns !∏es

i =1 ns
i !

(2.38)

Hence the total number of possible arrangements on all sites:

ωp =
q∏

s=1

ns !∏es

i =1 ns
i !

(2.39)

The entropy of configuration is equal to S = kb × ln(ωp ), with kb the Boltzmann con-
stant.

45



2.2. THERMODYNAMIC MODELS

S = −kb ×
q∑

s=1

es∑
i =1

[
ln

(
ns

i !
)− ln

(
ns !

)]
(2.40)

The replacement of ns
i and ns by y s

i ×as×n and the use of the Stirling approximation:
ln a ! = a ln a −a, lead to:

S = −kb ×n ×
q∑

s=1
as ×

es∑
i =1

y s
i × ln(y s

i ) (2.41)

i d GΦ is related to the ideal entropy S by the relation: i d GΦ = −T×S, so:

i d GΦ = R×T×
q∑

s=1
as ×

es∑
i =1

y s
i × ln(y s

i ) (2.42)

2 Gibbs Energy Reference States

The end-members effectively define the Gibbs energy of reference states r é f GΦ.
Consider the simplest case, proposed by Hillert and Staffansson [100], a sublat-
tice (1) containing the elements A and B; it is represented by (A,B)m , where m
is the multiplicity of the sublattice. If we consider two sub-lattices, we can write
(A,B)m(C,D)n , the elements C and D being on the second sub-lattice (2) of multi-
plicity n. It is a quaternary phase, but it’s composition can only be varied with two
degrees of freedom instead of three because of stoichiometric constraints (y A+yB =
1 et yC + yD = 1). All possible compositions can therefore be represented on a
plane as well as a ternary system.

As shown by the figure 2.9a, a square pattern is the natural shape and each corner
is an end-member. End-members are defined compounds formed when each sub-
lattice is occupied by a single element type. They can be either real or hypothetical.
Perpendicular to this plane, we can trace the Gibbs energy of Gibbs G.

The figure 2.9b represents the reference surface as a function of the distribution
on the sites for particular values of the formation energies of the end-members
defined by the model. However, for any values of the Gibbs free energies of the
end-members, this surface is not plane [77]. The surface in the figure 2.9b can be
represented by the equation:

r é f GΦ = y A × yC ×0 GA:C + yB × yC ×0 GB:C + y A × yD ×0 GA:D + yB × yD ×0 GB:D (2.43)

Where 0GA:C represents the Gibbs energy of the end-member AC and the other
quantities have an equivalent definition.

An alternative notation of these quantities would be 0Gst
i j , where i is the constituent

on the sub-lattice s and j the constituent on the sub-lattice t . In this way, more
sublattices can easily be added.

When the equation (2.43) is generalized, the principle suggested by Hillert and Staffans-
son [100] makes it necessary to consider each possible compound and multiply it’s
Gibbs energy by the fraction of this compound, i.e., the product of the correspond-
ing site fractions, for example y s

i y t
j in the case of two sublattices. Alternatively, the
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(a) (b)

Figure 2.9 – (figure 2.9a) The space of composition encompassed by the system and (figure 2.9b)
the reference Gibbs energy surface described by equation (2.43) from Hillert and Staffansson
[100], Hillert [120].

information contained in the exponent and the index can be represented by a row
(or site occupation) i , which defines a constituent for each sublattice.

Using this notation, we can write the equation (2.43) in the following general form:

r é f GΦ =
∑

I
PI (Y)×0 GI (2.44)

Where 0GI represents the Gibbs energy of the compound defined by i which can of
course depend on temperature and pressure, and PI(Y) denotes the corresponding
product of fractions of sites from The matrix Y.

3 Excess Gibbs energy

The method for describing the excess Gibbs energy can again be better demon-
strated by using a two-subarray system (A,B)1(C,D)1 before generalization to a multi-
constituent system. In this alloy, the interactions A−C, A−D, B−C et B−D are
controlled by the Gibbs energy of Gibbs of the compounds AC, AD, BC and BD.

The mixture on the sub-lattices controls the interactions A−B and C −D and the
simplest form of interaction is the regular solution format such that:

exGΦ = y1
A × y1

B ×L0
A,B:∗+ y2

C × y2
D ×L0

C,D:∗ (2.45)

Where L0
A,B:∗ and L0

C,D:∗ denote the regular solution parameters for mixing on the
sublattices, sites of the other sublattice.

A sub-regular model can be introduced to describe the dependence of the compos-
ition of the interaction parameters, taking into account the occupation of the site of
the other sub-lattice:

exGΦ = y1
A×y1

B×y2
C×L0

A,B:C+y1
A×y1

B×y2
D×L0

A,B:D+y1
A×y2

C×y2
D×L0

A:C,D+y1
B×y2

C×y2
D×L0

B:C,D
(2.46)
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With the polynomial development of the Redlich and Kister [103] type, using frac-
tions of sites, these parameters can be added such as:

L0
A,B:C =

∑
v

Lv
A,B:C × (

y1
A − y1

B

)v

L0
A,B:D =

∑
v

Lv
A,B:D × (

y1
A − y1

B

)v

L0
A:C,D =

∑
v

Lv
A:C,D × (

y2
C − y2

D

)v

L0
B:C,D =

∑
v

Lv
B:C,D × (

y2
C − y2

D

)v

(2.47)

It is clear that this can be extended to any number of sublattices and constituents
and the equation (2.37) can be generalized using the notation of equation (2.44):

exGΦ =
∑
I1

PI1 (Y)×0 LI1 (2.48)

Where (I1) represents a first-order row, where a single sub-lattice contains two con-
stituents, while the remaining sub-lattices are occupied by a single constituent. The
summation is taken on all the different (I1). The row type that was introduced in the
equation (2.44) can be written I0 and considered of order zero. The equation (2.45)
is general in the case of regular solutions, but can be extended to include higher
order interactions, as in equation (2.47), by introducing the IZ rows But with an ad-
ditional restriction that the array must not contain any of the constituents more
than once in each sub-lattice [77]. In this way, excess Gibbs energy can be written
as:

exGΦ =
∑
Z>0

∑
IZ

PIZ (Y)×LIZ (2.49)

exGΦ represents the excess free enthalpy of Φ phase. It reveals terms of interactions
between elements for a given occupation of sublattices. This occupation is indic-
ated by the index of interactions terms LIZ.

The total molar Gibbs energy of the phase including, free reference energy, The ideal
entropy and the excess terms becomes:

0GΦms =
∑
I0

PI0 (Y)×0 GI0 +R×T×
q∑

s=1
as ×

es∑
i =1

y s
i × ln(y s

i )+ ∑
Z>0

∑
IZ

PIZ (Y)×LIZ (2.50)

This free enthalpy is related to the atomic molar free enthalpy 0GΦms by the following
relation:

0GΦma =
0GΦms∑q

s=1 as × (
1− y s

Va

) (2.51)

If the description of the phase Φ does not involve vacancies 0GΦma = 0GΦms Notations

As usual, the notation used to indicate the occupation of the sublattices is as fol-
lows: the two (:) points separate the elements that are not in the same sublattice
while the comma (,) Separates two elements interacting on the same sublattice. For
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example, GA,B:C denotes the Gibbs energy of a phase modeled by two sublattices
whose elements A, B occupy the first sublattice, C occupies the second. An aster-
isk “∗” instead of an element name means that the sublattice can be filled by any
element in the system.

2.2.3.10 Special cases

1 Case of a defined compound

One of the limiting cases described by the sub-lattice model is that where each sub-
lattice is occupied by a single element. This case corresponds to that of a stoi-

chiometric compound. The terms r é f GΦ and i d GΦ are then zero, and the total
molar free enthalpy is equal to the free molar enthalpy of the compound under con-
sideration.

2 Case of a substitutional solution

The other limiting case is to consider only one sublattice. It corresponds to the
substitution. The fractions of sites of the single sub-lattice are equal to the molar
fractions. The Gibbs free energies of the end-members of a solid solution are those
of the pure elements. The equations obtained are identical to the equations of the
substitutional solutions.

2.2.4 Conclusion

Using associated models with CALPHAD method requires knowledge of the crystallo-
graphic and experimental data of each phase taken into account in the calculation. This
chapter enabled us to introduce the various useful models for the thermodynamic de-
scription of the studied systems during the thesis and to understand the relation between
the thermodynamic stability of a phase and its free enthalpy.
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3.1. THERMODYNAMICS OF THE INTERMEDIATE PHASES IN THE TR-SC SYSTEMS

3.1 Thermodynamics of the intermediate phases in the Tr-
Sc (Tr =Cd , Ru) systems

3.1.1 Introduction

Ordered intermetallics have already been established as an essential class of high tem-
perature structural materials. The crystal structure of the B2 (CsCl ) type is one of the
simplest and most common ordered structures. B2-type intermetallics exhibit some of
the most exciting and diverse physical phenomena in alloys. One outstanding example
is the physical, chemical, and mechanical properties of B2 (CsCl )-type aluminides [121],
where a large number of theoretical investigations of the electronic structure, the optical
properties, the nature of interatomic interactions, and the energetics of defects in the
crystal structure of these compounds have been performed in the last 20 years [70, 122].

Scandium presents somewhat similar chemical properties to those of aluminum and
has an oxidation number of +3 in almost all of its compounds [123]. Among these com-
pounds, the Tr Sc (Tr = Cd ,Ru) have homogeneity range in the central part of the Tr −Sc
phase diagrams [124, 125], with a strongly ordered B2 (CsCl-type) structure that remain
ordered up to their melting points. The B2 structure consists of two interpenetrating
simple cubic sublattices, with each sublattice having an equal number of lattice sites (see
Fig. 3.1a). In its perfectly ordered state at the stoichiometric composition, one sublattice
is entirely occupied by Tr and the other entirely by Sc atoms.

Deviations from the ideal stoichiometry are accommodated by the formation of con-
stitutional (structural) point defects. The existence of these point defects has profound
effects on essential properties of B2 alloys as mechanical properties and diffusion mech-
anisms [126]. Moreover, at finite temperatures, thermal and constitutional defects will be
activated due to entropy.

Over the last decade, first principles-based methods (ab initio methods) have now
become the most powerful tools for the investigation of a remarkable number of phys-
ical and chemical properties for atoms, molecules, and solids. These methods are very
predictive since only atomic numbers, and crystal structure information is needed as in-
puts. The goal of the present paper is to use; supercell and SQS approaches to invest-
igate the constitutional defect structure of Tr Sc compounds, Wagner-Schottky model to
provide insight in thermal defect structure of Tr Sc, where the defect structure of these
compounds had not been studied before.

