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INTRODUCTION 
 

An exceptional posit ion in physics and astrophysics is taken by 

neutron stars. On the one hand, they have matter under extreme physical 

conditions, so their theories are constructed on risky extrapolations of 

what we now consider as rel iable physical theories of the structure of 

matter which are experienced in the laboratory. On the other hand, the 

unique opportunity their observations offer to test these theories. 

Moreover, neutron stars are important impressive personae on the stage of 

modern astrophysics; they participate in many astronomical phenomena. 

Neutron stars have the matter of density varies from some g cm�� in 

the surface, where the pressure is small , to more than 10	
 g cm�� at the 

center, where the pressure exceeds10�� dyn cm��.  

 
Many branches of physics are used in thermodynamics and kinetics 

studies of neutron star matter owing to the enormous ranges of 

temperatures and densit ies in neutron stars interior. 

 
The kinetic theory (or kinetics) deals with transport coefficients, the 

thermal and electrical conductivit ies (κ andσ) as wel l as the shear and 

bulk viscosit ies (η and ζ) are most useful ones. Many physicists had 

studied kinetic theory of the matter inside the neutron stars crust ,  The 

electrons are the major contributors to the conductivit ies κ and σ and the 

viscosity η , Coulomb scattering by ions in the l iquid case or scattering by 

phonons, which quantify vibrations of ions in solid state matter are the 

main scattering mechanism for the electrons. At sufficient low 

temperatures the electron-ion scattering is strongly suppressed and in  this 

case the electron scattering by charged impuri t ies which are a small 

fraction of ions have different charges  from charges of most abundant 

ions and the scattering of electron by electron can be more signif icant. 
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We performs the  f irst chapter to play a preparatory role for the 

future and provides a summary of key information on the envelopes of 

neutron stars, which we  guided in the performance of work “specially the 

crusts”, as wel l as a brief overview of previous studies on this subject.  

In the second chapter we examined the equil ibrium properties of the 

plasma in the shells of neutron stars, excluding the effect of the magnetic 

field, but taking into account the no ideal Coulomb plasma. The main 

attention is paid to the Coulomb interaction in the outer shells of neutron 

stars. And because the physical conditions in the outer shells of neutron 

stars are similar to conditions in the interior of white dwarfs and in the 

cores of red giants, the results are useful also for these objects. 

The third chapter is devoted to the calculation of thermal 

conductivi ty, electrical conductivity and thermoelectric coefficient of a 

fully ionized plasma physical conditions encountered in the ocean and the 

crust of neutron stars without a strong magnetic field, introducing what 

we so called “The Ioffe model”.  

The fourth and fi fth chapters are central to this work. They are 

dedicated to those effects, and we include other effects and study others 

situations: 

�  In the fourth chapter, the effect of the nuclear form factor on the 

electrical and thermal conductivit ies and we study also the multi 

components plasma systems. 

 

� In the fi fth chapter, based on chapters 2-4 we study the influence 

of a strong magnetic field on the propert ies of transport in the shells of 

neutron stars, and also the case of thermal effects. Furthermore we apply 

the Ioffe model to compute the shear viscosity. 
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Chapter I 

   Neutron stars, an overview 

 

I.1. Introduction 

 Stellar evolution is the process by which a star experiences a succession 

of drastic transformations for the period of its l ifetime. Depending on the 

mass of the star, this l i fetime varies from only a few mil l ion years (case of 

the most massive stars) to tri l l ions of years (for the least massive ones ,  

which is much more than the age of the universe). 

As most changes take place in stars happen too slowly to be directly 

perceived , so we can not study stellar evolution by observing the l i fe of a 

star, , even i f the observation are made over several centuries. Instead, to 

realize how stars evolve we must observe several stars at the diverse stages 

in their l i fe, and also by using simulation and  models of stellar structure. 

 A supernova is a kind of stellar explosion in which more energy is 

exploded than a nova. Supernovae are very luminous and cause a burst of 

radiation that often brief ly outshines an entire galaxy, before deappearing 

from view over a several of weeks. Supernova is able to radiate as much 

energy as the Sun is expected to emit over its whole l i fe during this small  

interval of t ime. The explosion expels much of a star's matter at a very high 

velocity of up to 30,000 km/s, causing a shock wave into the neighboring 

interstellar medium. This shock wave brushs up an expanding shel l of dust 

and gas what we so called a supernova remnant. 

It  exist a several types of supernovae. Types I and II can be caused in 

one of two ways, both turning off or suddenly turning on the production of 

energy through the nuclear fusion. After the core of an aging massive star 

ceases generating energy from nuclear fusion, it may experience sudden 
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gravitational collapse into a neutron star or black hole, releasing 

gravitational energy that warms and ejects the outer layers of the star.  

A neutron star is a type of remnant that can result from the gravitational  

collapse of a massive star during a Type II, Type Ib or Type Ic supernova 

event. Such stars are have a great portion of  neutrons. Neutron stars are 

very hot and the Pauli exclusion principle supporte them against further 

collapse because.  

The typical typical masses of neutron stars M �  1.4M☼ and their typical 

radii R � 10 km. hence, their masses are close to the solar mass M☼   
 1.989 #  10$$ g, however their radi i are � 10& t imes smaller than the solar 

radius R☼    6.96 # 10& km, thus typical masses, thus Neutron stars are 

compact stars which have matter of super nuclear density in their interiors 

with a huge portion of free neutrons.      

as a result, neutron stars hold an huge gravitational energy E)*+, and 

surface gravity g: 

-./01~ 34
5 ~6 # 7869:/.~8. ;4<;                         =7. 70>. 

 

.~ 34
5 ~; # 787?<@

A;                                              =7. 7B>.    

Where c is the speed of l ight and G is the gravitat ional constant. 

obviously, neutron stars are extremely dense. The mean mass density is :  

EF G 94
=?H59> G# 787?.<@I9~=; J 9>E8                      =7. ;>. 

Where ρL    2.8 # 10NO gcmI$ is what we so cal led the normal nuclear 

density. The central density of neutron stars is bigger, attaining =10 J
20ρ0. By the way, neutron stars are the most compact stars that we 

recognized in the Universe. 
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I.2.        History of neutron star physics 
 

Prediction: 

 

�  L.D.Landau (1931) – expectation [L.D.Landau, “On the theory of 

stars,” Physikal ische Zs. Sowjetunion 1 (1932) 285]: for stars with 

P Q 1.5P☼ “density of matter becomes so great that atomic nuclei 

come in close contact, foming one gigantic nucleus’ ’ .  

 

�  J.Chadwick – the neutron’s discovery  [ Nature, Feb.27, 1932]. 

 

�  The supposit ion of the existence of  neutron stars by W.Baade & 

F.Zwicky (1933)   [“Supernovae and cosmic rays,” Phys. Rev. 45 

(1934) 138; “On super-novae,” Proc. Nat. Acad. Sci. 20 (1934) 254]: 

“…supernovae represent the transit ions from ordinary stars to neutron 

stars, which in their final stages consist of extremely closely packed 

neutrons”; “…possess a very small radius and an extremely high 

density.”.  

�  Crab nebula –This is in real ity a remnant of the supernova, exploded 

on July 4, 1054. 

K.Lundmark invented the connection between the nebula and the 

archival Chinese “Guest star”  in 1921.and it was confirmed as the 

supernova type I remnant in 1942 (Dyuvendak; Mayall & Oort; Baade; 

Minkowski).  

In 1968, the Crab pulsar  has been discovered in the vicinity of the 

center of the nebula (in radio and X-rays). 
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Theory before the discovery: 

 

�  T.E.Sterne (1933) – proposed the fi rst model of the EOS (equation of 

state) of the nuclear matter; he predict the neutronization with 

increasing density. 

 

�  F.Zwicky [“On collapsed neutron stars,” Astrophys. J. 88 (1938) 522]. 

 
�  Made an estimation of the maximum binding energy of a neutron star; 

�  i l lustrate the difference between the Baryonic PS and gravitational P 

masses; 

�  show the “huge gravitational red shifts” 

 
�  R.C.Tolman; J.R.Oppenheimer and G.M.Volkoff (Phys. Rev.,  3.01. – 

15.02.1939) they :  

 
�  Computed the “TOV equation” ( thehydrostatic equil ibrium of a 

spherically symmetric star).  

O.&V.: founded the maximum mass of a neutron star using the non-

interact ing neutrons model as: 

4@0T   8. U7 4☼  V  4@0T=WX>    7. ?? 4☼).  

 

� EOS for dense matter.  

 
�  J.A.Wheeler, B.K.Harrison, et al. (1950s). 

�  A.G.W.Cameron (1959) – nuclear forces (PYZ[ ~ 2 P☼); hyperons. 

�  Ya.B.Zeldovich (1961) – maximally st if f EOS model. 

 

�  Superfluidity.  

 
�  BCS: J.Bardeen, L.N.Cooper, & J.R.Schrieffer (1957). 



������� 	:                                                                            �����
� ���� �� 
������� 

 

Kinetic properties of the electrons in the shells of neutron stars                                                                12 

 

 

�  A.Bohr, B.R.Mottelson, and D.Pines, “Possible analog between the 

excitation spectra of nuclei and those of superconducting metal state,” 

[ Phys. Rev.  110 (1958) 936]. 

 
�  A.B.Migdal (1959), V.L.Ginzburg and D.A.Kirzhnits (1964): 

=\] ~ 10NL ^, _ ~ 10N$ –  10N& a
]b$> 

 

� Neutrino emission.  
 

�  H.-Y.Chiu and E.E.Salpeter (1964); J.N.Bahcall & R.A.Wolf (1965). 
 

� Cooling.  
 

�  R.Stabler (1960, PhD); Chiu (1964); Chiu & Salpeter (1964); 

�  D.C.Morton (1964), Bahcall & Wolf; S.Tsuruta & A.G.W.Cameron 

(1966). 

 

 

Search and discovery: 

 

�  Search in X-rays . \ ~ 10c ^ d X-rays d space observations. 
 

�  R.Giacconi et al . (1962): discovery of Sco e J 1 (Nobel Prize of 2002 

to Giacconi for outstanding contribution to X-ray astronomy). 

 

�  I.S.Shklovsky (1967): Sco e J 1  “a neutron star in a state of 

accretion” (correct, but unnoticed). 

 
 

� Plerion pulsar nebulae.  
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�  S.Bowyer et al.  (1964): discovred an X-ray source in the Crab nebula 

~ 10N$ fb (d not a neutron star).  

 

�  N.S.Kardashev (1964), F.Pacini (1967): constructed models of a 

nebula around a rapidly rotat ing strongly magnetized neutron star. 

Pacini – pulsar model.  

 

� Radio observations.  
 

�  1962, 1965 (A.Hewish) –the discovery of a pulsar in the Crab nebula, 
but unexplained and unnoticed 

 
 

� 6.08 – 28.11.1967:  

�  Jocelyn Bell,  Anthony Hewish – discovery of pulsars (Nobel prize of 

1974 to Hewish). 

 

�  in 1969 it become clear that pulsars are rapidly rotating neutron stars 

with strong magnetic fields (Thomas Gold, 1968). 
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Figue1.1:   Jocelyn Bell and the telescope in Cambridge, England, used to 
discover pulsars in 1967

 

I.3.       Basic parameters of neutron star
 

 For neutron stars, unlike all others, play important role effects of 

general relativity (GR). Therefore, the model of neutron stars should be 

calculated only in the framework of general relativity. The structure of 

the non-rotating star is determined by t

hydrostatic equil ibrium 

Volkov (TOV). It gives a very good approximation for spinning neutron 

stars, except those with mil l isecond rotation periods. The smallest 

possible rotation per

period is 1.396 ms
rotation, in which the effects of rotat ion can be accounted for by 

perturbation theory (see, for example., [Hae 2006], Ch. 6). Amendments 

by the magnetic field is negl igibly small for large

neutron stars, except for f ields in the 

observed. Effects caused by the well

B ~ 10NO G, may be important in the envelops . Solution of the equation 

TOV for a given equation of state of ma

                                                                         �����
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Neutron stars from a hypothesis turned into reality.

 

Jocelyn Bell and the telescope in Cambridge, England, used to 
discover pulsars in 1967–68. Image Credit: Jocelyn Bell Burnell. 

Basic parameters of neutron star 

For neutron stars, unlike all others, play important role effects of 

general relativity (GR). Therefore, the model of neutron stars should be 

calculated only in the framework of general relativity. The structure of 

rotating star is determined by the relativistic equation of 

hydrostatic equil ibrium - the equation of the Tolman 

Volkov (TOV). It gives a very good approximation for spinning neutron 

stars, except those with mil l isecond rotation periods. The smallest 

possible rotation period is 0.7 ms, but the smallest of the observed to date 

ms [Hes 06], which corresponds to a "regime of slow 

rotation, in which the effects of rotat ion can be accounted for by 

perturbation theory (see, for example., [Hae 2006], Ch. 6). Amendments 

by the magnetic field is negl igibly small for large-

neutron stars, except for f ields in the ~10Nc G,  which has not yet been 

observed. Effects caused by the well-known today, the magnetic fields 

, may be important in the envelops . Solution of the equation 

TOV for a given equation of state of matter of the neutron star gives a 

�����
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Neutron stars from a hypothesis turned into reality. 

Jocelyn Bell and the telescope in Cambridge, England, used to 
 

For neutron stars, unlike all others, play important role effects of 

general relativity (GR). Therefore, the model of neutron stars should be 

calculated only in the framework of general relativity. The structure of 

he relativistic equation of 

the equation of the Tolman - Oppenheimer - 

Volkov (TOV). It gives a very good approximation for spinning neutron 

stars, except those with mil l isecond rotation periods. The smallest 

, but the smallest of the observed to date 

[Hes 06], which corresponds to a "regime of slow 

rotation, in which the effects of rotat ion can be accounted for by 

perturbation theory (see, for example., [Hae 2006], Ch. 6). Amendments 

-scale structure of 

,  which has not yet been 

known today, the magnetic fields 

, may be important in the envelops . Solution of the equation 

tter of the neutron star gives a 
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family of models of the star, a parameter which is the density of ρi in the 

center of the star. Stabil i ty condition, requiring that M =ρi> was an 

increasing function is performed within a certain range of stel lar masses 

and radii , depending on the equation of state theory, the greatest mass 

Mj+k can range from 1,4 to 2,5 M☼ and the smallest - Mjno ~ 0,1 M☼ (for 

example [Hae 2006]). For each star, the significance of the effects of  

general relativi ty is determined by  the compactness parameter x)   r) /
 R, where: 

/.  ;34
<; G ;. r64

4☼

                                                     =7. 9>. 

- The Schwarzschild radius or gravitational radius. Acceleration due to 

gravity at the stellar surface is defined by : 

.  345I;s7 J T.tI7
; G 7. 9;u #

787?s7 J T.tI7
; v 4

4☼
w 5xI;<@

<;      =7. ?>.    

Where yc   y / =10c fb>. The frequency of the photons at the surface 

in a locally inertial reference system (we denote this frequency ωL) away 

from the star undergoes a gravitational redshift  to a value ω∞ in 

accordance with the formula:  

{.  |8
|∞

J 7  s7 J T.tI7/; J 7                                     =7. 6>.    

Along with a radius R, determined by the length of the equator 2π R in 

a locally inertial reference system, often introducing the "apparent 

radius" for a distant observer: 

5∞  5 s7 ~  {.t                                                      =7. x>.    

Models of the neutron star is tradit ionally considered a star with 

M   1.4 M☼ and R   10 km =R∞   13 km, g   2.425 #  10NO cmI�>. Note that 

currently the most detailed model equations of state, is considered the 
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best, predicting a sl ightly lower compactness: R G  12 km for M   1.4 M☼  

(see, for example. [Hae 06], Ch. 6).  

 

I.4.        Structure of neutron star envelopes  
 

The atmosphere 

 

Is a thin layer of plasma which establishs the spectrum of thermal 

electromagnetic radiation of the star. By the way, this radiat ion tell us 

about important information on many stel lar parameters (eg temperature, 

chemical composition of the surface and gravitational accelerat ion, on 

magnetic f ield, etc.,) and, as a consequence, on the internal structure. 

The geometrical depth of the atmosphere changes from some ten 

centimeters in a hot neutron star down to some millimeters in a cold 

one. Very cold neutron stars may have no atmosphere at all but a solid 

surface. 

Many physisicts make theoretical studies to the neutron star’s 

atmospheres ( e.g., Pavlov et al [Pav 95]; Pavlov and Zavl in [Pav 98]). 

The creation of the atmosphere models, in particular for the cold neutron 

stars (in which the surface temperature \� �  10c ^) in the presence of 

strong magnetic fields 10NN– 10NO �, is far from being complete due to the 

complication of  the calculations of the equation of state and spectral 

opacity of the plasma atmospher. 

 

Ocean  

 

The bottom of the ocean of the neutron star is situated at the melting 

point with the mass density _Y, and its outer frontier is quite arbitrary,  

since in a usual neutron star ocean goes into the atmosphere 

continuously, without the interface. The exclusion, as in the case of the 
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solid crust, are neutron stars with suff iciently strong magnetic field, 

which can guide to the absence of an optically thick atmosphere and i ts 

replacement of the l iquid frontier. In most parts of the ocean substance 

consists of "naked" nuclei surrounded by degenerate electrons. In the 

surface layers of the ocean, however, a nucleus with a sufficiently large 

charge can polarise the electrons (this happens when _ � _�����  G
 22�� �).  Therefore, in general, one speak of ions surrounded by 

electrons, implying ions, both fully and part ial ly ionize atoms. 

The substance of the ocean represents a Coulomb l iquid. In large 

parts of the ocean Coulomb liquid is strongly coupled, that is the 

characteristic potential energy of the Coulomb interaction of nuclei  

greater than their kinetic energy. As a result, one of the most significant 

problems in the theoretical investigation of this matter is adequately 

account for the influence of microscopic correlations in the posit ions of 

the ions studied the macroscopic physical properties of matter. 

 

Outer crust 

 

The outer crust of neutron stars have a thickness of several hundred 

meters and consist of electron-ion plasma, and almost everywhere 

(except, perhaps, the outer layer thickness of several meters, where the 

density does not exceed 10c a ]bI$), the ionization is complete, that is, 

the ions are atomic nuclei and free electrons are strongly degenerate. In 

this case, the total pressure is determined mainly by the pressure of 

degenerate electrons. At _ � 10c a ]bI$ electrons become relat ivist ic (ie, 

their Fermi momentum �� is comparable to b�]) and at  _ � 10c a ]bI$- 

ultrarelativistic (�� � b�]).  At such densit ies, the ions form a tightly-

coupled Coulomb liquid ( ie l iquid, whose properties are governed mainly 

by the Coulomb interaction between ions) or Coulomb crystals.  
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In the deep layers of the outer shel ls of the electron Fermi energy 

increases so that the cores are enriched by neutrons due to beta-grabs, 

and finally, at _  _���� , where free neutrons appear, the border between 

the outer and inner crust of neutron stars. 

 

The inner crust (the inner envelope) 

 

The inner crust can be about one kilometer to several ki lometers 

thick. The density _ in the inner crust varies from _����  G  4.3 #
 10NN a ]bI$ at the upper boundary in which neutrons start to drip from 

nuclei producing a free–neutron gas to ~ 0,5 _L at the base. Here, _L is the 

saturation nuclear matter density the matter of the inner crust consists of 

electrons, free neutrons, and neutron-rich atomic nuclei The fraction of 

free neutrons increases with growing _. The neutronization at _ G  _���� 

greatly softens the EOS, but at the crust bottom the repulsive short-range 

component of the neutron-neutron interaction comes into play and 

introduces a considerable sti f fness.  

The pressure in the inner crust of a neutron star is created mainly 

degenerate neutrons. At the same time, superfluidity can lead to 

suppression of heat, and as a result - to the fact that the contribution of 

atomic nuclei in the heat capacity of the inner crust becomes crucial.  

Nucleus form a crystal latt ice, supported mainly by the Coulomb 

interact ion - the Coulomb (or Wigner) crystal.  Therefore, an adequate 

description of their contribution can be obtained by considering the gas 

collective vibrational excitat ions of phonons. Electrons, being a 

relativistic and highly degenerate, do not give a significant contribution 

to the heat inside the crust is not too low temperatures. However, their 

contribution can be decisive when the temperature of the Coulomb crystal 

fal ls far below the Debye temperature, which leads to "freezing out" of 

the phonon excitations. 
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Electrical conductivity principally is supplied by electrons in the 

inner crust of a neutron star. In this case, i t is essentially due to the 

scattering of electrons by phonons of ionic crystal latt ice, the dominant at 

relatively high temperatures, and their scattering by latt ice defects and 

impurit ies, giving a residual resistance at low temperatures. Ions (atomic 

nuclei) do not provide a tangible contribution to the conductivity, being 

mounted in the Coulomb crystal latt ice. At the same time as the thermal 

conductivi ty is provided by electrons (the main scattering mechanisms are 

the same as that for electrical conductivi ty, but in addition thereto may be 

significant and electron-electron coll ision), and phonons and neutrons. In 

the presence of latt ice defects and impurit ies that impede electronic heat 

transfer, phonons can be major agents of heat transfer [Chu 07]. 

Significant heat carriers in the inner crust and neutrons can be, especially 

the superf luid [Agu 09]. 

 

Mantle  

 

The mantle situate between the bottom of the outer crust and the core 

of a neutron star may be a layer, in the density range from  G N
$ _L  �
 G

N
�  _L called in [Pet 98], mantle, where the equil ibrium atomic nuclei take 

exotic forms. Mantle, i f i t  exists, consists of several layers containing 

such phases of matter, in which atomic nuclei become essentially 

nonspherical. Whereas the spherical nucleus form a three-dimensional 

crystal latt ice, the phases of matter containing a “pasta” phases such as 

slabs or cyl inders, have similar properties to l iquid crystals. 

The presence of the mantle is predicted not all modern equations of 

state of nuclear matter: for some models of such a state of matter is 

energetically unfavorable. As shown in [Gus 04], in the mantle may be 

allowed direct Urca process of neutrino emission, impossible in the other 

shel ls of neutron stars and have a high intensity. Therefore, the presence 
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of the mantle can accelerate the cooling of neutron stars and thus appear 

in the observations. 
The outer core 

 

The outer core of a neutron star typically has a thickness of several 

ki lometers and the density of matter in the range 0.5_L  �  _ �  2_L. Its 

matter consists of neutrons with several per cent admixture of protons �, 

electrons, and possibly muons � (the so called ���� composition). The 

conditions of electric neutrality and beta equi l ibrium establish the  state 

of his matter, by using a microscopic model of many-body nucleon 

interact ion. The beta equil ibrium implies the equilibrium with respect to 

the beta (muon) decay of neutrons and inverse processes. Al l ����-plasma 

components are strongly degenerate. An ideal Fermi gases is made by 

electrons and muons. The neutrons and protons interact by strong nuclear 

forces, which make  a strongly interacting Fermi l iquid and it may be in 

superfluid state. 

 

The inner core 

 

It can be more than a few kilometers in radius and contain a central 

density as high 0.5ρL  �  ρ �  2ρL.  We don’t  know a lot about the 

composition and neither the equation of state of the inner core. Only we 

have several hypotheses thet have been talked about in the l i terature and 

it is impossible to refuse any of them at present: 

(1) Large proton portion (Q 11%) and/or hyperonization of matter - 

the emergence of various hyperons l ike  ΣI and Λ and other hyperons.  

(2) The second hypothesis supposes the appearance of pion 

condensation.  
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(3) The third hypothesis tell us about  a phase transit ion to the strange 

quark matter composed of almost free u, d and s quarks with small portion 

of electrons . 

(4) This hypothesis considers the emerges of kaon condensation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I.5. Magnetic field and its evolution 

Most known neutron stars today have magnetic f ields attainable in the 

laboratory, with typical values on the surface  in the ~ 10�  J 10� G for 
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mill isecond pulsars, B ~ 10NL  J 10N$ G for the "ordinary" radio pulsars 

~ 10NO G for the anomalous X-ray pulsars (AXP) and, according to the most 

widely accepted models of m today, in ~ 10NO  J 10N& G for the source of soft  

gamma repeaters (SGR). The field strength inside the star may be even 

higher. So, to explain the energy and AXP and SGR involved magnetic fields 

that reach the core of a neutron star at its birth in the values of ~ 10Nc J
10N� G. The theoret ical l imit,  obtained numerically, is Bj+k ~ 10N�  J  10N� G,  

which agrees with the estimate based on the virial theorem . What creates 

these fields are sti l l  not reliably known. Magnitude of the magnetic field of 

a neutron star in ~ 10N� G was predicted W. L. Ginsburg in 1964 (even before 

the discovery of pulsars), based on the assumption of conservation of 

magnetic f lux of the supernova progenitor star during its collapse. 

