REPUBLIQUE ALGERINNE DEMOCRATIQUE ET POPULAIRE

Ministere de I'enseignement supérieur et de la recherche scientifique

Université El-Hadj Lakhder - Batna-

MEMOIRE

Présenté au Département de Physique

Faculté des Sciences

Pour I’obtention de diplome de
Magister en Physique

Option : Physique Des Rayonnements

Par

Yassine RAHMAN!I

THEME

EFFETS DU MILIEU STELLAIRE SUR LES
PHENOMENES NUCLEAIRES

Soutenule / /2008, devant le jury :

Preésident : Aissa BELGACEM-BOUZIDA  Professeur U.Batna

Rapporteur : Abdelhamid BOULDJEDRI Professeur U.Batna

Examinateurs : Saad OUICHAOUI Professeur USTHB
Jamel MIMOUNI Professeur  U.Constantine

Said TOBBECHE M.C U.Batna



REPUBLIQUE ALGERINNE DEMOCRATIQUE ET POPULAIRE
Ministere de I'enseignement supérieur et de la recherche scientifique

Université El-Hadj Lakhder - Batna-

MEMOIRE

Présenté au Département de Physique

Faculté des Sciences

Pour I’obtention de diplome de
Magister en Physique

Option : Physique Des Rayonnements

Par

Yassine RAHMAN!I

THEME

EFFECT OF STELLAR MEDIUM ON NUCLEAR
PHENOMENA

Soutenule / /2008, devant le jury :

Preésident : Aissa BELGACEM-BOUZIDA  Professeur U.Batna

Rapporteur : Abdelhamid BOULDJEDRI Professeur U.Batna

Examinateurs : Saad OUICHAOUI Professeur USTHB
Jamel MIMOUNI Professeur  U.Constantine

Said TOBBECHE M.C U.Batna



REMERCIEMENTS

Je dois plus a mon directeur de thése, Monsieur le Professeur Abdelhamid
BOULDJEDRI qu’a toute autre personne. Il m’a guidé, m’a inspiré, m’a encourage. Et
surtout, il a toujours cru en moi. Qu’il veuille bien trouver ici I’expression de mes vifs
remerciements pour I’esprit de recherche et d’indépendance qu’il m a inculqué tout au long de

cette aventure.

Monsieur le Professeur Aissa BELGACEM- BOUZIDA, de I’université de Batna, a
bien voulu s’intéressé a cette étude et m’a fait I’honneur de présider le jury. Je le prie

d’accepter ma profonde gratitude.

Je remercie Monsieur le Professeur Saad OUICHAOUI, de ’'USTHB, pour I’intérét

qu’il a ttmoigné en vers ce travail en acceptant d’étre membre de jury de ce mémoire.

A Monsieur le Professeur Jamel MIMOUNI, de I’université de Constantine, qui a
accueilli mon travail avec bien vaillance et intérét, je tien a exprimer ma profonde

reconnaissance.

Que Monsieur Said TOBBECHE, maitre de conférences a I’université de Batna,
trouve ici I’expression de ma trés sincere reconnaissance, de bien vouloir faire partie de la

commission d’examen.

Enfin, je remercie aussi ceux qui ont contribué de prés ou de loin a la réalisation et

I’aboutissement de ce travail.



RESUME DETAILLE DU TRAVAIL REALISE

L’étude de la production d’énergie dans les étoiles et leur évolution nécessite une maitrise des
phénomeénes nucléaires. Ces derniers ont été principalement étudiés dans les conditions
physiques terrestres. L’astrophysique nucléaire étend ces études aux conditions physiques qui
régnent dans les étoiles.

Dans ce mémoire de Magister nous nous avons proposé d’étudier I’effet du milieu

stellaire sur les réactions nucléaires et les propriétés de la matiére nucléaire stellaires.

Le troisieme chapitre de ce mémoire est consacré a l'effet d'écrantage atomique et son
impact sur les réactions nucléaire de fusion d'intérét astrophysique, dont on a proposé un modele
pour calculer la densité électronique en présence de cet effet (BES MODEL- Batna Electron
Screening Model). L expression du potentiel obtenu a partir de la forme de la densité proposé ;
montre des termes de correction en faisant une comparaison avec celui obtenu par T. Liolios, ce
qui est montré en équation (3.21) et (3.22) successivement
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Dans la deuxieme partie dans ce chapitre, le facteur astrophysique pour les états excités

est donné par I’équation (3.70) comme suit
Ue
S(E) = (5.5 — 3.1E + 1.4E%) exp (nn F)

la représentation graphique de S(E) est faite pour I’approximation linéaire ainsi que pour I’approximation
quadratique, ou U, est I’énergie due au présence des électrons. La valeur numérique de U, calculé est
proche de celle calculé par T. Liolios. Finalement une comparaison a été faite entre les deux

modeles de calcules.

Dans le quatrieme chapitre nous avons étudié I'effet d'un champ magnétique trés intense
sur les réactions de fusion thermonucléaire (D-D). Commengant par donner une fonction d’essali
-donnée par I’équation (4.28)- afin d’avoir la forme analytiqgue de I’énergie de I’état

fondamentale, les valeurs numériques de cette derniere sont obtenues apres avoir minimiser



I’intégral (4.31) pour chaque valeur du champ magnétique, aprés; nous avons calculé le
potentiel électrique modifié par le champ magnétique en résolvant I’équation de Poisson (4.46),
afin de prédire I’effet de ce dernier sur la section efficace en calculant le facteur d’amélioration f.
le facteur f est représenté pour chaque valeur du champ magnétique, une comparaison avec [Hey
96] montre un saut dans la valeur de f pour B = 102G, ce qui est justifié par le choix de la

fonction d’essai.

Le cinquieme chapitre, est une étude sur I’effet du champ magnétique dans I’atmosphere
des magnétars, dont nous nous sommes limité a I’étude de la désintégration alpha, et avons
donné la forme analytique du potentiel en présence d’un champ magnetique —€quation (5.28), ce
qui nous a permit de dériver la forme analytique de f- équation (5.29)-, I’effet du champ
magnétique sur la barriere Coulombienne est illustré dans les figures.5.3,5.4,5.5,5.6, et les
valeurs numérique de f sont donnees dans le tableau (5.2), ce dernier montre I’influence sur la
période de la désintégration qui croit avec le champ magnétique, nous avons aussi étudié I’effet
du plasma sur la désintégration alpha en tenant compte du terme non linéaire dans I’équation de
Poisson (5.36), le potentiel obtenu est donné par I’équation (5.44), ce dernier indique

I’abaissement de la barriere Coulombienne en présence d’un plasma dense.
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Introduction

It is in the nature of astrophysics that many of the processes and most of the
objects one tries to understand are physically inaccessible. Thus, it is important that

those aspects that can be studied in the laboratory be rather well understood.

The main goals of nuclear astrophysics have been to probe the interiors of
stars, stellar explosions, the early moments of cosmic expansion, and the formation
and evolution of galaxies and cosmic structure by measurement and application of the
relevant nuclear physics. The approach to these goals have generally been from three
directions: 1) Careful measurements of the relevant nuclear reactions; 2) Detailed
computer models of the relevant astrophysical environments; and 3) Observations of
the relevant terrestrial and extra-terrestrial atomic and isotopic abundances. These
approaches provide not only insight into the formation and evolution of the elements,
but are also pillars upon which a variety of cosmological models as well as models for

physics beyond the standard model of particle physics can stand or fall.

However, studying the nuclear phenomena in the terrestrial environment is
different from the stellar environment, because there are several factors, such as the
density of the matter, the intensity of the magnetic field, etc..... , S0 more effects will
occur. The electron screening effect on fusion reaction addresses one such aspect.

In the first chapter, an overview of nuclear astrophysics is given, showing its

goal and its relevance in the understanding of the universe.

In the second chapter, the astrophysical nuclear reactions, and some

generalities about nuclear rates and cross section will be given.

In the third chapter, the effect of atomic screening and its effect on
astrophysical nuclear reactions be studying. We have first proposed an improvement
of the simple quadratic model. Then calculation based on the electron wave function
has been extended to excited states, subsequently the atomic screening effect on

astrophysical factor for the reaction®He(3He, 2p)*He has been evaluated.



In the fourth chapter, the enhanced atomic screening by a strong magnetic
field is reviewed. A new solution has been obtained and subsequently its effect on

nuclear reaction has been calculated.

In the fifth chapter, we have applied the result of chapter three to evaluate the
reductions of the alpha radioactivity. The effect of non linear plasma shielding on

such half lives has also been studied.
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CHAPTER 1

ELEMENTS OF NUCLEAR ASTROPHYSICS

1.1 INTRODUCTION

Nuclear Astrophysics is the study of the nuclear processes which drive the birth, evolution
and death of stars. The current cosmological belief is that the nuclei which make up the majority of
matter were first made from nucleons created a short time after the beginning of the Universe, in
the expanding fireball we call the Big-bang, and later forged in the interiors of stars and stellar
explosions [ArnQ0].

It is of significant and enduring interest to Mankind to piece together the picture of our
evolution from the very first times. In particular, we now know that almost all of the material from
which our planet was created was made in a vast series of nuclear reactions inside stars, and spread
throughout the interstellar medium via stellar outbursts and energetic explosions. Astrophysicists
have modeled these processes in the hope of explaining the isotopic abundances we see today on
our Earth, around the Solar system, in meteoric remount and in astronomical observations of other
stellar systems and the interstellar medium, in the hope of tying together a comprehensive
understanding of the series of events leading to our present condition. Also of interest are the
physical constraints placed on the energy generation and lifetimes of stars resulting from the
detailed study of the realm of nuclear interactions, leading to predictive models and observational
tools useful in cosmology, the study of the large-scale evolution of the Universe [Arn00].

Currently, much research is being done into the reaction rates of various nuclear processes
in low energy stellar environments, such as Hydrogen burning in Main sequence stars and red
giants. Nuclear cross-sections are measured at the lowest possible experimental energy, and then
extrapolations are made to stellar energies, which tend to be still lower. Also subjects of active
research are the higher energy processes of hydrogen burning in the hot CNO cycles and their
breakout.

The breakout reactions from the hot CNO cycle are currently being paid much experimental
attention. Of particular importance in Nuclear Astrophysics however, is the study of the specifics
of the rapid proton process. Questions which need to be answered are: What are the key

contributing reactions in the rp-process at various temperatures? What are typical r p-process sites:

Atomic effects in astrophysical nuclear reactions
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does it occur in X-ray busters only, and if so does the envelope escape into the interstellar medium
providing a nucleosynthesis source? Do rp-process reactions occur in novae, where we know the
envelope escapes? How much of the nucleosynthesis of proton-rich nuclei can be accounted for by

these rp-process scenarios?

1.1. The Hertzsprung — Russell Diagram (HRD):

The Hertzsprung-Russell diagram (usually referred to by the abbreviation H-R diagram or
HRD, also known as a colour-magnitude diagram, or CMD) gives the relationship between
absolute magnitude, luminosity, classification, and effective temperature of stars. The diagram was
created virca 1910 by Ejnar Hertzsprung and Henry Norris Russell, and represented a huge leap
forward in understanding stellar evolution, or the 'lives of stars'.

There are several forms of the Hertzsprung-Russell diagram, and the nomenclature is not
very well defined. The original diagram displayed the spectral type of stars on the horizontal axis
and the absolute magnitude on the vertical axis. The first quantity (i.e. spectral type) is difficult to
determine unambiguously and is therefore often replaced by the B-V colour index of the stars. This
type of diagram is called a Hertzsprung-Russell diagram, or colour-magnitude diagram, and it is
often used by observers. However, colour-magnitude diagram is also used in some cases to
describe a plot with the vertical axis depicting the apparent, rather than the absolute, magnitude.
Another form of the diagram plots the effective temperature of the star on one axis and the
luminosity of the star on the other. This is what theoreticians calculate using computer models that
describe the evolution of stars. This type of diagram should probably be called temperature-
luminosity diagram, but this term is hardly ever used, the term Hertzsprung-Russell diagram being
preferred instead. Despite some confusion regarding the nomenclature, astrophysicists make a
strict distinction between these types of diagrams.

The H-R diagram can be used to define different types of stars and to match theoretical
predictions of stellar evolution using computer models with observations of actual stars. It is then
necessary to convert either the calculated quantities to observables, or the other way around, thus
introducing an extra uncertainty.

Most of the stars occupy the region in the diagram along the line called main sequence.
During that stage stars are fusing hydrogen in their cores. The next concentration of stars is on the

horizontal branch (helium fusion in the core and hydrogen burning in a shell surrounding the core).

Atomic effects in astrophysical nuclear reactions
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Fig 1.1. H-R Diagram.

The largest group of stars in Figure 1 is that labeled Main Sequence. The main sequence is
common to all H-R diagrams and is the longest stage of evolution for any star. A star on the main
sequence derives its energy almost entirely from nuclear reactions involving the conversion of
hydrogen to helium via fusion. A star spends most of its life on the main sequence. From the
diagram we see that the brighter a main sequence star is, the hotter it is. The hotter main sequence
stars are also bluer and more massive. The cooler, dimmer main sequence stars are redder and less
massive. Although it is not obvious, the hotter, brighter, more massive, and bluer a star is, the less
time it spends on the main sequence. It is important to note that stars do not move up and down the
main sequence. The position of a star on the main sequence is uniquely determined by its mass.

The next region of interest in Figure 1 is the group of stars labeled Red Giants.1 The red
giant phase of stellar evolution follows the main sequence phase. When the hydrogen is nearly
exhausted in the central core of a star, the star begins to undergo a cataclysmic set of convulsions.
During this process, core temperature, pressure and density increase within the star. Energy
released during this process causes the outer parts of the star to swell to enormous proportions. The
star, as a whole, becomes less dense since all but the central core is expanding. This expansion of
the outer regions of the star results in surface cooling and results in their red appearance. The

energy being released by the core heats up the hydrogen in the areas surrounding it to extremely

Atomic effects in astrophysical nuclear reactions
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high temperatures. This accelerates hydrogen fusion and the production of helium, causing the star
to increase in luminosity. After leaving the main sequence these stars move to the upper right side
of the H-R diagram (low temperature, high luminosity). Red giants are, therefore, characterized by
very large diameters and relatively low surface temperatures. Their large diameters, and
consequently their large surface areas, make them relatively bright.