3.1.2 Computational methodology

The special quasi-random structure (SQS) specially designs small-unit-cell periodic struc-
ture with only a few (8-32) atoms per unit cell, which closely mimic the most relevant local
pair and multi-site correlation functions of the random substitutional alloys [127],[62]−[128].
In this work we have used SQS-4 (A0.5B0.5C, see Fig. 3.1b) and SQS-16 (A0.75B0.25C, see
Fig. 3.1c) proposed by Jiang et al. [127], where the generated structures are: Sc anti-
site (Tr0.5Sc0.5Sc), Tr vacuum (Tr0.5Va0.5Sc), Tr anti-site (Sc0.5Tr0.5Tr ), and Sc vacuum
(Sc0.5Va0.5Tr ) in the SQS-4 structure. Sc anti-site (Tr0.75Sc0.25Sc), Tr vacuum (Tr0.75Va0.25Sc),
Tr anti-site (Sc0.75Tr0.25Tr ), and Sc vacuum (Sc0.75Va0.25Tr ) in the SQS-16 structure.

The formation enthalpies of Tr1−xScx alloys can be calculated from the following equa-
tion:

∆H(Tr1−xScx) = E(Tr1−xScx)− (1−x)E(Tr )−xE(Sc) (3.1)
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(a) B2 (CsCl ).

(b) SQS-4 (A0.5B0.5C). (c) SQS-16 (A0.75B0.25C).

Figure 3.1 – Crystal structures of Tr1−x Scx .

where E(Tr ), E(Sc) and E(Tr1−xScx) are the first-principle calculated total energies per
atom of the pure elements Tr (Tr = Cd , Ru), Sc and the corresponding alloy, respectively.
Here x is the molar composition of Sc in the alloy. Hexagonal close-packed (HCP_A3) Cd,
Ru and Sc were used as reference states in Eq. (3.1).

In the SQS approach, for each of the four branches in Fig. 3.2a and 3.2b, formation
enthalpies of isolated point defects in stoichiometric B2 Tr Sc are obtained by fitting the
calculated formation enthalpies to a quadratic function of alloy composition in the fol-
lowing form [127]:

∆H(χ) =∆HTr Sc + c1χ+ c2χ
2 (3.2)

where χ = |xSc −0.5| is the absolute deviation from stoichiometry and∆HTr Sc is the form-
ation enthalpy of the ordered stoichiometric B2 Tr Sc, which is a linear function of the
composition, where the coefficient c1 represents the tangent and is directly related to the
defect formation enthalpies Hd ; since the atomic concentration of defect d is χ for anti-
sites and 2χ for vacancies, we have Hd = c1 for anti-sites and Hd = c1/2 for vacancies.

The interactions between point defects of the same type were considered in the SQS
calculations, as indicated by the nonlinear quadratic term in Eq. 3.2. The physical means
of c2 coefficient is that two branches in Fig. 3.2a and 3.2b may cross each other at certain
composition; in that case, a reversal of the stable constitutional point defects may occur
[127]. Such a case is theoretical since the crossover composition is outside of the stable
composition range of B2 Tr Sc.

In the present work, calculations were performed using the Projected Augmented Wave
(PAW) pseudo-potentials [129, 130] with the generalized gradient approximation as im-
plemented by Perdew, Burke and Erzhenfest (GGA-PBE) [54]. A plane wave cutoff energy
of 274.265 eV is used. K-point meshes are compiled using the fully automatic scheme
[131], which generates centered Monkhorst-Pack [132] grids, where the numbers of sub-

divisions N1, N2 and N3 along reciprocal lattice vectors
−→
b1,

−→
b2 and

−→
b3, respectively, are
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given by:

Ni = max
(
1, l

∣∣∣−→bi

∣∣∣+0.5
)

, i = 1,2,3 (3.3)

Where
∣∣∣−→bi

∣∣∣ is the norm of the reciprocal lattice vector
−→
bi . According to Kresse et al. [131],

useful values for the length l vary between 10 (large gap insulators) and 100 (d-metals).
In this work, it was found that l = 50 is sufficient to achieve convergence to a precision
less than 1 meV/atom for the B2 Tr Sc (Tr = Cd , Ru). In addition to Monkhorst-Pack
k-point meshes, Brillouin-zone integrations are performed using the Methfessel-Paxton
technique with the smearing parameter of 0.1 eV. All calculations were performed us-
ing the “Accurate” setting within VASP, and all the degrees of crystal structures freedom
were allowed to relax, including cell shape, volume and atom positions with a precondi-
tioned conjugated gradient (CG) algorithm with the default VASP’s convergence criteria.
Finally, relaxed structures are examined using SGROUP program [133]; all resulting struc-
tures maintain the initial space-group.

3.1.3 Results and discussion

Defect type Designation
Supercell∗

SQS∗
16-atom 32-atom

Cd vacancy VaCd 1.40 1.44 2.48
Sc anti-site ScCd 1.32 1.12 0.90
Sc vacancy VaSc 1.14 1.18 2.18
Cd anti-site CdSc 0.50 0.46 0.39

Triple Cd 0 → 2VaCd +CdSc 3.30 3.34 5.35
Schottky 0 → VaCd +VaSc 2.54 2.62 4.66
Exchange 0 → ScCd +CdSc 1.82 1.58 1.29
Triple Sc 0 → 2VaSc +ScCd 3.60 3.48 5.26

Interbranch Cd CdSc → 2VaSc 1.78 1.9 3.97
Interbranch Sc ScCd → 2VaCd 1.48 1.76 4.06
∗ Unit: eV/de f ect

(a) B2 CdSc

Defect type Designation
Supercell∗

SQS∗
16-atom 32-atom

Ru vacancy VaRu 0.17 0.75 0.90
Sc anti-site ScRu 0.98 0.27 0.62
Sc vacancy VaSc 4.25 4.07 2.53
Ru anti-site RuSc 1.21 1.22 1.18

Triple Ru 0 → 2VaRu +RuSc 1.55 2.72 2.98
Schottky 0 → VaRu +VaSc 4.42 4.82 3.43
Exchange 0 → ScRu +RuSc 2.19 1.49 1.80
Triple Sc 0 → 2VaSc +ScRu 9.48 8.41 5.68

Interbranch Ru RuSc → 2VaSc 7.29 6.92 3.88
Interbranch Sc ScRu → 2VaRu −0.64 1.23 1.18
∗ Unit: eV/de f ect

(b) B2 RuSc

Table 3.1 – First-principles calculated formation enthalpies of isolated point defects and com-
plex composition-conserving defects in stoichiometric B2 Tr Sc[122]

53



3.1. DEFECT STRUCTURE IN B2 TRSC ALLOYS

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0  0.2  0.4  0.6  0.8  1

F
or

m
at

io
n 

E
nt

ha
lp

y,
 K

J/
m

ol
/a

t

Mole Fraction, Sc

B2 CdSc
Super-cell

SQS
Cd1-xScxSc
Sc1-xVaxCd
Sc1-xCdxCd
Cd1-xVaxSc

(a) Tr = Cd

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  0.2  0.4  0.6  0.8  1

F
or

m
at

io
n 

E
nt

ha
lp

y,
 K

J/
m

ol
/a

t

Mole Fraction, Sc

B2 RuSc
Super-cell

SQS
Ru1-xScxSc
Sc1-xVaxRu
Sc1-xRuxRu
Ru1-xVaxSc

(b) Tr = Ru

Figure 3.2 – Comparison between first-principles calculated formation entalpies using super-
cell and SQS approaches for B2 Tr Sc as a function of composition[122].

Fig. 3.2a and 3.2b show the formation energies of the B2 CdSc and RuSc as a func-
tion of composition, simulated with a 16-atom and a 32-atom supercells, compared to the
formation energies obtained using the special quasi-random structure approach and the
experimental ones [134]. As a result, calculations using supercell and SQS approaches are
in good agreement, specifically in the Cd-rich and Ru-rich sides of the B2 CdSc and RuSc
compounds, respectively. In Sc-rich side of B2 CdSc and RuSc, the calculated alloy form-
ation enthalpies using supercell and SQS approaches agree with each other and give the
same prediction of the ascending order of the formation energies. Sometimes the super-
cell approach fails when determining the formation enthalpy in high defect concentra-
tion. The enthalpy of formation of the RuSc compound in this work is in good agreement
within the determined by direct synthesis calorimetry [134] within the expected uncer-
tainty limits.

Fig. 3.2a shows that the lower branches of the alloy formation energy for Cd-rich and
Sc-rich CdSc correspond to constitutional anti-site Cd and anti-site Sc atoms, respect-
ively. Similarly, figure 3.2b shows that branches containing the constitutional anti-site Ru
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Figure 3.3 – Structural equilibrium of B2 CdSc and RuSc alloys as a function of
composition[122].

and anti-site Sc atoms are the lower branches in Ru-rich and Sc-rich RuSc, respectively.
The calculated lattice parameter using supercell and SQS approaches of B2 CdSc and

RuSc alloys are shown in Fig. 3.3a and compared to the available experimental data [124,
135], the calculated volume using supercell and SQS approaches of B2 CdSc and RuSc
alloys are shown in figure 3.3b and compared to the available experimental data [124, 135].
The present results are consistent with the available experimental data.

The formation energies of different type of single point defects are listed in tables 3.1a
and 3.1b for B2 CdSc and RuSc, respectively. All three sets of results are consistent with
each other. There is only a numerical difference in defect formation energies using differ-
ent sets of parameters for the supercell and SQS approaches. It is clear from the results
that the enthalpies of supercell converge to the SQS enthalpies as the cell becomes larger.

B2 Tr Sc alloys become rich in Sc by introducing anti-site Sc atoms or Tr vacancies;
where they become rich in Tr by introducing anti-site Tr atoms or Sc vacancies. From
Table 3.1, in sc-rich region, anti-site sc defect have a minimal energy than the Tr vacancy,
and in Tr -rich region, anti-site Tr have a minimal energy than the Sc vacancy. Calcu-
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Figure 3.4 – Equilibrium defect concentrations in B2 CdSc at T = 1428 K as a function of
composition[122].

lated formation enthalpies of isolated point defects from Super-cell (16/32 atoms) and
SQS approaches are in good agreement with results in Fig. 3.2a and 3.2b, where the lower
branches are anti-site Sc and anti-sites Tr , in Sc-rich and Tr -rich regions, respectively.