Subsequently proposed various theoretical models of field generation with 

differential rotation, convection, magneto-rotational instabil i ty and 

thermomagnetic effects either in the explosion and collapse of a supernova, 

or in young neutron stars . In particular, According to the P- dynamo model,  

the core of a neutron star, born with a fairly short (mil l isecond) rotation 

period, acquires through its di fferential  rotation of the toroidal magnetic 

field to B ~ 10Nc gauss, and for the init ial  rotation period  ~30 ms pulsar 

magnetic field is created by convection. However, each of the proposed 

models is facing some difficult ies when compared with the total ity of data 

on neutron stars. 

During the evolution of the neutron star, i ts magnetic field changes. 

These changes depend on many parameters and related physical processes. 

Occurs ohmic decay of the field, changing its configurat ion as a result  of the 

Hal l dri ft, possible reconnection of magnetic field l ines at quark star.  

Thermoelectric effects, as well as the significant dependence of the 

components of thermal conductivity, electr ical conductivity and 

thermoelectric coeff icients of the plasma temperature and magnetic field 

leads to the interdependence of the magnetic and thermal evolution. 

Accret ion can also strongly influence the magnetic field near the surface. 
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If  the magnetic field has its source Abrikosov vortices in the core of a 

neutron star, i ts evolution is largely determined by their interaction with 

other components of the nucleus, in part icular - with the Feynman-Onsager 

vort ices in a neutron superfluid, as well as conditions on core boundary, ie, 

the interaction of these vortices with the substance of the envelope. 
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Chapter II  

General properties of neutron star’s 

Coulomb plasma 

II.1.  The method of minimizing the free energy 
 

 When we consider the equil ibrium properties of plasma in the 

envelopes of neutron stars in this work, we rely on a method of 

minimizing the Helmholtz free energy,  the introduction of the model 

calculations, the equations of state of the plasma in [Har 60].Here and 

henceforth one mean by an equation of state signif icance of the term in a 

broad sense, ie not only the dependence of pressure on the density of 

matter, but also the values of other thermodynamic funct ions which are 

needed for model ing stellar structure and evolution. Unl ike some other 

approaches, the method of minimizing the free energy ensures the 

consistency of calculations of various thermodynamic functions - in 

particular, the implementation of the Maxwell relations. The method 

consists in construct ing the free energy  � ��, �, ��	
�, where ��	
 - a set of 

numbers of di fferent part icles that make up the plasma in the volume �,  

and finding the minimum of � for f ixed �, taking into account the 

stoichiometric relationships: for example, i f the system can proceed the 

reaction type �   
  � �  � , then the equil ibrium must be satisfied the 

relation: 

 �����  �  �����  � �����                                                ��. ��. 
       As is well known [LL5], i f  the free energy is given as a function of � and �, then al l other thermodynamic functions can be obtained by 
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differentiating it.  The pressure �, internal energy � and the entropy � are 

given by the fi rst derivatives: 

 

� � �  ���!"#,��$
 , % � � &� '�#(
� '�#()

!,��$
 
, * � �  ���#"!,��$
        ��. ��. 

Functions of the second order are obtained by differentiating the 

functions (2.2). In particular, astrophysical simulations play an 

important role logari thmic derivative of pressure on density and 

temperature.  

+# �  � ,- �� ,- #"! , +. �  � ,- �� ,- !"#                                         ��. /�. 
 

Specif ic heat at fixed volume and fixed pressure: 

�! �  �*� ,- #"! ,  �0 �  �*� ,- #"�                                       ��. 1�. 
As well as the adiabatic temperature gradient:  

234 �  � ,56 #� ,56 �"*                                                        ��. 7�. 
In principle, al l thermodynamic functions of the second order can be 

obtained from 89, 8: and �; on the basis of Maxwell 's relations. In 

particular:  

�� � �! � �!# +#�+.  ,  234 � +#+#� � +. �!#/��!�      ��. =�. 
The fundamental di f f iculty is that in many important cases F is not 

known explicit ly, but it requires either the finding of constructing 

approximate models or complex numerical calculat ions. The technical 

and astrophysical applicat ions, especial ly where we need to know the 

equation of state in a wide range of plasma parameters is practically 

impossible to carry out such numerical calculations required in each 
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point. In this chapter one developed approximate methods for calculating 

free energy and, through them, all  the necessary thermodynamic 

functions of plasma, the most consistent with the current state of theory 

and, in part icular, with the available l i terature results of numerical 

simulation from first principles. In the next section we introduce the 

basic parameters of plasma, and continue to consistently examine its 

thermodynamic functions in various approximations are valid for 

different ratios between these parameters that are running in various 

envelopes of neutron stars. 

II.2.  Parameters of the plasma  

II.2.1. General settings  

Let n? - electron number density, and @	 - ion number density sorts 

 A �  1,2, . .. with charges D	E and masses FGHI�	� � �	FJ where FJ �  1.6605 N
 10OPQ R - atomic mass unit, e - elementary charge. The index j 
enumerates how different chemical elements present in the mixture and 

ions of di fferent ionization stages of one and the same element. Total 

number density of atomic nuclei (ions) is equal to the @GHI � ∑ @		 .   

Electroneutrality requires: 

VW � XYZV[\V                                                                   ��. ]�. 
Here and below angular brackets without subscripts X… Z Denote an 

average over the ion species j:  

X_Z � �V[\V ` V$_$ $                                                             ��. a�. 
 

When examined only one species of ions, we shal l omit brackets and 

either omit the index j, or replace it  on the index «ion» or «i», denoting 

the ions. 

Total concentration of baryons in the envelopes of neutron stars, nc, 

is approximately equal to �d@GHI where �e �  X�Z  �  �ee and �ee- the number 
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of free neutrons attr ibutable to a single atomic nucleus: �dd@GHI �  @I�1 � f� where @I - the local number density of free neutrons (obviously, in 

the outer envelopes of �ee �  0 and �e �  X�Z, but in the inner envelopes �e g X�Z. 
Generally speaking, the mass density of relativistic objects is defined 

as h � i/j², where i - the total energy density. However, in the shells of 

neutron stars is sufficiently accurate approximationh � FJ@l. 

At sufficient ly low density or high temperature equil ibrium 

composition of matter includes positrons and photons in quantit ies that 

may affect the thermodynamic properties. For simplicity, we neglect 

their contribut ion, because it  is negligible for most considered in this 

thesis’s applications. If  necessary, the contribution of positrons can 

easily be taken into account by the following formula for electrons by 

replacing them in the chemical potential  of the electron µ? the chemical  

potential  of positrons in equil ibrium equal�Fnj² � on, a contribution of 

the photon gas is given to its free energy:  

�p34 � �  1q*�/r " !#1                                                             ��. s�. 
II.2.2. Electrons 

 The state of the electron gas in thermodynamic equil ibrium is 

determined by the electron number density n?, and temperature T. In 

plasma physics, instead of n?, and often introduce the dimensionless 

density parameter uv � wn/wx, where wx -  the Bohr radius, and wn �
'Qy z@n(O{/y

. The r} is easy to assess the to relation uv  �  1.1723 @PQO{/y   ,  

where the     nPQ � n/10PQ cmOy, or uv � �h�v/h�{/y, where h�v  �  2,6752 ��d/ XDZ � R jFOy . In astrophysics, instead of T i t  is convenient to introduce 

the parameter of relativity: 

�p � 0��Wr � �. ��aa1 �.=XYZ�e ��// � �. ��1��7p�O�                       ��. ���. 
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Where ��  �  ���  �  � �3z@n�{ / y  - is the Fermi momentum, and ρ� � ρ/10� g cmOy - mass density in grams per cubic centimeters. The 

momentum of p� corresponds to the kinet ic Fermi energy �� � �FnPj² � ��P 

equal chemical potential µ? at � � 0, and the Fermi temperature �� �
 ��/�x � ����� � 1�  ,where �� �  Fnj²/�x  �  5.93 N  10� � - the relat ivistic 

temperature unit , and (�� � �1 � ��P  the Lorentz factor of electrons at the 

Fermi surface. If   �� � 1, then ��  �  1,163 N  10� u�OP �. Effects special 

theory of relativity controlled parameter x�, in a degenerate plasma (for � � ��) and the parameter:  � ¡ �/��; in a nondegenerate plasma (for � ¢  ��).  

The degeneracy parameter is defined as: 

£ � ##�                                                                         ��. ���. 
In the no relat ivistic case ��� � 1� i t  is equal to  ¤ � �.¥Qy�¦§̈ �
3.411837 '«¨¬¨(P

here we have introduced two more parameters: 

­W � W²3W®�# � ��. ]7#= �.= XYZ�e ��//                                                 �. ���. 
Where �6 �  �/ 10� �, characterizes the Coulomb interaction between the 

nondegenerate electrons, and: 

¯W � � �°�²�W ®�#��//                                                                    ��. �/�. 
Is the thermal de Brogl ie wavelength. In contrast, the ultra relativistic, i f  ��� ¢ 1� we have ¤ � �263±n�O{.  

Another convenient parameter characterizing chemical degeneration 

is the ratio: 

+W � ²W®�#                                                              ��. �1�. 
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There are also useful to introduce the electron plasma 

temperature �³n, relevant energy �´³n: 

#0W � �µ0W®� � /. / N ��a�p��p/¶p ·                                         ��. �7�. 
Where 

µ0W � �1°W�VW�W̧ ���                                                             ��. �=�. 
Is the plasma 'frequency of electrons, typical for their collective 

osci l lations, and Fņ � Fn ��- effective dynamic mass of the electron at the 

Fermi surface. Electromagnetic oscil lations with angular frequency ´ ¹ ´³n can not be distributed freely in non-magnetic plasma, and hence 

the thermal spectrum of the star is formed mainly in the region where  º  �³n .  

Later, we need the values that characterize the response of the 

electron gas at the Coulomb effects. The relevant parameters - the radius 

of the electronic screening r?  and i ts inverse wave vector of Thomas-

Fermi k¼�:  

®#� � pWO� �  1°W� �VW�²W"�/�                                           ��. �]�. 
In a no degenerate gas �T ¢ T�� ½@n/½on �  @n / ��x��, so those un �
wn  / �±n. In the opposite l imiting case of strongly degenerate gas �� � ���  

we have:  

®#� � �¾ ¿_¶p�°�p� ®�  � �. �a7 3WO�¾¶p�p                                     ��. �a�. 
Where ÀÁ  �  E² / j �  1/136.037 – is the fine structure constant. 
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II.2.3. Ions  

In the envelopes of neutron stars, the ions are always no relativistic, 

so only this case we wil l  consider. Coulomb interaction of ions of 

species  j  characterized by the parameter: 

Â$ � ÂWY$7// � �Y$W�²3[\V�$� ®�#                                                   ��. �s�. 
Where 

3[\V�$� � 3WY$�//                                                     ��. ���. 
Called the radius of the ion sphere. The other characteristic length 

parameter – the thermal De Brogl ie wavelength of ions of species j, 
 

¯$ � � �°�²�$ ®�#��//                                                    ��. ���. 
 

 

Figure 2.1.  Density-temperature diagram for the outer envelope composed of carbon (left) or 
iron (right). We show the electron Fermi temperature (��), the electron and ion plasma 
temperatures (�³n and  �³G), the temperature of the gradual gas-liquid transition (�Ã), and the 

temperature of the sharp liquid-solid phase transition (�Ä). Shaded are the regions of typical 
temperatures in the outer envelopes of middle-aged cooling neutron stars (which are  Å 10Q � 10�  years old). The lower left domain on the right panel, separated by the dotted line, 
is characterized by strong electron response or bound-state formation. From [Hae 07]. 
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Similar to ±n , in a multicomponent plasma, the Coulomb coupling 

strength is characterized by the average parameter: 

­ � ­W XY$7//Z                                                          ��. ���. 
This parameter specifies, in part icular, states of matter: i f  ± � 1 ions 

form a classical Boltzmann gas, with increasing ± with increasing 

density or decreasing temperature to � �  �{, where �{ corresponds to the 

value ± � 1, the gas gradually acquires the properties of l iquid : with 

further increase of ± phase transit ion of a Coulomb fluid in a Coulomb 

crystal (temperature � �  �Ä, "where �Ä corresponds to ± �  ±Ä,).  

 In the gas phase the characterist ic length of the Coulomb screening 

by ions is the Debye length uÆ or his inverse the Debye wave number  ÇÆ : 

uÆ � ÇÆO{ � È 4z�x� ` @		 ÉD	EÊPË
O{/P

                                   �2.23�. 

 

Figure 2.2: Left panel: melting temperature versus density. Right panel: electron and ion 
plasma temperature versus density. Solid lines: the ground-state composition of the crust is 
assumed: Haensel and Pichon [Hae 94] for the outer crust, and Negele and Vautherin [Neg 
73] for the inner crust. Dot lines: accreted crust, as calculated by Haensel and Zdunik [Hae 
08]. Jumps result from discontinuous changes of Z and A.Dot-dash line: results obtained for 
the compressible liquid drop model of Douchin and Haensel [Dou 01] for the ground state of 
the inner crust; a smooth behavior (absence of jumps) results from the approximation 
inherent in the compressible liquid drop model. Thick vertical dashes: neutron drip point for 
a given crust model. Figure made by A.Y. Potekhin (eg [Hae 07]) 
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- and the total plasma screening - wave number :  

®� � ÉÌÍ� � ®#�� Ê�/�                                              ��. �1�. 
Inf luence of quantum effects on the dynamics and thermodynamics of 

the ion becomes important when � � �³G   where: 

#0[ � �µ0[®� � ]. a/� N ��= �.=�e XY�� Z��� ·                         ��. �7�. 
- is the ion plasma temperature, and : 

µ0[ � �1°W²V[\V X Y²�[\VZ��/�                                     ��. �=�. 
- is the ion plasma frequency. Quantum ion parameter is Î � �/�³G.  

In one-component plasma of ions (OCP- one-component plasma) can 

be written: 

Ï � ­�//Ð*                                                        ��. �]�. 
Where Ñ�  �  wGHIFGHI �DE�P /�² �  uv �FGHI / Fn� DÒ/y – The ion density 

parameter. 

 The course introduced in this section, the characterist ic temperature 

depending on the density for carbon and iron plasma in the outer shells 

of neutron stars is shown in Fig. 1, and for the substance of external and 

internal  envelopes  of stars in the ground state (the composit ion is taken 

according to the classical model than – [Neg 73]).  

 

II.3.  Fully ionized Coulomb plasma  

The majority of the envelopes of neutron stars are fully ionized. The 

case of complete ionization is determined by the requirement that the 

characteristic distance between the ions wGHI was small compared with 

the Thomas-Fermi radius of the atomic core, u«~wx/D{/y that is equivalent 

to h ¢ hnG³ � �FJ/wxy ��D � 11�D R/jFy =. In h ¢ hnG³ in the outer 

envelopes of the neutron star model can be applied electron-ion plasma, 
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which addresses the point ions in an electron l iquid. In general, the 

electron fluid is compressible, the ions and electrons interact via 

Coulomb forces and are therefore correlated. Coulomb correlations 

between ions and the ions with electrons and electrons with each other,  

tend to be much different in strength, so it makes sense to study them in 

sequence on the basis of expansion of the free energy of the form: 

� � �[4�[� � �[4�W� � �[[ � �[W � �WW                                       ��. �a�. 
Here �GÔ�G� and �GÔ�n� – are the free energy of an ideal Boltzmann gas of 

ions and the Fermi gas of electrons, respectively, without taking into 

account the correlations, in �GG included the Coulomb interaction between 

the ions without regard to their correlations with the electrons, but with 

the Coulomb energy of their interaction with "incompressible" electronic 

background providing electrical neutrali ty of the plasma; Fie includes 

interact ions between the ions and polarizable electron background 

related to deviations from the approximation of an incompressible 

background and, f inally, �nn a member of the deviations takes into 

account the interaction of the electronic subsystem. The last three terms 

in the sum contribute to the free energy due to interactions. 

�W� � �[[ � �[W � �WW                                                ��. �s�. 
 

The expansion (2.28) induces the corresponding expansion of other 

thermodynamic funct ions. In particular, the pressure appears in the form.  

 

 

 

 

 

 

 

 

 

 



Chapter II                                     General properties of neutron star’s Coulomb plasma 

 

Kinetic properties of the electrons in the shells of neutron stars                                                                34 

 

 

Table 2.1. Order-of-magnitude of the pressure components in Eq. (2.30) for the matter 

containing strongly degenerate electrons and fully ionized, strongly coupled ions (after Yakovlev & 

Shalybkov 1989). The parameter wx  �  ÀÁ/Õ� is small at h �  1 R jFOy. [Hae 07] 

 

� � �[4�[� � �[4�W� � �[[ � �[W � �WW                                      ��. /��. 
Table 1 gives an idea of the characteristic ratios on the order of 

magnitude between the different components in a strongly degenerate 

plasma. The corresponding contributions to the internal energy have the 

same order of magnitude as the contributions to the pressure, but the 

contribution of second-order functions can be ranked differently (for 

example, as wil l  be shown below, the heat of the Coulomb crystal can be 

determined not by electrons and ions). 

In a weakly degenerate plasma hierarchy of contributions shown in 

Table 1, collapsing: different terms may become comparable in 

magnitude. 

 

II.3.1. Ideal electron gas 

The free energy of an ideal electron gas can be obtained from the 

general formula: 

�[4�W� � ²W�W � �[4�W�!                                                    ��. /��. 
 

Ideal degenerate electron gas, leading term 

Exchange-correlation corrections in electron gas 

Ideal ion gas contribution 

Coulomb corrections in the rigid electron background 

Coulomb corrections owing to electron polarization 
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and the pressure �GÔ�n� and electron density @n, in turn, expressed in terms 

of on and � as: 

�[4�W� � �®�# Ö ,- ×� � ØÙÚ  ²W � ÛW®�# "Ü 4/0��°��/ � 

                                                                                           (2.32). 

� a/√° ®�#¯W/ ×Þ//��+W, ßp� � ßp� Þ7/��+W, ßp�Ü 
 

 

VW � Ö �
×� � ØÙÚ 'ÛW � ²W®�# (Ü

4/0��°��/ �    
                       ��. //�. 

� 1√°¯W/ àÞ�/��+W, ßp� � ßpÞ//��+W, ßp�á 
 

where �n � j��Fnj�²� �²� Fnj²  - kinetic energy of the electron with 

momentum  �, and: 

Þâ�+W, ã� � Ö �â�� � ã�/���/�ØÙÚ�� � +� � �∞

� 4�                                    ��. /1�. 
      - is the Fermi-Dirac integrals. The internal energy equals to: 

%[4�W� � 1®�#√° !̄
W/ àÞ//��+W, ßp� � ßpÞ7/��+W, ßp�á                        ��. /7�. 

 

II.3.2. Coulomb crystal (harmonic approximation)  

Below the melting temperature � ¹ �Ä an inf inite ion motion is 

replaced by oscil lat ions near equil ibrium posit ions, which means that a 

crystal is formed. The ground state of the OCP of ions corresponds to the 

body-centered cubic (bcc) latt ice. In a real crystal, this happens at high 
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densities (at uv � 1), whereas other types of latt ices (face-centered cubic, äjj; hexagonal close-packed, åj�) may form the ground state at uv æ 1 

[Koh 96]).  Note that the simple cubic Coulomb latt ice is unstable (as any 

simple cubic latt ice of particles interact ing via central forces; M. Born 

in 1940). 

We recall some standard definit ions [Kit 86], which wil l  be useful 

later. The primit ive cel l of the crystal latt ice, whose center coincides 

with the equil ibrium posit ion of the ion, called the Wigner-Seitz cell.   In 

the study of strongly coupled Coulomb systems, it is often very useful to 

deal with  the model of the ion sphere in which the real cell  is 

approximately replaced by a sphere of the same volume, the radius of the 

Wigner-Seitz cell for the case considered here of ions of one species is wGHI. The reciprocal latt ice is determined by the primitive translation 

vector bèéê, defined by the equalit ies ëèéÃ · wéÄ � 2zíÃÄ, where wéÄ – is the 

primit ive translation vectors of the crystal latt ice. Wigner-Seitz cell has 

an reciprocal latt ice called the Bri l louin zone, and its volume is equal :  

!�Y � 1°/ Ì�Y/ � ��°�/V[\V                                                 ��. /=�.    
To study the Coulomb (Wigner) crystals has been used successfully 

(see, for example. [Bai 01][Pol 73]) the harmonic approximation in 

which the potential energy of each ion in the crystal is described by the 

harmonic oscil lator potential (eg, [LL5] ). In this approximation the free 

energy of the latt ice is: 

�î3ß � %� � %Ìï3Vß � /�[\V®�#X,-à� � ØÙÚ��ð®èèé��  áZ0ñ                            ��. /]�. 
                                              

where �� � �GHI���DE�²/wGHI-is the classical static-latt ice energy, 

��  � �0,9  is the Madelung constant, �òJ«Ió � yP �GHI�´³Gô{ – is the zero-

point energy of quantum vibrations, ô{ – belongs to the family of 

average phonon frequency moments: 
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ï0 ¡ Xµ®èèé�0 Z0ñµ0[0                                                    ��. /a�. 
´õèév – the eigenfrequencies: 

ð®èèé� ¡ �µ®èèé�®�#                                                        ��. /s�. 
 

the X… Z³ö denotes the average over the phonon wave vectors �èé in the first 

Bri l louin zone and the branches of crystal oscil lation modes ÷: 

X_�É®èèéÊZ0ñ � �/!�Y ` Ö _�É®èèéÊ4® èèèé 
!�Y�                                 ��. 1��. 

the values of �� and ô³ are given in Table 2.1. In the crystal, we can not 

distinguish the energy of an ideal gas, so �Ã«ó replaces �GÔ�G� � �GG in 

equation (2.28). 

In the general case that goes beyond the harmonic approximation, we 
have: 

_î3ß ¡ �î3ß�[\V®�# � ��­ � /� ï�Ï � _î3ß � _3ñ                              ��. 1��. 
Where the fi rst three terms on the right side correspond to the three 

terms in the right side of equation (2.37), and ä«ö - is a correction for 

anharmonicity. 

 

II.3.3. Ionic Coulomb liquid (theory) 

Taken to separate the free energy of the Coulomb fluid component 

that describes the Boltzmann gas of ions, and the term describing the 

Coulomb interaction, as in equation (2.28). In this section we consider a 

single-component ion plasma in an incompressible background - OCP. In 

this case, 

 

�[4�[� � �[\V®�# ø,- ùV[\V ¯[\V/
ú�0[V�[� û � �ü                               ��. 1��. 
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where g}ýþ��þ�  is the spin degeneracy of the ion.  

Equation (2.60) for the OCP can be expressed in terms of 

dimensionless parameters:  

 �[4�[�
�[\V  ®�# � / ,- Ï � /� ,- ­  � �� ,- =° � ,- ú�0[V�[� � �                      ��. 1/�. 

   
the subscript “ ��. ”  distinct the excess terms their study is l i t t le bi t more 

complex (we talk about terms that occur from the Coulomb interactions 

in the case of r igid electron background) in a classical OCP the quanti ty 

The function �GG/�GHI�x� depend on a single argument ±. It  determines all  

other excess (e.g., [Yak 89]).  

the theory of Debye & Huckel (1923) is appropriate in the case �± � 1�,. And it  gives a formula for the free energy of a mixture of non-

relativistic weakly coupled ions with charges D	E and number densit ies @	 

[LL5] :  

�W��Â � ��! � � �W//  °®�#"�/� &` V$Y$�$ )
//�

                        ��. 11�. 
 
It  becomes for the OCP: 
 

%[[,Í� � � �√/� � �[\V®�# Â//� , �[[,Í� � �  �√/" �[\V®�# Â//�,      ��. 17�. 
The perturbation theory gives corrections of the order ±y to Eq. 

