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| ntroduction

The development of physical pictures of atomiclei has frequently been accompanied by
a steady exchange of ideas with other fields inspisy in particular with atomic, molecular
and elementary particle physics. Even hydrodynaiméssplayed an important role in nuclear
physics. The ultimate goal of nuclear structure guts/ is, of course, description of the

properties of complex nuclei in terms of interactietween two nucleons.

Current microscopic investigations in nucleaustures theory usually create contact with
the shell model of the nucleus. However, In spit¢he great successes of this model in the
prediction of spins and parities, magic numbenshaland beta decay systematic and so forth
,this model still has exhibited many limitationorFexample the description of nuclei with

large number of valence nucleons.

Collective models have been convenient solution deformed nuclei. In the B0Othe
geometric collective model, has been introducedbitilding blocks are shape variables and
collective excitations (surface vibration and raaj. However, a link with shell model was
clearly established only with the algebraic modalleri IBM (Interacting Boson Model)
developed in the 70 Similar models have also developed in moleculaysjzs and later

applied in nuclear physics. One of the themesasiticlear vibron model.

In chapter 1 we give a general descriptiorhef‘classical” structure models: shell model,
geometric collective model and IBM. The microscoglicster model is presented in chapter 2.
First we give a detailed equation of the modelnthve describe the result of our calculations
in the ***%r framework of this model: energy levels of thewrd state bound and the
BE(2) transitions. In the last chapter a secondagmed to clustering is given: the nuclear
vibron model. This is an algebraic model resulfiragn coupling the U(4) and U(6) algebras.
Our contribution is deriving an extension of the(S$JJimits of this model by studying the

effect of the high order terms for SU(3) Hammien and Electromagnetic transitions.
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Overview of nuclear structure
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|-1.Introduction

A nucleus is a system of A interacting paetsclBesides the general nature of the problem as a
many-body system, the nucleon-nucleon interactsoa challenge by itself. Compared to atomic
structure, the problem is more complex. In an atbm nucleus provides a common center of
attraction for all the electrons (central field)dathe electron-electron forces generally play a
smaller role. Furthermore, the predominant forceul@mb) is well known. Nuclei, on the other
hand, have no center of attraction; the nucleores teeld together by their mutual nuclear
interactions which are much more complicated thaal@nb interactions.

The difference between the components of W systems is another source of difficulties.
While all atomic electrons are alike, there are #armds of nucleons: protons and neutrons. This
allows a richer variety of structures. Consequertigre are about 100 types of atoms (elements),
but more than 1000 different nuclides.

Experimental evidence for the existence for a rarctébell structure had already accumulated by the
mid 1940’s. The early evidence included that nueléh certain proton and neutron numbexsaf

Z =2, 8, 20, 28, 50, 82, and 126) are particulathble. These numbers were called “magic
numbers” because while the evidence of their speaiare was considerable, an understanding of

why these numbers were special was lacking.

|-2.The nuclear shell model

[-2-1.Basic principles of the nuclear shell model

The basic assumption of the nuclear shell modehas to a first approximation each nucleon
moves independently in a potential that represigt@verage interaction with the other nucleons in
a nucleus. This independent motion can be undeafstpa@litatively from a combination of the
weakness of the long-range nuclear attraction aadPauli exclusion principle.
The complete Schrédinger equation Aonucleons reads as

|f|W(1,2,...,A)= Ev @12,...,A) 10-

where H contains single nucleon kinetic energies and tadytinteractions
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;( 2mA )+.;1W(I ) (2)

and y(1, 2..., A) is a totally antisymmetric wave functjomhile i denotes all coordinates, s, t;

of a given particlei= 1, 2,...,A.

A
We can add and subtract a potential of the f@rhl (i) from the Hamiltonian (I-2). We obtain
i=1
A

_ Z(—%A )+ZU(|)+ZW(I j)- ZU(')

i=1 i<j=1
A hZ
:Z[—Z—A +U(|)]+ZW(| i) - ZU(l) (1-3)
i=1 m i<j=1
A0 L@
=H +H
A 0 A @

H represents a sum of single-particle Hamiltoniand, ld is represents a residual interaction.

A ©

A

ZA: h(i) (I-4-a)
A (Y] A

Z W(i, j) - ZU (i) (1-4-b)

The assumption of the existence of a nuclear aegpatential allows to hope that there exists such
C)
a potentlaIZU (i) and that the residual interactidh is small.

i=1

There exist a few approaches to deal with this m@ody problem.

A O

1. Simple shell modd: solve the Schrodinger equation fdd  and neglect the residual

A0
interactionH

~ (0)

A |o,)=E®, |,) (1-5)

One suppose thdt(i) is a known suitable potential (the harmonic oatolf potential, or the

Woods-Saxon potential, or the square-well)
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2. Realistic shell model: first, one repeats the method given previousigntone takes into account

N
the residual interactiad ; diagonalizing it in the bas1$Dh> of the harmonic oscillator potential.

|-2-2.Harmonic Oscillator Potential

In a harmonic oscillator potential, the Hamiltoniarwrite as.

N 2 2.2
ho [ meT (1-6)
2m 2
Then the Schrodinger equation
h¢(r):g¢(r) (I-7)

is separable in radial and angular coordinates.€lgpenfunctions are given by the products

Bm(1) = Ry (1NY,1(6,9)
(1-8)

whereY, (6,¢ Jare spherical harmonics (they always appear fphargcally symmetric potential).

The radial wave functions for the harmonic osailigiotential are given by [1]

Ru() =Nyt exr{— ZrbjL([)—j (1-9)

1/2

where b=( #/mw) and L,.1'"™? (x) are Laguerre polynomials (they are tabulatedgfeenn

andl) .The normalization facta¥y, is defined by the condition

Trszz(r)dr =1 (110)

Then Laguerre polynomials satisfy the followingatein

i _p /2 1+1/2 1+1/2 _ 1 ((n_l)!)3
J;e roLa () Ly (r)dr_|+1/2(n_|_3/2)
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(I-11)

The energy eigenvalues are given by
1
&y = ha)(Z(n—l)+ | —Ej

=ha)( 2N +§j
2 (-12)

N0,1,2,..., (1-13-a)
| =N,N-2,...,10r 0 (1-13-b)
n= (N-1+2)/2
The energy level with a gived is called an oscillator shell. The resulting lewveds be denoted as

N=4 12d,3s

(here the numbers refermaand the letters denoke

Applying the parity operatiorl% on the eigenfunctions gives

Péum(r) = P(R, (r)Y,,(6.9))

= (R, (1) PY,,(6.9) (1-14)

= R, (N1 Y, (0.9)

= () G ()

Each oscillator shell contains orbitals with ertleven or odtland it is either even @dd with
respect tch(? - —7 )
The total degeneracy of tineth oscillator shell is 2(N+1)(N+2)
One takes the intrinsic spin s = 1/2 and isospiif2 of nucleons, and having
ho = 418 MeV (I-15)

Adding the spin-orbit coupling term [1]:
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2 2,2 N
YL ST

(-16)

Taking into account the intrinsic spin of the nacls, we can write down the single-particle wave

functions as

¢”'Sjm(?’g) =R, (r)[YI (6,9) x Z1/2(§)} W

(1-17)

where the orbital and the spin angular momentacanpled to a total angular momentynThese

wave functions are eigenfunctions of the Hamiltanijgal6). Taking into account the isospin of the

nucleons, the final single-particle wave functians

bramm(118.1) = R, (r)[v. (0.4)x zm(Z)} 6,8

m

To get the value of the spin-orbit splitting we lgihlculate the matrix elements

+1/2(f(r)),,
-12(1+ 1) f(r))

for j=1+1/2

A‘C“nlsjm = <n|SJm| f (r)(T§)| nlsjm> B { for J = I —1/2

nl

Here

(t(N),, = (I f(M)nl) = [R, "R, f(r)rdr
Each oscillator shell splits into orbitals:
N=0 Is2
N=1  Ipi2, 1psp2
N=2 = Idsp, 1dsp, 25112

N=3 7, Uspp, 20312, 20112
N=4  op, 1972, 252, 20312, 35112
| -2-3.Woods-Saxon Potential

(-18)

(-19)

(1-20)

(I-21)

A more realistic description of the single-partiédvels is given by the Woods-Saxon potential,

where the depth of the well is proportional to thensity of nucleons, which is given for the

spherical case by,

Po

pN)=—7-—+
1+ ex;{r_R}
a

(1-22)
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wherer is the distance of the nucleons with respect éocééntre of the nucleug,is a constantR

is the radius of the nucleus aads the surface thickness. The spherical Woods+$@atential is

therefore taken as [2],

(1-23)

Typical values for the parameters are: depffx50MeV, radius R1.1AY® fm, and surface
thickness &0.5 fm.

Addition of the spin-orbit interaction to the Hatoihian is necessary to produce magic numbers [3]

noo, U
2m F{r—R}
1+exg ——

a

We can to generalize the spherical Woods-Saxompaltéo deformed nuclei by the following,

+f(r)(.9) (1-24)

VO
1+ ex;{r — R(r,ﬂz)}
a

V(r.p;) =~ (I-25)

where(r,f2) denotes a set of all the shape parameters unigpebjifying the nuclear surface. In the
full Hamiltonian, a spin-orbit term must be addex the Woods-Saxon potential in order to

reproduce the correct magic numbers. This is gbsen

2ro, - |-
Vs.o(r'ﬂz):—/l(%:j [Vv(ruﬂz)soxp}s (1-26)

[-2-4.Shell model with pure configurations

A @
In pure configuration we neglect the residual iattion H . The solution of the Schrédinger

equation with a HamiltoniaH® (I-4) can be given by

Pra(1) pia(2) ... pra(A) (1-27)
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Here eachk; labels the single-particle statelsjm,tn, while () refers to all coordinates of a
r

nucleon, i =(r,,s,ti ) The single-particle wave functions are soluti@misthe corresponding

Schrédinger equations

h(i)o, (i) = £, () (1-28)

This can be a single-particle equation with a hammoscillator potential, (I-16), or with Woods-
Saxon potential, (I-23).

However, since dealing with the protons andtmoes, the correct shell model wave function
should be antisymmetric under permutation of any twcleons with respect to its space, spin and
isospin coordinates and it should have definitei@slof the total angular momentunand the total
isospin T. So, in constructing the final shell model wavediions as linear combinations of

functions (1-27), totally antisymmetric and couplked andT. indicating them as

®{1,2,...,A) (1-29)
where I'=(J,T)

H Op1,2,....A=E, &(1,2,....A) (1-30)

The total energy is thus given by
i=A
E-” =Yg, (1-31)
i=1

The residual interaction is then added as a pextianin.

[-2-5.Shell model with configuration mixing:

In theconfiguration mixingH @ is taken into account. One solves the Schrodiagaation

AN

H

V/p> - Ep‘wp> (1-32)

In this case, solutions o @ (functions @, (I-29) ) are considered only as a basis for the

diagonalization of the full Hamiltonial% . Thus, the wave function of the system is exparaged

vo)=a,le) (1-33)

10
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whereg denotes the number of pure configuratiahg>| considered; it is related to the model space

used. Usually, the model space incorporates akiplesconfigurations oN, valence protons and

N, valence neutrons in the partially filled orbitaldile the rest is considered as an inert coreceSin

the Hamiltonian|:| is invariant in the space and isospace, its eigéstare characterized by total
angular momenturd and isospirT. Substituting (I-33) into equation (1-32) [3], wet

A (0) AD g g
(H +H ) a,|o)=E> a,d,) (1-34)
k=1 k=1
Since
HA<°>|c1>k>:E(°>k|ch> (I-35)

the matrix elements of the Hamiltonidh are given by

Hy = <CD| | |f| |CDK>: Ek(O)é‘lk + Hlk(l) 1-36)

where

A @
H® =(d|H |®,) (1-37)

Thus we have to solve a system of equations
[¢]
> Hua, =Ea, (1-38)
k=1

that means to diagonalize the matHx and to find the eigenvaluds, and the coefficientsy.

Since the basis is orthogonal and normalized, ipengectors belonging to different eigenvalues

are necessarily orthogonal and can be normalizehl that
[¢]
D gy =0,y for Ep#Ey (1-39)
k=1

Equation (I-38) can be re-written as

g
Y a,Hua, =E,&, (1-40)
I, k=1
or in a matrix form
NA=E (1-41)

where on the right-hand side is a diagonal matrix.

11
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|-3.Geometric Collective M odel
[-3-1.Spherical nucleus

[-3-1-1.Quantisation of surfacevibrations

The collective coordinates describing the nucteaface motion are defined by the expansion of

the surface into spherical harmonic

R(3,9.1) = R0|:1+ 2 (e, (Y, (1940)} (1-42)

a ,, are the components of an irreducible tensor of vankh u=4, 1-1, 1-2,..., -4 .

Using the property,, * ($,9) = (-)"Y, ,($,9) one gets

a,*=(=)"a,, (1-43)
Low-lying excitations correspond to small osciltaeis around a spherical equilibrium shape. They

are described by the harmonic oscillator Hamiltonia

H=T+V :%Z(BA '

(24
Au

2

Au

+ cl|aﬂu|2j (I-44)

The parameters of inertl3;, and stiffnes<C; are real constants that can be calculated withen t
fluid picture.

The second quantized form df can be obtained by introducing bose operatpgs(and their

hermitic conjugates). They are related to the coatdsa;,, and corresponding momentg by

o, = (25?% jl 2(bw+ +()'b,,) (1-45-a)
T = '(% Bza)zjllz((_)u b, ," - bﬂu) (I-45-b)

The operatord,, obey Bose commutation rules

[b/lu ’ bl'u‘] =0 (|'46'a)

[bﬂu J bl'u‘+ J = 5&1‘5uu' (|_46_b)

12
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The harmonic Hamiltonian becomes:

H= EZ;-zwl[bﬂu*blu +1j (1-47)
25 2
with the frequency
C,
w, = |— 1-48
=B, (1-48)

The operatord,  create phonons with angular momentuiand magnetic quantum numher
One introduces the phonon number operator
Nlu = b/lqubAu (|-49)

This operator commutes with the harmonic oscill&tamiltonian

[H,Nﬂu}zo (|-50)
The harmonic oscillator Hamiltonian can be expresseédrms of\,, as:
H :EZha)l(IQIm—lj (1-51)
25 2
Then
ﬁa:lzmﬂ(m%lj (1-52)
24 2
The corresponding energy is
E:EZha)l(N,leJrlj (1-53)
24 2

Each phonon carries the energy quankam has an angular momentumiiand with projection
and its parity ist = (-1)". The lowest-lying states are as follows.
To determine the spectrum and the various statedgtuge a phonon vacuum

b,,[0)=0 (-54)
And hence
N[0 =0 (1-55)
The one-boson states is defined by
| Au) = b;,|0) (-56)

The two-bosons states are easily constructed faiadangular momentum as follows

13



Chapter | Overview of nuclear structure

IN=2LM)=>(4uu,|LM)b},b5.,|0) (1-57)

ulu2
The most general eigenstate can be labelletiby$, N being the number of phonons.