At 1428K and zero external pressure, the calculated equilibrium atomic concentra-
tions of defects xd in CdSc are shown in Fig. 3.4a as a function of composition. The
main defects in Cd-rich CdSc are anti-site Cd atoms, and in Sc-rich CdSc are anti-site
Sc atoms. It is useful to substitute constitutional defects that are present at ground state
at T = 0K, to separate thermal defects which appear at a finite temperature. The con-
centrations of thermal defects x t

d using SQS approach in CdSc at 1428K are plotted in
Fig. 3.4b. It can be observed that the dominant thermal defects are anti-sites Cd and anti-
site Sc in all compositions with equal amounts, which are the constituents of an exchange
defect. Additionally, one can observe in table 3.1a that exchange defect type presents the
minimal energy in super-cell (32 atoms) and SQS approaches results; But super-cell (16
atoms) result shows that interbranch Sc defect presents the minimal energy, and this is
due to failure of super-cell approach in high defect concentration, where we need a larger
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Figure 3.5 – Equilibrium defect concentrations in B2 RuSc at T = 2373K as a function of compos-
ition.

super-cells to get an accurate results.
The calculated equilibrium atomic concentrations of defects xd in RuSc at 2373K and

zero external pressure are shown in Fig. 3.5a as a function of composition. The main
defects in Ru-rich RuSc are anti-site Ru atoms. However, the main defects in Sc-rich RuSc
are anti-site Sc atoms, with small amounts of Ru Vacancies and anti-site Sc atoms. It is
useful to substitute constitutional defects that are present in the ground state at T = 0K,
to separate thermal defect which appears at a finite temperature. The concentration of
thermal defects x t

d using SQS approach in RuSc at 2373K are plotted in Fig. 3.5b. The
dominant thermal defects in Ru-rich RuSc are anti-site Ru, anti-site Sc and Ru vacancies.
However, in Sc-rich RuSc, the dominant thermal defects are Ru vacancies and anti-site
Ru.

Apparently, the defect structures in the Sc-rich side are of complex nature, where the
concentration of anti-site behaves even more interestingly and decreases rapidly with de-
viation from stoichiometry. The concentration of thermally formed anti-site Sc becomes
negative when the composition exceeds the value of 0.53. Meyer and Fähnle [136] showed
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that this kind of thermal behavior could be associated only with the interbranch Sc defect,
in which two Ru vacancies replace one anti-site Sc.

Fig. 3.5b shows that: x(VaRu) = 2.34x(ScRu) and x(RuSc ) = 0.17x(ScRu). If we consider
the concentration of anti-sites Sc as a unit, there are: one unit of anti-sites Sc is replaced
by two units of Ru vacancies with an interbranch Sc defect type, and 0.34 units of Ru va-
cancies with 0.17 units of anti-site Ru are formed by triple Ru defect type. Consequently,
the dominant defect type in Sc-rich RuSc is interbranch Sc. As can be seen in table 3.1b
the triple Ru and interbranch Sc have the minimal energy of formation. Therefore in Ru-
rich RuSc, the defects will most likely be formed by a mixture of these two types of defects.

Fig. 3.6a and 3.6b show the predicted equilibrium point defect concentrations were
plotted as a function of temperature in stoichiometric B2 CdSc and RuSc, respectively. It
can be observed that exchange defects dominate at all temperature in B2 CdSc, whereas
the defects type in B2 RuSc are of a complex nature.

Finally, in Fig. 3.7, the enthalpy of RuSc phase was plotted as a function of molar frac-
tion of Sc element using the Wagner-Schottky model, and compared with the enthalpy
from theoretical study using CALPHAD (CALculation of PHAse Diagram) method [125].
There is a reasonable agreement between our results and those using CALPHAD method
[125]. The discrepancies of Wagner-Schottky and first principles regarding CALPHAD cal-
culated enthalpy are probably due to the formation of vacancies which was not contem-
plated in CALPHAD method, where the RuSc phase was modeled using the sublattice
formalism based on B2 structure [125].

3.1.4 Conclusion

Point defect structure of B2 Tr Sc (Tr = Cd , Ru) alloys was investigated using supercell and
special quasi-random structure (SQS) approaches. According to our results, Tr and Sc
anti-sites are the constitutional point defects in Tr -rich and Sc-rich B2 Tr Sc, respectively.
To investigate the thermal defect concentrations at finite temperatures, we adopted the
Wagner-Schottky model using point defect formation enthalpies obtained from supercell
and SQS approaches. The present results suggest that the predominant thermal defects in
B2 CdSc are of exchange type, and in B2 RuSc are of interbranch Sc type. The calculated
results show an agreement with the available theoretical and experimental data.

In the present study, we have obtained the formation enthalpies of isolated point
defects in stoichiometric B2 CdSc and RuSc utilizing the supercell and special quasi-
random structure approaches. The present work shows that Cd anti-sites and Sc anti-
sites are the constitutional point defects in Cd-rich and Sc-rich B2 CdSc, respectively.
Moreover, Ru anti-sites and Sc anti-sites are the constitutional point defects in Ru-rich
and Sc-rich B2 RuSc, respectively. Using the Wagner-Schottky model, we have also cal-
culated the thermal defect concentrations at finite temperatures. Our results suggest that
the predominant thermal defects in B2 CdSc are of exchange type, and the predominant
thermal defects in B2 RuSc are interbranch of Sc type.
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Figure 3.6 – Equilibrium of defect concentration in stoichiometric B2 Tr Sc as a function of tem-
perature.

-38

-36

-34

-32

-30

-28

-26

-24

 0.4  0.42  0.44  0.46  0.48  0.5  0.52  0.54  0.56  0.58  0.6
-43

-41

-39

-37

-35

-33

-31

-29

E
nt

ha
lp

y 
of

 fo
rm

at
io

n 
(K

J/
m

ol
, T

hi
s 

w
or

k)

E
nt

ha
lp

y 
of

 fo
rm

at
io

n 
(K

J/
m

ol
, C

A
LP

H
A

D
)

Mole Fraction of Sc

2373 K

1473 K

This work
CALPHAD [5]

Figure 3.7 – Enthalpy of formation of RuSc phase as a function of molar fraction of Sc[122].

59



3.2. THE OS-TH AND OS-Y SYSTEMS

3.2 Thermodynamic and ab-initio investigations of the Os-
Th and Os-Y systems

3.2.1 Introduction

In recent years, Platinum-Group Metals (PGMs) have attracted much attention as poten-
tial ultra-high-temperature structural materials, due to their unique high-temperature
mechanical and corrosion resistant properties [137–139]. Solid solubilities as well as open
lattice structures obtained by alloying PGMs with Rare Earth Metals (REM) have made
these systems of great physical and metallurgical interest [140]. The strength of the Pt −
Pd −Rh alloys, which are the main catalytic materials used for the preparation of nitric
acid by the ammonia oxidation reaction, can be improved by rare earth additions; such as
yttrium, cerium, gadolinium and thorium [140–142].

The PGMs have high melting points; for instance, Pt , Rh and Os melt at 2042K, 2239K
and 3306K, respectively. They also have excellent corrosion resistance against a wide
range of liquid and gaseous substances, and stable at high-temperatures under condi-
tions where the base and refractory metals are easily oxidized [143]. According to the
phase equilibria studies on the Os −RE systems, where RE is the lanthanide rare earth yt-
trium or the actinide rare earth thorium, only Os2Th and Os2Y melt above T = 2500K, and
the remaining Os −RE compounds melt above T = 1500K. Obviously, these alloys are one
of the most attractive candidate materials for ultra-high-temperature applications. How-
ever, thermodynamic properties of these alloys are poorly known. Therefore, the purpose
of this work was to reveal ambiguities and contribute new data concerning the thermo-
dynamic properties of alloys and compounds in the Os −RE (RE = Th,Y) systems. The
thermodynamic properties of alloys in the Os −RE (RE = Th,Y) systems have been in-
vestigated by the first-principle methods. Thermodynamic assessments of the Os −RE
systems have been done using the CALPHAD (CALculation of PHAse Diagram) method.

We present in this chapter the thermodynamic evaluation we have performed on all
the composition and temperature domains of the binary systems Os−Y and Os−Th em-
ploying the CALPHAD technique. The term excess Gibbs energy of the phases in solution
present in this system (liquid, bcc_A2, f cc_A1 et hcp_A3) was evaluated by the linear
dependence of Temperature of the Redlich and Kister [103] polynomial equation using a
Solution Model (SM). Intermetallic compounds are considered stoichiometric and there-
fore processed by a model involving Two Sublattices Model (TSM). As we have already
indicated in section 2.2, the reference Gibbs energies of the pure elements used in this
work are those published by Dinsdale [111].

The lack of experimental thermodynamic data on the systems Os −Y and Os −Th led
us to calculate Ab Initio to estimate the enthalpy of formation of the stoichiometric com-
pounds existing in this system, to enhance optimization.

3.2.2 Review of literature data

3.2.2.1 The binary system Os −Th

After studies by the metallographic and X-ray methods, Thomson [144] was first to report
the Os −Th phase diagram in the temperature range from 1273 to 1773 K. This tentative
phase diagram of Thomson [144] did not include data above T = 1773K, in which melting
points of all alloys in the Os −Th system exist.

Kleykamp [145] has determined the Gibbs energies of formation for the intermediate
phases in the Os −Th system by the electromotive force measurements (EMF) method.
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3.2. THE OS-TH AND OS-Y SYSTEMS

In his studies, the rich osmium region of the phase diagram has been supplemented by
determining the melting point of pyrometric. The results of both authors have been com-
piled by Moffatt [146] and later on by Massalski [147] to construct the complete phase
diagram.

The Os−Th system is characterized by three intermetallic compounds (Os2Th, Os2Th3,
and Os3Th7) and three terminal solution phases (HCP_A3 (Os), FCC_A1 (Th), and BCC_A2
(Th)). Os2Th crystallizes congruently at T = 2753K, and forms an eutectic with osmium
at 2493K and 25at .%Th [145]. Os3Th7 crystallizes also congruently above T = 1773K and
forms an eutectic with thorium at T = 1560K and 87at .%Th [144]. Whereas the Os2Th3

compound forms peritectically and also melts above T = 1773K, it forms an eutectic with
Os3Th7 at T = 1755K and 64at .%Th [144]. By using the metallographic examination,
Thomson [144] found that the solubility of osmium in thorium is considerably less than
1%atT = 1373K and very low at T = 873K, and the allotropic transformation of thorium has
been assumed to be T = 1633K. The crystallographic structures data of the pure elements,
Os2Th, and Os3Th7 were determined by several authors [144, 148–153] and they are listed
in table 3.2.

a Local Density Approximation refined by [50] (LDA-CA) (VASP), b Generalized Gradi-
ent Approximation as implemented by [54] (GGA-PBE) (VASP), c GGA-PBE (WIEN2k), d At
1723 K.