(2.45)  [Abe 59]  . Cohen and Murphy [Coh 69] computed the correction 

up to the order ±�/P. The low-± expansion of the internal energy is given 

by: 

%[[�[\V®�# � � √/� Â/� � /Â/ ×/a ,-�/Â� � ��� � �/Ü � 

  ��. 1=�. 
 �Âs/�É�. =a]7√/ ,- Â � �. �/7��Ê � � 
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where C� �  0.57721 … is the Euler  constant. So, one have: 
 �[[�[\V®�# � � Â/�√/ � Â/  /a ,-�Â� � �. �1��7" � 

 (2.47). 
 �Âs/� ��. =1s7� ,- Â � �. �s=7a� � � 

 

To study l iquid and solid phases of the OCP of ions at large value of 

the coulomb coupling parameter ±  authors used numerical methods 

(typical examples, one would see Baus and Hansen [Bau 80]  ; Ichimaru 

et al.[ Ich 87]). the Monte Carlo method (Brush et al.,.[Bru 1966]  ) and 

the hypernetted chain (HNC) method (e.g., Hansen and McDonald.[Han 

76]) The most powerful of them. 

The Monte Carlo methods begin with an init ial configurat ion that 

contains �GHI  ions and one allow make succeeding ion displacements. 

The potential energy 	Éué{ … , ué
��
Ê reside from ions-ions Coulomb 

interact ion and between ions and the uniform electron background is 

computed in each step and one sums those contributions with a suitable 

weight to have the excess internal energy : 

%[[ � �!��r\V_ Ö� ØÙÚ  � �®�#"�4pèéÌ
�[\V

Ì��                               ��. 1a�. 
 
 
where: 
 

�r\V_ � �!� Ö ØÙÚ  � �®�#"�4pèéÌ
�[\V

Ì��                                 ��. 1s�. 
      

is the so-called the configurationally part of the partit ion function. 
 

The hypernetted chain method –on the contrary- is based on 

integrating equation for the radial pair distribution Function :  

ú�|pèé� � pèé�|� � ��² �r\V_ !�O� Ö ØÙÚ  � �®�#"�4pèéÌ
�[\V

Ì�/                   ��. 7��. 
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It  can be obtained in different approximations. 

  

II.3.4. Structural factor: Multiphonon processes  

We need the characteristics of pair correlations of ions, cal led the 

dynamic structure factor. Ion structure factor describes the correlation of 

their posit ion in space and time. The ion correlations in momentum space 

are described by the dynamical ion structure factor: 

*�Ìèèé, µ� � ��°� Ö 4ß Ö 4�èèé��
O� 4�èèéeW[Ìèèé·É�èèéO�èèé�ÊO[µßXV���èèé, ß�V���èèée, ��Zßñ           ��. 7��. 

where � – The imaginary unit number,@���é,  � � ∑ íÉ�é � uéòÊ�é� � @GHI - Is the 

instantaneous charge density distribution in units of DE, and X… Zóö 

denotes the Gibbs average over the ensemble of particles (thermal 

average  should be distinguished from averaging over the phonon 

spectrum, a certain equation   (2.40)). 

The static structure factor which describes the instantaneous spatial 

correlation of the charges is: 

*�Ìèèé� � Ö *�Ìèèé, µ�4µ��
O�                                          ��. 7��. 

 

II.3.4.a       The structure factor of the classical isotropic plasma 

 For isotropic plasma the static structure factor (2.52) is:   

 

*�Ì� � � � /Â3[\V/ Ö ��-�Ìp�Ìp�
� �ú�p� � ��p²4p                                 ��. 7/�. 

 

where  g�r� – is the pair correlation function.  

In the l imit Ç � 0 have  ��Ç� � �ÇwGHI�P/�3Γ� (eg, [Han 73]). The 

approximation of the Debye-Hückel corresponds to the formula: 
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*�Ì� � Ì�
ÉÌ� � /Â3[\VO� Ê                                               ��. 71�. 

 
In general,  ��Ç� are found numerically from Eq (2.51) (see, eg., A 

review [Bau 80]). Contribut ion of ion-ion interaction in the internal 

energy is expressed through  R�u� or  ��Ç�  as: 

 

%[[ � ���! Ö �YW��p �ú�p� � ��4/p � �®�# Â3[\V° Ö �*�Ì� � ��4Ì�
�                     ��. 77�. 

 

II.3.4.b      Structure factor of the Coulomb crystal and Debye-Waller factor 

As is well known (eg, [Kit 63], [Kit 86],), in the general case, taking 

into account the quantization of the ions motion, their local density 

@��é,  � � ∑ í '�é � Ñèé	 � ôèé	� �(	  is replaced by the density operator h� ��é,  �,  

which operates in the space of quantum states characterized by phonon’s 

number, and the displacement vector  ôèé	 is replaced by the displacement 

operator  ô�	 . More precisely, h� ��é,  � is defined as the operator of the 

charge density in units of  DE.The equation (2.51) for the dynamic 

structure factor is generalized as follows:  

*�Ìèèé, µ� � ��°�[\V Ö 4ß Ö 4�èèé��
O� 4�èèéeW[Ìèèé·É�èèéO�èèé�ÊO[µßX.����èèé, ß�.���èèée, ��Zßñ     ��. 7=�. 

using just the described quantized density from equation  (2.56) is easily 

obtained  the structure factor of the ion density fluctuations in the solid 

phase: 

*�Ìèèé, µ� � ��°�[\V Ö WO[µß X` W[Ìèèé·ÉÐèèé[OÐèèé[ÊàW[Ìèèé·ï�[�ß� � �áàW[Ìèèé·ï�$��� � �á[,$
Zßñ 4ß��

O�
  ��. 7]�. 

 expanding the ion displacement operator ô�	 in term of the phonon 

creation-annihilation operators and using the Weyl operator identity E Ex  �  E �xE� xOx � / P  (see [Kit 86]), can be divided into structural 

factors on two terms:  

*�Ìèèé, µ� � *e�Ìèèé�!�µ� � *ee�Ìèèé, µ�                                    ��. 7a�. 



Chapter II                                     General properties of neutron star’s Coulomb plasma 

 

Kinetic properties of the electrons in the shells of neutron stars                                                                42 

 

where the term � ′�Çé� is associated with an ordered latt ice (so-called 

Bragg term), whi le the "inelastic" term � ′′�Çé, ´� due to ionic fluctuations 

around the equil ibrium posit ions. In the harmonic approximation we have 

(eg, [Kit 63]):  

*e�Ìèèé� � ��°�/V[\VWO�"�Ìèèé� ` !� Ìèèé
#èèé$�

� #èèé�                                  ��. 7s�. 
where:  

ØÙÚÉ��"�Ìèèé�Ê � XW[Ìèèé·ï�$Zßñ�                                                   ��. =��. 
is the Debye-Waller factor. In equation (2.59) ∑  %é$� denotes summation 

over all  reciprocal latt ice vectors &é with the exception of &é � 0. 

In isotropic (eg, cubic) crystals we have (eg [Kit 86]):  

"�Ìèèé� � p#�Ìèèé�=                                                   ��. =��. 
where u9P � Xô�PZóö  is the mean-squared ion displacement from 

equil ibrium. In the harmonic approximation:  

p#� � /���[\V X �µ®èèé� '(-)�ð®èèé�/��Z0ñ                        ��. =��. 
 

where *õèév defined by equation (2.39). In classical crystal (at � º  �³G) 

typical values *õèév are small,  and equation (2.62) make simpler to: 

p#��Ï + �� � /®�#ïO�1°Y²W² V[\V � ïO�Â 3[\V�                                       ��. =/�. 
Formally, in this case we can write u9P  �  3ôOPuÆP,  where uÆ-is the 

Debye length  (2.23). In the opposite case, when � � �³G,  
p#��Ï ¢ �� � /�ïO���[\Vµ0[ � ïO�3[\V� ÏÂ                 ��. =1�. 

For an arbitrary value of  Î, u9P can be estimated by the following 

formula :   
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p#� � 3[\V� ÏÂ ,ïO�� � Ï/¿î�W¿îÏ � �� � �¿î� Í��¿ßÏ�-                             ��. =7�. 
 

here, Àó � 0,426548 and ÀÃ � 0,88412 for the bcc, Àó � 0,436671 and ÀÃ �  0,87817 for the fcc, Àó �  0,436671 and ÀÃ � 0 , 87817 for the hcp 

latt ice, and .{���- is the Debye function, for which in  [Pot 2000], A.Y. 

Potekhin et al  constructed the  approximation: 

Í���� � � � Ð������ � �1 � � 7�11 �� � �. ���/s�1 � ' =°�( Ð���� , 
(2.66). 

 

 Ð���� � �11�� � sW����. ���= 

 

The relative error of this approximation is hundredths of a percent. 

 

II.3.4.c        Multiphonon processes  

D.A. Baiko et al [Bai 98] have shown that the inelastic part of the 

structure factor can be written:  

 *ee�Ìèèé, µ� � ��°�[\V Ö 4ßWO[µßO�"�Ìèèé� ` W[Ìèèé·�Ðèèé[OÐèèé$�
[,$

��
O� ` �V!   N      

�
V��  

��. =]�.    
 

N 0 ���[\V�[\V ` ÉÌèèé · Wèé®èèé�Ê�
µ®èèé� 1¿[$®èèé�ÉV2®èèé� � �Ê � ¿[$®èèé�¸ V2®èèé�3®èèé�

4
V

           
where  ÀG	õèév � E��àFGHI�èé · ÉÑèéG � Ñèé	Ê � FGHI´õèév á  and 

V2®èèé� � �Wð®èèé� � �                                                 ��. =a�. 



Chapter II                                     General properties of neutron star’s Coulomb plasma 

 

Kinetic properties of the electrons in the shells of neutron stars                                                                44 

 

is the mean occupation number of the phonon mode ��èé, ÷�. Expression    

(2.67) takes into account the contribution of phonon correlat ions in the 

structural factor of the crystal. Each @-th term in the sum according to 

claim corresponds to the contribution of n-phonon processes in the 

scattering sample particle in the crystal. Summing over �, A gives the delta 

function that eliminates one of the summation over �èé. Thus, we have @ 

sums over ÷ and @ � 1 sums over �èé in each of the @-th term of the 

formula (2.67). 

The expression for the static structure factor  (2.52) becomes: 

*�Ìèèé� � ��[\V ` W[Ìèèé·�Ðèèé[OÐèèé$�XW[Ìèèé·ï�[WO[Ìèèé·ï�$Zßñ[$                      ��. =s�. 
It  just may be divided into "elastic" (the Bragg) and inelastic 

components: 

*�Ìèèé� � *e�Ìèèé� � *ee�Ìèèé�, 

where: 

*ee�Ìèèé� � WO�"�Ìèèé� ` W[Ìèèé·Ðèèé$ 1W5ÉÌèèé,Ðèèé$ÊÌ² � �3
Ðèèé$

             ��. ]��. 
and  

5ÉÌèèé, Ðèèé Ê � /���[\V XÉÌèèé · Wèé®èèé�Ê�
Ì� 65�É®èèé · Ðèèé Êµ®èèé� '(-) 'ð®èèé�� (Z0ñ                     ��. ]��. 

Generally speaking, a function in � ′′�Çé� has sharp peaks, whose 

calculation is di ff icult (eg, [Bai 00]).  But in the integrals over Çé when Ç ¢ Çx7 these peaks саn often bе smeared out, and thus the а method 

introduced bу M.E. Raikh and D.G. Yakovlev [Rai 82] is applicable, 

which uses the fact that these integrals of the vector Çé runs on many 

Bril louin’s zones,of which has its own principal vectors of polarizat ion Eéõèév Therefore, the polarization is changing rapidly on the scale Ç ~Çx7,  

and for Ç ¢ Çx7 one can use the approximate substitution :  
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`ÉÌèèé · Wèé®èèé�Ê²_Éµ®èèé�Ê� � Ì²X_Éµ®èèé�ÊZ0ñ                     ��. ]��. 
 

provided that the ä�  ́� - sufficiently smooth function. Then from (2.69) 

after averaging over orientations of the vectors Çé, one obtain  [Bai 98]  

[Bai 00] [Rai 82 ] [Kam 99]: 

*ee�Ì, µ� � ØÙÚ ×��"�Ì� � �µ�®�#Ü Ö WO[µß·�Ì, #, ß� 4ß�°��
O�                  ��. ]/�. 

·�Ì, #, ß� � ØÙÚ È �Ì���[\V X 65�Éµ®èèé�ßÊ
µ®èèé� ��-) 'ð®èèé�� (Z0ñË � �              ��. ]1�. 

Equation (2.73) takes into account the correlation of ions caused by 

the absorption and emission of any number of phonons. In the l i terature,  

quantum-mechanical amplitude interact ions of interact ions are often 

l inearized with respect to ô�  with, thus neglecting multiphonon processes. 

In this one-phonon approximation (eg, [Flo 76]) the structure factor 

reduces to (2.74). 

*�0ñee �Ì, µ� � WO�"�Ìèèé� �Ì²��[\V X!Éµ � µ®èèé�Ê � !�µ � µ®èèé��
µ®èèé� 8ØÙÚ ' �µ®�#( � �8 Z0ñ              ��. ]7�. 

   

which is equivalent to replacing 9E�� �. . . �� 1:  �  �… � in the equation   

(2.74). This approximation is justi f ied only when  � � �³G. In a dense 

astrophysical plasmas mult iphonon processes are important near the 

boundary of the melt ing of the Coulomb crystal  [Bai 98]. 

In  [Bai 98], D.A. Baiko et al derived an approximate expression for 

the inelastic part of the static structure factor, corresponding to equation  

(2.73): 

*�ee�Ì� � � � WO�"�Ìèèé�                                               ��. ]=�. 
this approach, as tested in  [Bai 00], is very accurate when Ç +  3/wGHI.  
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In [Kam 99] the dynamic structure factor  (2.73) was applied to the 

calculation of the contribution of electron scattering in the crust of a 

neutron star the neutrino luminosity of the crust. It was shown that the 

inclusion of multiphonon processes significantly (by tens of percent) 

increases the total neutrino luminosity in the outer region of the crust , 

near its border with the ocean. As we shal l see, even more strongly 

influenced by multiphonons processes on the conductivity and thermal 

conductivi ty of this part of the crust. 

 

II.3.5. Melting  
 

The phase transit ion between the Coulomb and Coulomb liquid 

crystal occurs at Γ � ΓÄ where the free energy ��Γ� of l iquid and solid 

phases intersect. This point is di ff icult  to determine with great accuracy, 

because the intersect ion of the free energy curves is strongly affected by 

the thermal corrections which are small  at Γ~ΓÄ (the free energy curves 

are nearly parallel). And therefore the posit ion of point of intersection of ΓÄ depends strongly on the small corrections. For example, changing �GG 
by 0,1% shifts the ΓÄ  on, ΔΓ � 15, ie ~ 9%   [Pol 73] .  

A good first approximation to determine the ΓÄ can be considered as 

approximation of an incompressible background. The first is a realistic 

assessment of  ΓÄ � 170 =  10, was Van Horn [Hor 69] based on the 

Lindemann criterion according to which the crystal melts when the u9 the 

root-mean-square ion vibrat ions in a latt ice site (2.63) becomes a sizable 

fraction of inter-ion distance. Specifical ly, Van Horn equated the ratio u9 /wGHI to the experimental value u9 /wGHI �  0.070 = 0.004 for alkal i  

metals  This value of ΓÄ was considerably larger than numerical 

estimates available at that t ime, but it proved to be remarkably close to 

the value obtained twenty years later from sophisticated theoretical 

studies. Those studies included numerical evaluation of the internal 

energy of the classical l iquid and solid OCP and used quantum 
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expansions of thermodynamic functions of OCP, as well as Monte Carlo 

simulations. 

II.3.6. Polarization of the electrons in the Coulomb liquid 

In electron-ion plasma, the interact ion of ions partly shielded by the 

polarization of the electronic background. Effect of polarization on the 

thermodynamic functions of a Coulomb fluid is calculated by using 

perturbation theory   [Yak 89] [Gal 76] and by using HNC method [Cha 

09] [Pot 00] [Cha 90a]. At the same time in [Yak 89] and [Pot 00] into 

account relat ivist ic effects. When the electron-ion interaction is small  

compared with the kinetic energy of electrons (for example, DE²/wn � �� 

for degenerate electrons), this interaction can be taken into account by 

the l inear response theory. In this case the exact Hamiltonian of the 

electron-ion plasma can be divided into two parts, the first of which 

describes the ions screened by electrons, and the second - the 

Hamiltonian of the r igid electron background, the so-called "Jelly" [Gal  

76].  

The polarization properties of the electron gas described by the 

dynamic dielectric tensor, as in the case of an isotropic gas (in 

particular, in the absence of a magnetic field) - the dielectr ic function >��, ´�, where � - is the wave vector, and ́ - frequency. For processes 

with a characterist ic length ¢ ´³nO{, we can replace >��, ´� on the static 

dielectr ic function >��� ¡ >��, 0�. For her, in the degenerate relat ivist ic 

gas is the most widely used analyt ical expression  [Jan 62], result ing in 

the random-phase approximation (RPA - random-phase approximation), 

which is valid for uv � 1 and � � ��:  

?�®�  � � � ®#��®� @�/ � �/A��p¶p ,-��p � ¶p� � B 
� �p� � � � /�p�A�=A�p� ,- 8� � A� � A8� 

(2.77). 
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� B�A²�p� � �=A�p�
�� � �p�A²¶p ,- CA¶p � �� � �p�A²A¶p � �� � �p�A²CD  

where E � ��/2��� 

Static dielectric function satisfies the important relation 

?�®� � � � ®#��®²  3ß   ® � ®#�                                     ��. ]a�. 
If   the  uv æ 1  and  � æ �� ,  we  should   take  into  account  the  

finite temperature and non-linear effects, which are in the no relativistic 

case can be included in the dielectric function according to  [Cha 90b]: 

?�®� � � � ?Ð���®� � �� � �?Ð���®� � ��#�®�                               ��. ]s�. 
 

where  >FG ���  -  is  the  dielectric  function  obtained  in  the  random 

phase approximation,  and  &��� –  the local  f ield  correction  (LFC - 

local  f ield correction),  which is estimated numerically.  

Screening can also be estimated by the method of effect ive potential 

(eg, [ Ich 1987]). In this method, the Coulomb potential in the expression 

for the electrostatic energy is replaced by an  effective  potential, in  

which  the Fourier transform is equal to �nÁÁ��� � 4z�DE�²/É�²>���Ê ,  

where >��� -  is  the static dielectric function of the electron gas  (2.77) 

or l iquid (2.79). 

 

II.3.7.  Polarization of the electrons in the Coulomb crystal 

Correlations between the ions - and, consequently, the crystal l ization 

- affect the electronic screening. Calculat ion of thermodynamic functions 

for the Coulomb crystal, taking into account electronic polarization is a 

task not yet completely solved. For classical ions simplest model  

screening is to replace the Coulomb potential on the Yukawa potential.  

Simulat ion of the system by the method of molecular dynamics were 
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carried out in  [Ham 97], where i t was found that ΓH increases with 

decreasing screening radius. Moreover, there may be a transit ion from 

bcc to fcc structure. Subsequently, the same model system was studied 

using the method of integration over trajectories [Mil  06]. 

However, the Yukawa potential is not an exact model for the 

screening, since its use is tantamount to l imiting the long-wavelength 

asymptotic behavior of the dielectric function   However, the Yukawa 

potential is not an exact model for the screening, since its use is 

tantamount to l imiting the long-wavelength asymptotic behavior of the 

dielectr ic function (2.78). The exact solution requires the calculation of 

the dynamic matrix of the crystal with electron-ion interact ion and the 

solution of the dispersion relation for the phonon spectrum.  

In the fi rst order perturbation theory the dynamic  matrix of the  

classical Coulomb crystal  was obtained in [Pol 73] and the phonon  

spectrum  of   the quantum Coulomb crystal with polarization was  

calculated  in  the  harmonic approximation  in  [Bai 02]. Note that the 

harmonic approximation only has l imited applicabil ity to the problem of 

screening in a Coulomb crystal: for example, in the classical l imit �� ¢�³G�, i t  certainly gives a zero contribution to the electron-ion interaction 

in the heat capacity. 
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Chapter III    

Electronic transport coefficients 

without magnetic field 

 

A-    Basic relations for the electronic transport coefficients 

 

  This section has an introductory character. Original results are 

presented in later sections, but here we summarize the basic 

approaches and formulas for calculating the kinet ic coefficients in the 

plasma to be used later. 

 

III.1.  Boltzmann equation:   General relationships  

 

To be specific, as carriers of heat and charge we shall consider the 

electrons as their contribut ion to the thermal and electrical 

conductivi ty of the plasma, usually dominates. The basis of 

consideration of the well-known   (eg, [LL10]), Boltzmann kinet ic 

equation for the distr ibution function  � � �� ��, ��, 	, 
�. 

�
� � ���� � ���� · ������ � ���� · ������ � ��,    �� � � ����  ���,        � . !�. 

Where ��, ��, "� and 	 - are the momentum, the radius vector, velocity, and 

electron spin index, respectively; 
 - the time; #� denotes the external 

force acting on the electrons; $%& - Coll ision integral of electrons with 
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particles of species ' (electrons, ions and etc). The col l ision integrals 

are functionals of �.  

Suppose that in the plasma there small  stationary perturbations 

characterized by a temperature gradient (���T and  a gradient in chemical 

potential (���µ* and the electric field E��� (then F��  � -eE���), and that these 

gradients and the field is so weak that the characteristic scale of the 

resultant non-uniformity of the plasma is much higher than the 

average characterist ic length of electron free path . This volume 

element of matter is close to the thermodynamic equil ibrium, and 

deviations from the strict equil ibrium associated with the currents of 

heat and charge. Solution of equation (3.1) has the in the form: 

� � ��/� � 0�,                                                             � . 1�.  
 

��/��2 -  3� , 4� �  !56� 72 -  3� 894 : � !                   � .  �. 
-  is the local function of Fermi-Dirac distr ibution, and ;� –is a 

correction due to disequil ibrium in the first approximation l inear in 

(���<, (���µ*and =��. In view of the smallness of the gradients on the left side 

of the equation (3.1) in a f irst approximation we can neglect ;� on 

compared with ��>�:  

�
�  ?  
��/�
� �  - @2 - A4  B���4 � �C���DE · ���� ���/��2                � . F�. 

           here G �  H% � �I%/K%�< - enthalpy for electron: 

C���D  � C��� �  ����3��  �  L�M�  ����4�                                          � . N�. 
            and 

L� �  - 1O�P�1QR�   S�� TU � � �! - �� TU�! - �� � 
 V           � . W�. 
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 -is the electronic entropy. The coll ision integral vanishes at � � ��>� so 

the fi rst nontrivial  approximation for it gives terms l inear in ;�.  

Restricting the expansion from ;� only by those members, from (3.1) we 

obtain l inearized -Boltzmann equation, corresponding to the fi rst 

approximation in the method of Chapman-Enskog expansion of the 

distr ibut ion function of the small parameter. In the case when the 

medium is isotropic, we can write (eg, [Zim 1960]). 

0� �  X ���/��2 �  XOY4 ��/� Z! - ��/�[,                                                                 
 X �  2 - A4   \��2����� ·  ����4 � � \��2����� · C���D                                                � . ]�. 

 

Where  A*�_� and  A*�_� - some functions of electron energy to be 

determined. 

Using  equations  (3.2)  and  (3.7),  we  can  derive  some general relat ions 

connecting the (���<, (���µ*and =�� with the density of electric current:  

�̀�  �  - 1��1QR�   S ���� � 
 V                                         � . a�. 
And the heat flux density: 

�̀4  �  - 1��1QR�   S �����2 - A� 
 V                                  � . b�. 
 

And energy flux density  c�d �  c�e  - �h/ e� c�*, from (3.8) and (3.9), we 

obtain: 

�̀�  �  gC���D - h4 B���4  ,      �̀4  �  h44C���D -  ij B���4           � . !/�. 
 

Where : 
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k gh4ij l  �  !!1Q R   S�- ���/��2 � �1   m �1\��2��\�,4�2�\4�2��2 - A�1/4�A - 2�/4n  
 V       � . !!�. 
Here o –is the electr ical conductivi ty, pq and r̃ - auxil iary transport 

coefficients (the same ratio pq is included in both equations (3.10) due 

to the Onsager symmetry principle - eg. [LL5], § 120, [Zim 60]).  