The final group of stars in Figure 1 are White Dwarfs. These stars are at the end of the line
in terms of stellar evolution. Near the end of a star's life, as it begins to exhaust its supply of
energy, it begins to shrink. During this process the star may ultimately attain an enormous density.
White dwarfs are compact objects about the size of Moon but containing about mass of the sun.
Although white dwarf stars are extremely hot, they are not very bright because of their compact
size. White dwarf stars have very high densities (roughly that of the nucleus of an atom). This is
possible because the constituent atoms of the gases residing in the interior of these stars are
completely ionized, i.e., stripped of all electrons. Most of the mass of an atom (~99.975%) is
concentrated in the nucleus, but most of the volume is occupied by orbiting electrons. With the
electrons stripped away, it is possible to pack nuclei very close together resulting in a substance of
extremely high density. The density of a typical white dwarf star is, for example, over a million
times that of water.

There are two other possible end states in stellar evolution: neutron stars and black holes.
Neither of these are luminous enough to appear in the H-R diagram.

To summarize, there are three main classes of stars on the H-R diagram. A star begins its
evolution at a point on the main sequence determined by its mass, matures into a red giant stage,

and can end its life as a white dwarf.

1.2.Nucleosynthesis:

The abundance of a chemical element measures how relatively common the element is, or
how much of the element there is by comparison to all other elements. Abundance may be
variously measured by the mass-fraction (the same as weight fraction), or mole-fraction (fraction
of atoms, or sometimes fraction of molecules, in gases), or by volume fraction. Measurement by
volume-fraction is a common abundance measure in mixed gases such as atmospheres, which is
close to molecular mole-fraction for ideal gas mixtures (i.e., gas mixtures at relatively low
densities and pressures).

There are various methods for determining the abundances of elements in the unverse,

wether directly (meteorites, terrestrial material, ....), or by interpretation of the stellar spectra. The

Atomic effects in astrophysical nuclear reactions
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last method is fundamental in astrophysics, it is based on the theory of quantified model of the

atom.
The Earth is formed from the same cloud of matter that formed the Sun, but the planets
acquired different compositions during the formation and evolution of the solar system. The

schematic curve of atomic abundances is given in (Fig.1.2)

H BURNING & BIG BANG
SCHEMATIC

ABUNDANCE
CURVE

(SUESS & UREY, 1956)
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‘Fﬁzcm
X YCLE
-2 N -
[ - \\
| I ] T
50 100 150 200
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Figure 1.2. The abundances of the elements in the solar system.

We can given some comments about the curve in Fig.1.3:

a) Hydrogen and helium are estimated to make up roughly 98 % of all the matter in the
universe.

b) The nuclear abundances generally decrease with increasing atomic wieght.

c) A large peak is encountered for A = 56 (iron).

1.2.1. Hydrogen burning

The beginning of star formation is with the gravitational collapse of a cloud composed of
hydrogen, helium and traces of other chemical elements. Then the cloud contracts slowly in a state
close to hydrostatic equilibrium; half the gravitational energy released is lost as radiation and the

other heats up the cloud. The contraction will continue until the activation of a source of energy

Atomic effects in astrophysical nuclear reactions
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other than gravity. The first is the thermonuclear fusion of proton with light nuclei such as
D,Li,Be and B.

The net effect of hydrogen burning is to transform protons into 2He nuclei, this
transformation can only be effected by a nuclear weak process, which the mostisp > n+e* + v,
, In this case the result is

4p > *He + 2e* + 2v, (1.1)

Hydrogen burning would be a straightforward and rapid process, if a bound state of two
protons existed. Such a state would be an isotope of helium, *He, and hydrogen would begin to
burn via the electromagnetic reaction

p+p— *He+y (1.2)

1.2.1.1 The proton-proton chain
The underlying mechanism for this reaction is that one of the interacting protons undergoes
inverse beta decay, and the neutron produced is then bound to the other proton to form a deuteron.
There are three sequences of reactions which form the main branches of the proton-proton chain.
These branches are shown in Fig 1.3.
The pp-I chain is:

p+tp-o>d+et+u, (1.3)
d+p—- *He+y (1.4)
*He+ *He— *He+ p+p (1.5)

In the pp-11 chain *He produced by (1.3) and (1.4) undergoes different reaction chain
leading to *He:

He+ *He —» "Be+ y (1.6)
'Be+ e~ > "Li+wv, (1.7)
‘Li+p— *He+ *He (1.8)

Atomic effects in astrophysical nuclear reactions



Elements Of Nuclear Astrophysics 7

Finally in less then 0.02% 7Be produced by (1.6) can start the PP Il chain by absorbing a
proton (instead of e~ capture) to generate *He in three steps.

The pp-11l chain is:

p+ 'Be— ®B+y (1.9)
8B - %Be +e* +, (1.10)
8Be » *He + *He (1.11)

ptp—d+etty,

p+d —He+y
3He + He — ‘He + 2p 3He + “He — "Be +7
e+Be —TLi+u, p+Be — B +y
p+Li — “He + *He B —PBe"+ et 40,
"Be' — He + *He

BRANCH | BRANCH Il BRANCH Il
Qp=262MeV Q=257 MeV 0,y =19.1 MeV
[85%] [15%] [0.02%]

Fig 1.3. The three branches of the pp chain.

1.2.1.2. The CNO cycle:

The pp chain can account for hydrogen burning in main sequence stars with masses
comparable to the sun, the CNO cycle- illustrated in Fig 1.4.- depends on the presence of small
quantities of carbon, while is produced in earlier generations of stars by helium burning. This cycle
becomes active in stars at temperatures in excess of around 10”K. The CNO cycle begins with the
radiative proton capture on *2C. The cycle then proceeds via a series of proton-capture and S-

decays.

e, v)NB,v) P C, V)N @, v) 0BT, ve) "N (p, @) '*C (1.12)
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The recult of this process is the conversion of four protons into a helium nucleus, with the
release of energy. The carbon, nitrogen and oxygen nuclei are used as catalysts, their relative

abundances remaining unchanged during the process.

Fig 1.4. The CNO Cycle.

1.2.2. Helium burning:

Helium burning produces two vitally important chemical elements, namely oxygen and
carbon. Moreover, 0.85% and 0.39% of matter in the solar system is composed of oxygen and
carbon, only hydrogen and helium are more abundant. Thus, helium burning is an important
process [Aud72].

The helium burning reactions are:

3 *He - 12C (1.13)

C+ *He - 0 +vy (1.14)

N+ *He > B8F+y->80+e +v (1.15)
BF->®0+e +v (1.16)

The last chain, can be considered as a very good source of the neutron by the next reactions:

80 + *He —» ?'Ne +n (1.17)
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“INe + a — **Mg

80 + *He —» *’Ne +y

“2Ne + *He » Mg +n

*2Ne + *He » **Mg +y

Mg+ *He — *8Si +n

Mg+ *He » *°Si+n

1.2.3 The Carbon burning:

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

The Carbon burning process is a set of nuclear fusion reactions that take place in massive

stars that have used up the lighter elements in their cores. It requires high temperatures (6 x 108K)

and densities about (2 x 108kg/m3) the principal reactions are:

12C+12C_>24Mg+y

L2c 4120 5 23Ng +p

2 + ¢ - *°Ne + *He

Loy 20 5 23Mg +n

(1.24)

(1.25)

(1.26)

(1.27)

Carbon burning starts when helium burning ends. During helium fusion, stars build up an

inert core rich in carbon and oxygen. Once the helium density drops below a level at which He

bruning can be sustained, the core collapses due to gravitation. This decrease in volume raises

temperature and density of the core up to the carbon ignition temperature. This will raise the star’s

temperature around the core allowing it to burn helium in a shell around the core. The star

increases in size and becomes a red supergiant.
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1.2.4. Oxygen burning

These reactions start when C-burning ends, it requires a high temperature (4.5 x 10°°K ).

The principal reactions are

60 4160 - 325 4+ y (1.28)
0 + %0 - 3p+p (1.29)
160 + %0 - 285i + *He (1.30)
60 + 10 - **Mg + 2 *He (1.31)
160 + 10 - 31§ +n (1.32)

1.2.5. Photodesintegration

It is a physical process in which extremely high enegy gamma rays interact with an atomic
nucleus and cause it to enter an excited state. This process is essentially the reserve of nuclear
fusion, where lighter elements at high temperatures combine together forming heavier elements
and releasing energy. Photodisintegration is responsible for the nucleosynthesis, the most

important interactions are:

Y+ 28Si - **Mg + *He (1.33)
’86i + *He » 32§ +y (1.34)
**Mg +vy - *°Ne + *He (1.35)
ONe +y - 0 + *He (1.36)

After high-mass stars have nothing but sulfur and silicon in their cores, they further contract
until their cores reach in the range of 2.7-3.5 GK; silicon burning starts at this point. Silicon
burning entails the alpha process which creates new elements by adding the equivalent of one

helium nucleus (two protons plus two neutrons) per step in the following sequence

Atomic effects in astrophysical nuclear reactions



Elements Of Nuclear Astrophysics 11

286i + *He — 32§ (1.37)
326 + *He — 3%Ar (1.38)
34r + *He - *°Ca (1.39)
*Ca + *He — *'Ti (1.40)
*Ti + *He —» *8Cr (1.41)
*8Cr + *He - >?Fe (1.42)
>2Fe + *He — *°Ni (1.43)

The entire silicon-burning sequence lasts about one day and stops when nickel-56 has been
produced. Nickel-56 (which has 28 protons) has a half-life of 6.02 days and decays via beta
radiation (beta plus decay, which is the emission of a positron) to cobalt-56 (27 protons), which in
turn has a half-life of 77.3 days as it decays to iron-56 (26 protons). However, only minutes are
available for the nickel-56 to decay within the core of a massive star. At the end of the day-long
silicon-burning sequence, the star can no longer convert mass into energy via nuclear fusion
because a nucleus with 56 nucleons has the lowest mass per nucleon (proton and neutron) of all the
elements in the alpha process sequence.

Fig.1.5 shows the binding energy of various elements. Increasing values of binding energy
can be thought of in two ways: 1) it is the energy required to remove a nucleon from a nucleus, and
2) it is the energy released when a nucleon is added to a nucleus. As can be seen, light elements
such as hydrogen release large amounts of energy (a big increase in binding energy) as nucleons
are added—the process of fusion. Conversely, heavy elements such as uranium release energy
when nucleons are removed—the process of nuclear fission. Although nuclei with 58 and 62
nucleons have the very lowest binding energy, fusing four nucleons to nickel-56 to produce the
next element — zinc—60 — actually requires energy rather than releases any. Accordingly, nickel—

56 is the last fusion product produced in the core of a high-mass star.
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Fig 1.5. the binding energy of various elements.

1.2.6.r, s and p process:

Two neutron-capture processes, the slow (s) process and the rapid (r) process, are thought
to be responsible for the synthesis of the heavy elements beyond iron. The s-process is a non-
explosive process, while the r-process is thought to occur only in explosive scenarios. The r-
process is thought to be responsible for the nucleosynthesis of the actinides, since these cannot be
created via the s-process.

During the explosion, there is a large neutrino flux from the core, and also a large flux of
neutrons. In this neutron-rich environment, the r- and s-processes can occur, synthesising massive
neutron-rich matter via staggered radiative-capture-beta-decay path (See Fig 1.6). The s-process
can synthesise isotopes up to 2°°Bi. It is thought that the r-process can account for a large fraction
of the nucleosynthesis of neutron-rich isotopes up to the Uranium island. The r-process only occurs
after collapse of the stars because the density and neutron ux need to be extremely high. During the
r-process and s-process, all the nucleosynthesis is from the neutron rich side, leaving the question
of where the rare proton-rich stable isotopes which exist in nature are created, for they are
impossible to create via neutron processes alone.

It is thought that supernovae type I, although responsible for the synthesis of most of the
neutron rich isotopes and their distribution throughout the galaxies, are not responsible for the
proton-rich rare isotopes. For these nuclides, a very high temperature hydrogen-rich environment

would be required, leading into our consideration of stellar binary systems. p —process is aimed at
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explaining the synthesis of the p-nuclei observed in the bulk solar system material. It could also
provide some explanation for certain isotopic anomalies found in primitive meteorites, the p-nuclei
cannot be produced by s- and r-processes of neutron captures. In contrast, it seems natural to think
of the transformation of pre-existing seed nuclei (especially of the s- or r- type) by the addition of
protons, or by removal of neutron.

The rates (y,n) photodisintegrations are increasing very rapidly with increasing
temperatures and decreasing neutron binding energies. It appears that temperatures T > 10°K are
required in order for s- or r-nuclei to have time to be stripped of neutrons in realistic stellar
situations. On the other hand, (p, y) reactions are much less dependent on temperature and binding
energy, but their rates are rapidly decreasing with increasing Coulomb barrier heights. As a result,
proton radiative captures can contribute at best to the production of the lightest p-nuclei production

only, and in highly proton-rich environments.
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Fig 1.6. The s,r and p neutron capture process.

1.2.7. Spallation reaction:

It is the process in which a heavy nucleus emits a large number of nucleons as a result of
being hit by a high-energy particle, thus greatly reducing its atomic weight. In the context of
impact physics it describes ejection or vaporization of material from a target during impact by a

projectile.
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Spallation reactions take place in interstellar space when energetic (~10 Mev) cosmic rays
(such as high-energy protons) collide with interstellar gas, which contains atoms such as carbon,
nitrogen, and oxygen. This leads to the synthesis of light isotopes, such as °Li, °Be, °Be, and ''B,
that cannot be produced abundantly in nucleosynthesis scenarios in the big bang or stellar interiors.

As example for this reaction is

2c+p-> "Li+2p+a (1.44)
1.3. Stellar evolution:

As it collapses, a molecular cloud breaks into smaller and smaller pieces. In each of these
fragments, the collapsing gas releases gravitational potential energy as heat. As its temperature and
pressure increase, the fragments condense into rotating spheres of gas. Once the gas is hot enough
for the internal pressure to support the fragment against further gravitational collapse (hydrostatic
equilibrium), the object is known as a protostar [Aud72].

Accretion of material onto the protostar continues partially through a circumstellar disc.
When the density and temperature are high enough, deuterium fusion begins, and the outward
pressure of the resultant radiation slows (but does not stop) the collapse. Material comprising the
cloud continues to "rain" onto the protostar.

The protostar follows a Hayashi track on the Hertzsprung-Russell (H-R) diagram. The
contraction will proceed until the Hayashi limit is reached, and thereafter contraction will continue
with the temperature remaining stable. Stars with less than 0.5 solar masses thereafter join the main
sequence. For more massive protostars, at the end of the Hayashi track they will slowly collapse in
near hydrostatic equilibrium,

Finally, hydrogen begins to fuse in the core of the star, and the rest of the enveloping
material is cleared away. This ends the protostellar phase and begins the star's main sequence phase
on the H-R diagram. The later evolution of stars are studied in stellar evolution [Aud72]..