Thomson [144] reported difficulties with Os2Th3 alloys in the composition range from
(50 to 65) at .%Th, because the lumps of un-melted osmium which hindered the determ-
ination of the precise composition of the Os2Th3 compound. He designated it by ThOsx

( 60at .%Th). However, Kleykamp [145] assumed that the composition of the compound
to be Os2Th3, without determining its crystal structure.

3.2.2.2 The binary system Os −Y

The Os −Y system consists of three terminal solution phases (HCP_A3 (Os), HCP_A3 (Y),
and BCC_A2 (Y)) and two intermetallic compounds (Os2Y and OsY3). The Os2Y com-
pound crystallizes congruently at T ≈ 2773K [147], and form an eutectic with osmium
at T = 2373K and 6at .%Y [158], whereas the OsY3 compound crystallizes peritecticaly at
T = 1563K, and forms an eutectic with yttrium at T = 1423K and ∼ 88at .%Y [158]. The
crystal structures data of Os, Y, Os2Y, and OsY3 shown in table 3.2 were adopted from
[148, 149, 154–157].

Savitskii and Polyakova [158] and Selhaoui and Kleppa [134] are the only authors who
reported experimental data in the Os-Y system. Selhaoui and Kleppa [134] determined
the standard enthalpy of formation of the compound Os2Y by using high-temperature
calorimetry. Massalski [147] compiled these experimental data and also estimated the
allotropic transformation of yttrium to be at T = 1751K, which was not reported in the
literature.

Savitskii and Polyakova [158] and Selhaoui and Kleppa [134] are the only authors who
reported experimental data in the Os-Y system. Selhaoui and Kleppa [134] determined
the standard enthalpy of formation of the compound Os2Y by using high-temperature
calorimetry. Massalski [147] compiled these experimental data and also estimated the
allotropic transformation of yttrium to be at T = 1751K, which was not reported in the
literature.
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Phase
Comp.
(at .%)

Pearson symbol and
prototype

Space group Lattice parameters (nm) Ref.

Os ∼ 0 hP2 (Mg ) P63/mmc

0.27344 0.27344 0.43173 [148]
0.27196 0.27196 0.42920 [142]a

0.27552 0.27552 0.43358 [142]b

0.27574 0.27574 0.43485 [142]c

Os2Th ∼ 33.3 cF24 (Mg Cu2) Fd −3m

0.7715 0.7715 0.7715 [144]
0.7705 0.7705 0.7705 [149]
0.7703 0.7703 0.7703 [150]
0.7602 0.7602 0.7602 [142]a

0.7725 0.7725 0.7725 [142]b

0.7728 0.7728 0.7728 [142]c

Os3Th7 70 hP20 (Th7Fe3) P63mc
1.0031 1.0031 0.6296 [151]
0.9835 0.9835 0.6179 [142]a

1.0044 1.0044 0.6333 [142]b

Th(r t ) ∼ 100 cF4 (Cu) Fm −3m

0.50863 0.50863 0.50863 [144]
0.50842 0.50842 0.50842 [152]
0.49047 0.49047 0.49047 [142]a

0.50548 0.50548 0.50548 [142]b

0.50508 0.50508 0.50508 [142]c

Th(ht ) ∼ 100 cI2 (W) Im −3m 0.411 0.411 0.411 [153]d

Os2Y ∼ 33.3 hP12 (Mg Zn2) P63/mmc

0.5308 0.5308 0.8794 [149]
0.5307 0.5307 0.8786 [154]
0.5231 0.5231 0.8750 [142]a

0.5311 0.5311 0.8881 [142]b

0.5278 0.5278 0.8803 [142]c

OsY3 75 oP16 (Fe3C) Pnma

0.7418 0.9108 0.6317 [155]
0.7425 0.9132 0.6337 [156]
0.7274 0.8892 0.6209 [142]a

0.7412 0.9097 0.6351 [142]b

Y ∼ 100 hP2 (Mg ) P63/mmc

0.36474 0.36474 0.5730 [157]
0.35388 0.35388 0.55202 [142]a

0.36423 0.36423 0.56190 [142]b

0.36658 0.36658 0.56725 [142]c

a LDA-CA (VASP), b GGA-PBE (VASP), c GGA-PBE (WIEN2k), d At 1723 K

Table 3.2 – The crystal structure data of the Os-Y and Os-Th systems.
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3.2.3 Ab-Initio details

In this work, first-principles calculations based on DFT [49] were performed by using
VASP [159, 160] and WIEN2k package [161] to get the energy of formation of intermetallic
compounds in the Os −Th and the Os −Y systems.

The energy of formation at T = 0K (which also corresponds to the enthalpy of form-
ation) for the compounds (Os2Th, Os2Th3, Os3Th7, Os2Y, and OsY3) is obtained by the
equation (1.59), with SER HCP_A3 (Os), FCC_A1 (Th), and HCP_A3 (Y).

3.2.3.1 VASP calculations

With VASP, calculations were performed using the PAW pseudo-potentials [129, 130] with
the LDA-CA and the GGA-PBE. A plane wave cut off energy of 300eV was used. K-point
meshes were compiled using the fully automatic scheme [131], which generatesΓ centered
Monkhorst-Pack grids [132], where the numbers of subdivisions N1, N2, and N3 along re-

ciprocal lattice vectors
−→
b1,

−→
b2, and

−→
b3, respectively, are given by:

Ni = max
(
1, l

∣∣∣−→bi

∣∣∣+0.5
)

, i = 1,2,3 (3.4)

Were
∣∣∣−→bi

∣∣∣ is the norm of the reciprocal lattice vector
−→
bi . According to Kresse et al. [131],

useful values for the length l vary between 10 (large gap insulators) and 100 (d-metals).
In this work, we found that l = 60 is sufficient to achieve convergence to a precision less
than 1 meV/atom atom for all compounds of both Os −Th and Os −Y systems. In addi-
tion to Monkhorst-Pack k-point meshes, Brillouin-zone integrations are performed using
the Methfessel-Paxton technique with the smearing parameter of 0.1 eV. All calculations
were performed using the “Accurate” setting within VASP, and all degrees of freedom of
the crystal structures were allowed to relax, including cell shape, volume, and atom posi-
tions with a preconditioned Conjugated Gradient (CG) algorithm with the default VASP’s
convergence criteria.

The phonon spectra were calculated by Phonopy [162], using the finite displacement
method [163] on VASP’s minimized structures that had the lowest ground state energy.
The force constants were extracted from VASP’s calculations, and the corresponding vi-
brational frequencies and entropies of the compounds (Os2Th, Os2Y, and OsY3) are achieved.
In fact, we have calculated the Helmholtz energy, which can be approximated to the Gibbs
energy at zero stress.

Firstly, we re-minimized the crystal structures of the compounds (Os2Th, Os2Y, and
OsY3) using the value 10− 8eV as accuracy for the electronic ground-state calculation.
Then, different 2×2×2 super-cell structures with 0.01Å displacements were created. In
the present cases, the Monkhorst–Pack grids were 2×2×1, 4×4×4, and 1×1×2 for these
supercells of the compounds Os2Th, Os2Y, and OsY3, respectively, and the other calcula-
tion parameters were kept the same.

3.2.3.2 WIEN2k calculations

The PAW method is almost as fast as the usual Ultra Soft Pseudo Potential (US-PP) method
[132, 164, 165], and gives very close energies to the best Full-Potential Linearized Aug-
mented Plane Wave (FP-LAPW) calculations [166]. All-electron DFT calculations using
the FP-LAPW method are considered to give the most accurate results apart from the er-
rors associated with the exchange-correlation functional, but they are computationally
intensive. In this work, all-electron DFT calculations are limited to the Os2Th and Os2Y
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compounds, where the other compounds are excluded, due to their complex structures
and many degrees of freedom, which require a larger computational capacity than our
computing abilities.

WIEN2k calculations are based on the Full-Potential (Linearized) Augmented Plane
Wave plus local orbitals (FP-(L)APW+lo) [167] method. The GGA-PBE [54] was employed
for the exchange and correlation potential. Muffin-tin radii of 2.32, 2.50, and 2.38 a.u
were assumed for Os, Th, and Y, respectively. The value of RKmax was fixed at 9.0, which
almost corresponds to the 15.05 Ry (204.67eV) cut off energy. The modified tetrahedron
method [167, 168] was adopted for the k-space integration. The numbers of irreducible
k-points were 104 and 165 for Os2Th and Os2Y, respectively. The convergence of total en-
ergy was carefully checked by 0.001 mRy/( f or mul auni t ). Firstly, c/a ratio of the Os2Y
compound and the pure elements (Os and Y) was optimized using the 2D-optimize pack-
age [169]. Then, the total energy of the intermetallic compounds (Os2Th and Os2Y) and
the pure elements (Os, Th, and Y) was calculated as a function of volume and was fitted
to the second order Birch-Murnaghan [170] state equation. Atom positions of Os2Y com-
pound were allowed to relax using the Multi Secant Rank One A (MSR1a) [167] algorithm
in all calculations, and the forces were converged to less than 1 mRy/au. An energy con-
vergence criterion of 10−4 Ry for electronic structure self-consistency was used in all cal-
culations.

3.2.4 Optimization procedure

Optimizations of the model parameters of Gibbs energies were done by the CALPHAD
method [29][45]. In both Os −Th and Os −Y binary systems thermodynamic interaction
parameter optimization is based on the available experimental data and our enthalpies
and entropies of formation determined by the first-principles and phonon calculations.

The set of thermodynamic parameters of the Os −Th and Os −Y systems were optim-
ized using the PARROT module of the Thermo-Calc software developed by Jansson [31]
and Sundman et al. Sundman et al. [30], Sundman and Ågren [119]. This program works
by minimizing an error sum where each of the selected values is given a specific weight.
The weight is chosen by personal judgment and changed by trial and error during the
work until most of the selected experimental and first-principles, and phonon calcula-
tions are reproduced within the expected uncertainty limits.

The modeling of the Os −Th and the Os − Y systems was made in two main steps.
Firstly, all thermodynamic parameters were optimized in one operation by using all avail-
able enthalpies and entropies of formation for the intermetallic compounds with the
same weighting but higher than the weight of other experimental equilibrium data, than
changing the weight step by step to achieve a good agreement. We observed that higher
weight for first-principles results leads to a better agreement. For melt temperatures of
Os2Th3 and Os3Th7 we used the predicted values by dashed lines [144, 147] as alternat-
ive values with the smallest weight, and then we suspended these alternative values from
optimization. In the second step, a global optimization was performed by unfixing the en-
thalpies of formation for the intermetallic compounds, where the entire thermodynamic
parameters of all phases are adjusted simultaneously to ensure the best fit.