It  is convenient to rewrite relation (3.10) in the form: 

C���D �  �̀�g  -   t4 B���4 , �̀4 �  -t4 4 �̀� -  i B���4   � . !1�. 
t4 �  - h4g  ,    i �  ij - 4h41g       � . ! �. 

-  Respectively, the thermoelectr ic coefficient and heat conductivi ty. 
Each set of transfer coefficients - �o, pq , κu� or �o, Qe, r� - completely 
determines the transport of heat and charge in an isotropic medium. 

Substituting relation (3.4) in equation (3.1), multiplying both sides 

by 2 �2πR�yzΦ and integrating over p��, we obtain the useful relation. 

|}P �  ��4�14 - i}  - 1h4 C���D  ·  ����4 � �C���D�1 g �  C���D · �̀� - �̀4 · ����44          � . !F�. 
Where: 

|} �  1P�1QR� S 
 V ~�2 - A�\4�2� ����44 � �C���D\��2�� · ���� ��             � . !N�. 
 

Using Equations (3.1) - (3.7) and taking into account the conservation of the 

number of electrons and their total energy in elastic collisions, we can show (for 

example, [LL10]) that �} � <I}���� where I}���� – is the rate of entropy production  by 

collisions. This allows us to consider the ratio (3.14) and (3.15) as a variation, in which 

 A*�_� and  Ae�_� are test functions (eg, [Zim 1960]). Putting them in (���< �  0 or  

E���D � 0, we obtain, respectively: 

!g � |}��1 �   �C���D�1
|}   , !ij �  |} 4��1  �  �����4�1

4|}                     � . !W�. 
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III.2.  Electron-electron scattering  

 
 The exact form of the col l ision integral $%%, depends on the scattering 

mechanism. We first consider the coll ision of electrons with each other - 

i ts scattering, which can be schematically represented as ����	�, ���	�  � ���′ 	�′ , ���′ 	�′ �, where the non primed momentum � and spin indices 	 

determine the state of the electrons 1 and 2 before the coll ision, and the 

primed - after the coll ision. Denote a quantum mechanical transit ion 

matrix element in the col l ision through ��,� ��′,�′ The transit ion 

probabil i ty per unit t ime is (eg, [LL3]).  

��!1; !′1′� �  1QR   ��!,1 �!′,1′�1  0Z2!′ � 21′ - 2! - 21 [         � . !]�. 
According to the principle of microscopic reversibil i ty, �M�,� ��′,�′�� �
�M�′,�′ ��,���

, so according to the principle of detailed balance the identity:  

�!�/�′�1�/�′7! - �!�/�:7! - �1�/�: � �!�/��1�/� 7! - �!�/�′: 7! - �1�/�′:            � . !a�. 
For the coll is ion integral we have: 

�����!� � � S 
 V!′  
 V1 
 V1′1�1QR�b�1,�!′ �1′
��!1; !′1′� � 

� . !b�. 
                                 � ��! �1 �! - �! ��! - �1 �– �! �1 �! - �! ��! - �1 ��    

Where the additional factor 2 in the denominator ensures the 

exclusion of double counting the same index, di ffering by permutat ion of 

indices 1   and 2. 

 

 

Linearization I** in accordance with (3.2) and (3.7) leads to the expression: 
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�����!� � !OY4 � S 
 V!′  
 V1 
 V1′1�1QR�b  
g1,g!′ g1′

��!1; !′1′� � 

                                                                                                     (3.20). 

            � �!�/�′�1�/�′7! - �!�/�:7! - �1�/�: � Z�! � �1 - �!′ -  �1′ [ 

 

III.3.    Electron-ion scattering. Approximation of the relaxation time 

 

As another important example, consider the scattering of electrons by 

ions in the case when the characteristic energy transfer ;� in a single 

coll ision is small: ;� � ��<. Then   [Zim 60]:  

��� � - 0��/�2�                                                           � . 1!�. 
 

Where τ>�_� - the effective relaxation time for the electronic distribution 

function. This approximation is called the relaxation time approximation;  

If  this type of col l ision dominated, the solution of the l inearized 

Boltzmann equation is simply: 

\��2� � \4�2� � �/�2�                                          � . 11�. 
If  the provisions of the ions are uncorrelated, then the relaxation time is 

estimated as: 

�/�2� � ����� !g���2�                                              � . 1 �. 
Where:  

g���2� � S g��, �� �! -  ����
¡                    � . 1F�. 
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- is the transport scattering cross sect ion, ¢ - scattering angle, and σ�¢, ¤�dΩ –is the cross section of an electron in an element of solid angle dΩ � 2πsin¢d¢  

Differential  scattering cross section is equals to: 

g��, �� � �©ª�1«�1FQ²RF                                                     � . 1N�. 
Where U® - the Fourier transform of the screened Coulomb potential,  

depending on Rq �  2p sin �¢/ 2) – is the momentum transferred in the 

coll ision. Define the screening function ¤® by equality:  

�©ª�1 � -FQ°�²�ª                                                        � . 1W�. 
Then the transport cross section  (3.24) is: 

g�� � FQ ±°�1V� ²1 ³���V�                                            � . 1]�. 
 

Where: 

³���V� � S ª ��ª�1
ª1V/R
/                                               � . 1a�. 

- Coulomb logarithm, which depends on the electron momentum �. For 

the unscreened Coulomb potential  �´µ�  �  1/·², so integral in (3.28) 

diverges logarithmically at small ·. Plasma shielding eliminates this 

divergence. Energy-dependent relaxation time in  (3.23) becomes: 

����2� � V1�F Q °1�F ���� ¸���V�                                   � . 1b�. 
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III.4.  General expressions for the nondegenerate plasma 

 

Kinetic coefficients of degenerate (T ¹ Tº) nonrelativistic (x¼ � 1),  

electron-ion plasma, taking into account both the electron-ion (ei), and 

electron-electron (ee) coll isions were discussed in detail by Spitzer [Spi 

62] using the expansion of the functions A*�_� and Ae�_� on the attached 

Sonin- Laguerre polynomials, tradit ionally used in the kinetics of 

rarefied gases (eg, [Hir 54]). In the nondegenerate plasma, The effective 

energy-averaged coll ision time for ei-scattering  is given by:  

��� � !½/³��                                                                        � .  /�. 
 where: 

½/ � F ¾1Q«�
°1�F�OY4� /1 ����                                       � .  !�. 

And Λ*À -the so-called Coulomb logarithm, has an order of magnitude: 

³�� ? TU @�«ÁÂ�«�� E                                                          � .  1�. 
Where rÄÅÆ and rÄÀÇ -, respectively, maximum and minimum impact 

parameter. The maximum impact parameter can be set equal to the Debye 

screening length rÈÉ¼  �  1 / kÈ, where kÈ is defined by equation  (3.24). 

Minimum impact parameter can be estimated as rÄÀÇ = max �λ*, Ze�/kÏT�.  

Where λ* the thermal de Broglie wavelength of the electron l imits rÄÀÇ at 

high temperatures, and Ze�/kÏT - is the classical closest approach 

distance of a thermal electron, which l imits rÄÀÇ in the low-temperature, 

quasiclassical regime. 

 

Coulomb logarithm depends only weakly on the plasma parameters and 

usually ranges from several to ~ 20. The effective relaxation t ime τ*À 
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characterizes the efficiency of electron-ion coll isions. A similar 

effective relaxation t ime for  ee coll isions: 

��� �  Ò«��OY4� /1
a√Q�F��³��                                               � .   �. 

 

Characterizes the efficiency of col l isions. If Λ**~Λ*À, the 
ÔÕÕÔÕÕ ~Z, ie, ei-

coll ision at about Z t imes more effective than ee- coll isions . 

Consider a plasma of heavy ions, in which ee coll isions can be 

neglected, and for ei-coll ision is a fairly accurate approximation of  

(3.23). Moreover, i f in  (3.29) one neglect the dependence of Λ on p (eg, 

[ref]) and use the relaxation time approximation  (3.22) , one can make 

explici t integration in (3.11), which leads to the equalit ies: 

g �  1���²��� Q«�  , h4 � - !W������Q«�  , ij � 1//OY1 4����� Q«�           � .  F�. 
Hence, using  (3.13): 

g �  1 Q ���² ���«�  , t4 �  1 OY�  , i � !1a OY1 4����� Q«�                   � .  N�. 
 

III.5.  Strongly degenerate electron gas 

 
We now consider the opposite l imiting case, when electrons are 

strongly degenerate. An analysis of electron transfer in this simplified by 

the fact that the main contribution is only the electron, whose energies 

l ie in a narrow range near the Fermi level. The enthalpy G (and chemical  

potential  H% dif ferent from the Fermi energy �Ö small terms  H% �< / <Ö� �  .  

Therefore, it suffices to put in  (3.11)  G � H%. In addition, the second 

rat io (3.13) pq�/o~�< / <Ö� � , so r ? r̃. It is convenient to write the 

transport coefficients in the form: 
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g � ���²�g«�D  , i � Q²OY1 4���i «�D  , t4 � Q²OY1 4 �V��� � � ×�        � .  W�. 

Where Ø%D � ÙÚ�Û � Ø%ÜÝ - dynamic electron mass, "Ö � 
ÞÚßà   - the speed on the Fermi 

surface, and those áâ  , áãand ä - values to be determined on the basis of the Boltzmann 

equation  (3.1). The values of áâ    and áã called the effective electron relaxation time in 

relation to the charge transfer and heat transfer, respectively;  ä~1 - dimensionless 

factor, which depends on the mechanism of electron scattering. 

For numerical estimates there is convenient ratios: 

g � !. FaN � !/11 Â� å� 7 �g!/y!W: , i � F. / a � !/!N4W Â� å� 7 �i!/y!W:         � .  ]�. 
When considered the scattering of electrons by heavy particles, the approximation of 

relaxation time (3.22). In this case, from (3.11) and (3.22) easily obtain expressions: 

�g � �i � ����3��                                                         � .  a�. 

× � V���
��TU g�3����3� -  � V���

� æTU ���3� �3��ç�3�      � .  b�. 
As well as Wiedemann – Franz law: 

i � Q²OY1 4 �² g                                                       � . F/�. 
That Function á%è�H%�   The right side of (3.38), as previously determined by 

formulas (3.23) and (3.24), in which section of the scattering electron with a given total 

energy at a given potential, and does not depend on the statistical distribution of 

electrons. Therefore, the function á%è��� is given by (3.29), regardless of the degree 

electronic degeneracy. 
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III.6.  Matthiessen's  rule 

 

If  there are several scattering mechanisms, the solut ion is 

complicated. But with strong electron degeneracy we can independently 

calculate the effective frequencies é& for different scattering mechanisms 

and to obtain the effective relaxation time á �  1 / ê based on the 

Mattissena’s rule (eg, [Zim 60]):  éë�ë � é� � é� � ì In practice, this rule 

provides a good approximation in the absence of strong degeneracy. In 

particular, i f there are two scattering mechanisms with effective 

frequencies ê� and ê�, then using the variational principle (3.16) can be shown 

that the resulting effective frequency and satisfies  é� � é� í é í é� � é� � ;é and, 

where ;é � Øîï �é�, é�� [Zim 60]. In this case the ionic liquid and the crystal are 

different. 

 

In a liquid or gas (at T ð  TÄ) is the main Coulomb scattering of electrons by ions. 

Electron-electron collisions are virtually absent in charge transfer due to conservation of 

momentum, and hence the average current in the pair collisions, so they usually can be 

neglected when calculating the conductance (see, for example., [ref]). However, they 

may be important for the thermal conductivity. Consequently, the Mattissena’s rule : 

!�g � !���g  , !�i � !���i � !���                                                � . F!ñ�. 
 

We can rewrite the second equation   (3.41a) in the form: 

i � Zi��y! � i��y![                                               � . F!ò�. 
The crystal (at  T ó  TÄ) of the main scattering mechanism - a 

scattering electrons on phonons (i t is preferable for the scattering by 

ions in the l iquid, use the notat ion «ei») and charged inhomogeneities 

(the index «imp»).  Electron-phonon scattering usually dominates at 

temperatures not too small  compared to the TÄ If  T ¹  TÄ, then the 

determinant can become the scattering of electrons by impurit ies or 
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latt ice defects." Scattering by inhomogeneities can be described by an 

effective relaxation t ime τÀÄô .  Thus, the combined effect of scattering of 

electrons by phonons, electrons and impurit ies can be represented as: 

!�g � !���g � !��«V  , !�i � !���i � !��«V � !���                     � . F1�. 
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B-    Outline  OCP calculations (IOFFE model) 

 

III.7.  Scattering of electrons on ions  

III.7.1.  Ion gas 

 In the case where ions are virtually uncorrelated, the effective 

relaxation time τ*À for electrical and thermal conductivi ty, result ing ei-

coll isions, may be obtained by using the equations  (3.23) and (3.24) 

dif ferential scattering cross section for relativistic electron Mott, was 

amended to second-order Born approximation (eg, [Akh 65]):  

g�2, �� � F°1�F21�R �F ��ª�1 ~±! - �1 1 õöU �1² � Q°h� �  õöU �1 @! - õöU �1E�         � . F �. 
Where ¤® – is screening function, introduced in  (3.26). Thus we arrive 

at formula  (3.29) with the refined expression for the Coulomb logari thm Λ*À�p� : instead of (3.28) we now have: 

¸���V� � S ª 1VR
/ ��ª�1 ~±! - �1 1 ��� �1² � Q°h� �  ��� �1 @! - ��� �1E� 
ª    � . FF�. 

That reflects the account of relativistic and non- Born corrections. Neglecting these 

amendments of plasma shielding, one can perform analytical integration of the last two 

terms in (3.44), which arrive at the explicit expression for them, just a weak screening 

(ie 2��÷  ¹ 1) [Yak 87] [Pot 97]: 

³���V� � ³���/��V� - !1 7� :1 Q°h�1 �                                    � . FN�. 
 

Where the first term, Λ%è�>���� - Coulomb logarithm beyond the relativistic Born 

approximation, which is calculated taking into account the dynamic screening on the 

basis of the formalism of Williams and DeWitt  [Wil 69] and is: 
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³���V� � TU @1V�øR E - @�ø�� E1 TU @���øE - !1 ~! � @�ø�� E1� TU ~! � @�ø�� E1�         � . FW�. 
Where rù  and r * those defined by (2.23) and (2.17), respectively. 

 According to  (3.38) and (3.29), for strongly degenerate electrons effective 

relaxation time can be estimated as: 

��� � ����3�� �  QRF°«�Dh�1³���3�� ² � N. ] � !/y!]°³���3��å�                      � . F]�. 
 

If  Λ%è �  úûï	
, the  τ%è will be independent of temperature, while in the 

non-relativistic electrons also on the density. 

 

III.7.2.  Ionic liquids (degenerate electrons) 

  

Let us now consider most important case in neutron stars, the case of 

strongly Coulomb plasma, Γ~1  In this case, the ionic screening is 

strong: the formal expression for the Debye screening length (2.23) gives 

the results �÷ ó üè�ý. Assuming that the successive acts of scattering 

incoherent with each other, the total number of transit ions per unit t ime 

“the differential  scattering rate” between states with given ini t ial ��� and 

final �� ′� momenta are obtained by summing over final (o)and averaging 

over init ial (o ′) spin states (cf.  [Hub 66]):  

��V��� � V���þ� � 1QM�R1 !1 ��©ª���,gg��1
gg� L�ª���,��                         � . F]�. 

Where R·� � �� - ��′ is the momentum transfer, R� is the transmitted 

energy,  �µ��,ââ′ is the matrix element of the operator of elementary ei interaction, and 

I �·,�� is the dynamic structure factor (2.51). Screening of the Coulomb 

potential are taken into account with dielectric funct ion  (2.77), and the 

finite size of ions - using the form factor (Fourier transform of the 



Chapter  III:                  Electronic transport coefficients without magnetic field 

 

Kinetic properties of the electrons in the shells of neutron stars                                                                64 

 

charge density) #µ  As a result  of the formula  (3.44) for the Coulomb 

logarithm has an  extra integral factors that take into account the 

correlation of the ions and their fini te size, and thus refined the formula 

in the Born approximation (ie without the last term in brackets) can be 

writ ten as: 

³���V� � ³���V�  � S ª 1O�
/ ��ª�1L����ª� ~! - ��1 1 @ ª1O�E1� 
ª                       � . Fb�. 

�ª � �ªª1���ª�                                                                             � . N/�. 
And I%���·� – is the effective static structure factor, is expressed through 

the dynamic structure factor I�·�,�� by the integral over � with weighting 

factors that allows for the dependence of the distribution of ion plasma 

osci l lations in frequency. 

These factors are different for di fferent transport coeff icients, which 

serves as the cause of differences in the effective relaxation time áâ and áã in (3.36), which manifests itself in at < �  <Þè  The explicit form of the 

Coulomb crystal wil l  be presented later. These weight tend to unity at R� � ��<, so in the classical region (< ¹  <Þè),  to which we confine 

ourselves to the case of ionic l iquid as an effective structure factor I%���·� is often used static structure factor I�·�. But in the article [Bai 

98] D.A. Baiko et al gave arguments in favor of certain 

modifications I%���·�, which becomes important atΓ ~ 100. Considering 

these modifications. 

 

III.7.2.a Effective structure factor of strongly coulomb liquid  

Formally, the l iquid is no long-range order. However, it is known 

that strongly coupled Coulomb liquid has much in common with a 

Coulomb crystal. Thus, modeling the molecular dynamics method along 
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with the familiar longitudinal ion Plasmon [Sch 97] demonstrated the 

emergence of collect ive shear vibration modes (typical for crystals) in a 

Coulomb l iquid at Γ � 120. This means that in the ionic l iquid appear a 

quasi-ordered structure, D.A. Baiko et al [Bai 98] had veri fied that the 

spectrum of these modes can be described by the phonon spectrum 

averaged over orientations of a crystal.  Although the long-range order 

does not persist forever, i t may be wel l preserved during typical electron 

scattering time. Thus a temporary electron band structure emerges, and 

an associated elastic scattering does not contribute. to the conduction (as 

in sol id).  This means that one should deal with a local disorder 

“observed” by an electron along its mean free path, rather than with the 

global disorder [Edw 62]. Allowance for the influence of quasi-ordering 

of ions on the electronic transport coefficients of the Coulomb liquid 

was first implemented in [Bai 98], in which they deal with S*

�q� instead 

of the full  structure factor S�q� including its inelastic component 

Therefore it suggests to subtract the elastic contribution from the total 

static structure factor  in the l iquid  phase (e.g., [Edw 62][Han 73]).  

L′′�ª� � L�ª� - L′�ª�                                                    � . N!�. 
Where S′�q� is the elast ic (Bragg) component, which by analogy with  

(2.59) is calculated by the formula: 

L′�ª� � �y1��ª��1Q� ���� � 0Zª��� - ����[
����

                            � . N1�. 
Where �y�
�µ� is the Debye-Waller factor, determined by formulas (2.61) 

and (2.64), and the bar over the delta function represents an average over 

orientations of wave vector ·� in the bcc structure “There may be various 

types of periodic structures in this regime, but they are very similar and 

one can use the bcc latt ice. 

D.A. Baiko et al [4-5] had checked that the result  is almost the same 

for face-centered cubic (fcc) and hexagonal close-packed (hcp) 
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latt ices ».which it means that the Selection of the type of crystal latt ice 

for such averaging is ambiguous, but the result is insensit ive to this 

choice. 

 

III.7.2.b  Nuclear form factor 

In the inner crust of a neutron star the size of the nuclei are no 

longer negligible compared with the distances between them. In this 

case, we should take into account the distribution of electric charge on 

the volume of the nucleus. It must take into account the nuclear form 

factor F® in the expression for the screening funct ion (3.50). 

For spherical nuclei the assumption that the nuclear charge is 

distr ibuted uniformly inside a sphere of radius rÇ�É , the nuclear form 

factor is given by: 

�ª �  �ª��� � �õöU�ª��� � - ª���  ��õ�ª��� ��                     � . N �. 
The dimensionless parameter characteriz ing the ratio of core size to the 

distance between the nuclei is determined the charge radius of the atomic 

nucleus rÇ�É to the radius of the ion sphere: xÇ�É � rÇ�É/aÀ�Ç 'This 

parameter can be approximately expressed in terms of x¼ (see [Hae 06], 

Appendix B): 

Â��  � k/. //!NN�\/°�!/ Â�  ��  � í �
��V/. //1F]Â�                  �� � ð �
��V �                               � . NF�. 
In fact, the proton charge in the atomic nucleus is not quite 

uniformly distributed: the density falls off smoothly from a maximum to 

zero near the nucleus surface, which becomes especially noticeable at 

high density near the bottom of inner crust of neutron stars. 
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III.7.2.c    Going beyond the Born approximation 

 

NonBornian corrections are taken into account by multiplying the 

integral   (3.49)  on  o��, ·�/o��Ýý��, ·� where o��, ·�  is the exact 

nonBornian differential cross section of electron scattering by the 

Coulomb potential    [Dog 56] at the energy � and the transmitted 

momentum R· and o��Ýý��, ·� is the scattering cross section in the Born 

approximation, i .e. the expression (3.43) without the last term. 

 

III.7.2.d  Accounting the polarizability of electronic background 

 

Electronic screening not only leads to �%�·� in the denominator of 

(3.49) but also affects the structure factor I�·� in (3.50). The latter 

effect is usual ly ignored in the calculation of transport coefficients in 

the Coulomb l iquid, that is, the model of the OCP. In order to assess the 

acceptabil i ty of this approximation, in  [Pot 97] in the calculation of I�·� 

was taken into account the polarizabil i ty of the electronic background as 

amended LFC, according to  [Cha 90b]. Such an accounting background 

polarizabil i ty leads to an increase Λ%è  for hydrogen about �15% at  

� � 100�/úØz and  Γ � 10 and 40% for largeΓ. For the helium effect is 

several t imes weaker, while for heavy elements it is negligible. 

 

 

III.7.3.  Ionic Crystal (multiphonon processes) 

 

In the crystal, ei-scattering can be described in terms of absorption 

and emission of phonons. It can happen through normal processes, and 

through Umklapp processes (eg, [Kit 1986]): In the first case, the 

momentum transfer R·�  �  ��′ - �� l ies in the fi rst Bri l louin zone and the 

second over and through the zone. The wave vectors ��� absorbed and 

emitted phonons, by definit ion, l ie in the first Bri l louin zone. Therefore, 
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for normal processes, ���  �  ·�, and for the umklapp processes  ���  �  ·�  -  ·�>, 

where ·�> –is the equivalent radius of the Brillouin zone, which reaches the 

vector ·�. If  the electron momentum ��  on the Fermi surface is free to 

disperse to any other point of the Fermi sphere (· í  2 �Ö), then according 

to the equation ·��  �  �6�ïè�ý�� / z (2.36), the rat io of the normal process 

to the umklapp scattering î	 �2 �Ö / ·���² ~ �4��� / z . In the laboratory, the 

number of conduction electrons per ion � is small , so it is usual ly the 

most important are the normal processes, but in dense astrophysical 

plasmas of heavy elements, on the contrary, � ¹ 1, and therefore 

dominated by the Umklapp processes (i f not too low temperatures, as 

explained below). 

As noted above, the Bragg scattering does not contribute to the 

electronic relaxation, so in the col l ision one consider only the inelastic 

component of the structural factor. Inelastic dynamic structure factor is 

calculated by formula (2.67). If  in this formula, if one shaves off the 

amount of  ï. ï �  1, he arrives at the one-phonon approximation (2.75) 

which is used in earl ier studies [ Flo 76] [ Ito 83] [ Ito 93] [Bai 95]. 

However, as it was noted in the paper [Bai 98], that one-phonon 

approximation breaks down when < approaches to <�  - Contribution of 

the n-phonon processes (n-th term) for < above the Debye temperature 

can be estimated as �·�q��ý/ ï!  ~ ��Ö�q��ý/ ï!, where �q� ? � Û!Û
Γ

 can be 

estimated by the formula (2.63). For example, for iron at Γ ~ Γ�  obtained 

subsection ��Ö�q�� ~ 3 - no small number. 

Given the dominance of Umklapp processes for calculating the 

Coulomb logarithm can use the approximation (2.73). 