[-3-1-2.Different vibration modes
Each value of. corresponds to a vibration mode characterised ®litRor example
A=2 — 2* quadrupole mode
A=3 — 2° octupole mode
A=4 — 2*  hexadecapole mode

i) Quadrupole (4=2) and octupole (A=3) modes

The classical quadrupole vibration Hamiltonian camiitten as

" 1 & 2 C, & 2
H= z,l +—2) |a 1-58
25, ZI wl +5 ZI ] (1-58)
Equation (I-52) reduces to
o1 ~ 5
H ZEha)z(Nz-l‘Ej (|'59)

and the energies of the states will be given by

1 5
E ZEha)z(Nz-l‘Ej (|'60)

The corresponding spectrum is shown in figure |-l ®btupole vibration spectrum can be

obtained in a similar way.

37 Wy 0',2",3",4",6 2w3 0',2",4" 6"
2h W, 0,24 W3 3
7 Wo 2"
0 0
0 "0 A=3
A=2

Figurel-1 Harmonic spectrum for the quadrupdle?) and octupoler&3) modes

14
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|-3-2.Deformed nucleus

[-3-2-1. Bohr Hamiltonian
The rotation-vibration model treats nuclei thawvénaaxially symmetric deformed equilibrium

configuration in the collective potential energy. eTlsimplest nuclear collective quadrupole

Hamiltonian has the form

A 1 S
H ZEBZZOKZu az+V(ay,) (-61)

The collective Kinetic energy in the laboratory gystis given to lowest order in the collective

variables by
?:%Bzzdzu* a2 (1-62)
It has to be transformed into the intrinsic cooati@s by using the relations
Ay = Z Duzv * (9,8, 9%)a,, (-3

Q,, = z Duzv(lgl’ 8y, %)y, 68-b)

The kinetic energy should be expressed in termeBeoahgular momenta about the body-fixed axes,

because only in this way will the moments of irelie constant during the rotation.

In the intrinsic coordinates one can show that

a=a =0 (I-64-a)

a=a-, (1-64-b)
Hill and Wheeler introduced the two shape defimpagameter$ andy by

a, = pcosy (-65-a)

a, :gﬁsiny (1-65-b)

The total kinetic energy is

A 1 . .
T =22070(a.a)r, a*a,
o ' (1-66)

where J; is the moment of inertia which is given by

15
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J, = 4BB?sin(y —%) (1-67)

The collective potential energy surface as a fmctif the quadrupole coordinates has the form

V(a[z]) :l\/gcz a[z] xa[zl (0) + Q a[z] Xa{z] (2) Xa}z] (0)
2

(1-68)
et ] e
If we express W?) in terms of Euler angles and intrinsic coordisate obtain
(0)
V(a,a) =250 dx &1+ [ #x @]%x & |
2 (1-69)
+C,[dxa@ ] [« & " +
This reduces to
1 2 2 2 2 2
V(ao’az)zicz(ao +2a, )""\/%Caao@az +2a,")
(I-70)

+éc4(aoz +2a,7)% +...

For well deformed nuclei one can expand thermg@karound the equilibrium positiofg,, 7, t9

get

V(B,7)=V(Bo:70) += Cﬁ(ﬁ ﬂo) +5 Cy(V 70) (I-71)

The kinetic energy is taken in terms of Euler asgled intrinsic variables

r 1 1
T_Ezk“ZJ( )+28(a “+2a,%) (1-72)

Finally the quantized form of the Hamiltonian (Bddamiltonian) can be written as

A 12 (10,40, 1 1 2

kJ(ﬂ7) 2B| p* op 8ﬂ B? sin3y oy

nsyg +V(4.7) (-73)

In order to decouple rotation and vibration one egpand the moments of inertia as follows

16
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1 1 1o 1 1o 1
- 1128 =Bo)+ | = —y) 4. (1-74
Ji(B7) Ji(ﬂo'70)+ﬂ(8ﬂ Ji(ﬂ,y)jﬁo,yo(ﬂ ﬁ"“ﬂ[ay Ji(ﬂ,njm(y ot (0

The Hamiltonian of the rotation-vibration model aedes into three terms

li\l = li\l rot + li\l vib + |1\| vib rot (|'75)

The eigenfunctions df, Is, 15" are given by

[ IMK ) = e EIDKAK (1,95, 9) (I-76)
8r

Wherel?s the total angular momentum and its componkM andls'=K
SinceH (see Eq.(I-71))I%, andls, commute, the eigenfunctions of collective Harmilem Eq.(1-73)

have the general form
MA > => 9, (8.7)|IMK) (I-75)
k

| is the total angular momentum alkdis the projections df onto the laboratory z axis akdis the
projection ofl onto body-fixed 3-axis.

|-3-2-2.Solution of therotation-vibration Hamiltonian

In the Hamiltonian of the rotation-vibration mogehich is given by Eq(I-72) ,théAi vibrot 1S @

small perturbation; one can treat it either in peyation theory or by diagonalization.

[-3-2-2-1.The axially symmetric case

The Hamiltonian of an axially symmetric well defeed nucleus is
12 v 2

2J, 2

1
Cy(B-Po)? 55 (r=70)? (1-76)
The eigenstates are symmetrized using the rotaperatord®}, and R, to get

i) = e B NIMK) + () [IM (K))] m
where K an even integer and

| =0,2,4,..forK =0

| = (I-78)
| =K, K+1,K+2,... forK=0

The total energy associated with total wave fumsjas now given by
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R2(1(1 +1) - K?)
23,

1 1
E,,K,nﬂ,ny =hw,(ng +§) +hw,(2n, +§|K| +1) + (1-79)

where

n = 0,1,2,..and n =0, 1, 2,..., (1-80)

The bands of the spectrum fig (I-2) are characterizy a given set oK( s , n,) and follow the(l
+ 1) rule of the rigid rotor . The principal bara® [4]:

1-The ground-state band, made up of the sta800) with | even.
2-Thep band, containing the stat{el$/I010> with one quantum of vibration added in {heirection
and lies at energy:w = 1(C, / B)"'? = E, above the ground states.

3-They-vibration band, is describgid1200)

4- The next higher bands. These should be theiaddity bands withK = 4 and the one with,= 1.

7
6" 6
.
6 °
6+
4+
5+
5+
4+ 6+ 2+
4+
4+ O+
, Kz_é(l) k:_O1
. n;= =
. . 3+ n,=0 n=0
0 4 2
k=0 k=2
B=0 2 n,=0
ne=0 n=0
O+
B-vibrational k=0 B0 y-vibrational
ne=0
groundstate

Figurel-2 Typical band structure for a deformed even-everiaus
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[-3-2-2-2.The Asymmetric Rotor
An interesting spectrum is exhibited by the aswtrio rotor, which was first investigated by
Davydov and Filippov. This model assumes a rotaliddamiltonian with all three different

moments of inertia.

A | 12
Hrot = k (1-81)
Zk: 23 (a,)
Through the inserting the moments of inertia forqa(E67),0ne can rewrite this Hamiltonian in the
form
A 1 12
Hrot = z X (|_82)
2
4BS* K sinz(;f—ikz)

Hrot splits into the Hamiltonian for a symmetric ropus a remaining term

A 1 2
Trot = (l 2 | '32)(41 + 41 )+ |23
gl gZ g3 1 (|'83)
+ (=12 ——
Wt %1%1 49,

The solution of the symmetric rotator which are syetrized undeR; andR; are given by

_ (2|+1) | % 1y -2K Nl *
| IMK) = /—16”2(1+5K0)(DM_K (9) +(-1)'"* Dy, *(9) (1-84)

where
K0,2,4,..., (1-85%-
For k0 1=K, K+1, K+2,... (1-85-b)
For K=0 1=0,2,4,... (1-85-c)

Then the third term in Eq(I-83) must be diagonlizedhe basis set of Eq(I-84). The most general

solution thus has the form

i) =D A (7)] IMK) (1-86)
k

and
K=0,2, 4,.., (1-87)
The indexi on the wave functionyy; indicates that in general several states of giyen Ismay

occur.
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|-4.Algebraic Collective M oddl

[-4-1.Introduction

The interacting boson model (IBM) has been broadeand developed steadily since its inception
(Arima and lachello 1975) some three decades agioasoby now, it consists of a family of nuclear
structure models linked by common underlying asdionp concerning their microscopic
foundation and by the algebraic origin of theimhadism.

Showing that the IBM-Hamiltonian is composed leineents which constitute a Lie algebra. And
illustrate the subalgebras are looked into. Threains of subalgebras can be formulated.

Furthermore are treated special cases of the IBM.

[-4-2.The U(6) algebra

In the original version of the IBM, applicabledgen-even nuclei, the shell model reveals that the
low-lying states of the even-even nuclei are mgaeredominantly by nucleon pairs with total spin
0 or 2. Thus, the basic building blocks arndd bosons interacting via two-body forces, hence the

name interacting boson model. This model has tbepystructure of U(6).

The U(6) algebra may be realized in terms of seation and six annihilation operatdx$ and b;

(i=1,2,...,6), where one uses the notation

b, =d, , for n=1,...,5 and by =s" (-88-a)

b,=d,, for n=1,...,5 and by =s (1-88-b)
Writing the commutation rules for boson operat@geeially fors- andd operators:
d,[d"]=6, and §, s]=1 -89)
Lie algebra associated with this structure is gateer from the 36 bilinear operators
G’ =b'b, (-90)

The bilinear operator is satisfy th€6) commutation relation

[Gij ’GL] = G‘iI 5jk - ij 5i| (|-91)
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One can also define the generator of this algebcaupled form as

B (,I') =[b xby. ]

= 3 (Im | Au)by by (1-92)
[-4-3- Chaines of subalgebra of U(6)
Using the canonical group chains
SU(N> SU nrl)>..o SW) @)
SAQnN> SO Ar)>..o SE) 3®)
U(n) > SU(nH (1-93-c)
Un)o>SsSAn (1-93-d)

One can show th&i(6) admits three chains of subalgebra. They araindd as follows [7].

a- Removing the 11 operators containgdgoson fromU(6) algebra we obtain the algebrald)

which is generated by the 25 operators of the ffaimx J]g'g. Furthermore, after deleting the 15
operators of the fornid ™ x 5]51'3 with | = 0, 2, 4, we obtain 20 operators generate theps@(5).
Finally we drop the 7 operators of the fdian xd]® , we are then left with the angular momentum

operatordd™ x a]in which generat&(Q3) .we have thus found the first IBM chain
u(®) ou®)>sob)>so (3 (1-94)

](2)

b- The operators[d* xd]® and [d+ xS| " m+ [s+ x 5],(5) - (\/7/2)[d+ x a],(j) constitute a Lie

algebra with the dimension = 3 + 5= 8, which is in fact th6U3). Since[d* xd]® are the

generators of so(3) we obtain the second groamch

u(6) o su@ - so(3) (1-95)

c- The elements dfd* xd]® (1=1,3) and[d+ X s]flz) + [s+ x CT],(? constitute a Lie algebra of=3 +

7 + 5 = 15 dimensions ,which is t8€)6) algebra. By applying theQn) > SQn-1) reduction for
n= 6 one gets the third IBM chain
u(6) o so(6) o so(5) o so(3) (1-96)
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[-4-4.The IBM Hamiltonian
The general Hamiltonian in tieed boson space for one and two-body interaction8]is [

H=E,+ qu bb+ ijkl bbb, (1-97)

ij ijkl

whereEy is a constant an€; andeyq are parameters that define the single-boson erseagié the
interaction between the bosons.
After imposing the hermiticity condition and rotatiinvariant of the Hamiltonian, the Hamiltonian
(1-97) then reduces to [6]

o E +e, - e, ﬁd+el[[d+ ><d+](0) x[axa](m}(o)

0

+ eZ|:[d+ X d+:|(2) X [a X a](Z)j|(O) + eg|:[d+ % d+:|(4) y [a- “ a—](4)j|(0)
° 0
e Pl s il ]

0

P T s M

0

coflawa Pl oo x5 ] <l xal |

0
whereng andns are the number operators fbands bosons.

The connection with the shell model is provideditgrpreting the boson as correlated pairs of
nucleons [6]

S'=>a,(a xa)? (1-99-a)
]

D" = A;.(a; xaj)® (1-99-b)
i

Where the summation indicgs j’ run over single particle levels in the valenceelshThe
connection with the collective model is provideddmnsidering the classical limit of tlsed boson
model.

Introducing a coherent state in this model

IN,a,) =(s" + > e, d;)"|0) (1-100)

The classtal variables can then be related to the Bohr bl
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|-4-5-Basic Operators
The quadrupole operators is defined in the follfove as [5]

Q, =[d" xs|” +[s7 xd[? - (7 /2)[d* xd [, (-101)
with
Q*=>(-1"Q,Q, (1-102)
and the pairing operator defined as fallow

ﬁ:%[[a «df —§j (1-103)

Has being considered the ling#i6) operators

cue]=Ya (1-108)

ij=1
Its eigenvalue is the total number of boshins
The quadratic Casimir invariant &3(6) is given by

C,[U(6)] = ieﬁe; — Y by'b,b/b,

I
i=1

= 2 ;[ﬁ <] be b [ (-105)
— N(N+5)

with (1, ' =0, 2;bp =S, bam=dm)

The linear Casimir invariant @J(5) is given by the& boson number operator as
ClUG) =Y did, =N, (1-06)
And quadratic Casimir invariant &f(5) are computed in the same wayOs$U(6)]

C,IUG)] = ny(ng+ 4) (1-107)

The quadratic Casimir operator of SO(6) is givethasfollows
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R -C,[SQE) =%§AHAH

ij=1

-23 (@ -6)G| -6))

ij=1

By using of the coupled notation we find

C,[SAB)] = N(N+4)—(d* -d* +s's')(@d -d + W)

The quadratic Casimir invariant 8O(5)is computed as

NGB
C,[SQB)] =23 /2] +1){?( T )}

J=13

B R K M

J=13

= ZZZ(—l)M I:d+ ><(I:|(,\,|J)|:d+ xa](_J,\j

J=13 M

A2
T

The Casimir operator @U3) is found to be
A2 3 A2
C,[SU(3)]=2 Q+Zr L
where

L, =10BY (22) = V10[d* xd]¥

are the generators of ti€)3).

The total boson-number operator is given
N=> did +s"'s=ng+ns
k

The quadratic Casmir invariant &O(3)is given by

A

CIso@l=L =30 L Ly =3 () [dxd] [dxd]®

The Hamilton operatdd and the boson number operator, comletAe [N =0.
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The Hamilton operatoH also commutes witly,. then the total angular momentum Eq. (I-112) is

conserved .