As the hydrogen around the core is consumed, the core absorbs the resulting helium,
causing it to contract further, which in turn causes the remaining hydrogen to fuse even faster. This
eventually leads to ignition of helium fusion (which includes the triple-alpha process) in the core.
In stars of more than approximately 0.5 solar masses, electron degeneracy pressure may delay
helium fusion for millions or tens of millions of years; in more massive stars, the combined weight
of the helium core and the overlying layers means that such pressure is not sufficient to delay the

process significantly.
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When the temperature and pressure in the core become sufficient to ignite helium fusion in
the core, a helium flash will occur if the core is largely supported by electron degeneracy pressure;
in more massive stars, whose core is not overwhelmingly supported by electron degeneracy
pressure, the ignition of helium fusion occurs relatively quietly. Even if a helium flash occurs, the
time of very rapid energy release (on the order of 108 Suns) is brief, so that the visible outer layers
of the star are relatively undisturbed. The energy released by helium fusion causes the core to
expand, so that hydrogen fusion in the overlying layers slows, and thus total energy generation
decreases. Therefore, the star contracts, although not all the way to the main sequence; it thus
migrates to the horizontal branch on the HR-diagram, gradually shrinking in radius and increasing
its surface temperature.

After the star has consumed the helium at the core, fusion continues in a shell around a hot
core of carbon and oxygen. The star follows the Asymptotic Giant Branch on the HR-diagram,
paralleling the original red giant evolution, but with even faster energy generation (which thus lasts
for a shorter time) [Aud72].
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Fig 1.7. Schematic and simplified diagram of the evolutionary track of a solar-mass star and a

more massive.
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Changes in the energy output cause the star to change in size and temperature for certain
periods. The energy output itself is shifted to lower frequency emission. This is accompanied by
increased mass loss through powerful stellar winds and violent pulsations. Stars in this phase of life
are called Late type stars, OH-IR stars or Mira-type stars, depending on their exact characteristics.
The expelled gas is relatively rich in heavy elements created within the star, and may be
particularly oxygen or carbon enriched depending on the type of the star. The gas builds up in an
expanding shell called a circumstellar envelope and cools as it moves away from the star, allowing
dust particles and molecules to form. With the high infrared energy input from the central star ideal
conditions are formed in these circumstellar envelopes for maser excitation.

Helium burning reactions are extremely sensitive to temperature, which causes great
instability. Huge pulsations build up, which eventually give the outer layers of the star enough
Kinetic energy to be ejected, potentially forming a planetary nebula. At the center of the nebula
remains the core of the star, which cools down to become a small but dense white dwarf.

In massive stars, the core is already large enough at the onset of hydrogen shell burning that
helium ignition will occur before electron degeneracy pressure has a chance to become prevalent.
Thus, when these stars expand and cool, they do not brighten as much as lower mass stars;
however, they were much brighter than lower mass stars to begin with, and are thus still brighter
than the red giants formed from less massive stars. These stars are known as red supergiants.

Extremely massive stars (more than approximately 40 solar masses), which are very
luminous and thus have very rapid stellar winds, lose mass so rapidly due to radiation pressure that
they tend to strip off their own envelopes before they can expand to become red supergiants, and
thus retain extremely high surface temperatures (and blue-white color) from their main sequence
time onwards. Stars cannot be more than about 120 solar masses because the outer layers would be
expelled by the extreme radiation. Although lower mass stars normally do not burn off their outer
layers so rapidly, they can likewise avoid becoming red giants or red supergiants if they are in
binary systems close enough so that the companion star strips off the envelope as it expands, or if
they rotate rapidly enough so that convection extends all the way from the core to the surface,
resulting in the absence of a separate core and envelope due to thorough mixing.

The core grows hotter and denser as it gains material from fusion of hydrogen at the base of
the envelope. In a massive star, electron degeneracy pressure is insufficient to halt collapse by
itself, so as each major element is consumed in the center, progressively heavier elements ignite,
temporarily halting collapse. If the core of the star is not too massive (less than approximately 1.4
solar masses, taking into account mass loss that has occurred by this time), it may then form a
white dwarf (possibly surrounded by a planetary nebula) as described above for less massive stars,
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with the difference that the white dwarf is composed chiefly of oxygen, neon, and magnesium
[Aud72].

The onion-like layers of a massive, evolved star just prior to core collapse. (Not to scale.).
Above a certain mass (estimated at approximately 2.5 solar masses, within a star originally of
around 10 solar masses), the core will reach the temperature (approximately 1.1 gigakelvins) at
which neon partially breaks down to form oxygen and helium, the latter of which immediately
fuses with some of the remaining neon to form magnesium; then oxygen fuses to form sulfur,
silicon, and smaller amounts of other elements. Finally, the temperature gets high enough that any
nucleus can be partially broken down, most commonly releasing an alpha particle (helium nucleus)
which immediately fuses with another nucleus, so that several nuclei are effectively rearranged into
a smaller number of heavier nuclei, with net release of energy because the addition of fragments to
nuclei exceeds the energy required to break them off the parent nuclei.

A star with a core mass too great to form a white dwarf but insufficient to achieve sustained
conversion of neon to oxygen and magnesium will undergo core collapse (due to electron capture,
as described above) before achieving fusion of the heavier elements. Both heating and cooling
caused by electron capture onto minor constituent elements (such as aluminum and sodium) prior
to collapse may have a significant impact on total energy generation within the star shortly before
collapse. This may produce a noticeable effect on the abundance of elements and isotopes ejected
in the subsequent supernova.

For a star of 1 solar mass, the resulting white dwarf is of about 0.6 solar masses,

compressed into approximately the volume of the Earth. White dwarfs are stable because the
inward pull of gravity is balanced by the degeneracy pressure of the star's electrons.
If the mass of the stellar remnant is high enough, the neutron degeneracy pressure will be
insufficient to prevent collapse below the Schwarzschild radius. The stellar remnant thus becomes
a black hole. The mass at which this occurs is not known with certainty, but is currently estimated
at between 2 and 3 solar masses.
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CHAPTER 2

ASTROPHYSICAL NUCLEAR REACTIONS

2.1.Introduction

The thermonuclear reactions of astrophysical interest concern mainly the capture of
nucleons or alpha particles. A limited number of fusion reactions involving heavy ions (‘*C, '°O)
are also of great importance. Charged-particle induced reactions are essential for the energy budget
of a star, as well as for the production of new nuclides in stellar and non-stellar (Big Bang)
situations. In contrast, the role of neutron captures is largely restricted to nucleosynthesis, their
energetic impact being negligible.

The heart of stellar evolution and nucleosynthesis is the thermonuclear reactions. It is the
fusion of light nuclei into heavier nuclei that liberates kinetic energy (at the expense of mass) and
serves as the interior source of the energy radiated from the surface. The condition that the power
liberated internally balance the power radiated from the surface determines a steady state in the
structure of the star. That situation cannot be a truly static one, however, because the very reactions
that liberate energy necessarily change the chemical composition of the stellar interior. It is the slow
change of chemical composition that causes the structure of the star to the chemical composition of
the interstellar medium will have been altered by the thermonuclear debris. Stated most simply, it is
the working hypothesis of the stellar nucleosynthesist that all or part of the heavy elements found in
our galaxy have been synthesized in the interiors of stars by these same fusion reactions.

A complete science of thermonuclear reaction rates is formidable. It involves complicated
details of nuclear physics, many of which are still unsolved. The mechanism of each reaction must
be scrutinized to achieve assurance of the proper prescription for the stellar reaction rate. Still there
are a few basic physical principles that are common to the computation of all thermonuclear

reaction rates.
2.2. Kinematics and energetics

A nuclear reaction in which a particle a strikes a nucleus X producing a nucleus Y and a new

particle b is symbolized by:

a+X -Y+b (2.1)
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. . . . 12 .
For example, a reaction in which a deuteron strikes a C*“ nucleus producing a nucleus and a

proton is written:

d+C"?”>C"+p 2.2)

An alternative notation in common usage is
X(a, b)Y = C*(d,p)C13. (2.3)

In all such nuclear reactions, the total energy, momentum and angular momentum are

conserved quantities.
For two particles of masses m; and m;, and non-relativistic velocities V,,V,, the velocity

V of the center of mass is given by the value of the momentum:

mlv_f + mzv_z) = (m1 + mz)V (24)

Or
= m117_1)+ mzv_z)
V=———== (2.5)
(my+my)

This discussion will be entirely restricted to the non-relativistic kinematics appropriate to the low
kinetic energy in stellar interiors [Cla86].

The momentum of particle 1 relative to the center of mass is

my (07 = V) = 208 (0 = ) = v (2.6)
where p is the reduced mass
_ mim;
# - mi+m, (2.7)

And v is the relative velocity of m; and m,
v = —v;) (2.8)

In the same manner the momentum of m, relative to the center of mass is
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m,(v; — I7) = —uv (2.9)
The kinetic energy before the collision is
(KE); = smiv? + ~myv3 (2.10)

Or

1 1
(KE); =5 (my + my)V?2 +5;w2 (2.11)

Equation (2.11) indicates that the kinetic energy of two particles can be thought of as the sum of
those associated with a mass m; + m,, moving with the velocity of the center of mass plus a

mass u moving with the relative velocity V. The first term is the kinetic energy of the center of mass
itself, which must be the same after the collision as before it. The second term, % uv?2, represents that

portion of the kinetic energy available for doing work against any force separating the two particles.
It is commonly called the kinetic energy in the center- of — mass system.

These non-relativistic formulas are applicable to nuclear reactions only if the combined mass of the
final particles equals the combined mass of the initial particles. But the source of new kinetic

energy comes from a reduction of mass according to the Einstein relationship
AKE = —AMc? (2.12)

In low energy nuclear reactions, however, AM/M ~ 1072 - 10~* so that that assumption of
constant mass is accurate to better than 0.1 percent. For our purposes it is adequate to consider that
to equality. Since the kinetic energy of the center of mass is accordingly unchanged by the reaction,
the kinetic energy in the center-of-mass system must be increased or decreased according to
whether the final mass is less than or greater than the initial mass.

Thus if we return to the reaction

a+X -Y+5b

the conservation of energy principle demands the equality
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Eux+ Mg+ My)c? = Epy + (M + My)c? (2.13)

where E x is the center-of-mass kinetic energy of a and X and Ey is the kinetic energy in the center
of mass of the bY system. The second terms on each side of the equation represent the fact that the
sums of the rest masses before and after the reaction are not necessarily exactly equal and that
kinetic energy may be either liberated or absorbed by that inequality. This is the well-known
Einstein mass-energy relationship. The masses involved are the masses of the nuclei a ,X; b, and Y.

Another quantity that is clearly equal on both sides of the nuclear-reaction equation is the total
number of nucleons (nucleon is the generic name of a neutron or a proton). Hence the atomic
weight, which is defined as the integer nearest in value to the exact mass expressed in atomic mass
units, remains the same on both sides of the mass-energy equation. The energy balance itself is not
disturbed, therefore, by subtracting the atomic weight times the rest-mass energy of 1 amu from
both sides of the equation. The masses then become the excesses of mass over integral number of

atomic mass units. We define the atomic mass excess in units of energy by the quantity

AM,; = (My; — AM,,)c? (2.14)

AMAZ == [MAz(amu) - A]CZM-U_ (215)

Where M, is the mass of 1 atomic mass unit (amu), defined as one-twelfth of the mass of the neutral

atom. In the convenient numerical units of Mev

AM,, = 931.478(M,, — A) Mev (2.16)

Where 931.478 is the rest mass energy of 1 amu in Mev and My is the mass of species (A,Z) in

atomic mass units. With this definition the energy-balance equation becomes

E.x + (AM, + AMy) = Epy + (AM), + AMy) (2.17)

where AM Are expressed in energy units, generally in Mev.
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2.3. Reaction rate

Let us consider a hot ionized gas containing nuclei of type A and B, with concentrations N,
and Np which can fuse with a fusion cross section denoted by o, both types of nuclei move and the
fusion cross section depends on the relative speed v, of the nuclei. If P(v,)dv, denotes the
probability that the relative speed is between v, and v, + dv,., then the average value of the product

of the fusion cross section and the relative speed is
(ov,) = fooo ov,P(v,)dv, (2.18)

The mean time for a nucleus A to fuse with B nucleus is given by [Phi94]

T =— (2.19)

N Np{ovy)

and the A-B fusion rate per unit volume can be written:

Ryp = NyNp{ovy) (2.20)

In most astrophysical situations the nuclei form a classical, non relativistic gas with a speed

distribution given by the Maxwell-Boltzmann distribution.

3/, )
P(v,.)dv, = [27’:;”] exp [%] Amtvidv, (2.21)

The average value of the product of the fusion cross section and the relative speed can be

calculated using (2.21)

(ov,) = | ]0'5 [%]3/ * [ Eo(E)exp [Z| dE (2.22)

Tmy

2.4. The cross section:

The cross section o (E) is the product of these terms:

o(E) = 6,.P.C (2.23)
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where

01 = TA; = — (2.24)

The important functions P is the penetration probability (factor) of the potential barrier-see

Fig(2.1)-.

m

\4

Vo

Fig.2.1 A representation of the Coulomb potential.

It is obtained by solving the Schrodinger radial equation

8m?
+-—>(E-V)X=0 (2.25)

2

d?x
dr?

where
2
@ for r >R
V(r) = (2.26)

Vo for r<R

The penetration factor is then obtained as

P =exp [—&:)mf;c\/V — Edr] (2.27)
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This expression can be reduced to the approximate one

Eg\1/2
pP= e(_?) (2.28)
E; is called Gamow energy. It is given by
4
E; = 8’;2“21225& (2.29)

The C term is the probability that the considered reaction occurs effectively after barrier
penetration for non resonant reaction C is almost energy independent.

The reaction rates can then written as:

V2

AB = (UK

o - Y
CNuNg J exp | = — (%2) 2] dE (2.30)

The expression in the integral is the product of the Maxwell terme exp (%) and the Gamow

1
2 . . . .
term exp (%) . This product shows a relatively narrow maximum called Gamow pic — see

Fig2.2.-.

The integral can be evaluated approximately to get the reaction rate:

2 Y
Ryp = 2Nz o 1/6eyp I—1.89 (%) 3] 2.31)
W2 (KT)2/3 E
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FUSION PROBABILITY

ENERGY OF APPROACH £

Fig 2.2 . The energy window for the fusion of nuclei with Gamow energy E, and

temperature T.