As noted above, in the general case to distinguish between the 

effective relaxation time  to calculate the conductivity áâ and áã in the 

heat equation  (3.36). Therefore, in equation (3.29) and   (3.49) wil l ,  

generally speaking, different Coulomb logarithms Λ%èâ  and Λ%èã  (the 

difference between them can be neglected when scattering quasielastic, 
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ie at < ~ <Þè).  Accordingly,  in (3.49) as I%���·� using different effective 

static structure factors Iâ�·� and Iã�·� [Bai 98]:  

³��g,i � S ª 1O�
/ ��ª�1Lg,i�ª� ~! - ��1 ² @ ª1O�E1� 
ª                 � . NN�. 

���g � V�1��FQ°1�F���� ¸��g  , ���i � V�1��FQ°1�F����¸��i                      � . NW�. 
Factors and Iâ�·� and Iã�·� to be expressed through Iþþ�·,�� by the 

equalit ies: 

Lg�ª� � S #! - �y#
$%

y% Lþþ�ª,��
�                                         � . N]�. 
 

 

Li�ª� � Lg�ª� � ± O�1ª1 - !1² 0Li�ª�                            � . Na�. 
0Li�ª� � S # ! - �y# Lþþ�ª,��$%

y% 
�                             � . Nb�. 
Where    & � R�/��<.  

Using (2.74), one can rewrite  (3.57) and  (3.59) as: 

Lg�ª� � !1 �y1��ª� S '�ª, 4, ��$%

y%

Â

��õ(² Â                         � . W/�. 
 

0Li�ª� � �y1��ª� S '�ª, 4, ��$%

y%
! - 1 õöU(² Â
��õ(F Â 
Â          � . W!�. 

 

Where  x �  πtT/ n, and the function K �q, T, t� defined in   (2.75). 

Calculations [Bai 98] [Pot 99a] show that these functions are almost 

independent of the type of crystal latt ice. 
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Consider the classic crystal:  < �  <Þè. Then the characteristic phonon 

energy is much smaller than  ��<. Consequently, only the values of & � 1 

give a contribution to the integrals (3.57) and  (3.58), and it can be a 

good approximation to put:  

Lg�ª� � Li�ª� � S Lþþ�ª,��$%

y% 
�                             � . W1�. 
Finding  Λ%èâ � Λ%èã  from (3.49) (with the substitution of Iþþ�·,�� instead of I�·�), and á%èâ � á%èã . This approximation is equivalent to the relaxation 

time approximation used before . In this case, Λ%èâ,ã (in the formula  (3.56) 

usually takes values ~ 1. 

In the opposite l imit ing case of low temperature (< � <Þè) correlation 

ions - essentially dynamic. In this case Λ%èâ * Λ%èã   and Λ%èâ,ã � 1. 

 

Effective structural factors: First of all,  using the fact that in high 

temperature Coulomb crystal (<Þè �  < ó <�),  one can use the equation 

(3.62) with  I "�·�, defined by equation (2.76). Debye-Waller 

factor�y�
 �µ�, the incoming In this equation, and it  can be estimated by 

formulas (2.61) and (2.63).  

In general,  the effective structure factors in (3.55) can be described 

by the approximation formulas   [Pot 99a]: 

 Lg�ª� � �y1��ª�Z�y1�!�ª� - ![                                                    � . W �. 
0Li�ª� � h! ~ b!,²�y1��ª��! � !!!. F,²�1 � /. !/!,F�/. /WF/a � ,1��/. //! ]] � ,1� /1�         � . WF�. 

�!�ª� � h!�y1,²
1-,² � ��y1!!]�² 
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Where: 

h! � h/ ª²1O�1 � �ª�ø�²
,  , h/ � FO�1Á�1 ., � !. Wa -Â�\°                     � . WN�. 

These formulas cover a fairly wide range of parameters 0,001 í / í 10, and 0 í p� í 0.3. Equations (3.63) and (3.64) also reproduce the 

asymptotics of effect ive structural factors at large and small /, which can 

be obtained from formulas (3.60) and (3.61). The maximum 

approximation error of 4%, achieved with  p�  �  0,001  and / � 0,04.  

 

III.7.3.a       Low temperature: the case of normal processes 

 

Near the boundaries of Bri l louin zones, dispersion relat ion for 

electrons of ����� dif fers from the free-electron case, and at the 

boundaries the electron energy spectrum contains gaps. The gaps ∆� can 

be estimated in the weak coupling approximation (eg, [Kit 86]) as  

∆� ~ ´��Ö� � 4���²ïè�ý�Öy� � 4�²/�3��Ö� .  The effect of gaps is most 

significant if the deviation of the electron momentum from the 

intersection l ine between the Fermi surface and the Bril louin zone 

boundary does not exceed ∆�~∆�/�R"Ö�~�4/3��Zp�ÜÝ/0Ý[�Ö. However, with 

decreasing temperature the strips of the Fermi surface, between which 

the umklapps proceed effectively, become narrower and closer to these 

intersection l ines. When the widths of the strips  ~·��// become smaller 

than   ∆�, the umklapp processes are frozen out and the normal processes 

prevail. The above estimates indicate that this happens when the 

temperature falls below: 

4�~ 4V�°! h�å�� Â��                                                               � . WW�. 
 

In this case (3.55)should be replaced by: 
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1³��g³��g 2 � 1V�1«�4 S 
¡FQ S 
¡′FQ ��ª�1 ~! - ��1 1 @ ª1O�E1� � 

                                             � � 3ª�������ZO���[41 �y#�! - �y#�1� 1 ª²ª² - �ª#/Q�1 �  �O�#/Q�12       
� . W]�. 

Where  5Ω and 5Ω′ - elements of solid angle near the directions of �� and ��′,� � �′ � �Ö . Expression equivalent to  (3.67) was obtained in  [Rai 82] 

using the general method  [Zim 61] and the spherical Wigner-Seitz cell  

and single-phonon scattering. 

At < � <� from (3.67) can be possible to obtain precise asymptotics 

for the Coulomb logari thm  [Rai 1982], which are expressed in terms of 

plasma parameters as fol lows: 

1³��g³��g 2 � Á6Â�!/1
\!/1°!/1  k�FQ/ �Zh�å�/Â�[,yN

,y l                             � . Wa�. 
Where: ü7 � �8>

9 @ z
9:;

�<
�=E�/� >�5� ? 15.9  and >�5�  �  1.0369 here >�0� - 

Riemann zeta function). 

 

III.8.    Overall approximation for the outer shells  

 
In this section we present unified analyt ical approximations to 

calculate the electronic thermal conductivi ty, conductivity and 

thermoelectric coefficient caused by electron scattering on ions. 

Let us start treat the case when < � <Ö . the  Strongly degenerate 

case, the classical Coulomb liquid of strongly bound and the classical 

ionic crystal have similar physical propert ies. Calculations   [Gne 01] 

[Bai 1998] [ ref214] show that due to this similarity jump kinetic 

coefficients at the phase boundary between Coulomb and l iquid crystal is 

very small , provided that of strongly degenerate Coulomb fluid used 

inelast ic structure factor  (3.51), and in the crystal are taken into account 

multiphonon processes according to  (3.62) and (2.73). Carrying out the 

calculations for Γ A  1 facil i tated by the approximate formulas   (3.63) 
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(3.64). On the other hand, when Γ �  1, one can use the formula  (3.45). 

The Coulomb logarithms, calculated by this formula for Γ ó  1, sufficiently 

smoothly matched with the Coulomb logarithms, calculated at Γ ð  1. This 

allowed one to construct a unified approximate formula for calculating the 

electronic conductivity due to ei-scattering, applicable in all phases [Pot 99a]. It 

is based on the expression (3.49), in which a �´µ�� I �·� is replaced by effective 

screening function: 

��ª����1 � !�ª1 � ª�1�1 3! - �y�/ª14�y�!ª1�g,iø�,�                � . Wb�. 
Here the first factor has the form of the Debye screening function with the 

effective inverse screening length: 

ª� � -�ª�1 � O4�1 ��yC                                         � . ]/�. 
 

Where the parameter D � 9:;�Eàßà  associated with the second Born correction in  

(3.45), and: 

ª�1 � ªø1 �! � /. /W.��y√.                                             � . ]!�. 
 

-is the effective length of the inverse ion screening. Thus, ·F becomes �F at 

Γ �  1 and �qÖ at  Γ ¹  1. The second factor (in brackets), in form similar to   

(2.76), plays the role of an effective structure factor, so the 	> on the order of 

magnitude close to the  �q� / 3, expressed by the formula  (2.63), and namely : 

�/ �  �y1�ø1  @! � C E                                          � . ]1�. 
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The third factor is introduced in [Gne 01], takes into account the ionic form 

factor and, thus, allows expanding the range of applicability of approximation to 

the inner crust too. Included in this factor is a parameter: 

�!  �  ��� 1   @! �  ÒÂ��  °! E @! � C E                � . ] �. 
Order of magnitude close to the �ý���  where �ý�� - proton radius of the atomic 

nucleus (ie the characteristic radius of the distribution of positive charge in the 

nucleus). For the calculations is useful to note that   �Ö� ý��  �  �9� / 4��/z 0ý��, 

but 0ý�� is given by  (3.54). Finally, the functions G and H describe the quantum 

effects at low temperature. the function: 

ø�,� � �ÂV3-h/�y!�yb.!/,/F4                             � . ]F�. 
  

-  Is associated with the quantum correction to the Debye-Waller factor .  

and G is а phenomenological factor that describes the reduction of ion 

thermal displacements in quantum solid at < I  <Þè and contains non- 

Born corrections expressed through the argument D: 
�g � ! � �°/!1N�²Ò! � �/. !b,�²°y!/                                                 � . ]N�. 

�i � �g � 0� , 0� � /. /!/N,²�! � /. //a!,²� /1 �! � �Â�/å�� C��! - °y!�     � . ]W�.  
G Increases with � and decreases as /y� at / ¹ 1. Note that one can safely put 

G �  1 at < �  <Þè and  � I  30. 

 

Equation (3.49) with the effective screening function (3.69) can be 

integrated. As a result, O.Y. Gnedin et al obtain [Gne 01]: 
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¸g,i��� � �¸/��,K�K!� - ¸/��,K!���g,iø�,�                                � . ]]�. 
Where:  s � ®LÛ

MNOÛ  , w � 4kº�s>  , w� � 4kº�s� 

¸/��,K� � ¸!��,K� - �² ² ¸1��,K�                                                     � . ]a�. 
1³!��,K� � TU � � !� � �� � ! �! - �yK� - �! � �K���K�C!��K� - C!��K�K��   

� . ]b�. 
1³1��,K� � �yK - ! �K

K - �1� � ! �! - �yK� - 

                                                                                                             ����3333....88880�.0�.0�.0�. 
            -1� TU � � !� � ��1 � �K���K�C!��K� - C!��K�K�� 

 

Where E��x� � R yy�eyTdy∞Æ  is the exponential  integral given, for 

example, bу the rational-polynomial approximations in Abramowitz and 

Stegun [Abr 72]. 

Note that the direct use of (3.79) (3.80) can be difficult in various 

l imiting cases when s � 1, w �  1, or w ¹ 1. In these cases it  is better to 

use explicit  asymptotic l imit  [Pot 99a]: 

³!��,K � !� ? K @1� � !1� � 1 - � TU � � !�  E                                  � . a!�. 
³1��,K � !� ? K±! -  � - W�²F� � F -  1 TU � � !�  ²                    � . a1�. 
³!��,K ¹ !� ? !1 @TU � � !�  - !� � !E                                       � . a �. 
³1��,K ¹ !� ? 1� � !1� � 1 - � TU � � !�                                           � . aF�. 
³!�� � !,K � �y!� � !1 �C!�K� � TUK � UC�                      � . aN�. 
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³1�� � !,K � �y!� � �yK - ! �K1K                                         � . aW�. 
Where  VW  �  0.5772 . .. – is the Euler's constant. 

 

These formulas are obtained for not too low temperatures, when not frozen 

transfer processes. At low temperatures , one incorporate by interpolation: 

³��g,i � ³g,i��� 56��-4�/4� � ³��,Y�Kg,i �! - 56��-4�/4��             � . a]�. 
Where Λâ,ã�èë , defined by  (3.77) and Λ%è,��Zâ,ã - low-temperature asymptotic (3.68). 

Note that despite the practical convenience of such interpolation the actual 

behavior of the Coulomb logarithm in the intermediate temperature regime 

requires a separate study, which is still lacking. 

Thus, the kinetic coefficients in the strongly degenerate plasma, one 

can obtain using (3.36) (3.47) and (3.87). 
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 Chapter IV    

Electrical and thermal conductivities 

in dense plasma 
 
A-   Theoretical contribution 
 

IV.1. The effect of the nuclear form factor 
 

Basing on the Ioffe model that unifies the description of the transport  

phenomena in both l iquid and solid states of matter inside the extremely 

dense matter of neutron star crusts , our fi rst contribution is to study 

some aspect of nuclear physics , the main characteric parameter is the 

nuclear form  factor that we talked about.  

IV.1. 1. The Gaussian Charge distribution 

The general form of the Gaussian Charge distribution is given by (eg 

[Pov 08]):  

���� � ���
�� !/� #$�����                                                       �%. '�. 

The Fourier transform of the relat ion (4.1) gives the so cal led the 

Gaussian nuclear form factor: 

 ()*�+,, � -./ �0 )�
���1�                                                       �%. ��.  

To apply this formulate to neutron star crust, f i rst we must replace 

the term a1 by r456$7   then our Gaussian nuclear form factor (4.2) become: 

()*�+,, � #89 �0 )��:+;�
�                                                         �%. !�. 
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Replacing (4.3) in (3.69) we get the effective screening potential of an 

exponential  charge distribution of the ions :  

 

<=)#>><*�+,,
� � -./�0)��:+;� ��)� ? ),��� @' 0 #$,A)�B*C,EF�G� 

                                                                                                                        �%. %�. 
�  H()*�+,,H�<=)#>><IJ

�  
 

By combining equations (3.55) and (4.4), we: 

  
KL#MC,EN*�+,, � O )!�P(

A <=)#>><*�+,,
� Q' 0 R(�;� S )�P(T�U V)    

�%. W�. 
                                                  � X )!�P(A H()*�+,,H�<=)#>><IJ

� Y' 0 R(�;� Z )�P([�\  
Also: 

  K]#MC,EN*�+,, � X )!�P(A -./K0)��:+;� N
K)�^),�N� _    

                                                                                                                                                                                                                                                                                                                                                                                                                            �%. `�.    
                   _ @' 0 #$,A)�B*C,EF�G� Q' 0 R(�;� S )�P(T�U V) 

And then we get by computing analyt ical formulae for the Coulomb 
logarithm:  

]'ab �    ',A� � '�cde� #$f�cde�,A �0#f�cde� K,�f^,AN,A� ,�f� _    
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_ �g'h,�f��cde�
,A� i 0 g'hf�cde� K,�f ? ,AN,A� i��cde� ? �0' ? #f�cde�,A �,A��

0 '�cde� ? ,A #$fK�cde� ^,AN,A �0#fK,�f^,ANK�cde� ^,AN,A� ,�f� �g' Q,�f�K�cde� ? ,AN,A� U
0 g' QfK,�f ? ,ANK�cde� ? ,AN,A� U �cde�

0 ,A�#f�,�f^,A���cde� ^,A�,A� ,�f��g'h,�f���cde� ? ,A�,A� i
0 g'hf�,�f ? ,A���cde� ? ,A�,A� i� ? �0' ? #f^f�cde�,A �,A��� 

�%. j�. 
]�ab � 'f,A! �0 '�cde% #$f�cde�,A �0#f�cde� K,�f^,AN,A� ,%f% _ 

_ �g'h,�f��cde�
,A� i 0 g'hf�cde� K,�f ? ,AN,A� i��cde% ? �0' ? #f�cde�,A �,A%

0 f�cde� ,A���0' ? #f�cde�,A �,�f ? ,A��
? '

K�cde� ? ,AN� #$fK�cde� ^,AN,A �0#fK,�f^,ANK�cde� ^,AN,A� ,%f%�g'h,�f�K�cde� ? ,AN,A� i
0 g'hfK,�f ? ,ANK�cde� ? ,AN,A� i��cde%

? f�cde� ,A�0�#f�,�f^,A���cde� ^,A�,A� ,%f!�g'h,�f���cde� ? ,A�,A� i
0 g'hf�,�f ? ,A���cde� ? ,A�,A� i� ? �0' ? #f^f�cde�,A �,�f,A ? ,A��
0 ,A��#f�,�f^,A���cde� ^,A�,A� ,%f%�g'h0 ,�f���cde� ? ,A�,A� i
0 g'h0 f�,�f ? ,A���cde� ? ,A�,A� i� 0 �0' ? #f^f�cde�,A �,�f�,A ? �0'
? #f^f�cde�,A 0 f�,A���� 

�%. k�. 
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IV.1. 2. The homogeneous sphere charge distribution 

The general form of the homogeneous sphere Charge distribution is 

given by (eg [Pov 08]): 

 

���� �
lmn
mo '%! �p!   >q�   � r p

 A        >q�   � s t 
u                                                  �%. v�. 

Where:  

t :  Is The nuclear radius, for ordinary nuclei in neutron star crusts is  

usually given by �wx7/y instead of the well known formula in nuclear 

physics �wz7/y  (eg: [Hae 06]) where �w { 1.2 _ 107���.  

The Fourier transform of the relation (4.10) gives the so called the 

osci l lating nuclear form factor; 

()q,; � !�! h��c��� 0 � e�����i                                             �%. 'A�. 
where: α � R. q .  

To apply this formulate to neutron star crust, f irst we must replacing 

the term R by r456 (§III.7.2.b), then our osci l lating nuclear form factor 

(4.10) becomes: 

()q,; � !���cde�! h��c���cde� 0 ��cde e�����cde�i                    �%. ''�. 
Which is the same result given in [Hae.07], and used by authors in 

previews work, but we shall  use it  in di fferent way,   

Replacing �4.11� in �3.69� we get the effective screening potential  
of an exponential charge distribution of the ions: 
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<=)#>><q,;
� � '�)� ? ),���   !���cde�! h��c���cde� 0 ��cdee�����cde�i¡� _    

�%. '��.    
                                                                                                                                                _ @' 0 #$,A)�B*C,EF�G�  �  H()q,;H�<=)#>><IJ

�                               
 

K]#MC,ENq,; � O )!�P(
A H()q,;H�<=)#>><IJ

� @' 0 #$,A)�B*C,EF�G� _ 

                                                                                          �%. '!�. 
_  Q' 0 R(�;² S )�P(T�U V)  

 

To have an analytical formula for KΛ£¤¥,¦N§¨6 we must f irst take into 

account Gneding result [Gne. 01]: 

H©�-ªªH��e� � -$�'�²
��� ? �����                                                     �%. '%�.    

 

Then our Coulomb logarithm can be written as: 

K]#MC,ENq,; � O )!�P(
A

#$,')�
�)� ? ),��� _    

�%. 'W�.    
                   _ @' 0 #$,A)�B*C,EF�G� Q' 0 R(�;� S )�P(T�U V) 

 
Thus the exact result  is:  
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]'��e � ',A� � ',' #$f,',A ��0' ? #f,',A �,A� ? #fK,�f^,AN,',A� ,�f� _    
_ �g'h0 ,�f�,',A� i 0 g'h0 f�,�f ? ,A�,',A� i�,'�
0 ',A ? ,' #$f�,A^,'�,A �#f�,�f^,A��,A^,'�,A� ,�f��g'h0 ,�f��,A ? ,'�,A� i
0 g'h0 f�,�f ? ,A��,A ? ,'�,A� i�,A ? �0' ? #f^f,',A �,A�

? #f�,�f^,A��,A^,'�,A� ,�f��g'h0 ,�f��,A ? ,'�,A� i
0 g'h0 f�,�f ? ,A��,A ? ,'�,A� i�,'��    

�4.�4.�4.�4.16161616���� 
]���e � 'f,A! � '�cde% #$f�cde�,A �0#f�cde� K,�f^,AN,A� ,%f% _    
_ �g'h0 ,�f��cde�

,A� i 0 g'h0 f�cde� �,�f^,A�,A� i��cde% ? �0' ? #f�cde�
,A �,A% 0

f�cde� ,A���0' ? #f�cde�
,A �,�f ? ,A�� ?

'��cde� ^,A�� #$f��cde� ¬,A�,A �#f�,�f¬,A���cde� ¬,A�,A� ,%f%�g'h0 ,�f���cde� ^,A�,A� i 0
g'h0 f�,�f^,A���cde� ^,A�,A� i��cde% ?
f�cde� ,A��#f�,�f¬,A���cde� ¬,A�,A� ,%f!�g'h0 ,�f���cde� ^,A�,A� i 0
g'h0 f�,�f^,A���cde� ^,A�,A� i� ? �0' ? #f^f�cde�

,A �,�f,A ? ,A�� 0
,A��0#f�,�f¬,A���cde� ¬,A�,A� ,%f%g'h0 ,�f���cde� ^,A�,A� i 0 g'h0 f�,�f^,A���cde� ^,A�,A� i� 0
�0' ? #f^f�cde�

,A �,�f�,A ? �0' ? #f^f�cde�
,A 0 f�,A����        

�4.17��4.17��4.17��4.17�....    
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IV.1. 3. The exponential charge distribution 

 

The general form of the exponential Charge distribution is given by 

(eg [Pov 08]):  

���� � ��!
k� #$��                                                                 �%. 'k� 

The Fourier transform of the relation �4.12� gives the so called the 
Gaussian nuclear form factor:  

()VM9 � '
S' ? )���1�T�                                                     �%. 'v�.    

To apply this formulate to neutron star crust,  f irst we must 
replacing the term a1 by r456$7  �§III.7.2.b� then our Gaussian 
nuclear form factor �4.19� become: 

()VM9 � '
K' ? )��:+;� N�                                                �%. �A�. 

Replacing (4.20) in (3.69) we get the effective screening potential of an 

exponential  charge distribution of the ions: 

<=)#>><VM9
� � '�' ? )��:+;� �%�)� ? ),��� @' 0 #$,A)�B*C,EF�G�     

�  H()VM9H�<=)#>><IJ
�                                              �%. �'�. 

And we have by substituting the equation (4.21) into equation �3.55�: 

K]#MC,ENVM9 � O )!�P(
A <=)#>><VM9

� Q' 0 R(�;� S )�P(T�U V)    
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    �%. ���.    

                           � O )!�P(
A H()VM9H�<=)#>><IJ

� Q' 0 R(�;� S )�P(T�U V)          
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Also: 

K]#MC,ENVM9 � O )!�P(
A

'�' ? )��:+;� �%�)� ? ),��� @' 0 #$,A)�B*C,EF�G� _ 

                                                                                            �%. �!�. 
_ Q' 0 R(�;² S )�P(T�U V) 

To have an analytical formula for �Λ¶·̧,¹�º·» we must fi rst write: 

'�' ? )��:+;� �%�)� ? ),��� � %�cde�
�)� ? �����0' ? ����cde� �W 0 

0 %�cde%
�' ? )��cde� ��0' ? ����cde� �W ? 

'�)� ? ������0' ? ����cde� �% ? 

? !�cde%
�' ? )��cde� ���0' ? ����cde� �% 

0 ��cde%
�' ? )��cde� �!�0' ? ����cde� �! ? 

? �cde%
�' ? )��cde� �%�0' ? ����cde� �� 

(4.24) 

Then we f ind: 

K]-�¼,½N¾�/ � K]-�¼,½N¿ÀK0' ? ����cde� N% ? e���-eÁ�Â- Á-�Ã�                     �%. �W� 

                                     
 

Thus the dipolar Coulomb logarithm can be written as: 

 ]'¾�/ � ��A���!�' ? ��Ä`�cde'� ? !���0! 0 �� ? ���ÄW�cde'A �A 0!�Ä%�! ? `� ? W�� 0 `�' ? ��À�Åh�Äi ? `�' ? ��À�Åh�' ?
��Äi 0 `À�Åh' ? Ä�cde�

�A i 0 `�À�Åh' ? Ä�cde�
�A i��cdek �A� ?  
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Ä!�'j 0 ��� 0 'W�� ? `�' ? 'A� ? v���À�Åh�Äi 0 `�' ? 'A�
? v���À�Åh�' ? ��Äi ? `À�Åh' ? Ä�cde�

�A i
? `A�À�Åh' ? Ä�cde�

�A i ? W%��À�Åh' ? Ä�cde�
�A i��cde` �A!