H ,L]=0 (1-115)

One can also express the IBM Hamiltonian (I-98)eirms of the Casmir invariant operators in the

form

A A /\2 A A
H=E',+e, N+ e'N+ ¢ m £ n

+e'm+¢ 'Nn+ ¢ C[SW+ & & S6)] (1-116)
+e} G [SAB)+ &, G S@)]

This Hamiltonian is diagonal in the basis of theugrU(6) and its subgroups.

[-4-6.Dynamical symmetry
[-4-4-1.Vibration nuclei: the U(5) limit
In the precedent the Hamilton operator was transéor in a combination of operators which is
named Casmir operators .The Hamiltonian charaatgrithe U(5) limit, is obtained by taking
€ g=€'7=0,
H 1=€,,C,[U(B)]+¢€,,C,[U(6)]+€C,[U(6)C,[UB)]+e,CIU®B) (-117)
+€C,[U(B)]+€,C,[SA5)] +¢€,,C,[SOR)]

The operatoH: can also be written as[6]

N A /\2 A A A2
Hi=a N+€,N +(a, +e;N)ng+ena+€,T*+¢€,,J° (1-118)

The s-boson part corresponds to a simple one-diowadsoscillator, and thus the states may be

represented in the form spherical basis

L \N-n
[NJngon, LM ) = (S)—d| ngon, LM ) (1-119)

J(N=n,)!

whereN, nq v, L, andM_ label the irreducible representationf6) , U(5) , SAQ5) ,SQ3) , and
SQ2) , respectively.
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The quantum numbernhis the missing label in theQ5) > SQ3) and is related to the maxmun
number ofd-boson triplets coupled to zero angular momentutheéchainJ(5) o SQ5) o SQ5)

through the relation

n=2n,+3m+41 (I-120-a)
and
V=3, + 4
(I-120-b)
ThenL is take the form
=L, A+1,...,2-2,2] (I-121)

The states| nyon, LM L> are eigenstates of the following operators:

Na|ngon, LM ) = ny|ngon, LM ) (I-122-a)
C,[SOB)] ngon, LM ) = v(v +3)|ngon, LM ) (-122-b)
A2
L [ngon, LM ) = L(L +1)|ngon, LM ) (I-122-c)

Lo[non, LM ) =M |n,on,LM ) (I-122-d)

TheU(6) o U(5) reduction rule takes the form

(1-123)
R=0,1, ...N
while the reduction rule associated wHit{b) > SQ(5) is given by
v=ng, Ng-2,...,10r0 (1-124)

The eigenvalues for the Hamiltonia:Aml; Eq(l-118) can be represented this way
E =€¢,N+e  N(N+5+€,Nn, +€,n, +en,(ny +4)+€,0(+3)+€,,I(I+1D (I-125)

This limit corresponds to an anharmonic oscillatofive dimensions, in which there are collective

guadruple oscillations about a spherical equiliorghape.
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[-4-4-2.Rotational nucle: the SU(3) limit
The remaining Hamiltonian consists of the Casinperators of the second chain (I-95) of algebras
as follows [6]

A A ~ 2
Hz2=¢,N+€e,N +€,C,[SUQ)] +¢€,C,[SOB)] (I-126)

Another form of the HamiItoniarhA-I > can be used

A A A 2 A 2 A 2

H:=€e,N+e,N +aJ +4Q (1-127)
The |ﬁ|2 operator have the eigenstatis(},)KLM > form. WhereN, (1,u) , L ,M label the
irreducible representation tk(6) , SU3), O(3), O(2), respectively .
We indicate below each algebra the quantum nunthatdabel their representations [8] . THE(3)
generators is composite of the three angular mameoperators and a quadruple tensor.

The operatoC,[SU3)] has the following eigenvalues
GISUB)] IN (1, WKLM > = 22 + p® + Au+3(+p) IN (4, WKLM > A, pintegers  (1-128)

A detailed treatment of these eigenstates revealsthere exist restrictions farand/. They are

positive integers and obey the following rules

u=024 .. (I-129-a)
A=2N-6l-24 with | =0,1, ... andN = number of bosons (1-129-b)

A given doublet 4,i) admits only selected values farThey depend on a ordering numlggrfor
which the following values are permitted

=0, 2,4, ..., ML) (1-130-a)
For K=0 the values
J=0,2,4, ... , max{,) are allowed (I-130-b)
And forK >0
JFKK+ 1K+ 2, ... K+ maxg,u) (1-130-c)

The parameteK is needed for describing the eigenstates. Fromah#yse one can obtain the

eigevalue of theu(3) imit.
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E,=e,N+€,N°+e,, J(I+D)+€, (1> +U” + Au+3(1+ u)) (-131)

They don’t depend directly on the ordering numKeiThis limit corresponds to a rigid rotor with

axial symmetry

[-4-4-3.y-instable limit: the SO(6) limit
Finally we come to the dynamical symmetry defibgdhe group chain (I-96). In this case the
SA6) limit of the IBM corresponds to takirg),=€ s=€ =€ 7=0 [6].

A A A 2
Hs=¢€,N+€,N +€,C,[SO5)] +€,,C,[SA3)] (1-132)

By using an other expression of the Hamiltonkda

NG NG A2 NG

Hs=€,N+e,N +7, R +7,T +7,J (1-133)
Choosinge; = 0, in Eq((I-132) which means that the Hamiltongperator is not able any longer
to interchangeld- with sd-states. that there is no interaction between thtges.
Since theS(O6) states only differ from the(5) one in theny lable and the latter form a complete

basis, it is possible to express the former as

lelovn, LM, )= ZB le]ngv n, LM ) (-134)

The quantum numbersl ,6 , v, L, andM, are associated with the subalgebki®) , SQ6) SQ5) ,
SQ3) , andSQ2) respectively . The states (I-134) are eigeastaf the following operators

N|[NJovn,LM )= N[[NJovn,LM, ) (1-135-a)
C,[SA6)][NJovn,LM )= o(c +4)|[Nlo v n,LM ) (1-135-b)
C2[SOG)[NJovn,LM ) =v(v+3)|[[N]ovn,LM ) (1-135-c)
ﬁ2|[N]a v, LM ) =L(L+D|[N]ovn,LM ) (I-135-d)
Lo|/[NJovn,LM ) =M [[Nlo v n, LM, ) (1-135-€)
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A detailed investigation of the eigenstates of 8#&6) algebra reveals that the admissible values
for o are
c=N,N-2,N-4,..,10r0 (1-136)

N is the number of bosons.

A2
Moreover, for the parameterof the Casimir operatof (seeEq.(I-110)) the following values are

admitted
v=0, 1. . o. (I-137-a)

the number quantunh can amount to

F1,A+1...21-3,24-2, 2 (I-137-b)

with
A=v-3Mm (I-137-c)

and
m=0,1, ... (1-137-d)

The energy eigenvalue of tB®(6)limit ,is given

E.=€¢,N+€,N*+y,0(c+4)+y,v(v+3)+y,I(J +1) (1-138)

The Z- 4"-doublet of the third and fourth level (with= 2 ) is characteristic for this special case
and appears also in the so callethstable nuclei, for which reason this model isnedy -instable

limit as well.
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Chapter 11 Microggo cluster model

lI-1. The clustering phenomenon

The formation of clusters is a fundamental aspéauclear many body dynamics together with
the formation of mean field. Clustering aspectseagppabundantly in many problems in both
nuclear structure and nuclear collisions. The cgierice of the clustering aspect and the single

particle aspect is a unique feature of nuclear ntedy systems.

The basic assumption of this model is such thaten can be described accurately in terms of a
system of two-component nuclei; each with its fet@e characteristics; interacting through a
deep local potential. However, many binary decontjpos satisfy this minimal requirement.
Recently, Buck et al. proposed that the choice nmastdone with reference to the binding
energies of the cluster and core.

In light stable nuclei it is well known that theustering structure is of basic importance .In the
region of very light stable nuclei with less than about 10, the clustering structure shqwm
ground states. In heavier mass region of stabléenuwowever, the mean field is formed in

ground states and the clustering structure appeapscited states.

States in nuclei that is haweparticles clusterizations withl = Z are typically not found in
ground states, but are observed as excited sfatsto the decay thresholds into clusters, as was
suggested in 1968 by lkeda. The The Ikeda diagsashown in Fig. 1, this links the energy
required to liberate the cluster constituents ®ekcitation energy at which the cluster structures
prevail in the host nucleus. The clear predictisrthat cluster structures are mainly found close

to cluster decay thresholds.

clustering gives rise to states in light nuclei evthare not reproduced by the shell model, but the
nuclear shell model does, however, play an imporale in the emergence of nuclear clusters,
and also in the description of special deformedearcshapes, which are stabilised by the quantal

effects of the many-body system, namely the defdrsiell gaps.

This connection is illustrated by the behaviourttud energy levels in the deformed harmonic

oscillato, shown in Fig. 2. The numbers in the circles @pond to the number of nucleons,
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which can be placed into the crossing points ofterit zero deformation there is the familiar
sequence of magic numbers which would be associat#tdspherical shell closures, and the
associated degeneracies. At a deformation of thenpal, where the ratios of the axes are 2:1,
these same magic degeneracies reappear, but aseeégwice. This establishes an explicit link
between deformed shell closures and clustefihgs concept, fundamental for the understanding
of the appearance of clustering within the nucleti®e deformed magic structures with special
stability are expected for particular combinatioot spherical (shell-model) clusters. For
example( see table [), for super-deformed strustu(2:1) the magic numbers have a
decomposition into two magic numbers, of two sptarclusters, e:gNe= (*°0O+0). Thus, one
would expect clusterisation not only to appear gadicular excitation energy, but also at a
specific deformation. The Hyperdeformation (3:1¢ aelated to cluster structures consisting of

three clusters. For larger deformations longehain states are produced.

Spe lBg La) Mg ) g
Q0 000 CO00 Q0000 Q00000  OO0DD00o
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1675
(v} (wop
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Fig. 1. The Ikeda threshold diagram for nuclei wititlustering. Cluster structures are predicted toeap close to
the associated decay thresholds.These energieedded the decomposition of the normal nucleus ittte
structures are indicated in MeV.
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'r
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Daformation {e,)

Fig. 2. Energy levels of the deformed axially symmetrianh@nic oscillator as a function of the quadrupole
deformation (oblate and prolate, i.e.negative aasitive values okp, respectively). Degeneracies appear due to
crossings of orbits at certain ratios of the lengtbhe long axis (the symmetry axis) to the shpapendicular axis.
The regions of high degeneracy define a shell calso for deformed shapes.

Deformed spherical constituents

N Superdeformation, dimers

4 2+ 2 a—a.

10 +Q 10—

16 +8 18010

28 +80 180-ca

N Hyperdeformation, chains

6 2+ 2+ 2 o0—0—0.

12 +B+2 0-%0-q

24 8+8+8 1601010
36 8+20+8 1604%ca-t%
48 028+20 Ocatb0-4%Ca
60 0220+ 20 Oca%calca
N Oblate nuclei, pancakes

8 6+2 o

12 +& loc tc

18 +F *Mg-C

24 12+ *Mg—*"Mg

Table 1-The constituents for the nucleon magic numibeirs nuclei with super- and hyper-deformed prolatepss
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[I-2.Basic idea

The simplest possible binary cluster model @sn shown to account well for many of the
observed features of various light nuclei. The basisumption of this model is that such nuclei
can be described accurately in terms of a systemvatomponent nuclei. We initially consider a
nucleus. Zr ;Ar) decomposed into the single core-cluster configomafs;A;)+(Z2;A), each
with its free state characteristics; interactingotilgh a deep local potential. However, much
binary decomposition satisfies this minimal reqoiemt. This choice must be done with
reference to the binding energies of the cluster @re. if the parent nucleus can divide into a

cluster and core which are both doubly magic, thewill be the most favoured combination.

In the present case , where one or both o$dlb@uclie may be excited , we have to solve a set
of coupled Schrodinger equation to find the desinede functions and corresponding energy
eigenvalues. Consider the tow-body reaction desdrby the Hamiltonian

H=T+H 1(ry)+H2(r2)+V(ry,ro) (II-1)

whereT is he kinetic energy operator for he relativeiomt V is the interaction between the tow

subnucleus, and; andH, are the subnucleus Hamiltonian . Thus ,for clusehave

Hi(r 1) @in kn(r'1) =€na Pin kn(r'1) (11-2)

Whered, kn(ry) is the internal wave function for the clusterhe th state, of energya having
spin and projectioh, andK,, respectively. We wish to find the bound stateshef Hamiltonian
of Eq (1I-1) .
If the total wave function of the systemusu(r,R) the time independer8chrédinger equation
is
H wam(r,R)=Es wam(r,R) (1-3)

whereE; is the total energy of the system in he staigr,R) This total wave function may be

expanded in terms of radial functions and harmepleerical
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W (r)= Z Zo ()Y in(6,9) (11-4)

n,l,m

If we substitute the expansion of Eq (11-3) inte thchrodinger equation .The energies and wave

functions of relative motion are obtained by safythe radial Schrédinger [10]

—n2d%y, | hPL(L+])
24 drzL "{ 2yr2 +V (N +Ve () [, (1) = B r, (F) (11-5)

Cluster model description of a given nucleuthss identity of the cluster and core to be used,
that suggested for a nuclear molecule-like strectorappear, its excitation energy needs to be
near or above the threshold energy for breakuptimoconstituent clusters (and also below the

top of the potential barrier).

II-3.The appropriate core—cluster decomposition

The choice of the appropriate core—cluster dgomition of a given nucleus is clearly of
fundamental importance when applying a cluster mimdhat nucleus.

We assume that the preferred modes of binaryterimation are associated with the greatest
stabilities of core and cluster . Out of all possipartitions of a nucleus of total charge and mass
(Zr ;A7 ) into a core(Z;;A1) and a clusten(Z;;A;) we therefore seek the maxima of the

guantities[9]

D(,2)=[B,(Z,A)- B, (Z,A)+[ BAZ, A) - B(Z, 4) (11-6)

Where, B and B, are the actual binding energy and the correspgntiquid drop value,
respectively.
The value of B is calculated using the Weiszacker formula

72 (A-22)
Al/3 - % A +§

B,=a A-a K°-a (11-7)

where
ay =15.56 MeV,as=17.23 MeV,ac =0.7 MeV,a,=23.285 MeV andi=12/A*’Mev (1n8)
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For a given nucleus, when the conditidass Ar— A, andZ; = Zy — Z, are appliedD(1,2)
remains a function of two independent variables,dluster mass and charg#;,Z,). A simpler
form of D(1,2) resulting from the observation that electric dipwlnsitions between low-laying

bands of opposite parity in heavy nuclei are veepky

We restrict ourselves to decompositions of eeger nuclei into even—even fragments. A
further constraint follows from the observed smadisof B(E1YB(E2) ratios in heavy nuclei.
This requires that
é = é = ﬁ (||_9)
A A A
In general equation (11-9) leads to non-integralues of(A;,Z1) and (Az,Z;) which can be
interpreted as averages arising from suitably wemjmixtures of cores and cluster® .then

remains a function of one variable, the averagsteticharge £,>.