2.5. The astrophysical factor
In order to extrapolate measured nuclear cross section o(E) down to astrophysical energies, the

nuclear cross section factor S(E) is introduced by

o(E)= SEE) exp(—27zn) (2.32)

Where 77 is the Sommerfield parameter

n= == (2.33)

With Z being the atomic charge and v the asymptotic relative velocity of the reacting nuclei. As
already mentioned (section 2.3), the cross section is given by the product of the cross section factor
to be determined experimentally, the square of the De Broglie wavelength due to quantum

mechanics (*E™) and the barrier penetration factor. The quantity exp(—277) takes exclusively s-

wave transmission into account, describing penetration to the origin through a pure Coulomb
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potential. Nuclear reaction rates are extremely sensitive to the precise numerical value in the
argument of this exponential factor. The inclusion of uncertainties in the shape of the nuclear
potential and contributions from non s-wave transmission, respectively are very important for
deriving nuclear reaction rates but do not change the overall energy dependence of the nuclear cross
section given in (2.32). Actually, uncertainties in the shape of the nuclear potential tail and
contributions from non s-wave terms are only important for heavy ion reactions. The main
uncertainty in (2.32) lies in the variation of the cross section factor S(E) with energy, which
depends primarily on the value chosen for the radius at which formation of a compound nucleus
between two interacting nucleons occurs.

The separation of the barrier penetration factor in (2.32) is based on the solution of the

Schrodinger equation for the Coulomb wave function. Therefore, the cross section o(E) in (2.32)
can be parameterized even more precisely by either expanding S(E) into a Taylor series about zero

energy because of its slow energy dependence

_ S'(O) S"0) g2
S(E)_S(O)[H 50) E+0.5 50) E } (2.34)

Where S(0) is the value of S(E) at zero energy and S'(0) and S"(0) are the first and second

derivatives of S(E) with respect to energy evaluated at E=0, respectively.

Effect of the stellar medium on nuclear phenomena



Atomic screening in astrophysical nuclear reactions 27

CHAPTER 3

ATOMIC SCREENIG IN ASTROPHYSICAL NUCLEAR
REACTIONS

3.1. Electron screening effects in low energy reactions:

3.1.1. Introduction
At very low energy, the cross section of nuclear reactions induced by charged particles
decreases drastically due to the steep drop in the Coulomb penetration and the geometrical factor
mA?~1/E. In various applications it is advantageous to remove this strong energy dependence and
an astrophysical S(E) factor is defined [Cla86]:
S(E) = o(E)Eexp(2mn) (3.1)

Where o (E)is the nuclear reaction cross and n = Z;Z,e?/hv denotes the usual Coulomb
parameter for nuclei with charge number Z;and Z, in the entrance channel, respectively. If no
resonant effects are present the S(E) factor varies slowly with energy and also allows for the
extrapolation of data to zero energy [Cla86].

Usually, in the treatment of nuclear reactions, atomic and molecular effects are ignored so
that the cross section contains only the effect of the Coulomb repulsion and nuclear attraction
between bare nuclei. However, in the actual experiments target nuclei are in the form of atoms or
molecules and electronic screening effects reduce the Coulomb repulsion and, hence, the cross
section of the various processes will be affected.

Electron screening effects may be especially crucial in some fusion reactions of
astrophysical importance at very low energies. Assenbaum, Langanke and Rolfs [Ass87] have
studied nuclear fusion reactions and found that a significant enhancement of the cross section can
occur at energies which are about a hundred times larger than the electron binding energies
involved. Thus, screening effects must be well understood in order to interpret and extrapolate
nuclear reaction data to astrophysical energies.

While low energy fusion reactions were extensively studied, the effects of electron
screening have been directly observed for the first time only by Engstler [Eng88], a nearly

exponential enhancement of the S(E) factor has been found at energies below 10 keV. The result
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could be interpreted in terms of a simple astrophysical screening model although the agreement
with experimental data below 10 keV needs improvement. The experimental data on S(E), as well
as the bare nucleus value obtained from a polynomial fit to higher energy data, are displayed on
figures 3.1 and 3.2 for the *He(d,p)*He and d(®He, p)*He reactions, respectively. In the latter

case the enhancement is smaller due to the molecular nature of the D, target.
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Fig 3.1. S(E) for the *He(d, p)*He. The solid line represents the bare nucleus value taken from[Eng88]
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Fig 3.2: S(E) for thed (3He, p)*He . The solid line represents the bare nucleus value taken from [Eng88]
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In this section we introduce the models describing the electron screening effects that
appear in laboratory nuclear reactions at astrophysical energies for the screening. The only
parameter is the screening radius, which for the electronic density and the corresponding screening

potential can be determined by more sophisticated considerations like in [Strl01].

3.2. Coulomb screened potential
3.2.1. Prior work:

The screening enhancement effect in laboratory nuclear reactions at astrophysical energies
has attracted a lot of attention. The very low energies attained for the break up
reaction 3He(®He, 2p)*He [Ass87] which is extremely important to the solar neutrino
production, revealed the real magnitude of the problem, as the screening energy obtained in that
experiment still exceeds all available theoretical predictions. Other low energy experiments of the
proton-proton chain still need a theoretical model that could account for the observed
enhancement [Lio01].

Various theoretical models have been proposed, some of which are in conflict with each
other (ref [Eng98] or [Lan96]) while others [Ben89] were applied at a time when experimental
measurements [Kra87a] were too scarce and inaccurate, thus their actual validity has been
obscured.

After the pioneering work [Ass87] that established the importance of atomic effects in low
energy nuclear reactions, various authors have tried to create models that account for the observed
enhancement. A simple model [Ben89], suggested at an early stage, assumed that the electronic

charge density around the target nucleus is constant, thus predicting for the nucleus-atom reaction
between the atomic target Z, e and the projectile Z,e a screening energy U, = G) Z,Z,e?a™1, that

model used a screening radius taken from scattering experiments so that

-1/2
a = 0.8855a,(Z/% + 727) / (3.2)

where a, = 0.529A4° is the Bohr radius. Although that screening energy is larger than the one

-1
predicted by the simple formula U, = Z;Z,e? (%) , it has some very obvious defects. The
1

assumption that the charge density is constant leads to an unnaturally sharp cut-off at a distance

r = a from the center of the target nucleus. Moreover, atomic excitations and deformations of the
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target atom are totally discarded. On the other hand normalizing the charge distribution so that the

total charge is —Z; e gives a charge density

po=—22 (3.3)

4 a3’

Liolios, in his work [Lio00], proposed a simple and efficient model for the study of the
screening enhancement effect on low energy nuclear fusion reaction. In that model the fusing
atoms are considered as Hydrogen-like atoms whose electron probability density is used in
Poisson’s equation in order to derive the corresponding screened coulomb potential energy

As a first step he considers a charge distribution Fig.3.3:

p(r) = po (1-5). (34)

which takes into account the depletion of charge with respect to distance from the center. The
radius a is the screening radius given by equation (3.2) and the charge density p, at the center of

the cloud can be found by means of the normalization condition:
foap(r)4m"2dr =—Ze (3.5)

This integral yields a central value of

15 Zle
8 m.a3

(3.6)

Po =

Note that for a collision Z; = Z, = 1 we have a central density p, = 7.68(e/a3)/m which gives
an even larger density than the constant density assumption. An alternative approach would be to
consider the value p, equal to the corresponding hydrogen-like one and then calculate the

screening radius using equation (3.5) the latter treatment gives a screening radius

a= ( L )1/3 ao- (3.7)

8Z%m
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which is independent of the charge of the projectile. For hydrogen isotopes equation (3.7) gives a

radius of a = 0.842a,

—p(1011C/m?)

(107 m)
Fig3.3. Liolios’s charge distribution
The electrostatic energy is calculated by solving the equation of Poisson for the above
charge distribution with the appropriate boundary condition: ®()=0 , @(r —0) :% SO
that
o) =52 - (5) +50)] (38)

Whenever a bare nucleus Z;e impinges on the target nuclei surrounded by the electron

cloud of equation (3.4) the total interaction potential in the atom-nucleus reaction channel is

V(r) =

et SOREIO) ¢

3.2.2. BES model (Batna Electron Screening Model)

In the model, which was proposed by Liolios, the density of electrons decreases rapidly as

a function of distance and shows a sudden cut off for » = a, which is not in agreement with the
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quantum description. In order to get a gradual decreasing of charge density we have proposed the
following form of the charge density (Fig.3.4):

p(r) = poexp (- 55). (310)

where p, is charge density at the center of the cloud (when the electron is in its ground state)

Po = —@- (3.11)

T

From the condition of normalization

a
j p(r)4nridr = —Ze
0

the screening radius is obtained as a function of p,:

Z
Po ="~ 2.37196(13 (3.12)
Using (3.11) one gets for Z; = 1:
a =1.09418 q, (3.13)
3 |
ME i
fr’\ 2.5:
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Fig3.4 Charge distribution in the BES model
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The electrostatic potential of the distribution is given by the solution of Poisson’s equation

1d do 2
S (rz %) = —4m pyexp(— %) (3.14)
Upon integration, we obtain:
4 a3 T
d(r) = ”TPOT\/EErf[;] (3.15)
with
— Zle
Po = T 337003
The projectile-target potential energies then
Z1Z,e% Z,Z,e?
V(r) =22 - 23 2Er ] (3.16)

3.2.3. Comparison with Liolios Model:

The charge radius obtained in our work (3.13) is greater than the one obtained by Liolios
(3.7).
The comparison between Liolios’s and BES’s for the charge density calculation is shown

schematically in Fig 3.5

e [Ememmmsn Liolios’s calculatoin
T BES’s Calculation
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4
2
0_|||||||||||||||||||||:I‘|||||||
0 2
r (107 11m)

Fig 3.5 Comparison between Liolios’s and BES’s charge density

Effect of the stellar medium on nuclear phenomena



Atomic screening in astrophysical nuclear reactions 34

However, since the two approaches are slightly different, a strait forward comparison is
obtained if one starts with the same input (3.2). Using (3.12), we obtain (for Z; = Z, = 1)
Finally we obtain

—e
Po=0.626a3
which is 50% less than the central density given by (3.6). Let pd = — % S0 we obtain

0
pPES = 1.7123exp (- 3)
(3.17)
. 2
pHo = 2.9945p9 (1 - 1)

Fig.3.6 shows a comparison between the two densities with the same parameterization
(3.2).
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Fig 3.6: Comparison between Liolios’s and BES’s charge densities with the same charge and radius a

Let us now compare the potential energy in the two models.

The Taylor series for the error function is as follows:

r 2 (r 1713 17rs 177 1 7r°

Erf () =G et ws we T s ) (3.18)
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We substitute equation (3.18) with the value of p, in equation (3.15) we obtain

00 =250 =30 +56) - 50 + 56 @19

v =221 50 S0 w0 e

We make a comparison between the equations (3.20) and (3.9) and we find that there are
terms of the order higher then 4; therefore, they are considered as the terms of corrections.

If we write, equation (3.9) and (3.20) as a function of a, we have:

BES (. — Z1Z2¢® _ 6 Zizze? [ a(r\? 21 v\t 1 r\® 1 (78
4 (T) - r 50 agp [1 5 (ao) + 100 (ao) 20 (ao) + 144 (ao) (3'21)
Lio(yy = Z1Z2e® _ 2Z:Zpe*[3 5 (r\? | 39 (r\*
V (r) - T 273 [2 2 (ao) + 20 (ao) (3.22)

We remark that there is a difference between the terms in the two formulae. This is due to

the difference in a radius and density.

3.3. One electron Screening effects:
Now consider a hydrogen-like atom with atomic number Z;. When the wave function of

the electron is given by W, (r,8) then the charge density around the point- like nucleus is

P (r,0) =¥, (6] . (3.23)

Assuming spherically symmetric wave functions for simplicity, we can solve the equation
of Poisson for the above charge density in order to derive a screened Coulomb potential ®(r)
around the nucleus. Note that this potential will take into account the repulsive effects of the

Ze
point-like nucleus, by imposing the appropriate boundary conditions ®(x0) =0, ®(0) :Tl
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The second boundary condition indicates that if a positive projectile (Z,e) is in contact
with the nucleus (Z,e) at the center of the electron cloud, then there is no negative charge

between them to reduce the Coulomb barrier.

The Poisson’s equation for hydrogen atoms whose electron is in its ground state (1s) is:

1d ad
S (rz #) = —41 pyexp (— %) (3.24)
e(z,)
Where p, = —[a—lj the charge density at the center of the electron cloud, and r, = ;7" is the
0 1
screening radius [Lio01].

So we obtain :

Dpo(r) = — C—rz + C; — 41pyry? (1 + i) exp (— L) (3.25)

To

The electrostatic potential ®,,(r) must go to zero at infinity which gives C, =0. At very

large distances r > 1y, due to the spherical symmetry of the distribution, any projectile impinging

on that cloud will actually “see” a Coulomb potential of the form [Lio01]

G,(r > 1) = —f (2.26)

so that C, =—e. Inserting the values of the parameters r, and p(0) into the above

equation we obtain the formula used without details of its derivation

Dyo(r) = —3+§(1 +2r70) exp (— :—0) (3.27)

r

Then the total potential energy is:

Voo = nZzel | Zpe | Zpe (1 + ﬁ) exp (— TL) (3.28)

T r r 0 0

If we assume that the electron is in an excited state (2s) then the potential energy is found

to be:
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_ Z1Zpe?  Zpe? | Zpe? 3r r? i T
Vio = r r + r (1 + 81y + 1612 + 64r§‘) exp( ro) (3.29)

If a positive projectile Z,e impinges onto the above hydrogen like atom the total potential
energy V(r) between the two nuclei will be due to the above electrostatic potential, that is Z,e®,,

plus the repulsive potential of the nucleus Z e :

+ L+ exp(r/r.) (3.30)
r 2r

0

Where

r . T
°2Z,+2,)

(3.31)

The reason for replacing r, with r, is that, at astrophysical energies, the electrons move at
higher velocities than the nuclei themselves [Lio01]. For example in laboratory d-D reactions the
relative nuclear velocity equals the typical electron velocity v, =a.C for E =25keV . Although the
above assumption is particularly valid at such low energy collisions between hydrogen nuclei,
when reactions between heavier nuclei are considered an inevitable small error is involved at
intermediate energies. The WKB treatment of the penetration factor disregards all effects beyond
the classical turning point. Therefore, inside the tunnelling region, the wave function of the
electron actually corresponds to a combined nuclear molecule (Z, +Z,) instead of the initial Z;

atom. Of course, this is an approximation.