? 

vÄ��W 0 � 0 ��� ? �� ? k� ? `���À�Åh�Äi 0 ��' ? %�
? !���À�Åh�' ? ��Äi ? �À�Åh' ? Ä�cde�

�A i ? k�À�Åh'
? Ä�cde�

�A i ? `��À�Åh' ? Ä�cde�
�A i��cde% �A% ? 

`Ä �` ? �� ? !�' ? ���À�Åh�Äi 0 !�' ? ���À�Åh�' ? ��Äi
? !À�Å Q' ? Ä�cde�

�A U ? `�À�Å Q' ? Ä�cde�
�A U

? !��À�Å Q' ? Ä�cde�
�A U �cde� �AW ? 

`�' ? �' ? ��À�Åh�Äi 0 �' ? ��À�Åh�' ? ��Äi ? À�Åh' ? Ä�cde�
�A i

? �À�Åh' ? Ä�cde�
�A i��À��/�`�'

? ����Ä�cde� 0 �A�W�Ä�cde� ? �A�!� 0 

'`��Ä�cde� 0 �A�W �A���%�' 0 -$Ä ? -�Ä�Äg'h0�Äi 0 -�Ä�Äg'h0�'
? ��Äi��cde� �A� 0 '' ? � 

`-$Ä�-Ä 0 � ? -Ä� ? -Ä^�Ä�' ? ���' ? �Ä�g'h0�Äi0 -Ä^�Ä�' ? ���' ? �Ä�g'h0�' ? ��Äi���Ä�cde�
0 �A��A� 0 

�%-$Ä�A���0' ? -Ä��cde� ? -Ä^ �A�cde� �g'h0 �A�cde� i 0 g'h0Ä 0 �A�cde� i��A�
0 '�cde� �Ä�cde� ? �A� 

'k-$Ä��Ä�cde� 0 �A��A��-ÄÄ�' ? - �A�cde� g'h0 �A�cde� i 0 - �A�cde� g'h0Ä
0 �A�cde� i��cde% ? 
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?-Ä ? -Ä^ �A�cde� �' ? Ä�g'h0 �A�cde� i 0 -Ä^ �A�cde� �' ? Ä�g'h0Ä
0 �A�cde� i��cde� �A ? -Ä^ �A�cde� �g'h0 �A�cde� i 0 g'h0Ä
0 �A�cde� i��A�� 0 

  '�cde% �Ä�cde� ? �A�� `-$Ä�A�0�Ä�cde� ? �A���-ÄÄ��cdek ? Ä�0�
? �-Ä ? -ÄÄ ? �-Ä^ �A�cde� Äg'h0 �A�cde� i
0 �-Ä^ �A�cde� Äg'h0Ä 0 �A�cde� i��cde` �A ? 

  

�0' ? -Ä 0 Ä ? �-ÄÄ ? -Ä^ �A�cde� Ä�% ? Ä�g'h0 �A�cde� i 0 -Ä^ �A�cde� Ä�%
? Ä�g'h0Ä 0 �A�cde� i��cde% �A� ? 

  

�0' ? -Ä ? �-Ä^ �A�cde� �' ? Ä�g'h0 �A�cde� i 0 �-Ä^ �A�cde� �' ? Ä�g'h0Ä 0
�A�cde� i��cde� �A! ? -Ä^ �A�cde� �g'h0 �A�cde� i 0 g'h0Ä 0 �A�cde� i��A%� ?  

'
�cde` KÄ�cde� ^�AN! -$Ä��Ä�cde� 0 �A�!�-ÄÄ!�cde'� 0 -ÄÄ��0! ?
�Ä��cde'A �A 0 Ä�! 0 !-Ä 0 !Ä ? `-ÄÄ ? -ÄÄ� ?
!-Ä^ �A�cde� g'h0 �A�cde� i 0 !-Ä^ �A�cde� Ä�g'h0Ä 0 �A�cde� i��cdek �A� 0  

�' 0 -Ä 0 WÄ ? `-ÄÄ 0 Ä� ? !-ÄÄ� ? -Ä^ �A�cde� Ä��v
? Ä�g'h0 �A�cde� i 0 -Ä^ �A�cde� Ä��v ? Ä�g'h0Ä
0 �A�cde� i��cde` �A! 0 

  

�0� ? �-Ä 0 �Ä ? !-ÄÄ ? !-Ä^ �A�cde� Ä�! ? Ä�g'h0 �A�cde� i
0 !-Ä^ �A�cde� Ä�! ? Ä�g'h0Ä 0 �A�cde� i��cde% �A% 0 
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�0' ? -Ä ? !-Ä^ �A�cde� �' ? Ä�g'h0 �A�cde� i 0 !-Ä^ �A�cde� �' ? Ä�g'h0Ä
0 �A�cde� i��cde� �AW 0 -Ä^ �A�cde� �g'h0 �A�cde� i 0 g'h0Ä
0 �A�cde� i��À�� 

 (4.26). 
 �]�¾�/ � ��A!��!�' ? ��ÄW�cde'A ? !��Ä%�! ? �� 0 

0��' ? ��À�Åh�Äi ? ��' ? ��À�Åh�' ? ��Äi 0 �À�Åh' ? Ä�cde�
�A i

0 ��À�Åh' ? Ä�cde�
�A i��cdek �A 0 

!�Ä! �! 0 `� 0 W�� ? �� ? k� ? `���À�Åh�Äi
0 ��' ? %� ? !���À�Åh�' ? ��Äi ? �À�Å Q' ? Ä�cde�

�A U
? k�À�Å Q' ? Ä�cde�

�A U ? `��À�Å Q' ? Ä�cde�
�A U �cde` �A� 0 

Ä� �' ? ��� 0 !�� 0 `�! ? 'k��' ? ���À�Åh�Äi
0 'k��' ? ���À�Åh�' ? ��Äi ? 'k�À�Å Q' ? Ä�cde�

�A U
? !`��À�Å Q' ? Ä�cde�

�A U
? 'k�!À�Å Q' ? Ä�cde�

�A U �cde% �A! 0 

!Ä �' ? W� ? ���! ? %� ? ���À�Åh�Äi
0 ���! ? %� ? ���À�Åh�' ? ��Äi ? `�À�Å Q' ? Ä�cde�

�A U
? k��À�Å Q' ? Ä�cde�

�A U ? ��!À�Å Q' ? Ä�cde�
�A U �cde� �A% 0 

!�' ? �� ? ���' ? ��À�Åh�Äi 0 ���' ? ��À�Åh�' ? ��Äi ? ��À�Åh'
? Ä�cde�

�A i ? ���À�Åh' ? Ä�cde�
�A i��AW��/�!�'

? ����Ä�cde� 0 �A�W�Ä�cde� ? �A�!� 0 
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'`Ä��Ä�cde� 0 �A�W -$Ä�A!�0�%�' 0 -Ä ? Ä 0 �Ä ? -Ä�Ä
? -Ä^�Ä��Ä�g'h0�Äi 0 -Ä^�Ä��Ä�g'h0�'? ��Äi��cde� �A ? '' ? � `�0' ? -Ä 0 � ? -Ä� ? -Ä�Ä 0 ��Ä ? -Ä��Ä
? -Ä^�Ä��' ? ��Ä�� ? �Ä�g'h0�Äi0 -Ä^�Ä��' ? ��Ä�� ? �Ä�g'h0�' ? ��Äi���Ä�cde�0 �A��A ? '�cde� �%�A Æ�' 0 -Ä ? Ä��cde% ? �0' ? -Ä��cde� �A

? -Ä^ �A�cde� Sg' Y0 �A�cde� \ 0 g' Y0Ä 0 �A�cde� \T �A�Ç ? 

'�cde% �Ä�cde� ? �A� 'k��Ä�cde� 0 �A��A��0' ? -Ä�Ä�cde` ? �0' ? -Ä

? -ÄÄ ? �-Ä^ �A�cde� Äg'h0 �A�cde� i 0 �-Ä^ �A�cde� Äg'h0Ä
0 �A�cde� i��cde% �A ? 

�0' ? -Ä ? -Ä^ �A�cde� �� ? Ä�g'h0 �A�cde� i 0 -Ä^ �A�cde� �� ? Ä�g'h0Ä
0 �A�cde� i��cde� �A� ? -Ä^ �A�cde� �g'h0 �A�cde� i 0 g'h0Ä
0 �A�cde� i��A!� ? 

'�cde` �Ä�cde� ? �A�� `�A�0�Ä�cde� ? �A���-ÄÄ��! ? �- �A�cde� g'h0 �A�cde� i
0 �- �A�cde� g'h0Ä 0 �A�cde� i��cdek ? Ä�0% ? `-Ä ? -ÄÄ
? %-Ä^ �A�cde� �' ? Ä�g'h0 �A�cde� i 0 

%-Ä^ �A�cde� �' ? Ä�g'h0Ä 0 �A�cde� i��cde` �A ? �0! ? !-Ä 0 Ä ? �-ÄÄ
? -Ä^ �A�cde� �� ? kÄ ? Ä��g'h0 �A�cde� i 0 -Ä^ �A�cde� �� ? kÄ
? Ä��g'h0Ä 0 �A�cde� i��cde% �A� ? 
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�0' ? -Ä ? �-Ä^ �A�cde� �� ? Ä�g'h0 �A�cde� i 0 �-Ä^ �A�cde� �� ? Ä�g'h0Ä
0 �A�cde� i��cde� �A! ? -Ä^ �A�cde� �g'h0 �A�cde� i 0 g'h0Ä
0 �A�cde� i��A%� ? 

'�cdek �Ä�cde� ? �A�! ��Ä�cde� 0 �A�!��-ÄÄ!�cde'� ? Ä��0` ? `-Ä

? W-ÄÄ ? `-Ä^ �A�cde� Äg'h0 �A�cde� i 0 `-Ä^ �A�cde� Äg'h0Ä
0 �A�cde� i��cde'A �A ? 

Ä �0` ? `-Ä 0 `Ä ? 'W-ÄÄ ? -ÄÄ�

? `-Ä^ �A�cde� Ä�! ? Ä�g' Y0 �A�cde� \
0 `-Ä^ �A�cde� Ä�! ? Ä�g' Y0Ä 0 �A�cde� \ �cdek �A� ? 

�0� ? �-Ä 0 ''Ä ? 'W-ÄÄ 0 Ä� ? !-ÄÄ�

? -Ä^ �A�cde� Ä�'k ? 'kÄ ? Ä��g' Y0 �A�cde� \
0 -Ä^ �A�cde� Ä�'k ? 'kÄ ? Ä��g' Y0Ä 0 �A�cde� \ �cde` �A! ? 

�0W ? W-Ä 0 �Ä ? !-ÄÄ ? !-Ä^ �A�cde� �� ? `Ä ? Ä��g' Y0 �A�cde� \
0 !-Ä^ �A�cde� �� ? `Ä ? Ä��g' Y0Ä 0 �A�cde� \ �cde% �A% ? 

�0' ? -Ä ? !-Ä^ �A�cde� �� ? Ä�g'h0 �A�cde� i 0 !-Ä^ �A�cde� �� ? Ä�g'h0Ä
0 �A�cde� i��cde� �AW ? -Ä^ �A�cde� �g'h0 �A�cde� i 0 g'h0Ä
0 �A�cde� i��À�� 

(4.27) 
 

IV.2.  Multi components plasma 
 

Astrophysical plasmas – such in accreted neutron stars - are often a 

mixture of di fferent ions. Furthermore, ionic crystals may contain 
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structural defects. In these cases, the formulas (3.56) recorded for the 

same ionic components are subject to change, which may depend on the 

state of the plasma, such as inhomogeneities, their number and nature of 

the location. 

To study those plasmas we propose to deal with them by three point 

of view. 

 

IV.2.1 Formalism of charged impurit ies in a crystal 

 

Consider the scattering of electrons by charged impurit ies in the 

crystal.  This case was previously studied in  [Flo 76] [Ewa 75] [ Ito 94].  

Approaches of all the authors are essentially the same, differing only in 

the choice of shielding function ÈÉ, which slightly depend on the 

Coulomb logarithm. 

Charged impurit ies in the crystall ine crust of neutron stars or a 

crystall ine core of white dwarfs - are ions (atomic nuclei) with the 

charge number Zj  Ê  Z, where Z - charge number of ions forming the 

latt ice. It is assumed that they are randomly arranged in the crystal. ' '  

Then the scattering of electrons by impurit ies can be regarded as 

Coulomb scattering on the excess charge�Zj 0  Z� e. 
In essence, this is the same scattering as the scattering of electrons on 

the ion in the gas phase, and it  also can be described in the relaxation 

time approximation. 

Similarly, the expression (3.56), the electronic relaxation t ime for 

scattering by impurit ies is equal:  

Ë�Ã/ � /Ì�ÂÌ%Í-� ∑ KÏ 0 ÏÐN�cÐ]�Ã/�Ð�Ð                                    �%. �k�. 
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Where the summation is over all sorts of impurit ies. We wil l  consider 

uncorrelated impurity, the Coulomb logarithm Λ¤ÑÒ�Ó� - is a slow function of 

plasma parameters, depending on the screening of electron scattering by 

impurit ies, described by the function ÈÉ.  Shielding is determined by 

electrons, and possibly also the correlat ions between the impuri t ies, but 

the latter are neglected. 

We wil l  simply make the transformation: for all j  Z Ö �ZÓ 0  Z� e 

In the formulas (3.56) - (3.69) then we sum over all j to compute the 

Coulomb logarithm due to the contribution of  impurit ies putting a 

Debye-l ike screening �×�h0Ø�Ù�i � 0, and G � 1,  then our impuri t ies 

Coulomb logarithm is given by :  

LMÚ9�Û� =0 ';�P(�K%P(�^),�N �JqÜh ),�%P(�^),�i),%R(� ? kP(%�;��' ? �JqÜh),i 0
JqÜh%P(� ? ),�i� ? R(�� 0     �P(�),��;�JqÜh' ? %P(�),� i ? �0� 0
%JqÜh),i ? �JqÜh%P(� ? ),�i�R(���F ZGÛ[   

(4.29). 

Where : ηÓ � ÞÞßà�á�.  

We define Q¤ÑÒ- The so-called parameter heterogeneity. or impuri ty 

parameter as  :  

ãMÚ9 � äKåÛ 0 åN�:Û/:Mq:Û
                                             �%. !A�. 

Thus the total frequency wil l  be the sum of the frequency of coll ision of 

the domine element νæ$£ç and the impurity frequency 

è � èV$#é ? èMÚ9                                  (4.31). 

According to [Dal 09] we have:  

èèMÚ9 � êå²ëãMÚ9
LLMÚ9                                               �%. !��. 
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Since Λ and Λ¤ÑÒ have the same order of magnitude Λ { Λ¤ÑÒ we can 

write: 

ìì�Ã/ { êÏ�ëí�Ã/ Ö ì { êÏ�ëí�Ã/ ì�Ã/                                  �%. !!�. 
Generally speaking, this assumption may be violated in cases where 

the impurity ions constitute a significant fraction of the total ion 

concentration. Recent modeling results by the method of molecular 

dynamics [ Ito 94] indicate that there could be a regular Wigner latt ice, 

consisting of several types of ions. This case requires special study and 

is not considered here.  

We wil l  show the validi ty of the suggest made by  J.Daligault  and 

S.Gupta  [Dal 09]  -they used  the method of molecular dynamics- that 

for a mult icomponents mixture  if  we  deal with this mixture as an 

amorphous solid or heterogeneous l iquid depending on Γ values ,the 

Scattering by charged impurit ies method gives good results only for 

small  values of the impurity parameter Q¤ÑÒ î 100 .  

Since τimp almost independent of T, the scattering by impuri t ies 

dominates at sufficiently low temperatures. Therefore, the ionic 

impurit ies can be a major source of residual resistivity (nearly 

independent of T) and heat capacity (ï T) in the crust of neutron stars at 

sufficiently low temperatures and high densit ies (at T ð Tpi) - mainly in 

the inner crust. 

 

IV.2.2 Linear Mixing rule 

 

When there are no dominant-type ions, arranged in a crystal latt ice - 

for example, i f we consider the l iquid, gas or amorphous alloy, suitable 

alternative method of calculating the kinetic coefficients. In this case we 
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can use equation (3.56), having made it  to the replacement 

x�·ñòó¶· namenatele ∑ xôõ�ôó¶·ôô where the sum is over all  ion species j, and 

the Coulomb logarithm Λ£¤Ó  in general, depend on j . In [Pot 99a], A.Y 

Potekhin and al proposed a way to approximate calculation of Λ£¤Ó  ' is 

based on "rule of additivity" for ionic mixtures [Han 77]. It consists in 

the fact that each of the Λ£¤Ó  i  rely on the formulas  (3.56) -  (3.69),  

substi tuting in them xô instead of x and öô, instead, of  ö. 

IV.2.3. The effective OCP comportment   

Almost as good and much more straightforward approach is that all  

Coulomb logarithms replaced by one designed by the same formulas, but  

with the replacement of x by ÷êx²ë).  
 

 

IV.3.  Scattering of strongly degenerate Electron by electrons 

 

Despite just shown the inapplicabil i ty of relaxation-t ime 

approximation to its coll isions, comfortable yet provide the transport 

coefficients in the form of (3.36), which allows us to apply the rule 

Mattissena in the form of (3.41) for a l iquid or (3.42) for the crystal.   

The character of thermal conductivity due to col l isions between 

degenerate electrons is di fferent at temperatures ø»¶  î ø ð øù and 

ø ð  ø»¶ [Lam 68]: In the fi rst case, the characteristic momentum q ~kTF 
transferred in the scattering is much smaller than the thermal smearing 

of the Fermi surface and in the second case the transferred momenta in 

the coll isions exceed the width of the thermal smearing out of the Fermi 

surface. By the virtue of the Pauli principle for the electron momenta 

before and after the scattering must be within the thermal width of the 

Fermi surface. 

 Consequently, at T ð  Tpe the number of transit ions �pûü7, pûüõ  Ö  pûü7′ , pûüõ′ � 

suppressed: there are allowed only transit ions in which the directions of 
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the momenta change, but not their absolute values. When TÒ£  î T ð Tý 

this restriction disappears, as the transfer of momentum in either 

direction is not able to withdraw the electron outside the thermal width 

of the Fermi surface. 

E. Flowers and N. Itoh [Flo 76] derived a variational expression for 

þ¶¶ strongly degenerate relativistic electrons at ø ð  ø»¶ V Urpin and D. 

Yakovlev [Urp 80] obtained a more general result that applies also for 

ø ð  øù, but does not require ø ð  ø»¶  This result is used in The papers 

[Pot 97] [Pot 99a], which were calculated by electronic conductivi ty, due 

to its scattering, and obtained approximate formula for them, the result  

can be written in analogy with (3.36) as follows: 

è## � !�>���! �P����
1Ú#�;� S�P(P�( T ��8�,��                                            �%. !%�. 

where y �  √3 TÒ£ / T  and J�x	, y� - analytical approximation function is 

given by: 

��8�,�� { S' ? `W8�� ? WW8�%T _ 

_ Q �!
!�' ? A. Aj%'%��! 
c �' ? �. k'

�
0 A. k'

�

R(�;�  �W
` �%

�'!. v' ? ��%U 

                    (4.35). 

 

In our simulation we wil l  deal with the whole electrons of the 

multicomponent plasma, that require a special consederation of �¶ �∑ xô�ôô  .  
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B-     Simulation 
 

IV.4.  Nuclear form factor effects 

In order to study the effect of the nuclear form factor on the 

transport coefficients we l ike to compute electr ical and thermal 

conductivi t ies against the mass density of several elements at di fferent  

temperatures, we compute those coefficients from the equation (3.34) ,  

and we substitute the analytical formulae (4.7) (4.8) for the Gaussian 

form factor, and (4.16) (4.17) for the osci l lating form factor , and (4.26) 

(4.27) in the case of dipolar form factor, precious estimation of the 

nuclear effect wil l  be shown by computing the relative error from the 

point l ike form factor case, a series of  MATLAB codes are developed to 

simulate and i l lustrate these objectives.  

The figure (4.1) i l lustrate the relation between the radial charge 

distr ibut ion and i ts corresponding form factor and show some examples 

from standard nuclear physics. 

 

Figure 4.1 : Relation between the radial charge distribution ���� and the correspondingform 

factor in Born approximation from [Pov 08]. 
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IV.4.1      Results 

 

Figure 4.2a : Thermal conductivity Vs  the mass density for ��õ
  using dipolar form factor. 

 

Figure 4.2b : Electrical conductivity Vs  the mass density for ��õ
  using dipolar form factor. 

 

 

Figure 4.2c : Relative error (with respect to point like case )Vs  the mass density for ��õ
 . 
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Figure 4.3a : Thermal conductivity Vs  the mass density for ��y�  using Gaussian form factor. 

 

Figure 4.3b : Electrical conductivity Vs  the mass density for ��y�  using Gaussian form factor. 

 

 

Figure 4.3c : Relative error (with respect to point like case )Vs  the mass density for ��y� . 
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Figure 4.4a : Thermal conductivity Vs  the mass density for ��õw
w  using spherical form factor. 

 

 

Figure 4.4b : Electrical conductivity Vs  the mass density for ��õw
w  using spherical form factor. 

 

 

Figure 4.4c : Relative error (with respect to point like case )Vs  the mass density for ��õw
w  . 
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IV.4.2       Discussion 

Figures(4.2-4.4) type (a ,b)  shows the dependence of the Thermal 

conductivi ty (a) and electrical conductivity (b) due to electron-ion scattering 

in fully ionized plasma at di fferent temperatures for different elements  on 

the mass density. the blue l ine for T � 10�K ,   the green l ine for  T � 10�K ,  the 

red l ine for T � 10�K , and we use different form factors that  ordinary nuclei  

had in terrestrial conditions,  the relative error ie ( 
���$���

���
� , where the FS: for 

finite size case, PL: for point l ike case ) on the masse density is shown in 

Figures(4.2-4.4) type (c), we see that in the spherical form factor case even in 

our calculat ion , i t sti l l  produce the same results as previous studies (eg [Gne 

01]) the increasing of the decrease of kinetic coefficients beyond the drip 

point  (unti l  40% at ρ � 107yg/cmy),  but for the case that we studied (the 

dipolar and the Gaussian form factors) and for physical situations ie ~10� 0
10�g/cmy for l ight element we see an increasing of the values of  kinetic 

coefficients from few percent to ~40% and a decreasing of the values of  

kinetic coefficients for ρ � 10�g/cmy unti l   ~60% and a decreasing of the 

values of  kinetic coeff icients for ρ � 10�g/cmy unti l  ~60%. for heavy 

elements l ike the Caõw
w  we see an decreasing of the values of  kinetic 

coefficients at T � 10�K ~80% 0 95%.  

 
 

IV.5. Multi components plasma 

We like to study transport coefficients of plasma systems 

contains more than one components , and show their comportment 

against change in the temperature  figures (4.2 to 4.11) and in the 

total mass density f igures (4.12 to 4.21) by using different methods 

introduced in §IV.2. 

In order to get this objective we develop a Number of 

MATLAB codes especial ly to deal with Data Bases that we need to 

save our results. 
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 In our work we only consider the point l ike form factor case 

and using the high temperature “the fitted” Coulomb logarithm. 

Our simulat ion is based on the consideration that the relative 

mass density of all elements XÓ � "á
"
   is fixed, and we wil l  give these 

rat ios for every figure.   

 

IV.5.1      Results 

 

Figure 4.5a :  Electron ion electrical  conductivi t ies in the Born approximation 
(Left  panel) and beyond Born approximation  (Right panel) ,  we show dif ferent 
method of  computation :Effective OCP method ( Green l ine )  ,Impurit ies  
method( Red l ine ) ,  Linear mixing method      (  Blue l ine )  for  the mixture 

�77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 5 _ 10�$/��y.    

 

Figure 4.5b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

for the mixture �77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 5 _ 10�$/��y.   
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Figure 4.5c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) for the mixture �77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 5 _10�$/��y. 

 

Figure 4.5d : the Fermi temperature VS the temperature in the logarithmic scale for the 

mixture �77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 5 _ 10�$/��y. 
 

 

Figure 4.6a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line 

)for the mixture ��7õ  #7 � 5 _ 10�$/��y , %�
7�  #õ � 5 _ 10�$/��y.   



������� 	
:           �
�������
 ��� ������
 �������������� �� ����� �
���� 

 

Kinetic properties of the electrons in the shells of neutron stars (Mr aboud-gha ni)                                                         102 

 

 

Figure 4.6b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

for the mixture ��7õ  #7 � 5 _ 10�$/��y , %�
7�  #õ � 5 _ 10�$/��y.   