In the present calculations, for each clustergd&, the masses, Zand A + 2, which come
closest to satisfy this no-dipole constraint, arehsthat [10]

Zeyhy, 4 (1I-10)
A A A+2

The maximum stability criterion has applietcsessfully to parts of the periodic table where
the choice of core and cluster is by no means afsvislowever, for many mid-shell nuclei, this
method yields poor results, possibly because gbestthanges of core or cluster away from the
spherical [11]. It is thus important to determinkether it is the cluster model, which is breaking
down for these nuclei, or merely the maximum sigbihethod of generating the core—cluster

decompositions.
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lI-4.Cluster-core potential

The form adopted for the cluster-core poten¥i@) [12]

2
Vo (1 R) =V (1, R) 4V (1, R) + 2 LFH20 (I1-11)
2ur
Where,Vy is the nuclear modified Woods—Saxon potential
Vo (r, Ry = - Ay FILRX2) -2)
A F(O R x,a)
Vo, X anda is parameter values indicated in sectih9{1-1)
where
X 1-x
F(r,R,x,a)= (1-13)

1+exd ¢ -R)/a] iR exp (-R)/(&)

Analyses of an elastic scattering have shdwat optical potentials using a Saxon-Woods
(SW) shape are unable to reproduce details of tperanental cross sections. For light nuclei,
variants based on a (SWshape have been found useful in studies of bonddjaasi-bound.-
cluster states, as well as of low energy an elastitering. In similar analyses involving nuclei
throughout the periodic table, several authorsthaund it better to employ the mixed (SW) +
(SW) ? form [14]

X N 1-x
lvexd ¢-R)/a] 1+ exp (-R)/(@&) (II-14)
=\ fxaR)

V(r)=-V,
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Moreover, V¢ is the general Coulomb potential taken to be #wing between a uniformly
charged spherical core of radiBsand a point cluster, completely defines the corester
interaction [13].

V. =Clr r>R (1I-15-a)

3—(r/R)?

V.=C
¢ 2R

r<R (II-15-b)

lI-5. Hamiltonian diagonalisation

In order to solve the Schrédinger equation numbyieasystem of basis staﬂyi)} are needed.

We have chosen eigenstats of the isotopic harnusitiator| NIm) (see Appendix A)H is then
represented by a matrix whose elements are given by

Hy =(u[H]y) (1I-16)
where
Hy =[xy OV @oHzy | (O o @.9)r*drdO (11-17)
and R S
¥ =2 Cumt (DY (Q) (11-18)

NIm
The radial function;(N | (r)are given by (1-9) antll=2(n-1)+l.
i

If H has spherical symmetry then

. —h? d? L2
Hy=[z (Y. 0.0 Z"L{
i 11

2
20 dr zﬂrz+vN(r>+vc(r>}]zlej(r)Y.jmj(a@rdrdsz

hzlj (. +1)

—n2 dxy, j *
I I
o | T T OO I, O [ 00X,y €910

=[7,, ©
il

(11-19)
From the orthogonality of the spherical harmonics
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Yoo @0, 0.0)d0=5, 5., (11-20-)
one gets
|i=|j=|—” m=m; (||-20-b)
Hj; reduce then to (11-21)
B n* d? h L(L+1)
ij r ){2 a7t o POV
and

Piim= ZCNIZNI(r)YLm(Q) (n-22)

NIm

The harmonic oscillator basis is infinite, a truthoa is then necessary. For a giverHy, is

calculated. The upper value of N is related to esgence of calculation.

[I-6. Quantum numbers and Wildermuth condition

For simplicity we initially consider a nucle(ir ,Ar) decomposed into the single core cluster
configuration.(Z;,A)+(Z2,A2). Possible states of this system group into bawitk, each band
labelled by its value of the global quantum numB@er2N+L, whereN is the number of nodes
andL the angular momentum of a state in the band. Am exaue ofG thus corresponds to a

band of positive parity states having

L*=0%,2"4",...,G. (11-23)
The semi-classical quantization condition for ttead of a band of states characterized by a
fixed value ofG is [12]

Tdr\/i—f[ Vo (1, R)] = (G- L+1)— (11-24)

ri
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where, { and p are the two inner most classical turning pointd ans the relative mass of the
core—cluster decompositioN. is the interacting potential between the clusted the core that

depends on the relative distamcand the core radilR

The choice of the relative motida-value is guided by the Wildermuth condition ane th
spherical shell model. If we were describing thester and core nucleon orbitals by harmonic
oscillator wave functions, with a common lengthgmaeter, the minimum possible value of G
could be obtained by requiring all the cluster roak to occupy states above the Fermi surface
of the corenucleus.

For a®®®Pb core, each proton orbital would ha@g=2n,+ =5, and each neutron orbital
Gn=2n.+l,-6. A ground staté’Ne nucleus consisting of (d€0p)*? (1 s0d)® nucleons requires 28
guanta for its construction. Summing the individcialter nucleon contributions, and subtracting
Gint associated with the shell model ground state tstrecof the cluster, would then lead to a
well-defined value oG= GyZc+ Gy Ne-Gine = (10 x 5) + (14 x 6) - 28 = 106. HeZe andNc are

the numbers of protons and neutrons of the clustspectively.

A widely used approach is to chooSeas the lowest value compatible with the Wildermuth
condition, for light nuclei with N < 82 using, fexample, G = 4, 8, 12 and 16 for the ground
state bands of the plus closed core nucléBe, *Ne, **Ti and **Mo, respectively. For heavier
nuclei has been found that good fits to thdecay data require the chanyé = 2 expected on
crossing the N = 126 shell closure, but that tHece$ of the Z = 82 shell closure appear to be
weak, requiring no associated change in G. thea sbould use G = &18 for 82 < N < 126, and

G =G 20 for N> 126.

For the lowest of such bands in ke~ 150 mass region have uséd= 4A, and wheré; is
the mass number of the cluster. This prescript@wnd for the ground state band is compatible
with the treatments of the actinide nuclei, whére tluster nucleons were all outside the Z = 82,
N = 126 shells .FoAr = 230 and has been taken[15] G A;5Here the cluster nucleons are
outside the Z = 50, N = 82 shells, and so has beduace the G-value by one unit per cluster

nucleon.
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For superdeformed cluster, the systematics esigthat G values for differentbinary
clusterizations in the sanmeicleus are approximately proportionald@\,. Taking values o6 of
ground state band i*Hg, 2*U and?%u to be in the interval 14-18, 116-120 and 126140
respectively, thus has expected the value$oh superdeformed clusterizations to be in the
ranges 140-180, 312-322 and 302—- 336, respectively.

TheG values for differenbinary decompositions of differenticlei in similar considerations is
obtained here as

o, RAA, _ 08BAA, \-25)
(A+A) (A+A)"

Where Ris potential radius.
This indicates that rounding Eq. (11-25) to tiesarest even integer gives a fair approximation to
G for positive parity bands in even—even nuclei.nfrrthis consequence thus, it is possible to

obviate to treatG as an adjustable parameter.

lI-7. Electromagnetic Transition

The energies of the members of the ground btate in each of the heavy nuclei are obtained
directly by solving the Schrodinger equation, witle potential of the section 4, whose energy
separations are less than those expected fré(d & 1 ) spectrum having a constant moment of

inertia determined from the excitation energy &f #i state.

In addition to eigenenergies, the solution lné tSchrédinger equation yields radial wave
functions that may be used to calculate electrom@griransition rates. Reduced transition

strengths within the ground state band are caledlat a binary cluster model

In these applications an even-even nucleus ofgeliaand mas® is taken as consisting of a
spinless coreZ; ,A;) and spinless clusteZ{ ,A,), interacting via a central two-body interaction
V(r).

The reduced matrix elements of the electric traorsstof multipolarityA is [13]
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[ME(/I)]‘JiJf =<Jq ”ME(}“)”Ji >= (3,3, Da, <r* > (11-26)
with
f(3,,3;,4) =\/(2j‘ il +1)<Ji03f 0|40) (11-27)
T
and
o, = DA CY 2N (11-28)
(A +2y)

Zi andAi are the charge and mass of cluster and core, tesggcand an effective chargecan
be introduced by substitutirdj— Zi+€Ai, which corresponds to giving neutrons a charge of
€ eand increasing the proton charge toe()e:

The relation betwee(nJf IM(E2)| J|>and B(E2) is defined from the Wigner-Eckart theorem

(3,|M(E2)3;) = JB(E2{)(23; +1) (11-29)
We have
+ 2/1 1 2 A 2 2 24
B(E, T:.0" > 1) = 4; ai <r’>? efm (11-30)

We remove the sign and explidilependence of the matrix elements by defining
[ME)),,, =[[MEW)],,, 1 £(3,,9,.2) (11-31)

In this model has being considered both cluster @re are spinless entities, so the magnetic
dipole moment of an excited state of angular momeni is entirely due to the relative orbital
motion of the two bodies , and takes the simplatiah
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< 1 >J:|:(AI.222 +A§ Zl):| (”_32)
A A(A+ A)

whereZ; andA; are the charges and masses of cluster and core.
Using the radial wave functions obtained from swvithe Schrodinger equation to calculate
reducecE2 transition strengths between stalesdJ - 2according to the Formula

2
B(E2J, - J,) =22 (23, +1)(3,03,0[20)" <r? >2
4z

, (11-33)
15 L)L

87 (2L+1(2L-1)

Where %> is the integral of the squared cluster-core sajmar distance, multiplied by initial

and final state radial wave functions, where

QZZZZﬁfziiﬁéiii (11-34)
(A+A)°

In some cases extensi2 data are available from Coulomb excitation mezmants, and are

presented as the reduced matrix elemeditd[M(E2) |Pi> rather than aB(E2) strengths.

One consider two such states of angular momentd | aenergies, andE, , and radial wave
functionsyandy_[16] , respectively

h—Z(EL—E.){rzm.dr=[L(L+1)—I(I+1)]£mdr—£2{md—r'—zl ol (135)

The angular momentuin™ = 0%, 2", 47, . . ..
For the low angular momentum multimodal statesnvérest here, the cluster model produces
closely similar surface peaked radial wave fundion
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By replacing the first integral on the right handesof Eq. (1I-35) by unity, and neglecting the

second, we obtain

] 5 hz
ufr Jaﬂadrz—{
0

L(L+D)-1(+1) (11-36)
2

EL - E|)
so that

(11-37)

AA, 2,7, A
Z

The electric quadrupole transition strength is

2 2 \© 2
BE2- L (—ZlA 2+ 2R lerZ;(Z;(Odr
ar|l - (A+z)? f
- 42
2,2,%
~ ] e (1-38)

= 12

- lezoO 2
~— T-([ rey.xdr

Supposed closely similar radial wave functions.

BEZziV—Z{L(L-'_l)_l(I +1)}5} & fm* (11-39)
az| 2| E.-E) |[A

We note that Eq .(11-39) does not depend on theiBpdorm of V(r), as long as the potential is
common to all members of the band.
Recently has being proposed a relation betwee t{i&: 2+ — 0+) value of a nucleu@\, 2Z)

and the reduced mag®f its core—cluster relative motion. Specifically

JArB(E2)AY?
U= A&AAZ = r(OZZ) (11-40)

Which, together with the no-dipole constraint otiagon (lI-10) and a value fap enables us to

generate the required cq&,Z;) and cluste(Az,2y).
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|I-8.Application to Er isotopes
1I-8-1.Energy levels

We choose a cluster chargg then the masses,Aand A +2, which come closest to satisfying
the no-dipole constraint (see Eq(lI-10)).

We thus restrict our attention to two clusteasses for each cluster charge. Fig. (3-1,3-2,3-
3,3-4,3-5,3-6,3-7) shows the valuesxZ,, A, Z,, Ay) for the lower and higher of these two
masses .From thesis figures one can notice thet #re two maxima at,Z= 2 and 2= 6 in
158A<164 region for these two masses, in the case Axi€&shave three maxima abL=2
,Z>=6, and 4=10 for the higher of these tow masses and we heavenaxima at Z=2 and 4=10
for the lower of these tow masses. while in theec&s166 we have two maxima at=2 and
Z,=12 for the lower of these tow masses and we haweentaxima at =2 and 4=10 for the
higher of these tow masses.

In 8 Er and’® Er istopes region we have two maxima gtZand 2=12 for the higher of these
tow masses. In this work we considered for the toshester masses show tH&€ *C and“C
might be a good cluster fr°er *®Er and ®Er ,but in cluster higher masses show ffiie
*Ne >°Mg and**Mg is considered as a cluster nucleu®{&r *°° Er **® Er and*"° Er.

The studies in the rare-earth and actinide redmanwe shown thab = 4A,. This is relation has

been used in our calculations (see table 2).

The value of the potential radils is determined from the Bohr—Sommerfeld Eq(ll-2dation

by fitting the energy of a single level of the bandually the lowest state. We can then settle on
that combination oz andR that gives energy closest to the experimental vaduehe highest

known band member.

[1-8-1-1.Method of calculation

In this model both cluster and core nuclei gmless. The energies of the members of the
ground state band in each of the Er isotopes urmigsideration are obtained directly by solving
the Schrodinger equation for the required valuethefL using Numerical method, by projected
the wave function on harmonic oscillator wave fiots basics .This achieved using Jacobean

subroutine (see Appendix B) ,in this method theimum number N required for convergence
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of the calculation is 20 . The frequency parametdeken as a free parameter and its value is
adjusted through the’test .This is a straightforward improvement clustedel calculations in
which frequency parametés determined by fitting the energy of a single lewélthe band,
usually the lowest state with. For the nuclear retg8on Vy(r,R) we use a modified Woods—
Saxon potential (see Eqg. (lI-17))with standard peater fixed to the following value¥, = 540
MeV, a = 0.73 fm andx = 0.33. This, together with a Coulomb potentigl(r,R) defined by
Eq.(1I-15),( c=3.2, 2.3077213.18%j.m).

25

20+

D(AL,Z1,A2,22)(MeV)
= =
o [6,]

a
T

cluster charge

Figure 3-1.Calculations 0D(A;,Z1,A»,Z>) as a function of cluster charge f5Er. dashed line

represent cluster with lower mass number and ok represent cluster with higher mass
number .
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D(A1,Z1,A2,Z2)(MeV)

cluster charge

Figure 3-2.Calculations 0D(A1,Z1,A,Z5) as a function of cluster charge fSEr. dashed line

represent cluster with lower mass number andl $ioke represent cluster with higher mass

number .

D(A1,21,A2,22)(MeV)

cluster charge

Figure 3-3.Calculations 0D(A;,Z1,A»,Z2) as a function of cluster chargefSEr. dashed line

represent cluster with lower mass number and ok represent cluster with higher mass
number .
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D(A1,Z1,A2,Z2)(MeV)

cluster charge

Figure 3-4.Calculations 0D(A1,Z1,A,Z5) as a function of cluster charge f8Er. dashed line

represent cluster with lower mass number and $akdrepresent cluster with higher mass

number .