3.4.Two electron screening effects:

Let us now assume that a Hydrogen-like atom Z,e impinges on a resting target nucleus
Z,e. Let us assume that the target atom has two electrons orbiting the nucleus [Lio0O1]. In a

Hartree-Fock approximation the total potential energy of interaction will be:

Vie = Vo) + Ve, (1) + Vg, () + Vi o) # Vi, () + Voo (1) + Vio () (3.32)
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That is the sum of : a) the Coulomb potential energy V,(r) between the two bare nuclei
plus b) the interaction between the projectile (n,) and the electrons (e, ,) of the target nucleus,
plus c) the interaction between the target nucleus (n,) and the electron of the projectile (e), plus
d) the interaction between the electrons of the target 1, .,(r) and of course, the interaction
(e, e, e;e) between the electron of the projectile and those of the target. In the above equation only
the terms associated with the nuclei will be considered functions of the relative inter-nuclear
distance, while the electron-electron interaction will be treated as perturbation which will actually
raise the Coulomb barrier between the two reacting nuclei [Lio0O1]. We consider the following
channels:

a) The nucleus-nucleus channel

b) The atom-atom channel for Hydrogen like atoms.

In most experiments, the projectile has been considered fully stripped of its electrons
which is the case at relatively high energies. However, when the projectile is in a neutral state, or
at least not fully ionized, its electron cloud has to be taken into account [Eng88]. For such an

interaction the total potential energy can be written:
Ve = Ve(r) + V;lzel (r) + ane(r) + Vele(r) (3.33)
When the two electron clouds interact, their mutual ground state wavefunction must be
antisymmetric, since the electrons are identical fermions. The spatial wavefunction is necessarily

symmetric, therefore antisymmetry is arranged by considering an antisymmetric spin singlet state.
Since we still work with hydrogen-like atoms, the electron-electron spatial wavefunction is

lpele(ﬁ:rz) = Yoo (1) Yoo(12) (3.34)

eZ 61

A

ny n;

Fig 3.7. Shematic representation of the colliding atoms
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where 14, () is actually the usual ground state wavefunction of hydrogen-like atoms.
The electrostatic potential energy of the two electrons is:

Ve,e(r) = fl fz [Woo ()12 [Woo ()17 d%ry d>r (3.35)

Ir —135|

where 1 , are the position of the two electrons [Bra83], and

3/

-2 (Z\'? _Zr

Yoo = 7=(£) P exp (-Z) (3.36)
which gives
z\3]?
Vpro = [% (a_o) ] 2[ rZdr exp( )f rzzdrzexp( ) [dQ, [dQ, - rzl (3.37)
In order to handle the last integral we first write | | as
r{—rp
1 1

= 3.38
Iri-ra2| (r2+r+2r#ricos0) 1/2 ( )

where 6 is the angle between r; and r, and we choose the direction of r; as the Z axis for the d(,

integration, we then obtain:

1

= [["de [* dcos8 . (3.39)

(rZ+rZ+2rfricosh)?

fda

2|r1r|

Using the expansion

1 1 1 w0 7 l
B = 2o 5, 3.40
Iry—ra| (rZ2+r2+2rirz cose)l/2 r1 Zl_o (rl) Pl(COS 9) ( )
one gets
1

Jd ==+ = I = 72D (3.41)

Besides the integration over Q, gives simply
[ dQ, = 4m (3.42)
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The integration is then written as:

6 (o] — [e'e) —_
Vere = 8e? (aio) fo rydryexp (%) fo rzdrzexp( izorz) (n+r—In—nrl (343

or:

V. ., = 8e? (£>6 foor dry exp (—2Zr1> [2 frlrzdr exp (_ZZTZ>
ee ag/ Jo T ao o 27 ag (3.44)

o —27Zr,
+2n f rodr; exp ( )
T1 aO

And finally after integration over r; and r,

= sze (3.45)

€1 g g,

That positive energy will be transferred to the relative nuclear motion, increasing the
height of the Coulomb barrier.

On the other hand each of the two electrons is actually subject to the repulsive effect of a
screened nucleus due to the presence of the other electron. For the combined nuclear molecule, we
have Z, = Z; + Z,, while the usual variational procedure yields an affective atomic number for
each electron [Bra83]

Z™=7,—5/16 (3.46)

Therefore for the low energy reaction of two hydrogenlike atoms in their ground state, with

equal atomic numbers Z, the interaction potential using (3.30) energy is:

7202 702 7e2 " 5 Z** 2
: -2 [% +%(1 + )exp(—r/r0 )] 4222 (3.47)

8 [£73)

Vee () =

r
*k
27y

where

gt = 2 (3.48)

- 27 **

For two hydrogenlike atoms with equal charges Ze, and at astrophysical energies where
screening becomes important the screened coulomb potential can be replaced by the quantity
[Lio01]
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+ U, (3.49)
Where

. 5)e? 5 5, e?
U, =-22 (22 -2) Srlez-pt (3.50)

Which is also the screening energy for the collision of a bare nucleus Ze with a two-

electron target atom [lio01].

3.5. Screening effect with excited electrons

3.5.1. The projectile in the 2s state

In the present work, we intend to extend the study of the atomic screening effect to excited states.
Let us consider the case when the projectile atom is in the excited state 2s, as the previous

case the potential energy is given by
The electron-electron spatial wave function is

lpele(rl'rz) = Y100 (") P200(2) (3.52)
With

Y100(r) = \/% (50)3/2 exp (_ i_Z)

1 (z\3/2 zr zr (353)
Ya00(r) = T (a_o) (1 - E) exp (_E)
From which the densities are given by
3
[Y100(r)I* = 2 (= exp I
(2 e (22 o

n
Baoo(I? = & (£) 7 (1 - 22) exp (22)

0

using (3.54) the potential energy becomes:
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:fl fz |r |1/J100(7”1)| [¥200(12) 12 d?r d?r, (3.55)

After integration one gets

=722 (3.56)

€1€  g1q,

The screened potential using (3.29) is then:

3

Ve (r) = 25 2—2[—+—(1+3r**+i+ rm) exp (5 r)]+gf:e2 (3.57)

815" 16132 647

Where Z** is given by using the variational method [Bra83]:

oz _ 690
-7t 512
At astrophysical energies we have
ZZ 2
Vee(r) =—+ U, (3.58)
where:
690 1 690
Ue = =21 +2,) ( 512) + 8_1 (Zt 512) ao (3.59)

3.5.2. Both atoms are in the 2s state:

In the same way we can calculate the potential energy when both atoms are in an excited
state

The electron-electron spatial wave function is

1/’e1e(7”1'7”2) = Y200 (1) P200(72) (3.61)

The electron-electron interaction energy is then
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e2

Ve,e = fl fz [ 200 (1) 121200 (r2) 12 dP 1y dPr (3.62)

|7y —72|

As the same way of the integration of the (3.35), using also (3.38), (3.39), (3.41) and (3.42),

we will get:

Voo = 22, (3.63)

e =25 -2+ 2 (143 n o Y ewp (o) + 2222 (3.64)

ro*  16r5*?  64rg*3 21y 2560 ag

Where
s 690
" =7 - (3.65)
At astrophysical energies we have
2,2
Vie(r) ===+ U (3.66)
690\ e? = 2689 690\ e?
U, = —(Z; + Z,) (Zt _E)a_ﬁﬁ(zt _E)a_o (3.67)

3.6. Astrophysical factor S(E) of 3He(3He, 2p)*He at solar energy

3.6.1.Mechanism of interaction:

In main sequence stars of low mass, such as the sun, energy is produced predominantly by
the hydrogen burning pp chain. The>He(®*He, 2p)*He reaction is one of the reactions involved in
this chain. It can be visualized as a direct process in the entrance channel leading to three possible
decay-modes in the exit channel: (i) a direct breakup into 3 particles of the exit channel
(2p+*He); (ii) a sequential breakup into p+°Li with the subsequent decay®Li — p+*He; and
(iii) a sequential breakup 2p+*He with the subsequent decay 2p — p + p. The early studies were
carried out over a wide range of beam energies and to as low as E,,, =~ 90 kev. From the observed
particle spectra it followed that the sequential processes prevail at the higher energies (E.,, =

1Mev) but the direct breakup is dominant at lower energies.
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The observed energy dependence of the astrophysical S(E") factor [Kra87b],
S(E) = o(E)Exp(2mn) (3.68)

where 2mn = 4.86/E/? (with the c.m energy Ein Mev), has been fitted to the polynomial

function

S(E) = S(0) + S'(0)E + 55" (0)E? (3.69)

May & Clayton suggested a mechanism for This>He(3He, 2p)*He interaction at low beam
energy, in which a neutron tunnels from one3He to the other, unimpeded by the coulomb barrier,
up to a radial distance where the nuclei overlap appreciably. In this model, a diproton remains and
subsequently fissions into 2 protons. The calculated S(E) factor described the observed energy
dependence of the data very well, thus providing confidence in the extrapolation via the above
polynomial function.

The magnitude of the S(E) factor is of special interest in relation to the solar neutrino
problem. Based partially on theoretical arguments, it has been suggested that at low energy
resonance might exist in this reaction. If it is sufficiently low and narrow in reaction energy, it
might have been unobserved in previous direct measurements. Such a low energy resonance
would significantly enhance the3He+3He route in the pp chain (86%) at the expense of the
alternative3He+*He branch (chain Il and 111, 14%). If so, the discrepancy between predicted and
observed solar-neutrino fluxes might be accounted for or at least decreased. This expected
resonance would correspond to an excited state in®Be near the3He+3He thershold (E, =
11.6Mev). however, the search for this state, using a variety of other nuclear reactions, has not
been successful: none of these reactions that populate®Be showed any excited state near
the3He+3He thershold.

In 1974 Dwarakanath carried out a search for this hypothetical resonance state in a more
direct way by extending The3He(3He, 2p)*He reaction studies down to E,,, = 30 kev. Although
the data might suggested an increase in the S(E) factor at the lowest energies, the large
uncertainties in the data points (about 200%) precluded any confirmation of the existence of this
resonance at least down to E.,, = 40 kev. Below 40 keV the available data neither confirmed nor
ruled out its existence.

In the absence of such a resonance the calculated solar neutrino flux for the3” Cl

experiment depends on the S(0)factor of The3He(3He, 2p)*He reaction.
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3.6.2. Calculation of the screened astrophysical factor:

The aim of this section is to study the effect of the screening by excited states electrons of
the colliding atoms for the determination of the astrophysical S factor we use experimental
data(NACRE), the appropriate treatment of a low energy experiment should take into account
screening effects in order to calculate the respective values of S(E).

The S factor data have been approximated by a polynomial of degree 2, the polynomial
coefficients have been obtained where the experimental data have been weighted by their absolute
error(E in MeV,S in MeV.b): S(E) = 5.5 —3.1E + 1.4 E2. Due to the screening effect at low
energy the S factor must be written as

U
Ssc(E) = (5.5 — 3.1E + 1.4E%) exp <rm Ee) (3.70)

where U, is determined in the previous section equation (3.67).

In Theodore’s calculation[Lio00]: U, = —338 eV; in our’s

Ue =~ + ) (7 + 2) - £3) =+ 5o (2 + 2) - £3) = (3.71)

512/ aq = 2560 512/ aq

For The3He(®He, 2p)*He reaction we have Z; = Z, = 2 and the corresponding screening
energy obtained through the above model Is
U, = —439eV (3.72)

Two approximations of the unscreened S(E) have been used: linear and quadratic
3.6.2.1. The linear approximation:

In this approximation only the constant and linear term in E are used. Fig (3.8) and (3.9)

give respectively our result, the Liolios result and a comparison between them.

Effect of the stellar medium on nuclear phenomena



Atomic screening in astrophysical nuclear reactions

46

B_
— ]
< ]
~ 7
m i
= 1
p—
‘e 4
s
- ]
[ B

5_

0,05 a1 0,15 a2 025 a3
E(MeV)
Fig3.8 S Factor representation in the BES model
7 51
7

~ ]
_ ]
N 65
v ]
= ]
—/ .
‘e 4
g B
—/ 4
W i

557

5
4'5_II rTrrrrTrrrT1r 1T 1T TTr 1T T1TTTTTTTTTI

T TT
005 0,1 0,15 02 025 03
E(MeV)

Fig3.9 S Factor representation in the Liolios’s model
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Fig3.10 Comparison between the two model in the linear approximation.
3.6.2.2. The quadratic approximartion

A better result from Liolios model can be obtained if the quadratic term is included in S(E). Fig

(3.11) gives our result and a comparison with Liolios model is given in fig (3.13).
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Fig3.11 S Factor representation in the BES model for the quadratic order approximation
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Fig3.13 Comparison between the two models

Our work show that the occurrence of excited states in the colliding atoms increase the
screening effect in low energy fusion reactions.
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Chapter 4

MAGNETICALLY ENHANCED SCREENING IN FUSION
REACTIONS

4.1. Strong magnetic field in astronomy:

Magnetic white dwarfs have surface fields of 103~T [Cha92]. For example, the spectrum
of the hot white dwarfs Fige[L795-5] shows well resolved narrow Zeeman lines
corresponding to a magnetic field of 1.800 T. The narrowness of these lines indicates a fairly
uniform field strength over the entire surface. In GD90, which has a hydrogen atmosphere, the

Hg line appears as a classic triplet at 479.3, 485.7, and 491.8 nm corresponding to 500 T field.
The H,, is seen as broad absorption centered at 433 nm, the triplet obscured by the quadratic

Zeeman effects many components. Another star, BPM25114, is seen in the southern skies and

its spectrum fitted to model atmosphere calculations and a magnetic fields of 3.6 x 103T .

The origin of such fields on white dwarfs may lie in flux conservation in the core during
the collapse of a star, the high conductivity of a carbon-burning core preserving the value
RB?. These simple scalings when a star collapses suggest fields up to 10T for white dwarfs
and 10°T for collapse to the smaller radius of neutron star. An alternative is that they have
originated from Ap stars known to have fields of 0.03-3 T with similar flux conservation
during their collapse. Magnetic stars are modeled as oblique rotators, with the dipolar

magnetic field inclined to the rotation axis[Rau03].

Rotating magnetic white dwarfs which are accreting matter from a companion have
proved particularly interesting. DQHer has a eclipsing binary system with orbital period 4.6
hours. Matter being accreted onto white dwarfs is speeding up the rotation and a field of 100T
has been deduced; strong enough to channel the accretion flow onto the poles. Direct spectral
evidence has not been seen from these objects, possibly swamped by emission from the
surrounding accretion disk, but in AMHer, polarized cyclotron and X ray emission from such
accreted material has been seen the very strong polarization, both circular and linear, argues
for field strength above 103T, the channeling of the accretion flow by such a field accounting
for the X-ray emission at 5nm, GRW+70°247 is the brightest and one of the most strongly

polarized of the magnetic white dwarfs, peaks in the circular polarization at 1.3 and 0.45um
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attributed to first and third cyclotron harmonics of a field in excess of 10*T. The strongest

field known is about 10°T on PG1031+234, deduced from its spectrum and polarization.