 

Figure 4.6c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) for the mixture ��7õ  #7 � 5 _ 10�$/��y , %�
7�  #õ � 5 _10�$/��y.  

 

Figure 4.6d: the Fermi temperature VS the temperature in the logarithmic scale for the mixture ��7õ  #7 � 5 _ 10�$/��y , %�
7�  #õ � 5 _ 10�$/��y. 
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Figure 4.7a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

for the mixture  ��7õ  #7 � 5 _ 10�$/��y , %�
7�  #õ � 5 _ 10�$/��y. 

 

Figure 4.7b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

for the mixture  ��7õ  #7 � 5 _ 10�$/��y , %�
7�  #õ � 5 _ 10�$/��y.   

 

Figure 4.7c: Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) ) for the mixture  ��7õ  #7 � 5 _ 10�$/��y , %�

7�  #õ � 5 _10�$/��y.  
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Figure 4.7d : the Fermi temperature VS the temperature in the logarithmic scale ) for the mixture ��7õ  #7 � 5 _ 10�$/��y , %�
7�  #õ � 5 _ 10�$/��y. 

 

 

Figure 4.8a : Electron ion thermal conductivities in the Born approximation (Left panel) and beyond 
Born approximation  (Right panel) , we show different method of computation :Effective OCP method 
( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) for the mixture 

�77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 3 _ 10�$/��y, ��y�  #y � 2 _ 10�$/��y. 

 

Figure 4.8b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

for the mixture �77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 3 _ 10�$/��y, ��y�  #y � 2 _ 10�$/��y. 
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Figure 4.8c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) for the mixture �77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 3 _10�$/��y, ��y�  #y � 2 _ 10�$/��y.  

 

Figure 4.8d : the Fermi temperature VS the temperature in the logarithmic scale for the 

mixture �77  #7 � 5 _ 10�$/��y , ��õ
  #õ � 3 _ 10�$/��y, ��y�  #y � 2 _ 10�$/��y . 

 

Figure 4.9a : Electron ion thermal conductivities in the Born approximation (Left panel) and beyond 
Born approximation  (Right panel) , we show different method of computation :Effective OCP method 
( Green line )  ,Impurities method( Red line ) , Linear mixing method  ( Blue line ), for the 

mixture ��7õ  #7 � 5 _ 10�$/��y , &�
7
  #õ � 4 _ 10�$/��y, %�

7�  #y � 10�$/��y. 

. 
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Figure 4.9b : Electron ion electrical (upper panel) and  thermal (lower panel) conductivities in 
the Born approximation (Left panel) and beyond Born approximation  (Right panel) , we show 
different method of computation :Effective OCP method ( Green line )  ,Impurities method( Red 

line ) , Linear mixing method ( Blue line ), For the mixture ��7õ  #7 � 5 _ 10�$/��y , &�
7
  #õ �4 _ 10�$/��y, %�

7�  #y � 10�$/��y. 

 

 

Figure 4.9c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel), For the mixture ��7õ  #7 � 5 _ 10�$/��y , &�
7
  #õ � 4 _10�$/��y, %�

7�  #y � 10�$/��y. 
 . 
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Figure 4.9d : the Fermi temperature VS the temperature in the logarithmic scale, for the mixture ��7õ  #7 � 5 _ 10�$/��y , &�
7
  #õ � 4 _ 10�$/��y, %�

7�  #y � 10�$/��y. 

 

Figure 4.10a : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ), 

for the mixture �õ
�w � #7 � 4 _ 10�$/��y , '�õ��õ  #õ � 3 _ 10�$/��y, (�õ���  #y � 3 _10�$/��y. 

 

Figure 4.10b : Electron ion electrical (upper panel) and  thermal (lower panel) conductivities 
in the Born approximation (Left panel) and beyond Born approximation  (Right panel) , we 
show different method of computation :Effective OCP method ( Green line )  ,Impurities 

method( Red line ) , Linear mixing method ( Blue line ) for the mixture �õ
�w � #7 � 4 _10�$/��y , '�õ��õ  #õ � 3 _ 10�$/��y, (�õ���  #y � 3 _ 10�$/��y 
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Figure 4.10c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) for the mixture �õ
�w � #7 � 4 _ 10�$/��y , '�õ��õ  #õ � 3 _10�$/��y, (�õ���  #y � 3 _ 10�$/��y. 

 

Figure 4.10d : the Fermi temperature VS the temperature in the logarithmic scale , for the mixture �õ
�w � #7 � 4 _ 10�$/��y , '�õ��õ  #õ � 3 _ 10�$/��y, (�õ���  #y � 3 _ 10�$/��y. 
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Figure 4.11a : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line 

),for the mixture �77  #7 � 10�$/��y , �7õ  #õ � 10�$/��y, �7y  #y � 10�$/��y, ��õy  #
 �10�$/��y, ��õ
  #� � 10�$/��y, ��y�  #� � 10�$/��y, ��y�  #� � 10�$/��y, )�

�  #� �10�$/��y, )�


*  #* � 10�$/��y, )�

7w  #7w � 10�$/��y 

  

 

 

Figure 4.11b : Electron ion electrical (upper panel) and  thermal (lower panel) conductivities 
in the Born approximation (Left panel) and beyond Born approximation  (Right panel) , we 
show different method of computation :Effective OCP method ( Green line )  ,Impurities 
method( Red line ) , Linear mixing method ( Blue line ), for the mixture: 
�77  #7 � 10�$/��y , �7õ  #õ � 10�$/��y, �7y  #y � 10�$/��y, ��õy  #
 � 10�$/��y, ��õ
  #�� 10�$/��y, ��y�  #� � 10�$/��y, ��y�  #� � 10�$/��y, )�


�  #�� 10�$/��y, )�

*  #* � 10�$/��y, )�


7w  #7w � 10�$/��y 
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Figure 4.11c :Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel), for the mixture �77  #7 � 10�$/��y , �7õ  #õ � 10�$/��y, �7y  #y � 10�$/��y, ��õy  #
 � 10�$/��y, ��õ
  #� � 10�$/��y, ��y�  #� � 10�$/��y, ��y�  #� � 10�$/��y, )�

�  #� � 10�$/��y, )�


*  #* � 10�$/��y, )�

7w  #7w � 10�$/��y 

 

Figure 4.11d : the Fermi temperature VS the temperature in the logarithmic scale, for the 

mixture: �77  #7 � 10�$/��y , �7õ  #õ � 10�$/��y, �7y  #y � 10�$/��y, ��õy  #
 �10�$/��y, ��õ
  #� � 10�$/��y, ��y�  #� � 10�$/��y, ��y�  #� � 10�$/��y, )�

�  #� �10�$/��y, )�


*  #* � 10�$/��y, )�

7w  #7w � 10�$/��y 
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Figure 4.12a : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ), 
for the mixture 

&�7wõw  #7 � 10�$/��y , &�77õõ  #õ � 10�$/��y, '$7õõ
  #y � 10�$/��y, z
7yõ�  #
 �10�$/��y, +�7
õ�  #� � 10�$/��y, ,7�y7  #� � 10�$/��y, +7�yy  #� � 10�$/��y, �
7�y�  #� �10�$/��y, z�7�y�  #* � 10�$/��y, -7*y*  #7w � 10�$/��y 

 

 

 

Figure 4.12b : Electron ion electrical (upper panel) and  thermal (lower panel) conductivities 
in the Born approximation (Left panel) and beyond Born approximation  (Right panel) , we 
show different method of computation :Effective OCP method ( Green line )  ,Impurities 
method( Red line ) , Linear mixing method ( Blue line ), for the mixture 

&�7wõw  #7 � 10�$/��y , &�77õõ  #õ � 10�$/��y, '$7õõ
  #y � 10�$/��y, z
7yõ�  #
� 10�$/��y, +�7
õ�  #� � 10�$/��y, ,7�y7  #� � 10�$/��y, +7�yy  #�� 10�$/��y, �
7�y�  #� � 10�$/��y, z�7�y�  #* � 10�$/��y, -7*y*  #7w� 10�$/��y 

 .   
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Figure 4.12c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel), for the mixture &�7wõw  #7 � 10�$/��y , &�77õõ  #õ � 10�$/��y, '$7õõ
  #y � 10�$/��y, z
7yõ�  #
 � 10�$/��y, +�7
õ�  #� � 10�$/��y, ,7�y7  #� �10�$/��y, +7�yy  #� � 10�$/��y, �
7�y�  #� � 10�$/��y, z�7�y�  #* � 10�$/��y, -7*y*  #7w �10�$/��y 

 

 

 

 

 

Figure 4.12d : the Fermi temperature VS the temperature in the logarithmic scale , for the mixture  
&�7wõw  #7 � 10�$/��y , &�77õõ  #õ � 10�$/��y, '$7õõ
  #y � 10�$/��y, z
7yõ�  #
 � 10�$/��y, +�7
õ�  #� � 10�$/��y, ,7�y7  #� � 10�$/��y, +7�yy  #� � 10�$/��y, �
7�y�  #� � 10�$/��y, z�7�y�  #* � 10�$/��y, -7*y*  #7w � 10�$/��y 
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Figure 4.13a : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ), 
for ten ��′� isotopes at fixed mass density ratio . 

 

Figure 4.13b: Electron ion electrical (upper panel) and  thermal (lower panel) conductivities in 
the Born approximation (Left panel) and beyond Born approximation  (Right panel) , we show 
different method of computation :Effective OCP method  ( Green line )  ,Impurities method( Red 
line ), Linear mixing method ( Blue line ) for ten ��′� isotopes at fixed mass density ratio.   

 

Figure 4.13c : Electron ion electrical conductivities in the Born and beyond Born  

approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) for ten ��′� isotopes at fixed mass density ratio. 
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Figure 4.13d  : the Fermi temperature VS the temperature  in the logarithmic scale for ten ��′� 
isotopes at fixed mass density ratio . 

 

 

Figure 4.14a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ), 
for 89 elements from the hydrogen to the iron at fixed mass density ratio. 

   

Figure 4.14b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) , 
for 89 elements from the hydrogen to the iron at fixed mass density ratio.  
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Figure 4.14c: Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) , for 89 elements from the hydrogen to the iron at fixed mass 
density ratio. 

 

 

 

 

Figure 4.14d : the Fermi temperature VS the temperature in the logarithmic scale, for 89 elements 
from the hydrogen to the iron at fixed mass density ratio . 
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Figure 4.15a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) , 

for the mixture �77   , ��õ
  ,.ô � 0.5, / � 1,2 at ø � 10�-. 

 

Figure 4.15b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) ,  

for the mixture �77   , ��õ
  ,.ô � 0.5, / � 1,2 at ø � 10�-. 

 

Figure 4.15c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 

were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) , for the mixture �77   , ��õ
  ,.ô � 0.5, / � 1,2 at ø � 10�-. 
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Figure 4.15d: the Fermi temperature VS the total mass density in the logarithmic scale, for the 

mixture �77   , ��õ
  ,.ô � 0.5, / � 1,2 at ø � 10�-. 

 

 

Figure 4.16a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) , 

for the mixture ��7õ  , %�
7�  ,.ô � 0.5, / � 1,2 at ø � 10�-.  

 

Figure 4.16b: Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) , 

, for the mixture ��7õ  , %�
7�  ,.ô � 0.5, / � 1,2 at ø � 10�-. 
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Figure 4.16c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) , for the mixture ��7õ  , %�
7�  ,.ô � 0.5, / � 1,2 at ø � 10�-. 

 

 

 

 

Figure 4.16d : the Fermi temperature VS the total mass density  in the logarithmic scale ,for the 

mixture ��7õ  , %�
7�  ,.ô � 0.5, / � 1,2 at ø � 10�-. 
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Figure 4.17a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture '�õ��õ   , (�   õ��
 ,.ô � 0.5, / � 1,2 at ø � 10�-.   

 

Figure 4.17b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture '�õ��õ   , (�   õ��
 ,.ô � 0.5, / � 1,2 at ø � 10�-.   

 

Figure 4.17c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 

were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) ,for the mixture '�õ��õ   , (�   õ��
 ,.ô � 0.5, / � 1,2 at ø � 10�-. 
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Figure 4.17d: the Fermi temperature VS the total mass density in the logarithmic scale,for the mixture 

'�õ��õ   , (�   õ��
 ,.ô � 0.5, / � 1,2 at ø � 10�-. 

 

 

Figure 4.18a: Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture �77  , ��õ
 , ��y� ,.ô � 1/3, / � 1,2,3 at ø � 10�-. 

 

Figure 4.18b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture �77  , ��õ
 , ��y� ,.ô � 1/3, / � 1,2,3 at ø � 10�-.   
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Figure 4.18c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) ,for the mixture �77  , ��õ
 , ��y� ,.ô � 1/3, / � 1,2,3 at ø � 10�-. 

 

Figure 4.18d : the Fermi temperature VS the total mass density in the logarithmic scale, for the 

mixture �77  , ��õ
 , ��y� ,.ô � 1/3, / � 1,2,3 at ø � 10�-. 

 

 

Figure 4.19a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture ��7õ   , &�
7
  , %�

7� ,.ô � 1/3, / � 1,2,3 at ø � 10�-.   
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Figure 4.19b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture ��7õ   , &�
7
  , %�

7� ,.ô � 1/3, / � 1,2,3 at ø � 10�-.   

 

Figure 4.19c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 

violated (WFV) (Right panel) ,for the mixture ��7õ   , &�
7
  , %�

7� ,.ô � 1/3, / � 1,2,3 at ø � 10�-. 

 

Figure 4.19d : the Fermi temperature VS the total mass density in the logarithmic scale ,for the 

mixture ��7õ   , &�
7
  , %�

7� ,.ô � 1/3, / � 1,2,3 at ø � 10�-. 
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Figure 4.20a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture �õ
�w �  , '�õ��õ , (�õ��� ,.ô � 1/3 , / � 1,2,3 at ø � 10�-. 

 

Figure 4.20b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture �õ
�w �  , '�õ��õ , (�õ��� ,.ô � 1/3 , / � 1,2,3 at ø � 10�-.   

 

Figure 4.20c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 

were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel), for the mixture �õ
�w �  , '�õ��õ , (�õ��� ,.ô � 1/3 , / � 1,2,3 at ø � 10�-. 
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Figure 4.20d : the Fermi temperature VS the total mass density  in the logarithmic scale ,for the 
mixture �õ
�w �  , '�õ��õ , (�õ��� ,.ô � 1/3 , / � 1,2,3 at ø � 10�-. 
 
 
 
 
 
 
 

 

Figure 4.21a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture: �77   , �7õ  , �7y  , ��õy  , ��õ
 , ��y� , ��y�  , )�

� , )�


* , )�

7w   ,.ô � 77w , / � 1. .10 at ø � 10�-. 
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Figure 4.21b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 

OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture �77   , �7õ  , �7y  , ��õy  , ��õ
 , ��y� , ��y�  , )�

� , )�


* , )�

7w   ,.ô � 77w , / � 1. .10 at ø � 10�-.   

 

Figure 4.21c : Electron ion electrical conductivities in the Born and beyond Born 
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) ,for the mixture: 

�77   , �7õ  , �7y  , ��õy  , ��õ
 , ��y� , ��y�  , )�

� , )�


* , )�

7w   ,.ô � 77w , / � 1. .10 at ø � 10�-.. 

 

Figure 4.21d : the Fermi temperature VS the total mass density  in the logarithmic scale ,for the 

mixture �77   , �7õ  , �7y  , ��õy  , ��õ
 , ��y� , ��y�  , )�

� , )�


* , )�

7w   ,.ô � 77w , / � 1. .10 at ø � 10�-. 
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Figure 4.22a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture &�7wõw  , &�77õõ , '$7õõ
  , z
7yõ�  , +�7
õ� , ,7�y7 , +7�yy  , �
7�y�  , z�7�y�  , -7*y*  ,.ô � 77w , / � 1. .10 

at ø � 10�-. 

 

 

 

 

 

 

Figure 4.22b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 
,for the mixture: 

 &�7wõw  , &�77õõ , '$7õõ
  , z
7yõ�  , +�7
õ� , ,7�y7 , +7�yy  , �
7�y�  , z�7�y�  , -7*y*  ,.ô � 77w , / � 1. .10 at ø � 10�-.   
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Figure 4.22c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) ,for the mixture 

&�7wõw  , &�77õõ , '$7õõ
  , z
7yõ�  , +�7
õ� , ,7�y7 , +7�yy  , �
7�y�  , z�7�y�  , -7*y*  ,.ô � 77w , / � 1. .10 at ø � 10�-. 

 

Figure 4.22d : the Fermi temperature VS the total mass density  in the logarithmic scale ,for 

the mixture &�7wõw  , &�77õõ , '$7õõ
  , z
7yõ�  , +�7
õ� , ,7�y7 , +7�yy  , �
7�y�  , z�7�y�  , -7*y*  ,.ô � 77w , / � 1. .10 at ø � 10�-. 
 

 

Figure 4.23a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture  ��õw
w   , ��õw
7  , ��õw
õ , ��õw
y  , ��õw

 , ��õw
�  , ��õw
�  , ��õw
�  , ��õw
�  ,.ô � 77w , / � 1. .10 

at ø � 10�-.   
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Figure 4.23b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) 

,for the mixture: ��õw
w   , ��õw
7  , ��õw
õ , ��õw
y  , ��õw

 , ��õw
�  , ��õw
�  , ��õw
�  , ��õw
�  ,.ô � 77w , / � 1. .10 

at ø � 10�-.  .   

 

Figure 4.23c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) ,for the mixture: 

 ��õw
w   , ��õw
7  , ��õw
õ , ��õw
y  , ��õw

 , ��õw
�  , ��õw
�  , ��õw
�  , ��õw
�  ,.ô � 77w , / � 1. .10 at ø � 10�-.   

 

Figure 4.23d : the Fermi temperature VS the total mass density  in the logarithmic scale ,for the 

mixture ��õw
w   , ��õw
7  , ��õw
õ , ��õw
y  , ��õw

 , ��õw
�  , ��õw
�  , ��õw
�  , ��õw
�  ,.ô � 77w , / � 1. .10 at ø � 10�-.  
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Figure 4.24a : Electron ion electrical conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ), 
for 89 elements from the hydrogen to the iron at fixed mass density ratio at ø � 10�-.   

 

Figure 4.24b : Electron ion thermal conductivities in the Born approximation (Left panel) and 
beyond Born approximation  (Right panel) , we show different method of computation :Effective 
OCP method ( Green line )  ,Impurities method( Red line ) , Linear mixing method ( Blue line ) , 
for 89 elements from the hydrogen to the iron at fixed mass density ratio at ø � 10�-.     

 

Figure 4.24c : Electron ion electrical conductivities in the Born and beyond Born  
approximations (Left panel), and the difference between Thermal conductivities  in the case 
were The Weidermann-Franz Law respected (WFR), and were The Weidermann-Franz Law 
violated (WFV) (Right panel) , for 89 elements from the hydrogen to the iron at fixed mass 
density ratio at ø � 10�-.   
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Figure 4.24d : the Fermi temperature VS the total mass density  in the logarithmic scale , for 89 
elements from the hydrogen to the iron at fixed mass density ratio at ø � 10�-. 

 

IV.5. 2. Discussion 
 

a ) Figures. (4.5 to 4.14) and (4.15 to 4.24) Type ‘a’ and ‘b’ 

In the figures (4.5 to 4.14) we show the dependence of the Electrical conductivity and 

thermal conductivity due to electron-ion scattering on temperature in fully ionized plasma 

mixtures of different elements at different densities and mass densities ratios , and In the 

figures (4.15 to 4.24) we show the dependence of the Electrical conductivity and thermal 

conductivity due to electron-ion scattering on the total mass density in fully ionized plasma 

mixtures of different elements at different temperature and mass densities ratios , we find  that 

the points of view used to compute kinetic coefficient are approximately the same as it 

already expected  in [Pot 99a], but this is true in the case were the impurity parameter is small 

as it was mentioned  by Daligault & Grupta [Dal 09](see green circles) , the fundamental  

difference between the two approach that in the Ioffe model  we don’t need the knowledge of 

the point of melting which give us a great advantage of unification between liquid and solid 

states , which is the major results of Baiko’s et al work [Bai 98] : The Modification of the 

structural factors improves the calculation of the conductivities in liquid and in the solid 

phase, and virtually eliminates the jumps for the different chemical elements in a wide range 

of density in the OCP case and then The modified structural factor is physically accepted  for 

[Bai 98]  , but Itoh et al [Ito 93] Suggest that in the field of condensed matter physics, 

however, the correctness of the original Ziman  [Zim 61] method with the use of the full 

liquid structure factor has long been established (Ashcroft and Lekner  [Ash 66]; Rosenfeld 

and Stott [Ros 90]). Part of the motivation for the introduction of the suggestion in  [Bai 98] 
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appears to be the finding by Itoh et al [Ito 93] that the conductivity of astrophysical dense 

matter typically increases by 2 0 4 times upon crystallization. Regarding this finding, one 

should note that simple metals in the laboratory show similar phenomena. The electrical 

conductivity of the simple metals in the laboratory shows significant (2 0 4  times) jumps 

upon crystallization (Iida and Guthrie  [Lid 1993]). For these reasons they follow the method 

in which they used the full liquid structure factor, which is in accord with the method used in 

condensed matter physics (Ashcroft and Lekner  [Ash 1966];Rosenfeld and Stott [Ros 90]). 

Interestingly, for the multi-component systems found in the crusts of accreting neutron 

stars, the jump may be much less important than suggested by the calculations of Itoh et al. 

[Ito 93]. However  in our work we don’t  treat the problem of the physical meaning : if this is 

likely due to the reason proposed by Baiko et al [Bai 98], or  because of the lack of long-range 

order for those complex mixtures and the high degree of impurity-like disorder that those 

systems possess as suggested by J. Daligault and S. Gupta  [Dal 09]  . 

b ) Figures. (4.5 to 4.24) Type ‘c’ 

Figures (4.5 to 4.14) shows the dependence of the Electrical conductivity  in  the Born 

and beyond Born  approximations due to electron-ion scattering in fully ionized plasma 

mixtures of different elements at different densities and mass densities ratios (left panels) and 

and the difference between Thermal conductivities  in the case were The Weidermann-Franz 

Law respected (WFR) on temperature , and were The Weidermann-Franz Law violated 

(WFV) (Right panel).and  Figures (4.15 to 4.24) the same but the dependence was in the total 

mass density at different temperature and mass densities ratios For comparison, and numerical 

results does not differ from previous works that we discuss in chapter 3.   

c) Figures. (4.5 to 4.24) Type ‘d’ 

Show the dependence of the Fermi temperature on the temperature or on the total 

density , we see that the approximation of strongly degenerate electrons break down 

practically when θ s 10$y , red circles gives us those situations , the theoretical treatment of 

the problem will be discuss in the next chapter.  
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IV.6. Scattering of strongly degenerate Electron by electrons 

Now we like to add the electron-electron scattering effects for multi-components 

plasma systems as we explained in §IV.3, for that we will simulate the electron-electron (ee) 

and the total (ee+ei) thermal conductivity against the temperature for different elements, we 

will use a MATLAB codes to make the simulated figures, and in all our work we consider 

the relative mass density for each specie as a fixed quantity. 

IV.6. 1. Results 
 

 

Figure 4.25 : Electron electron thermal conductivity Vs Temperature ( Red line )and the total (ei+ee) 

in the non-Born  approximation beyond thermal conductivity ( Blue line ), for the �77     with #7 �10
$/��y. 

 

 

 

 

 

 

 

Figure 4.26 : Electron electron thermal conductivity Vs Temperature ( Red line )and the total 

(ei+ee)in the non-Born  approximation beyond thermal conductivity ( Blue line ), for the mixture �77  

, ��7õ  , %�
7� , (�õ���  with #ô � 10y$/��y. 
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Figure 4.27 : Electron electron thermal conductivity Vs Temperature( Red line )and the total 
(ei+ee)in the non-Born  approximation beyond thermal conductivity ( Blue line ), , for 89 elements 
from the hydrogen to the iron at fixed mass density ratio. 