3.2.5 Results and discussion

In the first attempt, we have calculated the enthalpy of formation for the Os2Th3 com-
pound in several crystal structures, in the hope that we will find a crystal structure that
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fits well in the convex hull of the ground state of the Os −Th system.
We found 14 crystal structures in the literature for the A2B3 compounds [171–184].

The calculated lattice parameters and their enthalpies of formation are listed in table 3.3.
The crystal structure t I140 (Y3Rh2) have the smallest enthalpy among the 14 structures,
which makes the Os2Th3 compound firmly a ground state, this value was used as the
initial enthalpy for this compound in the optimization.

Pearson symbol and
prototype

Space group
Lattice parameters (nm)

[142]a ∆H f [142]a Ref.b

t I140(Y3Rh2) I4/mcm 0.1123 0.1123 0.2552 −28.911 [171]
hR45(Er3Ni2) R−3 0.7492 0.7492 0.7492 −28.195 [172]

mS20(Dy3Ni2) C2/m 0.7188 0.7188 0.9563 −25.063 [173]
tP20(Zr3Al2) P42/mnm 0.7675 0.7675 0.7820 −24.329 [174]

pP20(Gd3Al2) P42nm 0.7678 0.7678 0.7816 −24.329 [175]
tP10(U3Si2) P4/mbm 0.7677 0.7677 0.3939 −22.607 [176]

hP10(Pt2Sn3) P63/mmc 0.4277 0.4277 1.6086 −20.910 [177]
oP20(Pt2Ge3) Pnma 2.0918 0.4136 0.5794 −19.386 [178]
hP30(Al2O3) Ia −3 0.7464 0.7464 0.7464 −15.800 [179]

cI80((Mn0.5Fe0.5)2O3) Ia −3 1.1346 1.1346 1.1346 −12.444 [180]
oP40(Pt3Ge2) Pnma 1.5625 0.8799 0.7078 −0.272 [181]
oS20(La2Ni3) Cmca 0.5311 0.5311 0.8553 1.847 [182]

oS20(V2B3) Cmcm 0.3026 1.8115 0.2954 16.694 [183]
hP20(Tl2Pt3) P63/mmc 0.6943 0.6943 1.3502 27.109 [184]

a LDA-CA(VASP).
b Reference of the initial crystal structure used in VASP calculation for the Os2Th3 compound.

Table 3.3 – The crystal structure data and the enthalpy of formation at 0 K of the Os2Th3 com-
pound with the composition 60% at. thorium.
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Figure 3.8 – Phonon dispersion curves along high symmetry directions and total DOS for Os2Th.

Figures 3.8 to 3.10 show the phonon spectra for the compounds Os2Th, Os2Y, and
OsY3, respectively. All of the frequencies estimated by Phonopy were positive, and there-
fore all of the structures are stable.
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Figure 3.9 – Phonon dispersion curves along high symmetry directions and total DOS for Os2Y.
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Figure 3.10 – Phonon dispersion curves along high symmetry directions and total DOS for OsY3.
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The calculated enthalpies of formation using first-principle method for the stoichiomet-
ric compounds (Os2Th, Os2Th3, Os3Th7, Os2Y, and OsY3) are presented in table 3.4,
where the reference states are (HCP_A3) Os, (FCC_A1) Th, and (HCP_A3) Y. These calcu-
lated enthalpies of formation were used in the thermodynamic modeling of the Os −Th
and the Os −Y systems.

Compound ∆H f KJ/mol ∆S f J/K/mol Method Ref.

Os2Th

−53.5±4.2 −16.6±4.9 EMF (1200 K) [145]
−55 Miedema model [185]

−21.720 VASP (LDA) [142]
−24.989 VASP (GGA-PBE) [142]
−23.380 WIEN2k [142]
−25.929 −2.179 CALPHAD [142]

Os2Th3

−67±3.4 −28±3.9 EMF (1200 K) [145]
−41 Miedema model [185]

−28.911 VASP (LDA) [142]
−32.468 VASP (GGA-PBE) [142]
−30.749 −2.724 CALPHAD [142]

Os3Th7

−62.5±2.8 −26.7±3.2 EMF (1200 K) [145]
−36 Miedema model [185]

−28.168 VASP (LDA) [142]
−33.029 VASP (GGA-PBE) [142]
−29.203 −2.858 CALPHAD [142]

Os2Y

−24.8±2.8 Calorimetry [134]
−38 Miedema model [185]

−28.430 VASP (LDA) [142]
−31.183 VASP (GGA-PBE) [142]
−28.754 WIEN2k [142]
−31.731 −1.489 CALPHAD [142]

OsY3

-30 Miedema model [185]
−22.685 VASP (LDA) [142]
−24.892 VASP (GGA-PBE) [142]
−23.030 −5.794 CALPHAD [142]

Table 3.4 – The enthalpies of formation of compounds in the Os-Y and Os-Th systems.

The obtained thermodynamic description for the Os −Th and the Os −Y systems in
this work is shown in table 3.5. The calculated phase diagrams of the Os −Th and the
Os −Y systems are shown in figures 3.11 and 3.12, respectively, and compared with the
available experimental data from Thomson [144] and Kleykamp [145] for Os −Th system
and from Savitskii and Polyakova [158] and Chiotti et al. [153] for Os − Y system. As it
can be seen in figures 3.11 and 3.12, a reasonable agreement between our calculated and
the experimental liquidus lines [144, 145, 153, 158] of the Os −Y and Os −Th systems,
especially in the Th − r i ch and Y− r i ch corners, were observed.

The calculated compositions and temperatures of the invariant reactions are listed
in table 3.6 and compared with the experimental data. Some differences are noticeable:
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System Phase Thermodynamic parameters

Os-Th

Li qui d 0LLi q = −103875+1.008T

Os2Th GOs2Th
Os:Th −0.667GSER

Os −0.333GSER
Th = −25929.68+0.159T−0.349Tl n(T)

Os2Th3 GOs2Th3
Os:Th −0.4GSER

Os −0.6GSER
Th = −30749+2.724T

Os3Th7 GOs3Th7
Os:Th −0.3GSER

Os −0.7GSER
Th = −29203+2.858T

Os-Y

Li qui d 0LLi q = −81688.69+3.139T

Os2Y GOs2Y
Os:Y −0.667GSER

Os −0.333GSER
Y = −31731.42+2.654T−0.174Tln(T)

OsY3 GOsY3
Os:Y −0.25GSER

Os −0.75GSER
Y = −23029.866+9.833T−0.603Tl n(T)

Table 3.5 – The optimized parameters of Os −Y and Os −Th systems.
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The temperature of the Li q ←→ HCP_A3(Os)+Os2Th and the Li q ←→ Os2Th3 +Os3Th7

invariant reactions are in good agreement with the result of Thomson [144], but slightly
higher than the ones determined by Kleykamp [145], respectively. The temperature of the
Li q ←→ HCP_A3(Os)+Os2Y invariant reaction is also higher than the one determined by
Savitskii and Polyakova [158]. We estimate that the calculated eutectic is more credible
because it is often difficult to determine the correct parts of the phase diagram in the
temperature range from 2400 to 3000 K experimentally.

Optimized and calculated enthalpies of formation by using CALPHAD and first prin-
ciple methods are reported in table 3.4, and are also reported in figures 3.13 and 3.14,
respectively, experimental enthalpies of formation using the EMF method [145] and the
predicted ones using the Miedema’s semi empirical model [185] are also listed. FP-LAPW
(WIEN2k), PAW (VASP), and optimized results are in good agreement. Also, EMF values
[145]] for Os2Th compound, Miedema’s values [185] for Os3Th7 , Os2Y, and OsY3 com-
pounds, and optimized results in this work are in good agreement, but for other com-
pounds of Os−Th system, the calculated enthalpies of formations in this work are higher
than those of semi-empirical model of Miedema [185] and are lower than those of EMF
method [145]. whereas, the only available experimental value using the calorimetry from
the literature relative to the Os2Y compound [134] is very close to our Ab Initio calcula-
tions and consistent with the performed CALPHAD modeling.

The calculated entropies for Os2Th, Os2Y, and OsY3 compounds that can be observed
in figures 3.15 to 3.17, respectively, are in excellent agreement with the entropies calcu-
lated using first principles and phonon calculations. The discrepancies of CALPHAD re-
garding first principles and phonon computed entropy found at higher temperatures are
probably due to the formation of vacancies which was not contemplated in our calcula-
tions.
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Reaction
Compositions of the respective

phase at .%RE (RE = Th,Y)
T(K)

Type of
reaction

Reference

Li q ↔ Os2Th
0.333 0.333 2744.74

Congruent
[142]

0.333 0.333 2753.15±80 [145]
Li q ↔ Os3Th7 0.700 0.700 1831.19 Congruent [142]

Li q ↔ OsHCP_A3 +Os2Th
0.227 0.000 0.333 2608.36

Eutectic
[142]

0.25±0.02 0.000 0.333 2493.15±50 [145]
Os2Th +Li q ↔ Os2Th3 0.333 0.634 0.600 1804.53 Peritectic [142]

Li q ↔ Os2Th3 +Os3Th7
0.644 0.600 0.700 1802.38

Eutectic
[142]

0.640 0.600 0.700 1755.15±12 [144]

Li q +ThBCC_A2 ↔ ThFCC_A1
0.901 1.000 1.000 1633.20

Peritectic
[142]

1.000 1.000 1633.15±10 [144]

Li q ↔ Os3Th7 +ThFCC_A1
0.877 0.700 1.000 1530.91

Eutectic
[142]

0.870 0.700 1.000 1560.15±12 [151]

Li q ↔ Os2Y
0.333 0.333 2769.76

Congruent
[142]

0.333 0.333 ∼ 2773.15 [147]

Li q ↔ OsHCP_A3 +Os2Y
0.229 0.000 0.333 2684.42

Eutectic
[142]

0.060 0.000 0.333 2373.15 [158]

Li q +YBCC_A2 ↔ YHCP_A3
0.984 1.000 1.000 1751.15

Peritectic
[142]

1.000 1.000 1751.15 [147]

Os2Y+Li q ↔ OsY3
0.333 0.770 0.750 1565.06

Peritectic
[142]

0.333 0.660 0.750 1563.15 [158]

Li q ↔ OsY3 +YHCP_A3
0.877 0.750 1.000 1455.01

Eutectic
[142]

∼ 0.880 0.750 1.000 1423.15 [158]

Table 3.6 – The invariant reactions in the Os −Y and Os −Th systems
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3.2.6 Conclusion

Thermodynamic optimization of the Os−Th and the Os−Y systems has been performed
utilizing the CALPHAD method combined with first-principles calculations. Enthalpies
of formation for the compounds (Os2Th, Os2Th3, Os3Th7, Os2Y and OsY3)) were com-
puted by ab-initio method based on DFT. Phonon calculations were performed to attain
the thermodynamic data at T > 0K for the compounds (Os2Th, Os2Y, and OsY3). The
liquid phase was modeled with the Redlich-Kister polynomial, and the five intermetal-
lic compounds were described as stoichiometric phases. The Gibbs energy functions for
individual phases in the Os −Th and the Os −Y systems were evaluated by considering
the first-principles computed enthalpies of formation, vibrational entropies computed
via phonon, and the experimental phase equilibria data. A set of self-consistent thermo-
dynamic parameters for each system has been obtained, and the calculated results show
a reasonable agreement with the available experimental data.