<
e b o (=1
g &8 8
Haém

1 B(MG):

3 100

500

0.1 magnitude
Grw + 70° 8247
L ] A L L A L L
6000 7000 8000 9000

WAVELENGTH IN ANGSTROMS

Fig 4.1: Stationary H, Balmer transitions of Hydrogen compared with the optical spectrum of
GRw+70°8247,taken from [Cha92]

Fields of 10*T which are far from being perturbative pose the problems but elaborate
perturbative elaborate numerical calculations now provide reliable energies for low lying
states. Interestingly, the Ly,1s,m = 0 — p,m = —1 transitoin wave length as a function of
field strength reaches a stationary value around 5 x 10T, the zero field value if 121.6 nm
reaching a maximum of 134.3 nm before decreasing again. This stationarity, so that the
wavelength is relatively insensitive to variations in B about that value made possible the
identification of a line at 134.7 nm observed by the International Ultraviolet Explorer [1.U.E]
satellite from GRW+70°247. This was happy coincidence because variations in B across the
surface tend other wise to smear out the transition. Other stationary transitions have since
been used to identify the magnetic fields of various white dwarfs, an example is shown in
Fig4.1.

Neutron stars have even stronger magnetic fields, of the order of 108T in ratio pulsars and
somewhat smaller 105~7T in binary pulsars. X-ray binaries and also certain neutron stars are

deeded into low and high mass types, depending on the mass of non-degenrate companion
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star. Most high mass binaries have magnetic fields larger than 10* and accrete from an O or B
type star. Their ages are less than 10T years whereas low mass binaries are much older
> 10%years. Their fields range up to 10°T Gamma ray burst sources show lines in the 20 to
70 KeV range; again indicators of cyclotron emission between Landau level in fields of 10T
These objects are presumed to be neutron stars with rotation periods larger then a few

seconds.
4.2 .Motion of particle in a uniform magnetic field:

4.2.1.Solution in the Cartesian coordinates:

Let us determine the energy level of a particle with spin s and magnetic moment p moving in
constant uniform magnetic field [Lan67], the vector potential of the uniform field is taken in

the form

Ay =-H;A,=A4;,=0 4.2)
(the z axis being taken in the direction of the field)
The Hamiltonian then becomes

H= (o = SH)? o+ 22+ 2= s, @)
First of all, we notice that the operator S, commutes with the Hamiltonian, since the latter
does not contain the operators of the other components of the spin. This means that the z-
component of the spin is conserved, and therefore that S, can be replaced by the eignenvalue
S, = a. Then the spin dependence of the wave function becomes unimportant, and ¥ in
Schrédinger’s equation can be taken as the ordinary coordinate function. For this function we

have the equation

o (px - ?)2 +py+ p%] Y —f oHY = EY (4.3)

2m

The Hamiltonian of this equation does not contain the coordinates x and z explicitly. The
operators p, ; p, therefore also commute with the Hamiltonian, i.e. the x and z components of

the generalized momentum are conserved. We accordingly seek i in the form

P = en®PrHP) y (y) (4.4)
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The eigenvalues p, and p, take all values. Since A, = 0, the z-component of the generalized
momentum is equal to the ordinary momentum component mv,. Thus the velocity of the
particle in the direction of the field can take any value; we can say that the motion along the
field is ** not quantized”.

Substituting (4.4) in (4.3) we obtain the following equation for the function y(y):
X+ [(E +9H - ) e, 2(y - y9)?] k= 0 (4.5)
With the notation y, = ——= and

wy = |le|H/mc (4.6)

Equation (4.5) is formally identical to Schrodinger’s equation for a linear oscillator,

oscillating with frequency wy. Hence we can conclude immediately that the expression

(E + ”JH m) which takes the part of the oscillator energy, can have the values (n +
E) hwy,wheren = 0;1; 2; ...

Thus we obtain the following expression for the energy levels of a particle in a uniform

magnetic field

E=(n+2)ho, +Z -1 4.7)

2m N

The first term here gives the discrete energy values corresponding to motion in a plane
perpendicular to the field; they are called Landau levels. For an electron, %z —% le|, and

formula (4.7) becomes
_ 1 P2
E = (n+5+a) hwy to (4.8)

The eigenfunctions y,, (y) corresponding to the energy levels are:

1a () = _exp[ - J’O)] yyo) (4.9)

ntayzV2mn! aH

h
where ay = —
H
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In classical mechanics, the motion of particles in a plane perpendicular to the field H

(x-y plane) takes place in a circle about a fixed centre.
4.2.2.Solution in the cylindrical coordinates:

We will find the wave function of an electron in a uniform magnetic field in states in
which it has definite values of the momentum and angular momentum in the direction of the
field.

In cylindrical polar coordinates p, ¢,z with the z-axis in the direction of the field, the

1

vector potential has components Ag, = > Hp; A, = A, = 0, and Schrodinger’s equation is:

L0 (00 P AP L 0w 1y
2M pap( ap)+azz+pza¢z 21h®Ha¢+8Mme Y =Ey (4.10)

We seek a solution in the form
P = %R(p)eim%r’ﬂ/ﬁ (4.11)

The radial function R(p) satisfy the radial equation

Rr  m?R
p p?

(R + ) +[E— £~ IMoip? — Lihwgm|R =0 (4.12)

Defining a new independent variable £ = (Mwy/2k)p?, we can write this equation in
the form

" 1 _l _m_z —
R+ R+ (—3E+p 42)R_o (4.13)
where
_ 1 (p_p\_1
p= Aoy (E ZM) ;M (4.14)

1
As & — oo the required function behaves as ez%, and for £ - 0 as &mI/2_ Accordingly

we seek a solution in the form

R(E) = 387 w(®) (4.15)

The equation for w(%) is satisfied by the confluent hyper-geometric function
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W:F{—(s—§|m|—§),|m|+1,§} (4.16)

If the wave function is everywhere finite, the quantity (B — i Im| — %) must be non-

negative integer n,. The energy levels are then given by the formula

_ E Tmtl) 422
E = hwy (np+2|m|+2m+2)+ZM (4.17)

The corresponding radial wave functions are

1 (Im[+np)! 1/2

/ 2
Ropm (9) = ] exp (= L) o™ x FingIm| + 1, p22a%} (4.18)

Imjr | 2/™ing!
Where ay = \/i/Mwy. These functions are normalized by the condition
J, R?pdp =1 (4.19)
The hyper-geometric function is here a generalized Laguerre polynomial.
4.3.Binding energy of hydrogen atoms in a strong magnetic field:
4.3.1.Introduction:

When studying matter in magnetic fields, the natural (atomic) unit for the field

strength, By, is set by equating the electron cyclotron energy hw,,. to the characteristic atomic

energy 2—2 = 13.6 eV, where a, is the Bohr radius, or equivalently by R = a,. [Lai06]
0

Thus it is convenient to define a dimensionless magnetic field 4 via:

b—B-B _mZe’c
"By, % B3

= ay?B, = 2.3505 x 10°Gauss

1

Where a, = PP is the fine structure constant.

For b > 1, the cyclotron energy hw,, is much larger than the typical Coulomb energy,
so that the properties of atoms, molecules and condensed matter are qualitatively changed by
the magnetic field. Instead, the Coulomb forces, and the electron in an atom settle into the

ground Landau level. Because of the extreme confinement of the electrons in the transverse
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direction, the Coulomb force becomes much more effective in binding the electrons along the

magnetic field direction. The atom attains a cylindrical structure.

Note that when studying bound states (atoms, molecules, and condensed matter) in
strong magnetic fields, it is adequate to use nonrelativistic quantum mechanics, even for

B >> B,. The nonrelativistic treatment of bound states is valid for two reasons:

(i): For electrons in the ground Landau level, so the equation

E, = [c*p? + mZc* (1 + 2n %)]0'5 (4.20)

2
for the free electron energy reduces to E ~ m2c? + % for pc « m,c?, the electron remains
e

non relativistic in the z direction (along the field axis) as long as the binding energy Ejg is

much less than m,c?

(ii) The shape of the Landau wave function in the relativistic theory is the same as in

the non-relativistic theory.
4.3.2.Hydrogen atom in a strong magnetic field:

In strong magnetic field with b > 1, the electron is confined to the ground Landau
level (“adiabatic approximation”), and the Coulomb potential can be treated as a perturbation.
Assuming infinite proton mass, the energy spectrum of the H atom is specified by two
quantum numbers (m,v) where m measures the mean transverse separation between the

electron and the proton, while v specifies the number of nodes in the z-wavefunction.

In large magnetic fields a hydrogen atom is compressed both perpendicular and
parallel to the field direction. In a sufficiently strong magnetic field (B > 10'2G), the
Schrédinger equation for the dynamics of the electron separates into axial and perpendicular
(azimutal and radial) equation. As the potential is axisymmetric around the direction of the
magnetic field, we expect no azimutal dependence in the ground state wave function of the

electron.

In the direction perpendicular to the magnetic field, the wave function can be obtained
[See 8a]. This azimutal wave function is denoted by two quantum numbers n and m. Here we
take n =0, as the n > 0 solutions are less bound and therefore provide less shielding
[Hey96].
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The perpendicular wave function has the same form as the Landau wave function for

an electron in a magnetic field:

1 2\
ROm (p, 9) = W pmexp (— p_) elme (421)

4a}
where ay = |[—— = |<
H ™= MeWH ~ AflelH

a. axial wave function:

In a sufficiently strong magnetic field a; is very small compared to the Bohr radius

ag.
Along the direction of the magnetic field, the electron experiences an effective
potential
o) 2
Vettom(2) = (RIVIIR) = [ — == R (p) 2mpdp (4.22)
where
2 _ D™ rd\"® _gPt
Rom(p) = 2mm! af (dB) [exp( BZaﬁ)”B:l (4.23)
So
_(o__¢ pmady? g2
Veff,Om(Z) B fo z2+p2 2mm! aj (dB) [eXp( Bzaﬁ)]|8=1 2mpdp (4.24)

e2 E (_1)m

=-= (diB)m [ﬁ(BZZ/ZaIZ{)erfC(\/EZV‘/EaH)]

ay m!

(4.25)
B=1

which for large z approaches —e? /z.

The Schrodinger equation is solved using the variational methods. Let Z(z) be the trial

function, then one has to minimize the integral
+oo [_h? 2 2
I=(Z|H|Z) = [*° [m (VoZ)2 + VoprZ ]dz (4.26)

Prior to our work J.S.Heyl and L.Hernquist [Hey96] used a Gaussian trial function

depending on a parameter a,, :
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Z(z) =

T@ exp (:2) (4.27)

In the present work; we have chosen a trial function with the same z dependence as the
case of zero magnetic field:

Z(z) = Fexp( 1z l) (4.28)

Because our function is even, the integral becomes:

I=2[f0w%aigexp lel ff Zz lel) erfc [\/_] dz ] (4.29)

Instead of z one introduces a new variable u through u = ai Besides it is convenient
H

to define the dimensionless parameter a = Z—Z . This gives
H

= 2[ Oozhm%%exp (=) d”‘%\/g 7 exp (2 - 2)erfe [j—i]édu] (4.30)

The first integral can be easily computed to get

_ La 4 |moe w_2u U
I = EHaH[aZaH a\/;o exp(2 a)erfc[ﬁ]du] (4.31)

Table.1 lists the results for the minimization for several magnetic field strength, and
compared with the eigenvalues for the energy of the bound state obtained by Ruder et al
[Rud83] and Hey and Hernquist [Hey96].

Because of our choice of the trial wave function, our energies are roughly similar to
those found by Heyl et al.

Note that, the field strength at which magnetic field binding begins to dominate the

Coulomb force is established by equating /;—Z = a,, this transition to the intense magnetic

field [IMF] regime occurs at B = 4.7 x 10°G [Kel72]
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Ruder et al [Rud83] Heyl et al[Hey96] Our results

B(G) Ep—o(Ry) Am=o Ep-o(Ry) Am=o Ep-o(RYy)
4.7 x 10° 2.04 1.14 1.77 2.34 1.70026
4.7 x 101° 4.43 2.00 4.18 4.18 4.043
4.7 x 1011 9.45 3.79 8.91 7.92 8.83
4.7 x 1012 18.6 1.77 17.1 16.02 17.59
4.7 x 1013 - 17.3 29.6 34.66 31.93
4.7 x 10 - 38.1 47.0 79.63 53.17
4.7 x 1015 - 102. 69.6 190.12 81.02
4.7 x 1016 - 265. 97.7 477.04 108.89

Table 1 : Results of the minimization giving the optimal

Am=o and the corresponding ground state energy for different values of the magnetic field.

4.4.Screening potential:

4.4.1.Introduction:

In the presence of a strong magnetic field (B = 10'2(), the reaction rates are many
orders of magnitude higher than in the unmagnetized case. This problem has already been
treated by Heyl [Hey 96]. In this work we will propose a new solution using the results
obtained in section (4.3.2).
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4.4.2. Heyl’s Potential

When solving problems one often looks for electrostatic analogs. In this way, Heyl et
al [Hey96] have looked for a gravitational analog to an electrostatic problem. The density of
the electron is constant and concentric, similar homoemoids. For this density distribution the
potential is directly solvable[Bin87].