 

IV.6. 2. Discussion 
 

Figures (4.25 to 4.27) shows the dependence of the thermal conductivity  on the 

temperature : the Electron electron thermal conductivity ( Red line ) and the total (ei+ee)in 

the non-Born  approximation beyond thermal conductivity ( Blue line ). As one can expect 

no thing new differ from old studies eg [Pot 99b] since one does not need to know from  

which atom come the electrons and as a result the electron-electron scattering influence be 

considerable at light values of Z£11 and sufficient high temperature. 
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CHAPTER V  

Viscosity coefficients and thermal 

and magnetic effects 

A- Theoretical contribution 

V.1. Viscosity 

 

V.1.1. On the theory of viscosity 

We take on consideration the viscosity of the crust in this paragraph, 

the crust may be in a l iquid or a solid phase. For strongly coupled (� �1) and solid plasma the transport is assured principally by the electrons. 

We wil l  consider only this case, and by the power of the ioffe model 

computations may be generalized to the l iquid plasma case. For the solid 

crust, we suppose that we have a polycrystal structure therefore that on a 

macroscopic scale the crust acts as an isotropic medium. 

Let us symbolize a stationary macroscopic hydrodynamic velocity 

field, on the plasma, by ������	. The viscous part of the stress tensor in the 

isotropic medium given by: 

 


��
�� � � ������� � ������ � �� ������� · ����� � �������� · ����                              ��. !	. 
Where ζ , η are the bulk and the the shear viscosity respectivly. 

Thouse component of the stress tensor come into the equations of 

neutron star hydrodynamics and are related to the pulsat ions of the 

neutron stars. 
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First,  let us take on considerat ion the conservative f lows, described 

by"��� · V��� � 0��. The figure (5.1) shows us a schematic representation of 

characteristic of torsional osci l lat ions of the crust flow in the solid crust.  

The shear viscosity η produces the dissipation result ing in the 

entropy production. In the outer crust, η is a summation of the electrons 

and ions contributions, η& � η', however for ρ ) 10*g/cm/ η& become much 

larger than η' and η 0 η&. In the inner crust, the dripped neutrons 

contribution should be  took on consederation  and it   must be added. 

The electrons are scattered on ions, on impurity nuclei, and on 

electrons themselves, therefore the total frequency of the coll ision is 

specified by the summation  12 � 1234 � 12 3564 � 1224  . but, as long as the 

temperature is not too low, the approximation 12 0 123 is statisfory.  

To compute 72 from the Boltzmann equation for electrons, one must 

to f ind out 89 �  9 �  9�:	 due to the presence of a weak plasma velocity 

field, V���. l inearizing in V��� and in  89, The solution of the Boltzmann 

equation, take the form: 

  ;< � =>�?	@A��� · ����BC��� · ����DE F<�G	
F?                                              ��. �	. 

 

Where H4�I	 is a funct ion to be founded from the Boltzmann 

equation. For strongly degenerate electrons and in the relaxation time 

approximation H4 � J234 � 1/1234  is the effect ive relaxation time appropriate 

for ei scattering, evaluated at the electronic Fermi surface. 

The coll ision frequency 1234 , can be written in terms of the effective 

Coulomb logarithm Λ234  by :  

KLM> � !�N O�LPQMRQST�AT ULM>                                                          ��. �	. 
on obtain the electron viscosity using a standard formula: 

                                                  >L � QLSTAT�KLM>                                                         ��. P	. 
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Figure (5.1): representat ion of torsional osci l lat ions in neutron star crust. 

Left :  equi l ibr ium arrangement of the crust, as a two-dimensional square 

latt ice. Right: shear f low in the crust [Hae 08] . 

 

The effective Coulomb logari thm for the electron viscosity is given 

by [Bai 98]: 

 

BULM> DVW � � X Y��ZT
Y[O

\]YL<<\VW,_
� `! � AT�a� b Y�ZTc�d `! � !P b eYfLga�c�d hY              ��. �	. 

 

Then we see obviously that we can wri te it in the form 

 

BULM> DVW � � `BU!>DVW � �AT�a� � BU�>DVWd i_j                                     ��. k	. 
 

Where Λl4 ,Λm4 ; defined as :  

 

BU!>DVW � X Y��ZT
YG

!�Y� � Yn�	� @! � LonGY�E `! � !P b eYfLga�c�d hY � �U!	VW � p�U!	VW��. q	. 
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U�> � X Y��ZT
YG

!�Y� � Yn�	� @! � LonGY�E b Y�ZTc� `! � !P b eYfLga�c�d hY � �U�	VW � p�U�	VW��. r	. 
 

Where :  

 

p�U!	VW � !P X Y��ZT
YG

!�Y� � Yn�	� @! � LonGY�E b eYfLga�c� hY                  ��. s	. 
 

 

p�U�	VW � !P X Y��ZT
YG

!�Y� � Yn�	� @! � LonGY�E b Y�ZTc� b eYfLga�c� hY            ��. !G	. 
 

We like to call  ∆Λl,∆Λm correctives terms of the viscosity Coulomb 

logarithm. 

 

V.1.2. Determination of the correctives terms 
  

Thus by integrating (5.9),(5.10 we have: 
 

�p�U!	VW � !!��! � n	nG� b efLga�c� t
t �u��! � �n��! � �n � kn�	 � �Pn��! � n	vwxyz{|}! � �n~	 �	  

 ��Lou� � � � � �Lu � �n � �Lun � �u � �Lunu � �n�u � 

��Lun�u � u� � nu� � n�u� � �Lun�u� � 

��n�u� � �Lun�u� � Lun�u� � nPu� � LunPu� � 

�Lu�nun��! � n	u��P � nu	�!}nu~ � 

�Lu�nun��! � n	u��P � nu	�!}�! � n	u~                              ��. !!	. 
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�p�U�	VW � !Pr�! � n	nG� b efLga�c� u t 

   
t ��P �� � �� �! � ����! � �� � k��	� � �!�G�P�! � �	 xz{|o!}! � ��~�� 

�!��o� �k � k�� � k� � k��� � k� � ��� �� 
��P���� � P��� � P�����	 

���� � ��� � ���� � ������� � ����� � ������� � �� � 

���� � ���� � ���� � P������ � P�P�� � 

�P���P�� � ���P�P � ���P � �����P � 

�������P�! � �	�P�� � ��	�!}��~ � 

��������P�! � �	�P�� � ��	�!}�! � �	�~	 

                     �5.12	�5.12	�5.12	�5.12	     
As one may expect we can compute the analogue coulomb logarithms 

for other king of form factors, but we wil l  not go further to discuss the 

viscosity phenomena.  

V.2.  Thermal and magnetic  effects on kinetic coefficients 
 

In this section we shall study thermal effects of nonzero temperature 

on the neutron star’s plasma, using a simple physical picture leads to an 

appropriate interpolation formula. 

V.1.1. Problema One “ magnetic fields” 

Properties of shells changed consederaly by strong magnetic fields 

that ’s in the order of  ~10lmG for pulstars and higher for magnetostars, 

the atomic magnetic field is given B: by: 

[G � fL�L�ae� � �. �� t !Gsi                                                                          ��. !s	. 
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It  is the value of B for which the electron cyclotron energy is 

identical to em/a:  �  2 t 13.6 eV (where a: is the Bohr radius). setting it  

dif ferently, at B � B: the characteristic magnetic length a�  �  �ec/eB	l/m 

equals the Bohr radius. For usual pulsars and magnetars the surface 

magnetic field is considerably stronger than B:. As a result,  the atomic 

structure at low pressure is estimated to be changed radicaly. The 

electrons motion perpendiculy to  B is quantized into Landau levels.  

If  one consider only the � component of the magnetic field ie  B���  � }0, 0, B~, the electron energy levels are specified by the relation ���p�	 � c�m&c² � 2eω�m&n � p�m	l/m, where p� the z �component of the electron 

momentum and n is the Landau quantum number.  

The ground state of the Landau’s level n �  0 is nondegenerate with 

respect to the spin (the spin and B are antiparallel,  with spin projection s �  �1), but the upper levels n )  0 are degenerate two times (s �  �1).  

The cyclotron frequency for electrons is given  ω� � &����; and i t is 1836 

t imes bigger than its values for protons. The Coulomb binding energy  of 

electrons in the nucleus is considerably less effective along B, while in 

the plane perpendicular to B the electron motion is restricted to the n �  0 Landau level. so atoms get a cyl indrical form and can form linear 

chains along B. 

A phase transit ion into a “magnetically condensed” phase can be 

made by this attraction between these chains is (eg [Med 08]).   

We now in a few words examine  the effects of the magnetic field on 

plasma properties at finite pressure P )  0. The magnetic field strongly 

quantizes the motion of electrons, if i t  confines most of them to the 

ground Landau state n �  0. The parameters related to a strong 

quantization regime are :  
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�aL � e aZ[ 0 !. �P� t [!�¡ , ¢[ � fMRQQ[O 0 qGP� �=O� [!�
�� £af�                                    ��. �G	. 

 
 
 

And 
 

�[ � ¤ �aL        M<  ¢ ¥ ¢[�aL¦§          M<   ¢ ) ¢[  �                                                               ��. �!	. 
 

 

The field ¨ is said to be strongly quantizing i f  © ¥ ©ª and « ¬  «­2. 

On the contrary, a magnetic field  wil l  be weakly quantizing if many 

Landau orbitals are occupied, but st i l l  « ¬ «ª. to end with,  ̈  is  said to 

be nonquantizing i f  « � «ª.  The temperature «ª and density ©ª are shown 

in Figure 5.2. 

 

Figure 5.2: Different domains in the © − T plane for  56Fe with magnetic field B = 
1012 G.Dash-dot line:  melting temperature «5. Solid lines: «® – Fermi temperature 
for the electrons; «63 – ion plasma temperature. Long-dash lines: «ª and ©ª 
appropriate for the quantized regime of the electrons; for comparison we also show, 
by dotted lines, TF, Tm and Tpi for  B = 0. For further explanation see the text. From 
[Hae 06]. 
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We say that a surface magnetic f ield to be strong if ¨ ¬ 10¯°. Such 

magnetic fields change the accretion of plasma in the neutron star and 

change the main properties of atoms in the atmosphere. 

On the opposite, a magnetic field in the range  ¨ ± 10¯°, such as 

related to most X-ray bursters or with mil l isecond pulsars, is taken to be 

weak. almost pulsars are magnetized neutron stars, with the value of  ̈  

near the magnetic pole ¨~10lm°. Much higher magnetic fields are typical 

for magnetars,  ̈ ~10l² � 10l*°; such magnetic fields with  ̈ ³ 10l² are 

often called “super-strong”. These magnetic fields can strongly affect 

transport processes in neutron star shelles. Electron transport coeffit ions 

in magnetized neutron star crusts are reviewed in [Pot 99b]. In this 

section we only show to a very short indications. 

A magnetic field is regard as uniform, locally. We take the z axis of 

a coordinate system along ¨, ie  �̈�  �  }0, 0, ¨~. We examine only the 

strongly degenerate electrons case and we suppose that the relaxation 

time approximation is valid. Let relaxation time for ¨ �  0 be J:. The 

electron gyromagnetic frequency is a central t imescale related with 

magnetic fields: 

 [ � L[´�ga                                                                         ��. ��	. 
 

The electron trajectories in the plane �x, y	 are bended magnetic field, 

and restraines the electron transport across B. as a result,  the transport 

properties wil l  be anisotropic, and one  must take tensors σ'¸     and κ'¸, in 

consideration which can be written as: 

_ � QLL�fLg ºM»_                                                                        ��. ��	. 
¼ � N²Z[� �QL�fLg ºM»¼                                                                           ��. �P	. 
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In what follows we wil l  have three basic regimes of transport in 

magnetic fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Transport coefitions: longitudinal (¾) and transverse (¿)in the outer 
envelope composed of ÀÁ*Â for ¨ � 10lm°  and ÃÄÅ « }Æ~    �  6, 7. Quantum 
calculations (solid lines) are compared with classical ones (dash lines). Vertical 
bars: liquid-solid transition at « �  10È Æ. Based on Figure 5 from [Pot 99b]. 
 
 
 

V.2.1.a. Nonquantizing magnetic fields  

A lot of Landau levels are occupied, and because k�T )  eω� the 

quantum effects are smeared by thermal effects. The magnetic field B 

does not affect the transport propert ies along the magnetic field, while 

the Hall  magnetization parameters  ω�τ:Ì,Í characterises totaly the 

transport across B :  

 

 [ÎG_,¼ � !qkG [!�¦§
ÎG_,¼

!G�!kn                                                     ��. ��	. 
 

where τ:Ì,Í are the effective relaxation t imes at B �  0 for the 

transport coeffit ions. The nonzero components of the ξ'Ì̧,Í tensors are: 
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ºÐÐ_,¼ � ÎG_,¼, ºÑÑ_,¼ � ºÒÒ_,¼ � ÎG_,¼
! � B [ÎG_,¼D�  , ºÑÒ_,¼ � ºÑÒ_,¼ � B [ÎG_,¼D�

! � B [ÎG_,¼D�              ��. �k	. 
 

 

V.2.1.b. Weakly-quantizing magnetic fields 

Electrons occupe a lot of Landau orbitals, however because k�T ¥ eω� the quantization effects are well  pronounced. There are two 

relaxation times, τ¾Ì,Í, and τÓÌ,Í, which oscil late with with respect to the 

density. As shown by Potekhin [Pot  99b], the nonzero  tensors 

components ξ'Ì̧,Í are specif ied by a equations similar to the precedent one: 

 

ºÐÐ_,¼ � ÎG_,¼, ºÑÑ_,¼ � ºÒÒ_,¼ � ÎG_,¼
! � B [ÎG_,¼D�  , ºÑÒ_,¼ � ºÑÒ_,¼ � B [ÎG_,¼D�

! � B [ÎG_,¼D�        ��. �q	. 
 

The density dependence of the components of the transport 

coeffit ions exhibits characteristic oscil lations around the nonquantized 

(classical) values , i f  the temperature is constant and in the presence of a 

weakly quantizing B. every oscil lation represents to the fi l l ing of a new 

Landau orbitale. The amplitude of these oscil lations diminishs with 

decreasing of the mass density.  

 

As we see in Figure 5.3, the oscil lation amplitude increase with 

decreasing T ,the “density period” of oscil lation decreases with 

increasing ρ, and the. At  T �  10ÈK, a magnetic field of 10lmG  consider 

to be  weakly quantizing at  ρ )  10².m g cmo/.  

V.2.1.c. Strongly-quantizing magnetic fields 

If  k�T ¥  eω�, and the majori ty of the electrons are occuping the 

ground Landau orbital.  the σ'¸ and κ'¸ and their density dependence are 

significantly di fferent from those of the nonquantizing one. 
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 In [Pot 99b], the formulae for τ¾Ì,Í and τÓÌ,Í are governed by equations 

(5.27). the f itt ing formulae for τ¾Ì,Í and τÓÌ,Í are derived in [Pot 99b], 

which we wil l  use it in our work. 

 the Figure 5.3,show us that at T �  10ÂK a field of 10lmG  is strongly 

quantizing for ρ )  10².m g cmo/. 

V.1.2.   Problema Two: “ partially degenerate electrons” 

The strongly degenerate electron approximation (3.36) break down 

when the temperature become comparable to the Fermi temperature. The 

figues 5.4, 5.5 i l lustrate the situation: 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5.4: « �Õ © graphs for the Ö lm , the dashed region is the region where we  
should take quantum corrections. 
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Figure 5.5: same graphs for the ÀÁ *Â  (5.4). 

 

V.1.3. Interpolation formula:  

We l ike to deal with part ial ly degenerate case ( ie when θ is not negl igible 

against unite), by proposing an interpolat ion formulae in analogy with 

equation (3.87) ,  We replace the fitted Coulomb logarithm ΛÌ,Í×'Ø  equation 

(3.77) by an interpolation formulate, we can write the new fitted 

Coulomb logarithm  in the form: 

  U_,¼�Ù � U_,¼<MÚ �?T	LoÛ � U_,¼<MÚ �?�Ù	}! � LoÛ~                                      ��. �r	. 
 

Where ΛÌ,ÍÜh  is the thermally corrected Coulomb logarithm, and  �Üh: 
play the role of thermally corrected energy to the non zero temperature 

case, then one can derive simply the corresponding parameters l ike 

kÜÞÜh , pÜh, vÜh which we  need to compute ΛÌ,Í×'Ø ��Üh	 , and then ΛÌ,ÍÜh . 

The strongly degenerate electron approximation breakdown when the 

temperature become comparable to the Fermi temperature, in  [Pot 10] 

one can compute the chemical potential at good at good accuracy –and in 

a simple way - using (1),(3),(6) in [Pot 10] , then we define �Üh as: 

   ?�Ù � fa²àá                                                                  ��. �s	. 
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B-   Simulation  
To study the effect of magnetic field on the MCP plasma for 

astrophysical condit ions,by computing parall we need to define our 

parameters .  

We consider only the effect on the strongly degenerate electrons , 

thus momentum levels is given by :  

 SQ�?T	 � @�?T/a	� � �fLa	� � �fLe aQE!/�                                       ��. �r	. 
 

For  n ¥ n�âã, where n�âã – is the maximum possible number of Landau 

levels for a given Fermi energy �Þ : 
QfäÑ � åQÚ�æ	 � åQÚ ` !e a

SG��?T	�fL d                                            ��. �s	. 
 

Note that υ is an energy parameter , and it should be clear that the Fermi 

energy in the presence of quantizing magnetic fields is given by ( 

without the stress on the theory “for review see [Pot 99b]”) the  

inversion of the equation :  

QL � !�N�äf� e è £QSQ�?T	QfäÑ

QéG                  at ×ixed  í2                       ��. �G	 

                                                                    
We proposed in our simulation an algorithm to deal with this non-

standard numerical equation: 

Init ial  condit ions                          ?T�G	 � fLa² , QL�G	 � QL�?T�G		 

 Iteration                                        ?T�M	 � ?T�Mo!	 � M fLa²!GGG 

Repeat since                                  QL�M	 ¥ QL 

It  is clear that our algori thm gives us a precision on the Fermi energy on 
the order  of ~10ol/eV.  

we need all that to compute relaxation times, τ¾Ì,Í, and τÓÌ,Í from equation 

(5.27) and then  to simulate the transport coeffit ions against the mass 



Chapter V:                           Viscosity coefficients and thermal and magnetic effects 

 

Kinetic properties of the electrons in the shells of neutron stars                                                       147 

 

density of several elements at di fferent temperatures, we compute those 
coefficients from the equation (3.34) , using a MATLAB codes to reach  
these objectives. 

For mult i component plasma we l ike to define the ion density number 
of the specie  :  

     Ñ» � Q»QMRQ                                                                   ��. �G	. 
 

 

 

 

 

 

 

 

Figure 5.6 : Electrical (Left panel ) and Thermal (right panel) conductivities Vs the variable î for ïll  at  « � 10ðÆ, and ̈ � 10l/°. 
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Figure 5.7 : Electrical (Left panel ) and Thermal (right panel) conductivities Vs the variable î for the 

mixture ïll   with ñò � 4/5, and ïÁm²   with ñò2 � l*at  « � 10ÂÆ, and ̈ � 10lm° 
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Figure 5.8 : Electrical (Left panel ) and Thermal (right panel) conductivities Vs the variable î for the 
mixture ôím**m   with ñõö � 1/2, and ÀÁmÂ*²   with ñ®2 � 1/2 at  « � 10ÈÆ, and ̈ � 10l/° 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 5.9 : Electrical (Left panel ) and Thermal (right panel) conductivities Vs the variable î for the 

mixture ïÁ��   with ñò2 � 1/2, and Ök!�   with ñ÷ � 1/6 and ør!k   with ñù � 1/6 , and HÃ!��q   with ñúû � 1/6  at  « � 10ðÆ, and ̈ � 10l/° 
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Figures. (5.6 to 5.9) shows the dependence of longitudinal and 

transverse conductivit ies on the energy parameter υ  for different 

mixtures in a accreted neutron star envelope different values of  T and B 

as shown in the f igure.  

Transverse components are non zero and are not negligible 

comparable to longitudinal one , which lead  to a transversal transport of  

energy and momentum of electrons. 

We see that one can get the Landau levels in the case of mixture by 

take a fixed ion density number for each specie in the mixture. 

We don’t get the second peak near each Landau threshold as the 

result made by A.potekhin et al [Pot 99b] (see figure 5.3) because we 

don’t use the thermal averaging and we only take the zero temperature 

approximation.  

We see also that the ampli tude of osci l lat ion increase with increasing 

magnetic field strength, decreasing with increasing mass density and 

number of elements. 
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Conclusion 

 
In this work we present a comprehensive approach to the 

investigation of kinetic properties of the substance in the shells of 

neutron stars:  

 

Study (1) thermodynamic functions of ful ly ionized plasma under 

conditions typical of the shel ls of neutron stars without magnetic field. 

(2) The  study of the electrical and thermal conductivit ies using the Ioffe 

model for the scattering of strongly degenerate electrons by  ions  in a 

fully ionized plasma in the shel ls of neutron stars without magnetic field 

and in presence of  strong magnetic f ield. (3) The study of the condensed 

matter and nuclear effects on kinet ics.(4) The development basing of a 

software program to deal with Multi -components plasma transport 

coefficients including the effect of electron-electron scattering.(5)We 

use the Ioffe model and other physical effects to compute the shear 

viscosity coefficient in neutron stars curst’s matter. (6) We discuss the 

thermal and magnetic effects lead to the break down of the strongly 

degenerate approximation, and we suggest an interpolat ion formula. .   

   

 

Main results 

 

In more detai l, the main results of the thesis are as follows. 

 

1. We calculated electronic thermal and electrical conductivi ty, in 

Coulomb liquids and Coulomb crystals in the Ocean, Outer and Inner 

crusts, including the effects of dipolar, Gaussian and homogenous sphere 

form factors, An analyt ical description of the transport coeff icients in a 

strongly degenerate electrons. Created set of computer programs for the 

calculation of these coefficients.  
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2. We compute an analyt ical formula for the contribution of impurit ies 

basing on the Ioffe model, and we developed a simulation program to 

show and  describe  the comportment of the Multi -components plasma as 

we can find  in accreted  neutron stars. 

 

3. We calculated also the shear viscosity coefficient , in Coulomb liquids 

and Coulomb crystals in the Ocean , Outer and Inner crusts, including  

the effects of dipolar , Gaussian and homogenous sphere form factors,  

An analyt ical description them in a strongly degenerate electrons. We 

created set of computer programs for the calculation of these 

coefficients.  

 

4. We discuss and simulate the condition and the l imiting cases of 

thermal and magnetic, especially the part ial ly degenerate electrons case, 

and magnetic Landau levels, and we proposed an interpolation solution. 
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Abstract: 

In this work we deal in a detailed and comprehensive theoretical consideration of the most 

important thermodynamic and kinetic properties of the substance in the shells of neutron stars, 

taking into account the influence of strong, including quantizing, magnetic fields, nuclear and 

condensed matter effects , and the presence of more then one elements  and created a complex 

computer programs  to compute the transport coefficients  , results which are important for 

modeling mechanical and thermal structure of neutron stars and their spectra thermal radiation, thus 

contributing to the development of important fields of research at the contemporary of astrophysics 

and plasma physics - the study of matter under extreme conditions, due to unique properties of 

neutron stars: they have  strong gravity, high density and strong magnetic fields. 

 Key words:  stars: neutron– dense matter– conduction-viscosity –magnetic fields-plasma-nuclear. 

Résumé :  
Dans ce travai l  on trai te d’une manière détai l lée les considérat ions théoriques des 

propriétés thermodynamiques et cinét iques les plus importantes des  substances dans les 

enveloppes des étoi les à neutrons , prenons  en considérat ions l ’ inf luence des champs 

magnétique fort quanti f iant, les effets nucléaires et des états de matières  , et la 

possibi l i té de présence des plusieurs éléments et la construct ion des programmes pour 

calculer les coeff icients de transport ,  c’est résultats sont importants pour la 

modélisat ion de la structure mécanique et thermique des étoi les a neutron et leurs spectre 

thermique , alors la contr ibut ion a développée des domaines importants de recherche    

contemporain   en astrophysique et la physiques des plasmas – l ’étude de la matière dans 

les condit ions extrêmes, dû aux propriétés uniques  des étoi les a neutron : i l  ont une 

gravité forte ,  de densi té élevée , et champs magnétiques intenses. 

Mots clés : Etoi les :  neutron-matière dense- conduction-viscosité - champs magnétiques-
plasmas-nucléaire 
 