All phase equilibria and thermodynamic data available in the literature concerning
the Os −Th and the Os −Y systems were critically evaluated. The enthalpies of forma-
tion for the four intermetallic compounds Os2Th, Os3Th7, Os2Y and OsY3 in the tow bin-
ary systems have been computed via first-principles calculations and used in the present
thermodynamic assessment. The crystal structure and the enthalpy of formation of the
Os2Th3 were also predicted.

A consistent set of thermodynamic parameters were optimized for the Os −Th and
the Os −Y systems which had not been previously thermodynamically assessed. In spite
of the lack of experimental data for both Os −Th and Os −Y systems, the comprehensive
comparison shows that the calculated phase diagrams and thermodynamic properties are
in good agreement with the first-principles calculations.
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3.3 Thermodynamic and ab-initio investigations of the Dy-
Zn system

3.3.1 Introduction

Multi-component alloys of the transition metal with rare-earths form an exciting group
of magnetic materials and are essential for making permanent magnets [186]. Especially
those alloys of rare-earth with 3d transition elements, which have received much atten-
tion in the last few decades, because of their interesting crystal structures, promising
physical properties, and potential application as, for example, magnetic materials [187,
188] and hydrogen storage devices [189]. Despite this interest, many of these systems re-
main poorly understood and their thermodynamic description undetermined, including
those containing zinc element. The present work is devoted to the investigation of Dy-Zn
binary system.

Saccone et al. [190] has reviewed the Dy-Zn phase diagram and related phase equilib-
ria, but no self-consistent thermodynamic was given. CALPHAD (CALculation of PHAse
Diagram) is a successful and widely applied technique to facilitate material development
[79]. It is necessary to investigate this binary system, and thereby offer new contents to
the thermodynamic database of rare-earth-zinc alloys. This paper is dedicated to provid-
ing self-consistent and reliable thermodynamic descriptions for the Dy-Zn binary sys-
tem based on the experimental data and the enthalpies of formation computed via the
ab-initio method.

3.3.2 Review of literature data

The schematic Dy-Zn phase diagram shown in Massalski was as speculated by Moffatt on
the sparse information that was available on this system [191]. Saccone et al. [190] has in-
vestigated the Dy-Zn system through differential thermal analysis (DTA), metallographic
analysis, X-ray powder diffraction, and electron probe microanalysis (EPMA).

The Dy-Zn system is characterized by seven compounds and three terminal solutions
(HCP_A3 (Dy), BCC_A2 (Dy), and HCP_ZN (Zn)). DyZn, DyZn2, Dy13Zn58, and Dy2Zn17

melt congruently at 1368 K, 1323 K, 1203 K, and 1203 K, respectively. DyZn3, Dy3Zn11,
and DyZn12 for through peritectic reactions at 1168 K, about 1173 K and 685 K, respect-
ively. Four eutectic reactions occur at 1123 K and 30% zinc (between (Dy) and DyZn),
1263 K and 60% zinc (between DyZn and DyZn2), 1158 K and 76% Zn (between DyZn3

and Dy3Zn11), and 1148 K and 85% Zn (involving Dy13Zn58 and Dy2Zn17). The Dy-rich
region end presents a catatectic equilibrium, and a degenerate invariant in the Zn-rich
region. Dy-Zn crystal structure data shown in Table 3.7 were adopted from [192].

3.3.3 Ab initio details

In this work, first-principles calculations based on density functional theory (DFT) [49]
were carried out using Vienna Ab-initio Simulation Package (VASP) [159, 160] to get form-
ation energy of involved compounds.

The energy of formation at 0 K of the DyZn, DyZn2, DyZn3, Dy3Zn11, Dy13Zn58,
βDy2Zn17, and DyZn12 compounds is obtained by the equation (1.59). Where E(DyxZny ),
E(Dyx), and E(Zny ) are the total energy for DyxZny , pure HCP_A3 Dy , and pure HCP_-
A3 Zn at 0 K, respectively. The energy of formation corresponds also to the enthalpy of
formation at 0 K.
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Phase
Comp.
(at .%)

Pearson symbol
and prototype

Space group Lattice parameters (nm) Ref.

Dy ∼ 0
hP2

(Mg ) P63/mmc

0.3589 0.3589 0.5646 [193]
0.359 0.359 0.565 [194]

0.3592 0.3592 0.5655 [195, 196]
0.35915 0.35915 0.56501 [197]

0.359 0.359 0.564 [198]
0.3593 0.3593 0.56537 [199]
0.3593 0.3593 0.5653 [200]

0.35903 0.35903 0.56475 [157]
0.36177 0.36177 0.56504 [201]

Dy ∼ 0 cI2 (W) Im −3m 0.3982 0.3982 0.3982 [202]

DyZn 50
cP2

(CsCl ) Pm −3m

0.3563 0.3563 0.3563 [173, 203]
0.3562 0.3562 0.3562 [204]*
0.3555 0.3555 0.3555 [205]
0.3560 0.3560 0.3560 [190]
0.3563 0.3563 0.3563 [201]

DyZn2 ∼ 66.67
oI12

(KHg2) Imma
0.4481 0.7107 0.7619 [206]
0.4481 0.7151 0.7577 [190]
0.4464 0.7064 0.7540 [201]

DyZn3 75
oP16

(Zn3Y) Pnma

0.67 0.4398 1.006 [192, 207]*
0.6731 0.4440 1.0159 [190]
0.6667 0.4368 1.0050 [201]

Dy3Zn11 ∼ 78.57
oI28

(La3Al11) Immm

0.4395 0.883 1.2922 [206]
0.4405 0.8805 1.3041 [190]
0.4395 0.8830 1.2922 [192]*
0.4380 0.8755 1.2852 [201]

Dy13Zn58 ∼ 81.69
hP142

(Zn58Dy13) P63/mmc
1.426 1.426 1.401 [190]
1.424 1.424 1.399 [192]

1.4198 1.4198 1.3849 [201]

βDy2Zn17 ∼ 89.47
hP38

(Th2Ni17) P63/mmc
0.8956 0.8956 0.8776 [208]*
0.8959 0.8959 0.8725 [190]
0.8919 0.8919 0.8698 [201]

βDy2Zn17 ∼ 89.47
hR57

(Zn17Th2) R−3m

0.89658 0.89658 1.31339 [209, 210]
0.8967 0.8967 1.3139 [208]*
0.8973 0.8973 1.3141 [190]

0.89089 0.89089 1.30796 [201]

DyZn12 ∼ 92.31
t I26

(ThMn12) I4/mmm

0.8877 0.8877 0.5198 [208]*
0.888 0.888 0.5199 [211]

0.8868 0.8868 0.5184 [190]
0.8801 0.8801 0.5188 [201]

Zn ∼ 100
hP2

(Mg ) P63/mmc

0.2665 0.2665 0.4947 [212, 213]
0.26655 0.26655 0.49488 [214]
0.26655 0.26655 0.49488 [215]
0.26644 0.26644 0.4945 [216]
0.26642 0.26642 0.49454 [217]
0.26645 0.26645 0.49446 [217]
0.26469 0.26469 0.49390 [201]

* References used by Saccone et al. [190]

Table 3.7 – The crystal structure data of the Dy-Zn system.
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Calculations were performed using the projected-augmented wave (PAW) pseudo-
potentials [129, 130] with the generalized gradient approximation as implemented by Per-
dew, Burke, and Ernzerhof (GGA-PBE) [54]. A plane wave cutoff energy of 300 eV is used.
K-point meshes are compiled using the fully automatic scheme [131], which generates Γ
centered Monkhorst-Pack grids [132], where the numbers of subdivisions N1, N2, and N3

along reciprocal lattice vectors
−→
b1,

−→
b2, and

−→
b3, respectively, are given by:

Ni = max
(
1, l

∣∣∣−→bi

∣∣∣+0.5
)

, i = 1,2,3 (3.5)

Were
∣∣∣−→bi

∣∣∣ is the norm of the reciprocal lattice vector
−→
bi . According to Kresse et al. [131],

useful values for the length l vary between 10 (large gap insulators) and 100 (d-metals). In
this work, we found that l = 60 is sufficient to achieve convergence to a precision less than
1 meV/atom for all compounds of both Dy-Zn system. In addition to Monkhorst-Pack
k-point meshes, Brillouin-zone integrations are performed using the Methfessel-Paxton
technique with the smearing parameter of 0.1 eV. All calculations were performed us-
ing the “Accurate” setting within VASP, and all degrees of freedom of the crystal structures
were allowed to relax, including cell shape, volume and atom positions with a precondi-
tioned conjugated gradient (CG) algorithm with the default VASP’s convergence criteria.

Compound ∆H f KJ/mol ∆S f J/K/mol Method Ref.

DyZn
−33.889 GGA-PBE [201]
−32.369 −3.8 CALPHAD [201]
−30.929 −2.02 CALPHAD [218]

DyZn2

−38.387 GGA-PBE [201]
−37.555 −5.9 CALPHAD [201]
−36.186 −3.79 CALPHAD [218]

DyZn3

−35.087 GGA-PBE [201]
−35.343 −6.4 CALPHAD [201]
−35.614 −5.75 CALPHAD [218]

Dy3Zn11

−32.465 GGA-PBE [201]
−33.581 −6 CALPHAD [201]
−34.727 −6.16 CALPHAD [218]

Dy13Zn58

−30.574 GGA-PBE [201]
−31.718 −5.38 CALPHAD [201]
−33.222 −6.04 CALPHAD [218]

βDy2Zn17

−22.715 GGA-PBE [201]
−25.767 −1.14 CALPHAD [201]
−21.816 −4.33 CALPHAD [218]

DyZn12

−17.244 GGA-PBE [201]
−18.274 −2.8 CALPHAD [201]
−19.766 −4.36 CALPHAD [218]

Table 3.8 – The formation enthalpies of the Dy-Zn system compounds.