(%) = —1G (“(2:3) " TGO R (4.32)
JEraharad)rad)
where:
m2=a?y3, a;ir (4.33)
and
Y(m) = fomz p(m?)d m? (4.34)

In the work of Heyl et al [Hey96], G = —e? a, = a, = ay,as = a,, SO the last

expression becomes:

1

Y(m) = ppp. [1 — exp (— m—z)] (4.35)

2
2ay

Substituting these results into equation (4.34), and let 7 = —,Z = —and u = —, this
ay ay ay

gives the new equation:

_yfr2 22
W ErTar ey

R e2 1 ro0€X
CD(x) - a\/T_n'fo (1+u)Va2+u

(4.36)

Using the previous definition of «, the potential at the center of the electron cloud

(r =0,z =0) is given by

e? 2 in(a+vVa?-1)

®(0,0) = P e (4.37)
We can expand this potential in a series:
e 2t L (- 1)2 =2 (g —1)% + ...
*O0) =P -tatp@—12 - 2@-1*+ ] (4.38)
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4.4.3. BES potential

In the present work, the density is:

— 111 (2 2l
p(r Z) aH az 2m exp [ (ZaIZ_I + az )] (4-39)
=1 ) _lzl
= kexp( Ar )exp( A) (4.40)
where k = 2ma%a,, A = L %: ai

We will search the electrostatic potential by solving the equation of Poisson for the above

density, in atomic units
A® = —p (4.41)

p(r,z) is separable into a product of a function of r by a function of z. A possible solution of

equation (4.41) is then given by:
®(r,z) = R(r)Z(z) (4.42)

Using this form, equation (4.41) becomes

920 | 19 ( 0P\ _
e (r5) =P “5)
and more explicitly
R
RS+ 2@ (r5) = —p (4.44)
We divide by Z(z).R(r), to get
1 9%z 1 19 ( 0R _ lexp(-Ar?) exp(-A7"|z|)
Z(z) 0z = R(r)r or ( 61") kK R() Z(2) (4.45)
If we choose Z(z) = exp( l2 ') we will obtain
1 .92 _ 1 .19 ( R\ 1exp(-4r?)
Z(z) 9z2 R(r)rar( ar) k  R(r) (4.46)
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This is an equality between two functions each of them depends on a single independent

variable. This is possible only if each member is constant.

1 9%z
( z@oz ~ C (4.47.1)
1 10 (9R), lexp(-Ar®) 4.47.2
LR(T)rar (T‘ 67") + k R(T) =—C ( )

From (4.47.1) and our choice of Z(z) we obtain the value of the constant C = A=2. The
differential equation for R(r) is then:

10

ror

(r g—f) +A2R(r) = — %exp(—Arz)
(4.48)

The solution of this differential equation is

R(r) = C,\Y,(A™1r) + CoJo (A1) + in [rYo(A™1r)exp(—Ar?) dr X Jo(A™1r) —
infr]o(A‘lr)exp(—Arz) dr X Yo(A™1r) (4.49)

This solution can not easily be handled; since we are interested only by the solution
near zero, we will reduce the right member of this equation to the first term in the Taylor

expansion:
exp(—Ar?) =1—-Ar?+ A%r* + - (4.50)

We substitute the development of the exponential in the equation (4.48), and the

solution is then

0] Zero order solution: if one keeps only the first term in the expansion, the solution

would be
R(r) = Cofo(Hr) = & (451)

where J,(A"1x) are the Bessel functions. Note that lim,_q Yo(A™1r) = —00 so C; = 0

Using (4.42) the associate potential is then:
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O(r,2) = [Colo(r) = 2] exp(-A|z)) (4.52)

From the previous definition of A1 and k, the potential at the center of the electron

cloud (r = 0,z = 0) is given by:

®(0,0) = —e? [CZJO(A‘lr)— « ] (4.53)

8may

(i)  First order solution: a more realistic solution is obtained if the second term in the
expansion is included. It describes the decrease of the charge density. So the

solution becomes now:

A2 —4A+AN %72

R(T‘) = Cz]o(A_lr) + — Ak (454)
and the potential is
(r,2) = [Cofo(A7r) + AT oap(-Atz))  (459)
So the potential at the center of the electron cloud (r = 0,z = 0) is given by:
_ 2 _a &
®(0,0) = —e [Cz 8may 1611'aH] (4.56)

Wlth limr_)ojo(A_lr) =1

For obtaining the value of C,, we have to find the behavior of our potential at the
infinity, so one needed to solve the last differential equation without the second member, in

order to get the asymptotic solution which is

q)asymp(rr 0) = _QZCZJO(A_L") (4.57)
FE Dasymp(7,0)
After that, we have to calculate the limit of ————
Coulomb
. Dasymp(,0) .. CaJo(A™1r)
hmr—mo Coulomb B 711_{2’ ( r71 ) (458)
sin (A~1r)

with Jo(A™1r) =

A 1lr

So
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i ‘basymp(‘r’,O) RT & . -1 — [_
lim, T ll_)rg (B sin (A r)) =[-1,1] (4.59)
We choose
C,=—— (4.60)
2 = 2A .

Our potential will be:

A1 a
®(0,0) = —¢? I_T ~ 8ma l
H
_e’l[1  «a
= ; [Z + 5] (4.61)

4.5. The acceleration factor:

Any shift U, « E of the interaction potential energy V (r)

212262

V(r) = ~u, (4.62)

accelerates the fusion cross section of hydrogen isotopes by a factor f(E). The shielding
effect reduces the Coulomb barrier and increases the penetration of the Coulomb barrier.
Thus, it increases the cross section of nuclear fusion reactions. With

o(E) = S(E)E texp(—2nn), where 2mn =2nZ;Z,e*/hv = 31.292122\/% is the

Sommerfield parameter, (Z,and Z, = charge numbers of the interacting nuclei in the entrance
channel, p= reduced mass in amu, E=center of mass energy in kev), and assuming a constant
astrophysical S(E)factor over a relatively small energy interval, the enhancement ration f in

fusion cross section is:

fE) =222 (4.63)
f(E) _ E exp[-2mn(E+Ug)] (4.64)

E+U, exp[-2mn(E)]

For U, < E it reduces to

f(E) =exp [nr) %] (4.65)
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In the strong magnetic field, the electron screening cloud is deformed in the sense that
it becomes compressed perpendicular and parallel to the magnetic field. In the present work,
this approximation has been tested for various fields and energies and the results are

compared with those of ref [Lio00].

Therefore if the target hydrogen nuclei are in such magnetic field, the reaction is going

to be accelerated by a factor

f(E) =exp [nn @] (4.66)

Figure 4.2 depicts the acceleration of the pp reaction for various magnetic fields and

interaction energies; figure 4.3 represents the acceleration factor obtained in ref [Lio00].

4.6. Heyl versus BES calculation
Let us now compare the BES and Heyl potential energies. The Taylor series for Heyl

potential is as follows:

Hevl _e? 2 1 2 2 2 3
oHer(0,0) == [t -Za+Z(a -1 - Z(@—1)3 + ] (4.67)

ay V2w L3 3

The zero order BES potential can be written:

PBES(0,0) = 2 [2 + 9 (4.68)

8may L3a 3

If we limit ourselves for the first two terms, we note that the first term in our potential
is proportional to the inverse of alpha no similar term exists in Heyl potential. For the second
term we see that it is positive in our work, while is it negative in Heyl potential. This justifies
the jump in the value of f for large magnetic field values (e.g B = 10'2G) as shown in Figure
4.4,
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Fig4.2: The acceleration (screening) factor f in BES model with respect to the relative

interaction energy of two fusing protons for various super strong magnetic fields(in units of 1012G).
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Chapter 5

SCREENED ALPHA DECAY IN SUPERSTRONG
MAGNETIC FIELDS AND DENSE ASTROPHYSICAL
PLASMAS

5.1. Introduction : Basic alpha decay processes

Alpha radioactivity has been known for a long time in heavy nuclei, the alpha particles
were first identified as the least penetrating of the radiations emitted by naturally radioactive

materials.
The spontaneous emission of an « particle can be represented by the following process:
92Xy = 75X vt a (5.1)

The alpha particle, as was shown by Rutherford is a nucleus of 3He consisting of two
neutrons, and two protons. To understand the decay process, we must study the conservation

of energy, linear momentum and angular momentum.

Let’s consider the conservation of energy in the alpha decay process, we assume the initial
decaying nucleus X to be at rest. Then the energy of the initial system is just the rest energy of
X, myc?. The final state consists of X” and alpha; each of which will be motion, thus the final
total energy is my,c? + Ty, + myc? + T, where T represents the kinetic energy of the final

particles. Thus conservation of energy gives:

myc? = my,c? + Ty, + mec? + T, (5.2)

Or

(mX — My, — ma)cz =Tx, + T, (53)

The quantity on the left side of equation (5.3) is the net energy released in the decay,

called the Q value

Q = (my — my, — my)c? (5.4)
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Q values can be calculated from atomic mass tables because even though equation
(5.4) represents a nuclear process. The electron masses will cancel in the subtraction. When

the masses are in atomic mass units (u), expressing c? as 931.502 Mev/u. gives Q values
directly in Mev. [Kra88]

The Q value is also equal to the total kinetic energy given to the decaying fragments:

Q=Tx, + Ty (5.5)

If the original nucleus X is at rest, then its linear momentum is zero; and conservation
of linear momentum then requires that X’ and alpha move with equal and opposite moment in
order that the final total momentum also be zero:

@4@:6 (5.6)

Alpha decays typically release about 5Mev of energy. Thus for both X’and alpha,

2
T « mc? and we may safely use nonrelativistic kinematics. Writing T =;—m and using

equation (5.5) and (5.6) gives the kinetic energy of the alpha particle in terms of Q value:

Q (5.7)
Te =7—m~
(1 + m_X/)
Which:
_A-4 (5.8)
Ta=——0Q

Typically, the alpha particle carries about 98% of the Q value, with the much heavier
nuclear fragments X’ carrying only about 2%.

The kinetic energy of an alpha particle can be measured directly with a magnetic
spectrometer and so the Q value of a decay can be determined.
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5.2. Theory of alpha emission:

The general features of figure (5-1) can be accounted for by a quantum mechanical
theory developed in 1928 almost simultaneously by Gamow and Gurney and Condon. In
this theory an alpha particle is assumed to move in a spherical region determined by the
daughter nucleus. The central feature of this one body model is that the alpha particle is
preformed inside the parent nucleus. Actually there is not much reason to believe that
alpha particle exists separately within heavy nuclei, nevertheless, the theory work quite
well, especially for even-even nuclei. This success of the theory does not prove that alpha

particles are preformed but merely that they behave as if they were.

Figure (5-1) shows a plot, suitable for proposes of the theory of the potential energy
between the alpha particle and the residual nucleus for various distances between their
centers. The horizontal line Q is the disintegration energy. Note that the Coulomb
potential is extended inward to a radius R and then arbitrarily cut off. The alpha radius can
be taken as the sum of the radius of the residual nucleus and of the alpha particle. There
are three regions of interest. In the spherical region » < R we are inside the nucleus and
speak of a potential well of depth —V,; where Vj is taken as a positive number. Classically
the alpha particle can move in this region, with a kinetic energy Q + V, but it cannot
escape from it. The annular shell region R < r < r,, form a potential barrier because here
the potential energy

- Vo

Fig5.1. Relative energy of alpha particle, daughter-nucleus system as a function of

their separation.
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is higher than the total available energy Q. Classically the alpha particle cannot enter this
region from either direction, just a tennis ball dropped from a certain height cannot rebound
higher. In each case the kinetic energy would have to be negative. The region r >, is a

classically permitted region out side the barrier.

From the classical point of view, an alpha particle in the spherical potential well would
sharply reverses its motion energy time it tried to pass beyond r = a. Quantum mechanically,
however, there is a chance of leakage or tunneling through such a barrier. This barrier
accounts for the fact that alpha unstable nuclei do not decay immediately. The alpha particle
within the nucleus must present itself again and at the barrier surface until it finally

penetrates.

The barriers also operates in reverse, in the case of alpha particle scattering by nuclei.
Alpha particles incident on the barrier from outside the nucleus usually scatter in the Coulomb
field if the incident energy is well below the barrier height. Tunneling through the barrier, so
that the nuclear force between the particle and target can cause nuclear reactions, is a
relatively improbable process at low energy. The theoretical analysis of nuclear reactions
induced by charged particles uses a formalism similar to that of alpha decay to calculate the
barrier penetration probability. Fusion reactions, such as those responsible for the energy

released in stars, also are analyzed using the barrier penetration approach [Kra88].
The disintegration constant of an alpha emitter is given in the one body theory by:

A=fP (5.9)

where f is the frequency with which the alpha particle presents itself at the barrier and P is the

probability of transmission through the Coulomb barrier.

Equation (5.9) suggests that the treatment is going to be semiclassical in that the
discussion of the situation for » < R is very billiard ballish [Kra88]. A rigorous wave-

mechanical treatment however, gives about the same results for this problem. The quantity f

is roughly of the order of %where v is the relative velocity of the alpha particle as it rattles

about inside the nucleus. We can find v from the kinetic energy of the alpha particle for

r < R.
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The barrier penetration probability P must be obtained from a quantum mechanical

calculation. The Coulomb barrier of figure (5.2) has height B at » = R where

1 zZe? (5.10)
" 4me, R

In this expression the alpha particle has charge ze and the daughter nucleus, which
provides the Coulomb repulsion, has charge Z'e = (Z — z)e. the height of the barrier thus
varies from (B — Q) above the particle’s energy at » = R to zero at r = r,,, and we can take a
representative average height to be 0.5(B — Q). For a typical heavy (Z =90;R = 7.5fm),
the barrier height B is about 34 Mev, the radius b is

1 zZ'e? (5.11)
rc_4n£0 Q

And for a typical case of a heavy nucleus with Q = 6 Mev, r. = 42 fm thus:

P =exp (—2K1/2(r;, — R)) (5.12)

where K = \/2m(V, — E)/h?

The exact quantum mechanical calculation is very similar in spirit to the crude
estimate above. The probability to penetrate each infinitesimal barrier, which extends from

rtor +dris:

dP = exp (—2+/2m(V, — Q)/h2 )dr (5.13)

The probability to penetrate the complete barrier is:

P =exp (—G) (5.14)

where the Gamow factor G is:

2m (e
G = \/;L (V(T) - Q) dr (5_15)
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which can be evaluated as:

2m zZ'e?
G = /% e, [arc cosvx — /x(1 = x)] (5.16)

where x = ri = Q/B. The quantity in brackets in equation (5.16) is approximately % — 2\x

when x « 1, as is the case for most decays of interest. Thus the result of the quantum

mechanical calculation for the half-life of alpha decay is:

. —0693R mc? ) 2m zZ'e? (n ) Q
V2 = 0T oW + ) P ) |R2Q ame, \ 2~ “ B (5.17)

If one makes a comparison between (5.17) and Geiger-Nutall law, we find the same results

between the two formulas.
5.3. Screened alpha decay in a terrestrial environment

Let us assume that the parent nucleus is fully ionized (unscreened). During alpha decay,
outside the range of the nuclear forces, the a particle (3He,) experiences only the repulsive

Coulomb potential of the daughter nucleus (423X’ y—,) so the interaction energy is:

_2(Z - 2)e? (5.18)

The maximum height of the barrier will of course be:
_2(Z - 2)e? (5.19)
0 R
where R is the minimum distance between the daughter nucleus and a particle roughly given
by

R=13[(A—-DYV3+ 43 fm (5.20)

The a decay half-life T,}5° of an unscreened heavy nucleus is inversely proportional to

the penetration factor P(E,) given by the WKB method:
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c(Ea 5.21
P(E,) = exp |22 [0 [7.G) = Ear| 621
where the kinetic energy of the « particle is:
A—4 5.22
£ =[] e 622
and the classical turning point is corresponds by:
V(r,) =E, (5.23)

One assumes that throughout the decaying process, the atomic cloud of the parent
nucleus remains undisturbed so that the daughter nucleus is screened by the same cloud as the
parent one and the a particle is emitted fully ionized; the neutral daughter atom will be

assumed to have Z — 2 electrons.