D(A1,21,A2,22)(MeV)

N/
v

| | | | | | | | |
2 3 4 5 6 7 8 9 10 11 12
cluster charge

Figure 3-5.Calculations 0D(A1,Z1,A2,Z5) as a function of cluster chargelﬁ?Er. dashed line

represent cluster with lower mass number and $akdrepresent cluster with higher mass

number .
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D(A1,Z1,A2,Z2)(MeV)

i \
v

| I I |
2 4 6 8 10 12 14
cluster charge

Figure 3-6.Calculations 0D(A;,Z1,A»,Z>) as a function of cluster charge f5Er. dashed line

represent cluster with lower mass number and $akdrepresent cluster with higher mass

number .

D(A1,Z1,A2,Z2)(MeV)

x
1 \ -
| I |
2 4 6 8
cluster charge

Figure 3-7.Calculations 0D(A1,Z1,A2,Z5) as a function of cluster chargefOEr. dashed line

I I
10 12 14

represent cluster with lower mass number and $akdrepresent cluster with higher mass

number .
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tendency for the spectra of a sequence of isottpdsecome more compressed as the mass
number increases.

For Er isotope the available information on egdeyels only goes up to 8n the ground state
Apart from the usual difficulties in describintget0-2* spacings fof*’Er, the lower reaches of
the spectra are well reproduced up to spins of tali6l for the **%Er and about 12 for
16016216418 Thjs problem gets progressively worse for highins, and the values for the'14
states in Er isotopes are about 0.4 MeV below teasured values. Thus The calculated energies
of the states in th&Er are now slightly overestimated, but those*¥f°?*%*'%r are much
improved, so much so, that the spectrum*f&Er represents one of the best fits we have been
able to achieve. FdP®®*&r, we find a best fits for *@*-4*- 6", spacings with measurement
values .

We find it remarkable that the properties groutadesbands can be well reproduced by a binary

cluster model with reasonable values for the twee fsarameters.

fiw)
T2
1
L B iy
1453 1536 B
B+
0o
oM [ - &
7 500
& ¥
152 1
r r
o -]
E T

Figure 4-1.Ground state band excitation energies'#r calculated (T) using®C clustefR = 5.6988 fm,
compared to experiment (E).
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Figure 4-2.Ground state band excitation energies'#r calculated (T) usingdC clustefR = 5.8878 fm,
compared to experiment (E).
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Figure 4-3.Ground state band excitation energies'fé&r calculated (T) usingdC clustefR = 5.8878 fm,
compared to experiment (E).
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Figure 4-4.Ground state band excitation energies'#&&r calculated (T) usingdC clustefR = 5.8824 fm,

compared to experiment (E).
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Figure 4-5.Ground state band excitation energies'ftr calculated (T) using@Ne clustelR = 7.7346 fm,

compared to experiment (E).
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Figure 4-6.Ground state band excitation energies'fr calculated (T) using@Ne clustelR = 7.7238 fm,
compared to experiment (E).
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Figure 4-7.Ground state band excitation energies'fer calculated (T) using®Mg clusterR = 8.3232 fm,
compared to experiment (E)
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[1-8-2.Electric quadrupole transitions
The value oB(E2) acts as a good indicator of the dominant clusielbbe employed in our
model .The transition probabili§(E2) of a nucleus (A,Z) is given in terms of the reduceskss

u of its core—cluster relative motion by followingjation

ﬂZZ 2r04

(II-41)

Where p can be assumed as a free parameter.
The experimental B(E22-0,") (in €b) can be obtained from the measured half-live of the
2;" stats as:

1 1IhQ 1
1.24<10°E° T,, B o,

B(E2=2 - Q)=

(1-42)
Where E is the £ Energy in MeV and is the total internal conversion factor.

The value of ¢ needed to obtain agreement with experimeB(@&?2) transition strengths is
typically in the range 0.885<%<0.995. Table 3 presents a comparison between #asumed
B(E2) values and those we calculate using 0.929fm for the 7 nuclei of interest to us here.

In the present analysis good agreement with exyaant is found for Z10 and 4=12, while for
2,=6 the values theory is far than experiment, simeeused three different types of clusters (see
figure 5-1 and figure 5-2).

The theoretical values of B(E2) (see figure Siigrease on average with the mass of Er
isotopes. This result from the fact that the masgeddence of B(E2) is not limited to%A

.Indeed ,the reduced magsntroduces such dependence

L= Az-(':_ A)

A(5)

To reproduce the experimental values of B(E2) omstnmtroduce a slight change invalues

(11-43)

for each Er isotope.
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The choice of cluster is guided by observationexdtic decay and the value B{E2). The
former strongly suggests a significant parentagthefemitted cluster in the ground state of the
initial nucleus. It is particularly important to teothat the large difference between BiE?2)
results for'>®Er and'®*Er can be reproduced naturally within our modehgpally through the
change in cluster charge from 6 to 12 and the ahangeduce masse.

The mass of the cluster is not so easily infervezlexpect the charge to mass ratio of the cluster

to be similar to that of the core, to avoid settipga large electric dipole moment.

7000

6000 -

5000 -

4000 -

B(E2) (€2 fm?)

3000 -

2000 -

lOOOe 1 1 1 1 1
158 160 162 164 166 168 170

mass numbers

Figure 5-1.Calculations oB(E2)as a function of mass numbers Eoristopes.
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Figure 5-2.The experimentaB(E2) as a function of mass numbersEoristopes.

Isotop E(2) TA(2") B(E2) Bn(E2)
(A2) (KeV) (s) {em’) (é fm?)
(158,68)  192.15+0.03 (277+10)4 5715+ 210 1153
(160,68) 125.8 0.1 ( 919+31G™*2 71624270 1518
(162,68) 102.04+0.03 (1.17 Q.05 11143968 1509
(164,68) 91.40+.02 (1.47 +0.03)°10 5046+108 4377
(166,68) 80.577+.007 (1.82+0.03 ’10 4164+70 4362
(168,68) 79.804+.001 (1.88 +0.02)10 4097+43 5462
(170,68) 78.68+0.17 (1.89+ 0.03°10  4182+111 6024

Table 3.B(E: 2'1—0")) in the™**"%r even-even isotops
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Chapter 111 Extension of the nucleareibmodel

[11-1.Introduction

The vibron model has been developed to providalgebraic method for treating diatomic
molecular spectroscopy. Ideed, the spectra of suabcules are dominated by a dipole degree of

freedom. The essential features of diatomic mdéscthat are not placed in an external electric

or magnetic fields can be characterized in termghefdistance vector® (collective variable)
between the two atoms. Quantization of this degfdeeedom leads to an algebraic model with
four boson operators divided into a scaawith angular momentum and parigy=0*, and

vectorp bosons with quantum numbefs=1". The group structure of this model is that of (4

[11-2.The U(4) algebra

The U(4) algebracan be realized in terms of four creation and tourfannihilation operators
b"and b . These components are associated with a vectoatmpegvith componentg,, ) and
scalar (rank-0) operatoss.

The general form of bilinear operators of U(4) algeis

G/ =b'b, (11-1)

where one uses the notation
b, =p., for n=1,...,3 and b, =s" (I-2-a)
b, =P, for n=1,...,3 and b,=s (In-2-b)

The commutation relations ef andp operators are
[pv ) p+v]:5vv (|||-3-a)

[s, §]=1 (111-3-a)

and

The bilinear operator Eq.(l11-1) is satisfy t¢4) commutation relation

[G‘ij ’GL] = GiI §jk - ij 5i| (“|‘4)

We can also define the generator of this algebeadaupled form [18]
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B (1,1 =[b xb,. 1%

= 3" (Imim| 2u)p; B, (-5
mm
where as usual p, = (-1)*“p_,andsS =s, orin compact form
B = (-0 "y, (111-6)
to ensures that the boson annihilation operatarstorm like spherical tensors.
[11-3- Chain of subalgebra of U(4)
TheU(4) Algebra has two rotationally invariant subalgebhains, namely [19]
1- U@4) o>U(R) o SUR) o SOB) o SO2) (m-7-a)
2- U (4) o SO4) o SOE) o SO(2) (IN-7-b)
[11-4.Basic operators
The linear Casimir invariar@,[U(n)] is defined as
Clumli=>.aG (111-8)
ij=1
The quadratic Casimir invaria@[U(n)] can be written
C,lU(]=>.G'G; (111-9)
i=1
The dipole and angular momentum operators are ety [17]
< _ifTnt v S + o 1@
D,=i[p"xs-s"xp], (11-10-a)
L. =2[p* < B[ (111-10-b)
A second dipole operator is also defined as
D', =[p" x5—s" x p]® (I11-10-c)

60



Chapter 111 Extension of the nucleareribmodel

The quadrupole operators is obtained as the follows

Q, =[p" xp|%. (IlI-11)
and

Q*=2>.(-1"'QQ, (In-12)

The quadratic Casimir invariant &O(4)is defined in the follows form as

2

N A 2
C,[SO4)=L +D (m-13)
The quadratic Casimir operator of SO(3) is givethasfollows

2

C,[S0R)] =L (111-14)

The number of bosons is obtained as the expectasiloe of a general one-body operator

n =S bb, (I11-15)

This gives for both bosons
n=[pxpl%  , n=[s 3] (111-16)

The total boson-number operator is given

N =3 p/p,+S'S=np+ns (11-17)
k
The Casimir invariant of)(3) is
3 AN
ClUBI=.G=2 PnPn=np (111-18)
ij=1 m

The quadratic Casimir invariant @J(3) is given by
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Chapter 111 Extension of the nucledren model

ClUBI =D ()™ PPy Py Py
=¥ )*[o" < Bl [p % Bl
=3 [p =Bl [pr = B (1-19)

1/\ 2 1/\2 /\2
=—Np +=-L +
3° 2 Q

For symmetric representation it reduces simplytén, +2 . )

The quadratic Casimir invariant bf(4) is given by

C,lU@)] =Y. (9" BAL1.B (1)
" ’ (111-20)

1/\2 1/\2 A2 A2 A2 A2
= gnp+—2(_+D+D')+Q+n;

As in the case of U(3) it reduces simplyXgN +3) .

[11-5.Thevibron modde Hamiltonian

The algebraic approach to diatomic molecules ctmsiswriting the most general Hamiltonian

with one- and two-body interactions in terms of Hifegenerators, :

H=E,+Y ehb +3e,b'bbb, (I11-21)
ij ijkl
whereEp is a constant and; andejq are parameters related to the one —and two bodgixmat
elements.

One of the advantages of the algebraic approattiaist allows one to find all possible analytic
solution to the eigenvalue problem farEq.(111-21).

The hermiticity condition and rotational invariancethe Hamiltonian substantially reduce the

number of independent parameters. We find
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Chapter 111 Extension of the nucleareibmodel

H=E,+en.te, F]p+el|:[p+ < p" | x[Bx 5] ]E)O) +e2[[p* < p* | x[Bx p]® ]f)o) N
eforx ] x[5x31°F wefs s [pxp17] + (111-22)

) _ o~ (0) 0 [~ ~ (0)
e, [[p*xs*] x[pxs](l)]o +e6[[s*><s*] x[s><s]‘°’]0

One expressing the vibron Hamiltonian Eq(llI-22)témms of the Casmir invariant operators in
the form

H=E "+ " np+€,"ns’ +6"C,[SA4)] +e,"C,[SA3)] (I11-23)
One can express the vibron Hamiltonian Eq.(lll-23)erms of the invariant operators

2 2

H = EO"+el'ﬁp+ ez'ﬂp2 +%'IA_ +e4'IS

(1n-24)
The compact U(4) algebra also indicates that pleetsa are discrete and that the numbers of the

states is finite while the non compact of this blgeindicates that the spectra are continuous .
I11-6 Dynamical symmetries

The Hamiltonian describing the boson system istamiin terms of the Casimir operators in

one of the chains, the eigenvalue problem can bedanalytically.

111-6-1.The U(3) limit

The Hamiltonians in th&J(3) symmetry limits of the vibron model can be vent in the

multipole form by takinges'=0 .

2

Hi=E,+&'np+6,'np’ +¢&,'L (111-25)
The explicit form ofU(3) sates:
[[NIn,LM ) (111-26)

whereN, n,, L, andM_ label the irreducible representationl) , U(3) , SQ3) , andSQ2) ,
respectively.
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Chapter 111 Extension of the nucledaren model

The states are eigenstates of the following opesato

N|[NIn,LM ) = N|[N]n LM )

ne|[NIn,LM, ) = n,[[N]n,LM )
. (11-27)
L

L(L+D|[N]n,LM )

Lo[[N]n, LM

)

[NIn,LM, )
)=M_|[N]n,LM )
)

Ns

[N]n,LM ) =n,

[NIn LM, )

TheU(4) o U(3) reduction rule takes the form
=01, ...N (11-28)
while the reduction rule associated wHit(8) > SQ(3) is given by
=ln,, n,-2,...,10r0 (In-29)

The HamiltoniarH; has the eigenvalues [6]

E=B+en+en+ el k) (130

A schematic example of eigenspectrum-Abe is shown in figure (l11-1)

The reduction from totally symmetric of the irrethle representation af(3) is

[N] S(N,0)®(N-1,0)®...® (L0P (0,0 (111-31)

This readuction leads only to the totally symmetifithe irreducible representation $f)3)

The U(3) Limit leads to a vibrational spectrum (harmomiscillator ) and is not of much
relevance to molecules.
[11-6-2.The SO(4) limit

The Hamiltonians in th8Q(4) symmetry limits (ll1I-7-b) of the vibron modetn be defined as

2 2

H:=E,"+&,'L +¢,'D (11-32)

In this case one can write the Hamiltonian (llI-82}he terms of Casimir operators
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6 6 6 vy
5 5 5 3
6 z
6 0
4 4 4 2
- 5 I
3 3 3 I 4 0
2 zZ 2 0
1 I
0 0

Figurelll-1.The typical eigenspectrum for U(3) limit fbi=6

— 6 1 Vg 2 z
3 0’
2 I
1 3 2 (0}
0 5
7
1 I
1 0
o 4
3
0
0 "2
0 1
0 "0

Figurelll-2.The typycal eigenspectrum for SO(4) limit fér6

65



Chapter 111 Extension of the nucledaren model

H=E+e"C[S@)]+ ¢ d S@)] (111-33)

The SQ4) limit, on the other hand, leads to a spectrumilar to that of a Morse potential and
hence it is appropriate for the description of ibation-vibration spectra of molecules.