3.3.4 Optimization procedure

The thermodynamic optimization of the Gibbs energy parameters is an application of
the CALPHAD technique Kaufman and Bernstein [29], using both the experimental data
of the phase diagram and the enthalpies of formation determined by the first-principles
calculations in this work.

The set of thermodynamic parameters of the Dy-Zn system were optimized using the
PARROT module of the Thermo-Calc software developed by Jansson [31] and Sundman
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et al. Sundman et al. [30], Sundman and Ågren [119]. This program works by minimizing
an error sum where each of the selected values is given a certain weight. The weight is
chosen by personal judgment and changed by trial and error during the work until most
of the selected experimental and first-principles calculations are reproduced within the
expected uncertainty limits.

The modeling of the Dy-Zn was made in three main steps. Firstly, HCP_A3 and BCC_A2
phases are suspended, where all remaining thermodynamic parameters are optimized in
one operation by assuming the enthalpies of formation of the intermetallic compounds
to be fixed with these values determined from first-principle calculations of this work.
In the second step, we have fixed the thermodynamic parameters obtained from the first
step and restored the suspended phases previously; then optimisation is performed to get
their thermodynamic parameters. Finally, a global optimization was performed by un-
fixing all thermodynamic parameters, which are adjusted simultaneously by taking into
account all of the selected data to ensure the best fit.

System Phase Thermodynamic parameters

Dy-Zn

Li qui d

0LLi q = −1205823+38.49T
1LLi q = 65419−16.97T
2LLi q = −35168+9.43T

DyZn GDyZn
Dy :Zn −0.5GSER

Dy −0.5GSER
Zn = −32369+3.8T

DyZn2 GDyZn2
Dy :Zn −0.3333GSER

Dy −0.6667GSER
Zn = −37555+5.9T

DyZn3 GDyZn3
Dy :Zn −0.25GSER

Dy −0.75GSER
Zn = −35343+6.4T

Dy3Zn11 GDy3Zn11
Dy :Zn −0.2143GSER

Dy −0.7857GSER
Zn = −33581+6T

Dy13Zn58 GDy13Zn58
Dy :Zn −0.1831GSER

Dy −0.8169GSER
Zn = −31718−5.38T

βDy2Zn17 GβDy2Zn17
Dy :Zn −0.1053GSER

Dy −0.8947GSER
Zn = −22767+2.8T

DyZn12 GDyZn12
Dy :Zn −0.0769GSER

Dy −0.9231GSER
Zn = −18274+2.8T

Table 3.9 – The optimized parameters of Dy-Zn system.

3.3.5 Results and discussion

We participated in JEEP2014 [201] with the partial results of this work, where we hoped
to send the complete article to a scientific journal with an excellent reputation; unfortu-
nately, the work has been published by Zhu and Pelton [218]. So, we haven’t submitted
the work for publication, as our work doesn’t contain a new contribution in comparison
with the work of Zhu and Pelton [218]. However, the results are in good agreement with
those of Zhu and Pelton..

Results from first-principle calculations of the enthalpies of formation of the stoi-
chiometric DyZn, DyZn2, DyZn3, Dy3Zn11, Dy13Zn58, βDy2Zn17 and DyZn12 compounds
are presented in Table 3.8, where the reference states are (HCP_A3) Dy and Zn. Those
enthalpies of formation calculated with the ab-initio method were used in the thermody-
namic modeling of the Dy-Zn system.

Thermodynamic description obtained of the Dy-Zn system in this work is shown in
Table 3.9. The calculated phase diagram of the Dy-Zn system is shown in Figure 3.18,
compared with the available experimental data [190]. It can be seen an excellent agree-
ment with the liquidus line between the calculated values and the experimental ones
[190], within the expected uncertainty limits, for the Dy-Zn system, especially in the Zn-
rich part.
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Figure 3.18 – Calculated phase diagram of the Dy-Zn system compared with that of Saccone
et al. [190].

-40

-35

-30

-25

-20

-15

-10

-5

 0

 0  0.2  0.4  0.6  0.8  1

Dy Zn

E
n
th

a
lp

y
 K

J
/m

o
l

Mole fraction of Zn

VASP This work
CALPHAD This work

Zhijun et al.

Figure 3.19 – Standard enthalpies of formation of intermediate phases in the Dy-Zn system.

78



3.3. THE DY-ZN SYSTEM

The details of calculated compositions and temperatures for the invariant reactions
compared with the experimental data are listed in Table 3.10. Some differences are no-
ticeable:

Optimized and calculated via first-principle calculations enthalpies of formation are
reported in Table 3.8 and Figure 3.19. Good agreement is obtained between PAW (VASP)
and optimized results.

Reaction
Compositions of the

respective phase at .%Zn
T(K)

Type of
reaction

Reference

DyBCC_A2 ↔ DyHCPA3
0 1654

allotropic
[191]

0 1654 [201]

DyBCC_A2 ↔ DyHCPA3 +Li q
∼ 2 < 0.5 ∼ 5 ∼ 1623

catatectic
[190]

3.78 0.63 5.33 1624.05 [201]

Li q ↔ DyHCPA3 +DyZn
30 < 0.5 50 1123

etectic
[190]

29.87 0.67 50 1122.88 [201]

Li q ↔ DyZn
50 1368

Congruent
[190]

50 1365.85 [201]

Li q ↔ DyZn +DyZn2
60 50 66.7 1263

etectic
[190]

59.68 50 66.7 1267.55 [201]

Li q ↔ DyZn2
66.67 1323

Congruent
[190]

66.67 1321.89 [201]

Li q +DyZn2 ↔ DyZn3
75.5 66.67 75 1168

peritectic
[190]

76.59 66.67 75 1167.03 [201]

Li q ↔ DyZn3 +Dy3Zn11
76 75 78.57 1158

etectic
[190]

76.89 75 78.57 1165.15 [201]

Li q +Dy13Zn58 ↔ Dy3Zn11
77.5 81.69 78.57 ∼ 1173

peritectic
[190]

77.70 81.69 78.57 1169.00 [201]

Li q ↔ Dy13Zn58
81.69 1203

Congruent
[190]

81.69 1202.38 [201]

Li q ↔ Dy13Zn58 +βDy2Zn17
85 81.69 89.47 1148

etectic
[190]

85.76 81.69 89.47 1161.84 [201]

Li q ↔ βDy2Zn17
89.47 1203

Congruent
[190]

89.47 1200.24 [201]

Li q ↔ DyZn12 +ZnHCPA3
> 99.5 92.31 ∼ 100 693

degenerate
[190]

99.80 92.31 ∼ 100 691.50 [201]

or Li q +DyZn12 ↔ ZnHCPA3
∼ 100 92.31 > 99.5 693

degenerate
[190]

∼ 100 92.31 99.85 691.50 [201]

Table 3.10 – The invariant reactions in the Dy-Zn systems

3.3.6 Conclusion

The thermodynamic modeling of the Dy-Zn binary system was carried out with the help
of ab-initio calculations and CALPHAD method. The enthalpies of formation of DyZn,
DyZn2, DyZn3, Dy3Zn11, Dy13Zn58, βDy2Zn17, and DyZn12 are computed via density
functional theory using the VASP code. The CALPHAD assessment of Dy-Zn system was
then performed by considering both the first-principle computed enthalpies of forma-
tion and the experimental phase equilibrium data. The HCP_A3, BCC_A2, and liquid
phases have been described with Redlich-Kister polynomial, and all compounds have
been treated as stoichiometric. A set of self-consistent thermodynamic parameters has
been obtained, where the obtained results are in satisfactory agreement with the experi-
mental data.
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3.3. THE DY-ZN SYSTEM

All experimental phase diagram and thermodynamic data available in the literature
for the Dy-Zn system are critically evaluated. The enthalpies of formation for the eight
compounds DyZn, DyZn2, DyZn3, Dy3Zn11, Dy13Zn58, βDy2Zn17, and DyZn12 have been
computed via first-principle calculations, where they are used in the present thermody-
namic assessment.

A consistent set of thermodynamic parameters were optimized for the Dy-Zn system.
The comprehensive comparison shows that the calculated phase diagrams and thermo-
dynamic properties are in good agreement with the first-principle calculations.
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Conclusion

The CALPHAD method is a powerful tool for describing the thermodynamic properties of
the equilibria of multi-component systems. It allows to determine and propose models
to explain the different phases of equilibrium in a system from experimental and theoret-
ical work. A database is then generated to store the parameters of these models for each
system. These databases can be used with different thermodynamic calculation software
(Thermo-Calc, Pandat, MTDATA, etc.) to plot phases diagrams and calculate the thermo-
dynamic properties of these systems and explore them for higher order systems.

Using associated models with CALPHAD method requires knowledge of the crystallo-
graphic and experimental data of each phase taken into account in the calculation. This
work enabled us to introduce the various useful models for the thermodynamic descrip-
tion of the studied systems during the thesis and to understand the relation between the
thermodynamic stability of a phase and its free enthalpy.

Constructing a phase diagram from experimental data is a laborious, expensive, and
sometimes even practically unfeasible job. However, computational thermodynamics
can minimize the effort involved to obtain a thermodynamic description of a phase dia-
gram by using thermodynamic data of phases obtained either experimentally or calcu-
lated theoretically, or both. First-principles methods allow us to get many thermody-
namic data with low cost and gain of time comparatively with experimental techniques.

In the present work, we have used first-principles methods to obtain, the formation
enthalpies of compounds, the configurational and electronic entropies of compounds
and the formation enthalpies of intermediate phase along a range of composition, all
those data are essential as input for the CALPHAD method to get a reliable description
of a thermodynamic system.

One of the difficult tasks in CALPHAD method is getting the appropriate description of
an intermediate phase, where defects type in this phase is needed to determine the proper
sublattice, as their formation energies (formation enthalpy of each site in the sublattice).
In this work, point defect structure of B2 Tr Sc (Tr = Cd , Ru) alloys was investigated us-
ing supercell, and special quasi-random structure (SQS) approaches. According to our
results, Tr and Sc anti-sites are the constitutional point defects in Tr -rich and Sc-rich
B2 Tr Sc, respectively. To investigate the thermal defect concentrations at finite temper-
atures, we adopted the Wagner-Schottky model using point defect formation enthalpies
obtained from supercell and SQS approaches. The present results suggest that the pre-
dominant thermal defects in B2 CdSc are of exchange type, and in B2 RuSc are of inter-
branch Sc type, these results allow us to define the convenient sublattice and the species
in each site, as they provide us with important input to CALPHAD method, which is form-
ation energies of the phase and its members. The calculated results show an agreement
with the available theoretical and experimental data.