According to previous studies [Ass87], we can always define a screening enhancement
factor (SEF) so that

P*(Ea +Ue) _ (5.24)
TP

fa(Z: A, Qn) =
where PS¢(E, + U,)is the screened penetration factor and PNS¢(E,) is the unscreened one. Note

that the kinetic energy E, in equation (5.24) refers to the unscreened nucleus.

Since T1/2~P‘1(Ea), we can write the following for the screened Tf/‘;(Z,A, Q,) and the

unscreened T;\5° (Z, A, @) half-lives:

155 (Z, A, Qn) (5.25)

RGNS =T A

In this work, we will show that the screening effect reduces the half-life of the
decaying nucleus. This is of course as expected, since the screening cloud reduces the
Coulomb barrier thus easing the way of the a particle out of the parent nucleus. In Fig 5.2, a
simplified picture of the screened alpha decay is drawn. According to that figure, the

Coulomb potential practically vanishes at distances further than three screening radii.

Effect of the stellar medium on nuclear phenomena



Screened alpha decay in superstrong magnetic fields and dense astrophysical plasmas 74

o decaying nucleuns

=

0

e

o cl
o partcle

LIJ E, ----'-P--'------- —

©

+—

=

]

—

o

(N

=

Relative Distance

Fig5.2: A simplified picture of screened alpha decay taken form [Lio03]. The alpha particle is
emitted with a (relative) kinetic energy E,,, while the screened (r5¢) and unscreened (r¥5¢) classical

turning points are also shown.
5.4. Magnetically catalyzed alpha decay in magnetars:

Nowadays, there is a growing body of evidence [Pav02] for a population of neutron
stars with magnetic fields of the order of 10°G, which is much larger than the typical
magnetic field of a neutron star (i.e.,10°G). These “magnetars” are distinguished from radio
pulsars and accreting binary neutron stars not only by the strength of their field but also by the
fact that their decaying magnetic field is their primary energy source. Moreover, recent
observation [Pav02] provide strong evidence for the validity of the old hypothesis that two
separate classes of astronomical x-ray sources- the soft gamma repeaters and the anomalous
x-ray pulsars are actually different manifestations of this peculiar type of star. The giant
magnetic field of magnetars has a significant and observable effect on quantum
electrodynamic processes operating near the star. It can also support strong and persistent
electrical currents, which alter the spin down of the star and contribute to the continuous glow

of X rays and optical light observed in between outbursts.
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In large magnetic field, such as those existing in the atmospheres of neutron stars,
atomic clouds are compressed both perpendicular and parallel to the magnetic field direction
[The00]. The effects of giant magnetic fields (B = 10'2G) on hydrogen and helium atoms
have been extensively studied by many authors ([Lio00],[Lio03],[Ban74],[Rud83],[Kel72]).
Various studies have appeared focusing on such topics as the nuclear fusion [Hey96]. In the

present work, we will consider the effects of such magnetic field on alpha decay processes.

The present study will exclusively focus on the perturbation of half-lives due to atomic
(tunneling) effects allowing for an extra perturbation term due to nuclear effects. We have

particularly chosen Uranium as it is thoroughly used as cosmochronological tools.
5.4.1. The BMSC Potential (Batna Magnetic Screened Coulomb Potential):

Let us consider the heavy hydrogenoid atom of an alpha decaying element (like 233U)
which is under the influence of such an ultrastrong magnetic field. We will disrecard all
exchange, thermal, and relativistic effects as a first approximation and adopt the usual
supermagnetic field notation (see 84.3.1). Moreover the parent and the daughter nuclei are

considered spinless, just like alpha particle.
The Batna magnetic screened Coulomb potential will given by:

VSC(T: B) = Vc(r) - CI)(T'Z' B) (526)

where V. (r) is given by equation (5.18) and ®(r, z, B) has been obtained in Chapter 4. So

2(Z —2)e? _1 A® 1 (5.27)
Voe(r,B) = E— + 262 ICZJO (A r) - exp (—A |Z|)
with C, = —AT_l Jo(ALr) = %, k = 2maka,, a, = aay, A1 = aiz
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5.4.2. The magnetically enhanced screening factor

In order to calculate the effect of the magnetic field on a half lives, we consider the

potential (5.27) in the simple case z = 0.

— 2
V() = ZE— D)€ TZ)e + 2¢2 = i

_sin(A7'r) A_Zl (5.28)

Figures (5.3), (5.4), (5.5) and (5.6) show the reduction of the Coulomb barrier as
function of the magnetic field.
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Fig5.3:Comparison between the two potential with B = 4.7 x 10°G.
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Fig5.6:Comparison between the two potential with B = 102G.

The magnetically enhanced screening effect will be given by the screened versus the
unscreened penetration factor:

I

f(Z,A,B) =exp

22 fwam 2Z-2)é [_ sin(A”'r) A’
h

[ R r 2r kl_E“dr

refa) |2(Z — 2)e? (5.29)
- L \/f Eadr

We have first calculated the classical turning pointr, given by V;.(r, B) = E ,for different
values of B. One notices (as expected) that 7. decreases with B (Table 5.1). The mathematical
program “Maple” has been used to calculate 7. and f.

B(G) R (fm) r(Eg) (fm) 1e(Eq B)(fM)
4.7 x 10° 10.04015152 43.9400519 43.9379064
4.7 x 101° 10.04015152 43.9400519 43.15784749
4.7 x 101 10.04015152 43.9400519 42.73201305

1012 10.04015152 43.9400519 42.03294800

Table5.1 : Results of the numerical calculation of r.(E,, B) and r.(E,) .
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The integration results show a clear reduction of a half lives for strong magnetic field (Table

5.2).
B(G) f(Z,A, B)
4.7 x 10° 1.12
4.7 x 1010 3.37
4.7 x 101 10.33
1012 102.14

Tableb.2 : Results of the numerical integrations.

5.5. Screened alpha decay in dense astrophysical plasmas

5.5.1. The linear plasma shielding:

Thermonuclear reaction rates in stars are increased over their laboratory analogs because of

the presence of the dense electron gas. The net negative charge surrounding each nucleus

lezez

reduces the coulomb repulsion to a value smaller than . This reduction makes the

penetration of the coulomb barrier easier, which in turn increases the cross section in
comparison with the cross section between bare nuclei having the same relative velocity at

infinity.

Each nucleus, even though completely ionized, attracts neighboring electrons
somewhat. There will exist, on the average, some sphere around each nucleus Z which
contains enough negative charge to neutralize the cloud. This sphere should not be thought of
as containing just Z free electrons, for it will usually contain other positive nuclei with
sufficient electrons to neutralize them as well (the Debye-Hickel ion sphere). Only if the
average coulomb energy between neighboring particles is greater than kT (usually not the
case) will the cloud tend to reduce to Z free electrons. When two nuclei Z; and Z, approach
each other, the shielding charge density introduces a perturbing potential on the coulomb one.

We write the total coulomb interaction energy as

Z17Z,e?

Utot (112) = + U(r12) (5.30)

T12

where U (ry,) obviously represents the added interaction due to shielding.

Effect of the stellar medium on nuclear phenomena



Screened alpha decay in superstrong magnetic fields and dense astrophysical plasmas 80

The shielding cloud must be at least as large as the average interparticle distance and
perhaps much larger, and U(ry,) will change by large amounts only over distances of the
order of the radius of the shielding cloud. Equation (5.31), on the other hand, shows explicitly
that the penetration factor depends upon the integral of (U;,; — E) between the classical
turning point R, and the nuclear radius R.

P= [V(};j] exp {—@fﬁo[V(r) —E] dr} (5.31)

h

Since reactions are most favored for the energy E,, a characteristic classical turning
radius is of the order

_ lezez

R
0 Eo

(5.32)

This turning radius is usually much less than the radii of the shielding clouds. Thus the
shielding interaction U(r;,) must be essentially constant over the relevant range of
interparticle distances for which both articles are near the center of the shielding clouds. To
good approximation U(ry,) in the penetration factor can be replaced by U,, the shielding

potential at the origin. The potential is shown schematically in Fig 5.7.
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Fig 5.7: the effective radial potential
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5.5.2. Linear plasma shielding model

Thermonuclear reactions constitute the source of stellar energy and all the laws that
govern such reactions deserve to be thoroughly investigated. The enhancing influence of
stellar plasmas on thermonuclear reaction rates has been studied by many authors ([Lio03]
and reference therein) who derive the Screening Enhancement Factor (SEF) by which the
reaction rates are multiplied in order to take into account screening effects. The most widely

used screening model is the Salpeter’s weak screening model (linear plasma shielding).
Consider a test charge q in a dense plasma, in the thermal equilibrium, the probability

of particle being in a state with energy E is ~ to exp (;{—i) where K is Boltzmann’s constant.
Since probability and number density are proportional to each other in a gas, and since

the energy of a particle is simply E = q®, we may write for electron and ion densities

n, = Aexp (%) (5.33)

Note that the ions do not move but form a uniform background of positive charge, so;

we have:
n; =ng (5.34)
where n is the density of ions before the point charge arrived.

At infinity @ — 0 and there is no applied field to disturb the equilibrium between ions
and electrons, so, we have A = n,. To determine the potential ®(r) we just use Poisson’s

equation
P o
VZd =—p=—nye (exp (— Ii—Tl) - 1) + q6(7) (5.35)
] ed ed . .
We will suppose that: KT « 1, and T <« 1, keeping only the first two term to
i e
obtain a new approximate version of Poisson’s equation:

V2 0 =noe? =+ q8(7) (5.36)
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The solution of the last equation is

d(r) = _quxp (;—;) (5.37)

Where, Ry, is the Debey length R, = ’% and g = (Z - 2).
0
If we write equation (5.37) as Taylor series, we get then:

P(r) = —L4 L0 4 10T (5.38)

Rp 2Rp%? ' 6Rp?

5.5.3. The nonlinear plasma shielding

The double aim of this section is: a) to prove that the definition of the weak screening
limit used by Salpeter, which actually yields the Debye-Huckel potential, forbids the use of
the potential inside the tunneling region, b) the region of validity of the Debye-Hickel
potential in stellar plasmas is obtained by given a new model for weakly screened

thermonuclear reactions, which is capable of taking in account the non linear screening effect.

We expend equation (5.35) by using the Taylor series of the exponential function,

taking account the nonlinear term,

2d®d  d?o
r dr dr?

= 2nge [eq’ + (Q)Z] (5.39)

KT 4 \KT

This differential equation has not analytical solution. In order to get an approximate

solution, the quadratic term in @ will be replaced by
Y(r) = %(ao + ar+ ayr? + ) (5.40)

If we assume that the nonlinear terms is small, one needs simply to keep the first terms

in its expansion. So, equation (5.39) will be written as:

2dd | d?® ed 1 e? (1 2
L ange [ 4 et [—a0@) (541
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Using Mathematical Maple Calculation, we will get

2\Vacosh (Var)ab  Ba3In(a)sinh(var)a+vaBa,;(2ag+a 1)
CI)(‘r') — —Cr—lexp(\/a x T') _ ag CI.CO:?,/2 ar)a. _ 0 ( az/zr 1 0 1 (542)

We write the exponential as Taylor’s series, then we get

2
o(r) = (a+21a0bRp) | Ly — 212 _ p(ay?n (a) + a?R2) (5.43)
r 2RD RD
where we have defined the constants

( _2e®ng _ 1

KT R}
{ p=1 e3ng (5.44)

2 (KT)?

in the equation (5.42).

We will choose

( — 2KT
0~ e
(5.45)
— 1 |2KT
ay = Rp e
The equation (5.43) will be
() = (Z‘Z)“TV 2n0eRD 4 Cor + Cy12 + Cy (5.46)
where
zZ-2
C1 = ZRDzenO (548)
C; = —In(Rp) — 1 (5.49)
D

Effect of the stellar medium on nuclear phenomena



Screened alpha decay in superstrong magnetic fields and dense astrophysical plasmas 84

If we make a comparison between (5.46) and (5.38), we see the difference between the

2,/2ngeRp
r

two potential which is the appearance of the term . this difference is explaining by

the fact taking account the quadratic term in equation (5.39).
5.5.4. Effect of non-linear plasma screening

Let us consider a heavy alpha decaying nucleus 4My in fully ionized multicomponent
plasma which is at thermodynamic equilibrium, in order to derive screening corrections in our
alpha decay study. The enhanced screening effect will be given by the screened versus the

unscreened penetration factor:

|((Z=2) +2J2n0eRp)e? (z - 2) 2
dr

2 Zu rc(Eq,B) r ZR%

f(Z, Ang) = exp|——r— 1
+2Rpe3ngr? + (R—ln(RD) — 1) e?—E,
D

R

: (5.50)

_frc(Ea)\/(Z_Z)eZ_E ir ‘
r a

R

The last expression, shows the effect of a non linear plasma shielding which is the reduction of alpha
decay half lives.
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Conclusion

The electron screening acceleration of laboratory fusion reactions at astrophysical

energies is an unsolved problem of great importance to astrophysics.

We have studied the screening enhancing effect at low energy fusion reactions using
two approaches. In the first one the expression of the electron charge density is given, a prior
while in the second one it is calculated from the wave functions. We have shown that the

presence of excited states increase the astrophysical factor the reaction *He( *He, 2p) *Hs.

By means of the proposed model, the effect of a superstrong magnetic field on

Hydrogen fusion reactions is investigated here and applied on the (& — B fusion reaction.

This study gives a high screening energy for hydrogen fusion reactions

Electron screening effects in alpha decay processes is studied, applying a formalism
which has been used in the study of astrophysical fusion reactions. We have derived
alternative analytic SEF formulae for stellar medium. The effects of superstrong magnetic
fields (such as those of magnetars) on alpha decay is a reduction of the relevant half-life. This
effect, may possible have notable implications on heavy elements abundances and the

cosmochronological models that rely.

Finally, it has been shown, that alpha decay half-lives in dense astrophysical plasmas
can be reduced. A simple formula has been developed to take into account the non linear term

of Poisson equation.
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