The states in th8Q4) limit are thus characterized by the quantum bersN,  ,L andM, and
are denoted[N]dM ).

whereN, 1, L , andM, label the irreducible representationu#) , SQ4), SQ3), andSQ2),
respectively.
The operator equations defining tB€(4)

N|[NJLM ) = N|[NJeM )

(f_2+ f)z)|[N]d_M ) =2(z+2)[[N]JM )

, (111-34)
L |[NJLM ) = L(L +D|[N]eLM )
Lo|[N]AM ) =M |[[N]LM )
The number quantum is detrmined byU(4) > SQ4) branching rules
1=N,N-2,....10r0 (111-35)
The allowed values of L are obtained fr@@(4) > SQ3) branching rules
1=0,1,....,t (111-36)
The eigenenergy of the Hamiltonian Eq.(llI-33)carbpresented this way
E,=E,+€,r(r+2)+€, L(L+1) (11-37)

The eigenvalue expression (111-37) completeltiedmines the spectrum of Hamiltonid;hzis
shown in figure (IlI-2).
In its simplest form with a one-body dipole operatbe SQO4) limit corresponds to a rigid rotor

with vanishing vibrational transitions.
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Chapter 111 Extension of the nucleareibmodel

I11-7.Algebraic nuclear cluster model U (6)®U (4)

the irreducible representation 0{4) can be classified by labels] ,M, ,M: ,M4] while the
totally symmetric irreducible representation @f4) is labelled by 1 ,0,0,0]. a-particles can
treated the by incorporate them together into laigster, this assumption leads to reduces the

group structure to follow group
G=U®)®U4) (In-38)
The representation of the groGare considered with conserve the total numberebtisons
T=N+M (11-39)

N is the number of bosons in representationUfb) and M label the totally symmetric
irreducible representation dfi(4) which is be chosen equal the number of partmsons
removed to formu-clusters. For na-clustersM=0, for onea-clustersM=2, for tow a-clusters

M=4, etc. The numbe¥ andM are each conserved in any configuratiom-afusters [21].

[11-7-1.TheU(6) ® U(4) algebra

For simplicity, in this note one neglect thefeliénces between proton and neutron bosons since
this does not involve the simple phenomenologiocakterations which follow.
Discussing an algebraic treatment of tow-clustatesys, in which the eigenvalue problem is
solved by matrix diagonalization instead of by swva set of differential equations. In the
algebraic cluster model (ACM), the method of bosaquantization is used. Th&6)® U(4) Lie

algebra, spanned by operators

al, ={s",d:} forl=0,2 (11I-40)
which generate the algebraldf6) and four boson operators
b, =1{s",p;} forl=0,1 (111-41)

m

which generate the algebrald4). With commutation relations
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Chapter 111 Extension of the nucledren model

[ m? a'Ier ] = 5II'5mm
Eim !:+‘m‘]]: Laln;" ai‘m‘ ] =0 (|||-42)
[ By = o 7 )= 0

Then alla-bosons commute with thebosons. The set of 36 bilinear products of creatiod

annihilation operators spans the Lie algebrbl (@)

Ginim = A forl,I’=0,2 (I11-43)
while the 16 bilinear products
oy =bipby  forl,=0,1 (I11-44)

Spans the Lie algebra &f(4) in that casdJ(6)® U(4) algebra can be generated from the 52

bilinear products. The form of this bilinear operat

G={c*G"}
(11-45)
The bilinear operator is satisfy th€6)® U(4) commutation relation
[Gij 1G||<] = GiI 5jk _ijé‘il
(11-46)

can also define the generator of the lie algebsa@ated with this algebra .This generators will

be written as th®(3) tensors

AP =18 %1

= 3 (Imim| Au)ay, 3 (I-47)
mm
Generate the Lie algebrad{6),and
BY (1) =" xb. 1
(11-48)

= (ImI'm'| au)by by

generate the Lie algebra d{4).

The commutation relation is
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Chapter 111 Extension of the nucleareibmodel

(A @17, AN (L1 ]= S (2K +D)72 (2k+D) M2 (KKK K| KK

e e (111-49)
: . [KK'k Kk'k
() {(—1)“” {,...” . }cz.l--ﬂé“(l ,I')—{,..I., }cz.l--ﬂé“(l ,I')}

And
A% (,1,BE (" 1™)]=0 (111-50)

From this relation can determine the structure t@oris of thdJ(6)® U(4).algebra

[11-7-2The U(6) ® U(4) Hamiltonian
The Hamiltonian in th&J(6)® U(4) algebralt can be written as[22]
H=H_, +H, +H, (11-51)

H, descript the Hamiltonian in tHg(6) algebra in thes-d boson spanned for one and two-body
interactions (see Eq.(I-98)), whild, is the Hamiltonian in thé&J(4) algebra in thes-p boson
spanned for one and two-body interactions (sedIE{2)).

In general, this Hamiltonian must be diagonalinremerically .there are however simple cases
for which the problem can be solved analytically.
Hap are the interactions betwearbosons and-bosons. which is obtained by the fallow relation.

In the Hy, is no one —body interaction. All interactiong,M/hich are n-body with n-odd vanish.
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Chapter 111 Extension of the nucledren model

|ﬁ|ab—+el[[8 xs‘*]() xs](O)l(J) [[s'*xs*] [SXS](O)]ZO)
[ +[p a1 o dmw)

vl oo a7 x[pxa]” |
cafla e p P x[axpl + [ xa P [pxa | (11-52)
[s*x p*](l)x[ax ﬁ]( +[p xd” ] x[p S](l)}

+e8[s x p ]( x[3 x p‘1)+[p xS ]()x[pxs](l)](D
+‘39[[d+ ><S'+]( ' x [d X §']( +[S'*><d+]( ' [§xa](2)}(0)
0

There are, in general, nikk terms, sevehl, terms, and sevad,, terms. Many of these are not

Uz.

+e, [d+ X p*]() 5

o
X
'OI

@ PP

+e7_

important and can be eliminated in specific studassilting from dynamic symmetries.
Can rewrite the most general Hamiltonian (Ill-5dtlne terms of the generatds$6)® U(4) as

fallow .
H :Ea+Eb+ Zalm,l'm Im,I'm’ + ZbknknGEnkn

Im,I'm' Im,I'm’

+_ ZAnlmlmlm ImImGIamIm

mIm
Imlm

1 (11I-53)
+— Blkn,k'n,k"n",k"'n'"Glﬁn,k'n'Gl?"n",k"'n'"

2 Ikn,k'n,
K" k*n"

1 a
+ E Z Cm,l 'm,kn,k’ nGIm I'm' GEn,k'n
m,I'm,

kn,k'n

the Hamiltonian will be as aB(3) invariant .

[11-7-3.Dynamical symmetries

The Hamiltonian Eq.(I11-51), can be diagonalizedalgtically, in special case, this case is
obtained by introduce the concept of dynamic symiegetof the coupled system of,d) and

(s’,p) bosons.
The chains (1-95) and (llI-7-a) have a commobgsaup,SU(3) For that situation one can

coupled the chain (ll1-60-b) with chain (l1l-61-ahich is obtains th&U(3) limit .
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the dynamic symmetries of the coupled systd(6)® U(4). Described by the group chains

U,6)®U,(4) >SU,R)®U, Q) >03) >0(2 (11-54)
and

U,6)®U,(4)>U,B)®U,3>0,6/®0,(2 >0, ®0,3 203 >0(2 (IlI-55)
This has numerical solutions. And
U,(6)®U,(4)> SU,(3)® U, (3)> SU,(3® SY @B SU3p Q3p Q2 (11-56)
This is a study by analytic diagonalization of HAamian matrix in limitSU(3)
111-7-3-1. U, (5) ®U, (3) Limit
The Hamiltonian characterising theg, (5) ®U, @it (111-55), corresponds to

Hi=e, ni+a, n(n-1)+ e Arb+apArb(An:—l)+

el C,ISOB)+ ¢, Gl SC)] (157
The eigenstate corresponding to this Hamiltonianlaelled by
INLIM] 0, v, L on, L M) (I11-58)
And the energy eigenvalues are given by
E, =e,ny +aygng(ny - +e,n +a,n (n,-Y+€,v(v+3)+€,L(L+]) (111-59)

Each vibrational state,=0,1,2... is split in deformed nuclei into bands,sthédands correspond
to different orientations of the vibrations withspect to the symmetry axis.

the casen, =1, this state splits into tow parts wik=0,-,1-.the first corresponds to vibrations
along the symmetry axis, while the seconds cormdpdo vibrations perpendicular to symmetry
axis.

[11-7-3-2.SU(3) limit

The Hamiltonian characterizing ti&J(3)limit (111-66), corresponds to

Hi=e), CIU(3]+ €, Cl SY3)+ e G S+ 'e £ S+ g [CESP (I1-60)
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Chapter 111 Extension of the nucledren model

Writing 9 generators dily(3)algebra as
Bél) (11) — [p+ % 5];1)
BY @) =2[p' x Bf =L
3+ =~
B? (L) = %[p <B? =QP

The linear Casimir invariant @f,(3) is given by thel boson number operator as
CU,Q)] = Z PmPm = Np
The eight generators &U,(3) are
L, = AY (2.2) =10[d* xd]®

and

A?(0,2)=Q,
=[d+ X S](Z)u +[ S x a](Z)u - (/_7/25 d x ~d](2)

u

And quadratic Casimir invariant &U,(3) is obtained

2

A A 2
C,[SU,(3)]1=2Q +% L
The eight generators of the combird(3) group are

CO =L, =IO <10
C® =Q, =[d* xs]? +[s' xd|”s £ W7 12)[a" xd]%. £ (v3/2]p* x |
The generators @(Q(3) are
J10[d* xd]®
The quadratic Casimir invariant 8£)3) is obtained

2

c[soE) =L

The states of)(6) ® U(4) algebra may be represented in the form [19] :

[INLIMT, (A, ) 1 (0, O3 (4, )k LM )

72

(Il-61-a)
(I11-61-b)

(I1-61-c)

(I11-62)

(I11-63)

(I11-64)

(111-65)

(I11-66)
(I11-67)

(111-68)

(I11-69)

(I11-70)
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whereN, M,(4,1)a (A,10) , L, andM_ label the irreducible representationld6) , U(4) , SU(3) ,
SUBR) SO@3) andSQ2) , respectively.r,,0), label the totally symmetric of tHeU,(3). Thek is
the SU3) > S(O3) label introduced by Verdagos .

The states|[N], M1, (2, 1) 5;(n, 0),; (4, )k; L, M L> are eigenstates of the following operators:

CLU,B[INLIM. (4 ) 5(n,0) 5 (4 1) k L M)

n, =|INLIMI (4 4)4: (N, 0)y; (A ,2)k; L M, )
CISUE)|I N.L M. (4 A 4( n,0) 5(4 1) K L M)

Clatt)=| Nl M Wt ) 0§ 0)i (A, 11)k; L M)
CISUBIL NI M. (4 4 a( 0,0) 5 (2 229 K L M)

Cly tty) =| INLIMI, (4, £2)3 (N5, 0}y (2,20 )K; L M)
CLSUIIL N.L M.(4 A3 1,0)5(4 ) k L M) o

Cl)=| INLIM, (4, ), (N, 0)ys (A, )K; L M, )
CISAI[[ N.L M (4 A 5( 30) i (A, )k LM, )

L(L+1)=|INLIML, (4, 2),5 (g, 0); (2 )K; LM, )

where

)= 22 + 2+ 2 +3(2+) (n-72)

is the eigenvalue of the quadratic Casimir invar@rsu(3).
TheUp(4) o Up(3) reduction rule takes the form

n=0,1, ...M (mn-73)
The rule which is needed for constructing the cedgtates of the limitSW3)is
2@ A0)=A+1L )@ (A-Lu+D)® (1, u-1) (1-74)

When4 or p equal to zero.

The eigenenergy &U(3) limit can be represented in this way by théofwlformula [22]

Ee1np+eanp(Np+3)+&C(Ja, Ha) +€4C (4, U esL(L+1) (1-75)
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Chapter 111 Extension of the nucledren model

The SU@) limit describes oscillations of a spherical ster (for example am-particle) in a
nucleus with axially symmetric deformation. It igeresting to compare this situation with that of
oscillation of the cluster in a spherical nucleus.

The structure of the spectrum efcluster (see Eq. (IlI-75) and fig(lll-3)) are dewks on the
angular momenta of the elementary modes of exaitdtiom which thex-cluster are built. One
expects modes with"=0",1",2,3,....in the normal configurations, td6=1" mode is absent since

it corresponds to a displacements of the centnmads. thus ,one usually truncates the angular
momentum of the normal modes to

JP=0"2"4,.... (11-76)

If the nucleus has an axially symmetric quadrupdddéormation, the coupling of additional

degrees of freedom occurs through a quadrupolergpal interaction. This interaction is of the

form
Vab = kaan 'Qb (“I-77)
where
C,[SUR)]=2QQ+3/4L.L (11-78)
and
Q = Qa + Q)
(1N-79-a)
L=L, +L, (IN-79-b)

Replacing this expression in Eq (l1I-77); one findat
3
Voo = KQu Dy (Co[SUE)] - C,[SU, @)1 - C,[SU, B)) - L Ly (111-80)

Another form of the interactio¥,y, is writing as fallows:

V,, =k, L.L (I11-81)
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E
(Mev)

(30,1)1-

(29,3)

(30,2) (33,1)1-

(35,0)0-

(34,0)

Figure 111-3.The typycal eigenspectrum for SU(3) limit fid¢=19 in (1) configuration .Bands are labelled by the
quantum numben(u)yP

[11-7-4.Transition Operators

The most general one-body electromagnetic tramsibperator in terms of creation and
annihilation operators has the form
T = Zc;‘”b* (1N-82)

aff o

These, when written in coupled tensor form, redd [6
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T = Y by xb. 1Y (111-83)
apl |’

Assuming that
b, ={s".pn.di)  (=0,1,2) (111-84)

In U(6)® U(4) model , writing the operator in term®&ndp andd as

T(E,) = as" x5] +b[d" xd]? + s x3']Q +d[ p" x P]? (111-85-a)
T(E)=a[p" x5+s"xp]{ (111-85-b)
T(M,) =a[d" xd]” +b,[p* x B’ (I11-85-c)
T(E,) =a[d x5 +s xd]? +c[d* xd]? +dj[ p* x §]? (I11-85-d)
T(M,) = ad" xd]¥ (I11-85-¢)
T(E4)=a[d x d (111-85-)

In writing Eq(111-85) thes andd bosons have positive parity, apdbosons have negative parity.
Thus, for example, the operator with multipolaritpme has positive parity and therefore

corresponds to a1l operator and thEl operator would have negative parity.