Thermodynamic optimization of the Os −Th and the Os −Y systems has been per-
formed employing the CALPHAD technique combined with first-principles calculations.
Enthalpies of formation for the compounds (Os2Th, Os2Th3, Os3Th7, Os2Y and OsY3))
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were computed by ab-initio method based on DFT. Phonon calculations were performed
to attain the thermodynamic data at T > 0K for the compounds (Os2Th, Os2Y, and OsY3).
The liquid phase was modeled with the Redlich-Kister polynomial, and the five inter-
metallic compounds were described as stoichiometric phases. The Gibbs energy func-
tions for individual phases in the Os−Th and the Os−Y systems were evaluated by consid-
ering the first-principles computed enthalpies of formation, vibrational entropies com-
puted via phonon, and the experimental phase equilibria data. A set of self-consistent
thermodynamic parameters for each system has been obtained, and the calculated res-
ults show a reasonable agreement with the available experimental data.

The thermodynamic modeling of the Dy-Zn binary system was carried out with the
help of ab-initio calculations and CALPHAD method. The enthalpies of formation of
DyZn, DyZn2, DyZn3, Dy3Zn11, Dy13Zn58, βDy2Zn17, and DyZn12 are computed via
density functional theory using the VASP code. The CALPHAD assessment of Dy-Zn sys-
tem was then performed by considering both the first-principle computed enthalpies of
formation and the experimental phase equilibrium data. The HCP_A3, BCC_A2, and li-
quid phases have been described with Redlich-Kister polynomial, and all compounds
have been treated as stoichiometric. A set of self-consistent thermodynamic paramet-
ers has been obtained, where the obtained results are in satisfactory agreement with the
experimental data.
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Appendix A

List of acronyms

CALPHAD CALculation of PHAse Diagram. v, 4, 5, 26, 28, 29, 32, 34, 36, 49, 60, 64, 67, 69,
73, 81, 82

CG Conjugated Gradient. 63

CVM Cluster Variation Method. 30

DFT Density Functional Theory. 1, 5, 7, 12, 15, 20, 21, 30, 63, 73, 82

DGM Driving force per mole component. 27, 28

DTA Thermomechanical Analysis. 29

EMF Electromotive Force Measurements. 30, 60, 67, 69

EPMA Electron Probe Micro Analysis. 29

FP-(L)APW+lo Full-Potential (Linearized) Augmented Plane Wave plus local orbitals. 64

FP-LAPW Full-Potential Linearized Augmented Plane Wave. 63, 69

GGA Generalized Gradient Approximation. 4, 14, 15, 101

GGA-PBE Generalized Gradient Approximation as implemented by [54]. 61–64, 67

KTH Royal Institute of Technology in Stockholm. 32

LDA Local Density Functional. 4, 14, 67, 101

LDA-CA Local Density Approximation refined by [50]. 61–63, 65

MSR1a Multi Secant Rank One A. 64

PAW Projected-Augmented Wave. 18, 19, 63, 69

PES potential energy surface. 8

PGM Platinum-Group Metals. 60

RE Rare earths. v, 2–4
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List of acronyms

REM Rare Earth Metals. 60

SCF Self Consistent Field. ii, 6, 8, 9

SEM Scanning Electron Microscopy. 29

SER Stable Element Reference. 21, 35, 36, 42, 63

SGTE Scientific Group Thermodata Europe. 32, 35

SM Solution Model. 60

SOM Scanning Optical Microscopy. 29

SQS Special Quasirandom Structure. 4, 5, 21, 22, 51, 52

STA Simple Thermal Analysis. 29

TDB Thermo DataBase. 33

TEM Transmission Electron Microscopy. 29

TM Transition metal. 2–5

TSM Two Sublattices Model. 60

US-PP Ultra Soft Pseudo Potential. 63

VASP Vienna Ab initio Simulation Package. iii, 50, 61–63, 65, 67, 69
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Appendix B

Glossary

Ab Initio The term ab initio was first used in quantum chemistry by Robert Parr and
coworkers, including David Craig in a semiempirical study on the excited states
of benzene. In its modern meaning (’from first principles of quantum mechan-
ics’) the term was used by Chen (when quoting an unpublished 1955 MIT report
by Allen and Nesbet), https://en.wikipedia.org/wiki/Ab_initio_quantum_
chemistry_methods. 2, 4, 5, 7, 8, 21, 28, 30, 60, 69

Factsage is a set of thermochemical software and database developed jointly by Ther-
mfact / CRCT (Montreal, Canada) www.crct.polymtl.ca and GTT-Technologies
(Aachen, Germany) www.gtt-technologies.de. 31, 32

MTDATA Phase Diagram Software from the National Physical Laboratory. 31, 34, 81

Pandat an integrated calculation tool developed on the basis of the gls calphad approach
for property simulation and phase diagram calculation of multi-component mater-
ials. It has a robust thermodynamic calculation engine, a user-friendly graphical
user interface, and a flexible post-calculation table editing function that allows the
user to plot types of variety diagrams. The software is designed to create a working
environment that allows various computing modules integrated into the same work
area. It currently consists of three modules: PanPhaseDiagram (phase diagram and
calculation of thermodynamic properties), Pan Precipitations (Precipitation simu-
lation) and PanOptimizer (property optimization). 31, 32, 34, 81

PARROT Parameter optimizations. 4, 33, 64, 76

Phonopy Phonopy is an open source package for phonon calculations at harmonic and
quasi-harmonic levels.. 63, 65

POLY Equilibium Calculations. 33, 34

POST Processing of various phase diagrams (module du logiciel Thermo-Calc). 33

Thermo-Calc is a product that is used by customers around the world in academia, gov-
ernment and industry to make calculations that predict or help to understand com-
plex multicomponent alloys and nonmetallic systems, as well as relevance processes
Industrial and scientific. v, 4, 31–35, 64, 76, 81, 100

WIEN2k program package allows to perform electronic structure calculations of solids
using density functional theory (DFT). iii, 50, 61–64, 67, 69
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Appendix C

List of symbols

ai Activity of the specie i , ai = exp[µi /(R×T)]. 30, 42

α Alpha spin function. 9, 10, 103

as The site fraction corresponding to the sub-lattice s. 45, 46, 48

β0 Average magnetic moment per atom. 35, 37, 38

β Beta spin function. 9, 10, 103

c The number of species. 44, 45

Cp Heat capacity at constant pressure. 30, 37, 42

E The average energy. 8, 10–13

E0 The smallest eigenvalue of the Hamiltonian. 8

EH Hartree Energy. 13

εxc The exchange and correlation energy of a free electron gas. 14

Exc The exchange and correlation energy and the difference between the kinetic energy
of the independent Kohn-Sham electrons and that of the real system. 13

EGGA
xc The exchange and correlation energy in the approximation GGA. 15

ELDA
xc The exchange and correlation energy in the approximation LDA. 14

F An universal functional independent of the external potential which makes it possible
to obtain the energy of the system from the density n0 (r ).. 12, 13

G Gibbs Free Energy. v, 26–30, 32–43, 45–49, 101, 102

0GΦms The Gibbs free energy of one mole of sites of the phase Φ. 45, 48

GES Gibbs Energy System. 32, 33

exGΦ Excess free enthalpy of mixing. 37, 45, 47, 48

i d GΦ Ideal mixing free enthalpy. 37, 38, 45, 46, 49
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List of symbols

r é f GΦ Free Enthalpy Reference of phase Φ. 37, 45–47, 49

H Formation Enthalpy. 30, 33, 35, 37, 40, 42

Ĥ The Hamiltonian of the system. 7, 8, 10–12, 18

Hp Partial Enthalpy. 30

k Wave Vector. 15, 16

kb The Boltzmann constant. 45, 46

m Electronic spin variable. 8

µi Chemical potential of component i . 30

N The number of electrons. 12, 13

n0 The charge density of the ground state. 12, 101

Nav Avogadro’s number. 40

ns
i The number of species i of sub-lattice s. 44–46

n The total number of moles in the phase. 27, 33, 34, 36, 44–46, 102

ni The number of moles of elements i . 27, 33, 34, 36, 44, 45

n j The number of moles of elements j . 44

np The total number of phases in the system. 36

n The charge density. 12–15

ns The total number of sites in the sublattice s. 44–46

ns
Va The total number of vacancies sites in the sub-lattice s. 44

ωp The total number of possible arrangements on all sites. 45

P Pression. 26, 27, 33, 34, 37

υe f f Effective Potential. 13

υext External potential. 12, 13

Φ Phase : liquide, f cc_A1, bcc_A2, hcp_A3, ... v, 35–39, 41, 42, 45–49, 101–103

υKS Kohn-Sham potential. 13, 15

ψ The wave function. 7–13, 15, 16, 18, 19

ψ̃ The pseudo-wave function. 18, 19

q Refers to the total number of sublatticess. 45, 46, 48
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List of symbols

r Position vector of electron. 7–16, 101

R Perfect gas constant. 35, 39, 41, 42, 46, 48

R Position vector of nucleus. 7, 8, 11, 15, 16

S Entropy. 26, 33, 45, 46

s Refers to the sublattice s. 44–46, 48, 101–103

ξ Variable of spin function (α or β). 9

T Thermodynamic temperature, such as : T(K) = θ(°C)+273.15°C where θ(°C) being the
Celsius scale. 26, 27, 33–35, 37, 39, 41–43, 46, 48

T̂N Kinetic energy of ions. 7, 8

τ Curie temperature TC for the ferromagnetic phases bcc_A2 and Neel temperature T_N
for the phases f cc_A1. 35

TC Curie temperature. 35, 37

T̂e Kinetic energy of electrons. 7, 8, 12

T∗ The critical magnetic temperature. 35

TN Neel temperature. 35, 37

T The kinetic energy of Kohn-Sham electrons. 13

U Internal Energy. 26

V Volume. 26

Va Vacancy site. 44, 45, 48, 102, 103

V̂e−e The electron-electron coulomb interaction. 7, 8, 12

V̂e−N The Coulomb electron-nucleus interaction. 7, 8

V̂N−N The Coulomb interaction Nucleus-Nucleus. 7, 8

vxc The potential of exchange and correlation. 13

x Mole fraction of component B in the binary phase diagrams. 37–39, 41, 44, 45, 103

xi Mole fraction of component i . 38, 39, 41, 44

xΦi The molar fraction of the element i in the phase Φ. 45

y Fraction of sites. 44–48, 103

y s
i Fraction of sites of the species i of the sub-lattice s. 44–46, 48

y s
Va The total fraction of vacancies sites in the sub-lattice s. 44, 45, 48

Z Atomic number. 8, 10, 11
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