I11-8 Effect of the higher order terms
[11-8-1 Higher order termsin the Hamiltonian

In our work, we consider an SU(3) dynamical symmdtiamiltonian constructed from the
second ,third and fourth order invariant operatdrthe SU(3) o> SOQ3) basis [24]

H =H,+aC,+bC, +cQ+dA (In-86)

The basic operators used are

1> =2[p* x B’ (1-87-a)
NEY .
Qb = 7[p x B, (111-87-b)
and
A2 3 A2
C,[SUE)]=2Q + L (111-88-a)
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C; = G,[SUE)]

111-88-b
:—g\/3_5[Q><Q><Q]é°)—%[LXQXL](()O) ( )
A=[LxQxQxL]Y (11-88-c)
Q=- \E[L xQx L (111-88-d)

The operatora andQ are not diagonal in the Elliott basis. Furthermadhey do not commute.
Eigenvalues have been calculated by several metbotts numerically and analytically.
In this work will be considered high order termssiandp only. The Hamiltonians in this case
can be written in following form

H =Hg,g +aC[SUE)] +bA +cQ (11-89)
We definedH’ as following
H'=aC[SU3)]+ i\ + € (111-90)

We can considered’ as a perturbation term .Using perturbation theogycan obtain

EY =E+(p|H'|p) (11-91)
|0) = (42223 (N, 003 (A2 )7 i LM ) (11-92)
|0, =[Gt )a (0, 015 Gt )z 51 My ) (111-93)

Here the following notation is used

Q@ =[p* x p]? (111-94-a)
Q=- \E [LxQxL]? (111-94-b)
A=[LxQxQx L] (111-94-c)

One rewrites the wave functions Eq(IlI-70) as
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()0 22305, 00, @ Jig LM ) = > (@t daadaMai0,, 0L 1My £ 4 )y LMY

| At ) % lamg)x| G Q1 my)

(111-95)
The Racah factorization lemma can then be tsddctor this coupling coefficient into two
terms [25]

(s t)as 2asasMai (05,00, 1y My @t )z LM ) =

(11-96)
(M I tomy 000 Al DL i1, m| LM )

1) The effect of QO operator

Firstly we calculated the effect @@ operator. Using the definition of the coupled @pers

Q=- \/g[LxQx L]éo)

(111-97)
=— \E > {1l—u|00)(1Im2u— m/u)L,Q, L ,
we calculated the expectation value of the opes&adn a statd (0> as:
(p|Q]p)=- \/gzmu(lul— u|00)(Im2u — m{1u)(p|L,Q, L | #) (111-98)
By using the relations:
(@ILnQunbl @)= 22, o, (Pl | 21N 01| Q% 02)(2 L] ) (111-99)

and

(PID]e) = 2 (e zal aMai(,,0),0 My @ @)z LM
o
Loy a1 Ma1
b1 M1

< Aty o) Zea Vaa Mo D Dy me.I Alpg Dby ML}
()| o)y 2 d M) @,,00,0,m) 2] @,,0) 1, my)

(111-100)
wherq (A, u), )l ,m} represents the Elliott basis.
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The Elliot basis can be expanded onto the Vergbdeﬁ(/l,y), K.l ,m) [26] as follows
|(/1,p),;(,l,m>=2le|(/1,p),K,l,m> (1-101)
K

One defines the overlap integrals
(Ao, | (Rpe)o 0 m) = T, (111-102)

The scalar product of these two bases is giver2By [

(o) 1| Gtz )= X K- (@)K @)K )

=X, X O
g:' 7K 'K KK * (“I'103)
Z:XZK XZ'K
K
The Elliott basis is not orthogonal and one thusdsethe overlap integrals

<(/1’ﬂ)a7)(a’|a’ma| At)g Xala ’mal> :Z Xk %K (11-104)

We substitute Eq(I11-104) in Eq.(111-100); we @n:

<¢|L(n];)|(pl>= Z <(ﬂ"u)a'la’|a’ma;(np’o)b’Ib’mb‘ a#)%aLIMJ

<A(M o) Kot L Mo B Dy mm‘ Alpy Dy L!LML>

@
<(np 0} 1y ’mb‘ Lm‘ (nn O ’mn> Xia oXiay 5ﬂ,aﬂ,a15UaUa15KaKal5H 4 mama

(11-105)
We can define the matrix elementsldf [28]:
(g, 0)y Ly, [ L9 | (N1, 0), .1y M)
=l My 3, M) 21+ 2772((n,,0), 1| L] (0, ,0).1,)
(11-106)

The reduced matrix elements df’ are:
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Chapter 111 Extension of the nucledren model

((, 0,1, L] (M, 0),1,,) = ol #3900 n (I11-107)

Then [28]

(2 0y | L2 (1 Ol a) = (a1 oy @t 72V TG By, 8

(11-108)
Thus, with replace the Eq. (111-108) in Eq.(l1I-10%e matrix element of®’ has the following

form:
(p|Wle)= > ((Am)arZaramai (0,00, 0,.m @ w0 )i LM,
(At )2 laMa 0 DluMy| Ay 25 L M) (111-109)

<Ib My ;m| l, mo> (12+1)_l/2\/|b(|b+1 Kay X Kay 4

By using the definition of reduce matrix elemerftQ¥’

(05,00 1o Q2 (1, 00 1 1) =

(In-110)
<|bl My ;m| l, mb> 2+ 7152< nﬁ,o),|bHQ(2)H(nn,0),|n>
and the following relation
(np+3)[6(zlb(|&21)+ 3)} e
(2) _ b~ b ppl
<(np10),|bHQ H (npl , O)a'b1> (np _ Ib)(np + |b+ 3)(' bt 1)“ pT 2) (”I-lll)
(2, +3)@,+5) CUR N

We see that two case are possible:

a)-Forl, =I,-2 we can't find the square mean of the operairs

b)-Forl,, =1,

In the same way we can calculate the matrix elesnei®'?
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Chapter 111 Extension of the nucleareibmodel

PIQ2]e) = > ((Amaszarlamai (0, 0), .My @ w )iz LMY
C%’;al’la" aMa
Zarlaa a1
1M1

</1(,U, W oMy N6 DIy m!u‘ A{my DLy MLJ>

. 1/2 (1, +1) 1-112
(losmy;2,mp L, my) (2 + 7 (0, + B{G(Zb ~1)(2, + 3)} e

X X

Kaya Kay d

Using Eq.(l11-112) and Eq.(llI-109)

(0] Q]p)=- gumKa > (wi-ulog(mar mu £z d w004 M Au % LM

(Ap Dxalam, 06 Dl M| A X LMY
(A1) 1M (0,00 by oMy | Gyt )i2 s M)
(Al Dk lama 0, Qs M| 21, ¥y L M)
(Apdxalam, G Qlymy Au ¥ LMY
(i) Zap a3 (0,00 M| G 2, )75 L, M)

<|b My ;]11| ly %) B+ ﬁlelb I+ 1)

| s [ b0,
<|b m,, ,Zj,—ﬁ‘“o mﬂ> B+ B W’+ %é(zb—l)(2b+3j

(o my kUl M) @+ B2V By X aXkp 8%k 25 ka X ko a

(m-113)
By using the definition
(2.1Q%]@,) = (LM, 2u - m| LM, )(2L, +1) (0, [QP 0, ) (11-114)
we can deduce
L =L-1LL+1 (MM-115-a)
L,=L-1L,L+1 (11-115-b)
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Chapter 111 Extension of the nucledren model

i) The effect of A operator

In second we calculated the effectAaperator
This operator is defined as:

A=llx@Q L]E’O) (11-116)
= o lkmk—=m 00 (1u2m U ki 2 m U bk )M LQ Q,

Using the definition of the coupled operators wiewdated

(p[Alp) =
2 naot KMK= MO0 (12 m- 4 ki 2= m ,d.p & ifp| W LQ Qu ul9)

By using the expression of the matrix elements of Eq. (l11-109) andQ, we can get this
relation :

(I11-117)
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Chapter 111 Extension of the nucleareibmodel

(o|Alp) =

> (kmk- m0o0)(1w2m- ¢ k(22— m d, Uk m
kKn;L’i;'la’l aMa
Iy My

(@u)zalam 6,00 ,m| Au )y LM

(@ w) Ha bama 0,00 Lymy| 4 sy Jry b My

(@) o b my (0,000 my | (o )izs LMy

(@ #) o bamy 50,00 Ly my| A 4, W, b M)

(Qu)aalam 6,00, m) du )y L M)

(€@ #) 2o lama 0, ,0) by M| As 4s s ke M)

(@) Za lamy 0,00 by Mg| & 4, Mz ko M)

(@) 2as bam, 0, ,0) 1y my| &5 45 s Ly M)

(Iy My 2l my)(ly Mg s2m= g L m)( b mg 32 m ul) my( b mLyl) g
(2, + D2, 16+ D@2+ V20 6+ 1)

12 lp(Ip +1) /2 \ l,(, +1)
(3 + 770, 3ﬁe(zh,—l)(z{“ 3)} B+ D7+ {’e(zb— D@ + 3}

XKaZaXKal;(alxKaZ;( a2 XKa:I;( alXKa2,( aZXKaag aBXKg aXKa,?g a3

(In-118)
where
L=L-1L,L+1 (1N-119-a)
L,=L-2L-1L,L,+1L+ 2 (11-119-b)
L,=L-1LL L+ 1 (1N-119-c)
1ii ) The effect of C3 operator

The operator gs obtained as
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Chapter 111 Extension of the nucledren model

C,= C(SU(B»——[@ Q- V15

-0y (@ 2n( 2m2 r110§) RR. Q (11-120)

_E Sury o) me-nm L Q, L,

Slx el

Then:

(I1-121)

a) We take the first part of thes@perator in Eq. (111-121) which is defined as:

A=>"  (2u2m-u|2mQ,Q, .Q., (I1-122)
We have:

(o|Np) =2, (2uzm-u[2m)(¢|Q,Q, ,Q.0|¥)
= > (2 :-u 2)¢| Qlo)(a| Qo) e, Qule) (I1-123)

muple 2

In the same way we can obtain this following form:
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(ol Alg) =22 X (uzm- 2@ ) o Lomi(R .0 b £ )y L M)

m,u

lalama

At D lamy 0 Qg my| Ay X L My
A1) L My 0, O), by My | (ot )i, LM )

Al Db Va0, QM| A6 1, X, L, M)

Ap D lamy 06 Qlymy) A LM

(A 2) Kao Mg (0, 0), Ly Mg | @y 12, )75, M )

(o my 20k m)(L me s2m- gL (L m 2m) m

2 L0, 1,0, +1)
G g+ %’e(z -1)(2, +3)} 2 W(n"+3)[6(ﬂb—1)(2b+3)}

<
<
<
<

l,{,+1
(2+ 1y n(g"‘ %\6(2 _(1)(2)+ 3)} XiayaXkay a Xkay 2 Xkay a Xkg aXka 2

(In-124)
where
L,=L-2L-1L,L+L+2 (IN-125-a)
L=L-2L-2L,L+LL+ 2 (11-125-b)
b) We take the second part of thedperator (I11-121) which is defined as:
B= */_S[L xQx LY = */5’ (111-126)
Thus, the matrix elements @ is :
NE
(¢[Blo) = (el0lo) (11-127)
Where
L =L-1LL+1 (IN-128-a)
L,=L-1L,L+1 (11-128-b)

From Eq (111-124) and (111-127) we can write the amesquare of £bperator as
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Chapter 111 Extension of the nucledren model

(plclo)="7 ¥ (2uzm- §2m(@u)zaLomi(n.0) b € )z LW)

m,u
XalaMa
Ib,mb

(A4 Dgalamy G Dlymy| A u Xa Ly M)
(A1 ) Fa da My 16000y My | (R ot)iz LM )
(Al ko lamy G QM| A 1, ¥ Ly M)
(Apdxtam, G Qlym s ¥ LMY

(A1 Do M (0,00, 1y My | Gy 1, )50, M )

(I my s, m)(h me - gL m)( b m 2mi m)

)
/2 Ib(lb+1) 2 lb(lb+1)
g+ 1 ng+ %’6(2Ib—1)(2b+ 3)} @+ 1) (np+3){6(2|b—1)(2b+ 3)}

[, +1
Gg+ 1:)(2 nﬂ)"" %)6(2 b_( ;-)(2)_'_ 3):| XKa;(aXKa;(eﬂ.XKeyaZXKall aI.Xqu aXKg( 2
b b
V15
-2 3 (ul-u00(Mm2u- M 10( & 1 ), 20l oM, (N, 0 My @ )i LM )
um, Ky ¥a1 2 a0laMa
Ib,mb

(A#dxalam, G . Qly Wa| A X L My
(A # Dkalamy G . Qly Ma| A o L My
(@) o 1amy 0,0} 1y M| Ay 41, e, Ly M)
(A4 dxatam, 16 Qlymy s ¥ LMY

(At D lamy 16 . QlyMy| 4 4, ¥, L, M)

<|b My ;:m| l, mo> (B+ 13/2\/ lp, 1{+ 1)

. 2 \ lb(lb+1)
(I my s2-m L my) @+ T G+ %6(2|b—1)(2b+3)}

<Ib Irnb ,1—,U| lb rnb2> (lg+ f52\/ lb Ib(+1)XKa;(aXKaza1XKayeQXKag aXqu aXK}g 2

(11-129)
Thus, by Replacing Eq.(I1I-113), Eq.(IlI-118) andy.HII-129) in (111-91) we will find the
expression of(p|H'|p)and E’. We have developed the Hamiltonian of thg(33Uimits by

introduction the higher order terms. One can ugentimerical calculations using the values of
Clebsch-Gordan coefficients of so(3) and the Caowgptioefficients of su(3) and overlap integral
for finding a more accurate results .
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Chapter 111 Extension of the nucleareibmodel

[11-8-2.Higher order termsin thetransition operators

One can introduce two-body terms in the transitiparators [27]

TV = Zﬁ:C;;)ﬁb;b;byb(; (11-130)

They can be written explicitly as

Tz(,t) — Z t|(<L.)| ol .[[b*.x p+](k) x[b % b] (k) 4 gj.x ﬁ (K) A iNbx :ﬂ) (k)}iL)
K (In-131)

KL

In the nuclear vibron model we have derived the-bwedy terms in the transition operators
including only s’ and p bosons. The obtained restéin be written, using the recoupling formula,

as follows (including the one-body terms).

T =a[s <30+ | dx P+ §'8x P+ [ <1
+e[s'x s Px s g+ [ bx A"

(0)
0

(0)

+ o[ [P x P [ [px AP ]
+hy[[s7xs X[ px B+ P x o] o s B

(I11-132-a)
(0)

TP =a[pxsr $x g

+bl‘[ [P x p 2% [Px 8]0 +[ px O "B N]jo)]
+cl‘[ [P x p PPx[px8° +[ px gV« “p Nﬁz)]il)
+ dl_[ 5% s [Ox [ 9P +[p" x 3]¥x[3x § (0)]

@
u

(I11-132-b)
(€]

u

T = a[dx d19+ g px DY
+¢ [ [0 x p 1 x [px B

@
u

(I11-132-c)
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TP =a[dxs sxd + f dx B+ | opc P
+d,[ [P x p [P x [ SV +[ §x 8]9x["p 5]
+, [ xp Px[px pI? ] (111-132-d)
[ x p 1P x %8O +[s7x 87O e O]

u

(2)
u

T =afd <y

[ [ x p P x[px P (IlI-132-¢)
TZ(Ea) _ Cs[[ D’ x p+](2) x[ P< 9§ (1)+[ px '] (1)>{ B ]sz)]f)
(11-132-f)
TZ(EA) — a4[ d+ x a_lff)
+b4[ [p"x p" 7 x [Px ﬁ(Z)]r) 1132

The matrix elements are straight forward to cataiand depend only on the quantum numbers
(A,p),x andL of the combined SU(3) and O(3) groups. The higitder terms introduced in the
B(En/Mn) could also lead to better results in the reducaasition probabilities.
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General conclusion

Our work study the cluster model in Er iso®per explanation the ground state bands and
transition electromagnetic in the tow aspects tret is semi-classical aspect and the second is
algebraic aspect, we stared with semi-classica@sgsing cluster-core potential and we applied
a principle of maximum stability to determine th@shfavoured core-cluster decomposition of
Er isotopes, using the fixed parameter values lfaragse. We have provided a consistent cluster
model description of the ground bands in Er isotop¥e have examined 7 even-even isotopes
158-17¢r using a following expressions for the clusterecpotential parameters0 = 540 MeV,
a= 073 fm andx = 0.33 and global quantum number G =x4#&nd chosen this values of the
parameters it entails to give a simultaneouslynaped description of the energies of the low-
lying positive parity states of Er isotope€omparisons of cluster-core binding energies with
corresponding liquid drop values and the peneitads| for breakup into possible cluster-core
pairs, The potential radius is fitted to the expemtal value for ground state energy. Energies
and wave functions are then obtained by numerickition of the Schrédinger equation using

harmonic oscillation base.

This approach has been shown to give a good accbihé energies and2 electromagnetic
transitions of the lowestJ ™ = 0+, 2+, 4+. .. G° bands of states. Excitation energies and E2
transition strengths (or quadrupole moments) greockiced in good agreement with experiment.
The results suggest the mode of clusterization cast®al with the ground state band. The

calculated spectra are in reasonable agreementhetavailable data.

We presented algebraic aspect This approadbased on an algebraic treatment of both
deformation and clusteringescribed by the group U(6), and the group U(4peeBvely the
group U(6), that is describe the collective quadtepexcitations and by group U(4) which
describe the dipole degree of freedom. The U(6elalg admits three dynamic symmetries,
described by and U(4) algebra admits two dynamiorsgtries, described by the group chains.

the resultant model, U(& U(4), is suited for applications to a large variet nuclei.
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We discuss a particular limit of this model, SU(8)is limit corresponds to an harmonic
vibrations of the cluster in an axially deformedclews. We can solved this limit by using
analytically methods and derive analytic formulas énergies, and electromagnetic transition.
The analytic expressions for energy levels havenbesproduced in good agreement with
experiment by several authors that clarify the aflelustering in nuclei. In the finals we study

the effects of the high order in the HamiltoniarSaf(3) limit and electromagnetic transition .
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Appendix A
The eigenfunctions of the tridimensional isotropic harmonic oscillator
The Hamiltonian for the three-dimensional, sphéisrceymmetric harmonic oscillator is of

the form

2 2
H=—l g2 072 (A-1)
2m 2

We solve the stationary Schrédinger equation
|_IWnI = EnIWnI (A'Z)
(i) Using a Cartesian basis we have
u@r)=-U +ico2(x2 +y°+ 29
° 2m (A-3)

The three (X, y,z) specific one-dimensional ostli@igenvalue equations become

d> 2m u, 1 _, B A
|:&+?(E1+?——2rm) )(2)}01(&—0 (A 4 a)
d> 2m u, 1 B A
|:W+?(E2+?——2myzj:|(ﬁl(»—o (A4b)
d®>  2m U, 1, B "
|:d—ZZ+F(E3+?——2nY0 szj|(01(e—o (A 4 C)
with
E=E+E+E (A-5)
The three eigenvalues are then
1, U, e
E1=7’760(nl+§)—? A-6-a)
_ L. Y% (A-6-b)
Ez—ha)(nz"'z) 3
1, U,
E3=h60(r5+§)—? -BAC)
or
(A-7)

E:ha)(NJrg)—Uo
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(N =n+ n,+ n, with m,np,ns three positive integer numbers 0,1,...)

The wavefunctions for the one-dimensional oscitlare the Hermite polynomials,
characterized by the radial quantum numhesa

o (X)= N@xp(% xzj H, %) (V = mj (A-8)

P(X, Y, D=0 (R0, ( Yo,( 3 (A-9)

N1 N> N3 are normalization coefficients.

(i) In spherical coordinates, n, | are quantum numbleasacterizing the eigenfunctions and
will have to be further specified. The Laplaciarspherical coordinates is

2 2
:8_+Eg_ L (A-10)

V2 —
o’ ra ht?

where L is the angular-momentum operator. The eigenfunstiofL’are the spherical
harmonics

L*Yim (3, 0) =1°1(L + 1)y, (8.90) (A-11)

To separate the angular and radial parts of theviavctionu,,, we try writing
r
o1 8.0) =3y, (8.) (m)

Differential equation for the radial part of the weafunction R, (r) is given by (after
droppindJ,)

{d 2m(Em+_%m2rz_ |(|+1)ﬂ R.(9=0 (AL3)

dr2+? r2

For the harmonic oscillator in spherical coordisdtee complete wave functions should be
familiar from elementary quantum mechanics; theygven by

u (r, 19,(0) = 2”*'*2 L |_|+1/2 i e[zié} y (Q) (A-l4)
b n2n+21+INz % X § "
with
/]
= |— A-15
X — ( )
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The symbolL. (x) stands for the generalized Laguerre polynomial.
The eigenenergies (A-7) are determined by the gralauantum numbemMN=2(n-1)+H and

are%(N +1)(N+ 2) fold degenerate (see table A-1).

N=2n+| n Energy Numbettiod
degenerate states
0 0 0(s) gha) 1
5
1 0 1(p) Ehw 3
7
2 1 0(s) Ehw 1 6
0 2(d) 5
3 1 1(3) gha) 3 10
0 3(f) 7
4 2 0(s) 1 16
1 2(d) 151 ha 5
0 4(9) 9

Table A-1 Spectrum of the three-dimensional harmonic osoillat
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Appendix B

Algorithm of numerical calculations of the energy levels.

nuclear modified
Woods—Saxon

Coulombpotentia

potential
V(r)=-V, X + bx
l+exd ¢ -R)/a] 1+ exp (-R)/(@)
=Vf ¢ xaR)

Centrifuge potential

Clr r>R

V. = _ 2

c C3 (r/R)
2R

\4

2 (I, +1/2y
2ur?
l,=0,2,4,..

ch =n

kinetic energy operator
-h* d?

T=—"—
2u dr

the cluster-core potential
V(r,R)=Vn(r,R)+Vc(r,R)+Vcf(r)

A\ 4
We choose a harmonic osciallator basis

|(Pi>:|NiIimi>
N, =2(n-1)+1 -l <m <|

A

The Hamiltonian is

H=T+V

y

Hi1:<u\‘H‘uJ>

The Hamiltonian Matrix elements

=iji|i (N @07y (Vim, @ @)ridrda
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Algorithm of numerical ...

Example: for N=2 we have this matrix with dimensikix 10

lop [ | sho| -shafoop [223 [2h [ 20 | 21| 22

H, 0 0 0
0 H, 0 ©

0 0 H, O

0 0 0 H,
0 0 0 0
H, 0 0 O
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

H15
0
0
0

H

© oo o og

0O 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O
0 0 0 0 O

He O O 0 O
0 H, 0 0 O
0 0 Hg 0 O
0 0 0 Hyg O
0 0 0 0 Hyl

|

Diagonalization this matrix using
Jacobi subroutine

Obtain the eigenvalues
e((L), ex(L), ..., esn(L) of H matrix that are
classified according th

We take

min(L) = Min(ey(L), ex(L), ..., esn(L))

Energy Levels of ground stat bound
E>" = enin(L=2)- &nin(L =0)
Es" = enin(L =4)- emin(L =0)
Es" = €nin(L =6)- emin(L =0)
Es" = enin(L =8)- emin(L =0)
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Appendix C
Liealgebras

C-1.D€finition

A Lie algebral is a vector space of elementdac, ..that satisfy the following condition

a) the commutator of two elements is again an aeiwithe algebra

[a,b]e L fora,be L (C-1)
b) a linear combination of two elements with thenters is again an element of the algebra

[a-a+pbc=a-[ad+B[hdforab,ce L (C-2)
c) interchanging both elements of a commutatsulte in

[a,b]=—[b & forabeL (C-3)
d) Jacobi identity has to be satisfied as follows

[a[b.c]]+[b[cd]+[ ¢[ a b]=0forab,c= L (C-4)
The commutator oh andb is defined as
[a,b]=ab-baforabe L (C-5)

Lie algebras can be represented by matrices withinesymmetry properties or by operators. If
the algebra constitutes a n-dimensional vector esff&c,a,...a,). The commutator of any two
elements is a linear combination of the elementherLie algebra

[aa]-2qa (o
D-2.LieGroups

Associated with each Lie algebra there is a Liaigrd\ set of element&,B, C . .. forms a
groupG if it satisfies the following axioms:

1)identity property

Al=IA=A (C-7)
2) closure property.
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AB=C (C-8)
3) Inverse property .
(C-9)
ATA=AAT =
4) Associatively property
(C-10)

A(BC) = (AB)C

For example, the inverse of a rotation about saxrie through an anglgs a rotation about the
same axis through an angle.—
The groups of interest to us can divided into twitecent typs :
Continuous groups whose continuous parametersasitite translation and rotation groups.
Discrete groups that are consist of discrete ojperst
The application of a group elemermg®) on a vectox=(x;,X,...,Xn) in an N-dimensional space
can be written as

X' =g(a)x=f(x,a) (C-11)
the generators of the gropis define as following
N
G=>Uf ai
S (C-12)
Where
U =-2 f(xa)
oa, a0 (C-13)

D-3.Casimir Operators
An operator which commutes with all the elementa bfe algebrag, is called an invariant, or
Casimir operatorC

[C,Xp] =0 foranyXp &g (C-14)

The operator is called of orderif it is built from products op elements
C — fal,ﬂz,ﬂs...ﬂn . .
P aza BBy (C-15)

The first order casimir invariant of the U(n) algabis given by

Cum=3G (C-16)
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And
[C,[um].G]=0 (C-17)

We may choose the basis a way that the t polyndfidl bpk+) are eigenfunctions &'
G' Py (by")|0) =wi Py ()| 0) (C-18)

The set of numbersof, w>,..., o) is called the weight of the polynomij ( b,k").
We define highest-weight polynomial by the follog relation

G' Py (by")|0)=h Py (b)|0)  fori=1,2,...n
G' Py (by,")|0)=0 i<j ,j=1,2,...n (C-19)
The degree of the polynomig}y ( bpk+) is
h+ hyt...+ h,=N (C-20)
where
h>h,>....>0 (C-21)
The irreducible representationsldfn) algebra are characterized by a Young partition
[h,h,,....h] of the integer N
the eigenvalue for LU(n)] is define as

C,[U(M]R,(B,)

0)- (z i (he h>] B(BI9 (c22)

i<j=1

The second order casimir invariant of th@) algebras is given by

C,[U(n]= ”Z; e (C-23)
Then
[C.[um].G]=0 (c20
The second order casimir invariant of ®@§) algebras is given by
,[SU(N]= ZA”A ( C-25)

IJ =1

Then
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[C,[u(n].A;]=0

One can define a highest weight polynonfdg ( bpk+) for which

A Pok (06)[0) =himes Pok (b)[0)  for melI-1,...

A Pok (byi")|0) =0 m-m’>-m
A is the irreducible representationsSfi(n) algebra
1)for SORI+1) the | numbers of the highest weight satisfy
M> ko> >h >ha 2N

and, the casimir invariant,{S5Q2l+1)] has the eigenvalue

|
> A (A+2A+1- %)
k=1
2)for S 2I+1) the | numbers of the highest weight satisfy

M2 ko> 2k > Ma>o M1 >[4

While, the casimir invariant C2[SO(2l+1)] has thgesvalue

> A (A+2-%)

|
k=1
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(C-26)
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Résume

Le développement de la physique des noyaurigt@s a souvent été accompagnée par un
echange d'idées avec d'autres domaines de la pkysap particulier avec la physique
atomique, moléculaire, la physique des particuléméntaires ; hydrodynamique .Ces deux
derrieres disciplines ont joué un réle importamgléa physique nucléaire. La formation des
clusters est un aspect fondamental de la dynandguplusieurs corps nucléaire avec la
formation de champ principal. Aspects de Clustepaapissent en abondance dans de
nombreux problemes a la fois dans la structureéaird et collisions nucléaires. L'hypothése
de base de ce modele est que les noyaux peuventdétrits en termes d'un systéme se
composants de deux noyaux, chacun avec ses ca@tgties de I'état libre; interagissant

entre eux par un potentiel local. Nous avons ti@ténodele en utilisant les aspects suivants :

Aspect semi classique:

L'hypothése de base de ce modéle est que ces npgawent étre décrit en termes d'un
systeme de deux composantes de noyaux. Nous comssdé'abord un noyau. {ZAr)
décomposé en cceur et cluster configuration, (X;) + (Z2; A.), chacune avec ses
caractéristiques de I'état libre; interagir par potentiel local. Cependant, beaucoup de
décomposition binaire satisfait a cette exigencgimmle. Ce choix doit se faire par référence
aux énergies de liaison de cluster et de coeue fadent noyau peut étre divisé en cluster et
le cceur qui sont a la fois doublement magiquesale sera la combinaison la plus favorisée.
Le choix approprié de décomposition de clustereetdeur d'un noyau donné est plus
important lorsque I'application du modeéle de cluatee noyau. Nous avons donc recherché

les maxima des quantités

D(liz):[BA(Zl’Ai)_BM (21’A1)]+[BAZ21A2) 'BM Zz’Az]

Dans les calculs actuels, pour chaque clusteelaions entre la charge ; &t la mass ; Aet
A, + 2; qui se rapprochent le plus de satisfairetié@ e®ntrainte de non-dipble est:

é > Z_T > 22

A A A+2




Les énergies et fonctions d'ondes de mouvemaatifrebnt obtenues par la résolution

I'équation de Schrodinger

—n2d%y, s 72L(L +1)

2u dr? 2,ut’2 +V () +Ve (r) |z (N =E z. (1)

Les états possibles de ce systeme se assemibiéndes, chaque bande indiquer par sa
valeur de nombre quantique global G + L = 2N, oadille nombre de noeuds et L le moment
cinétique de l'état dans la bande. Une méme valeu® correspond donc a une bande des

états de partie positive.

En application nous chosions les isotopes de Ens@a modele les deux cluster et coeur sont
spinless. Les énergies des états fondamentaux mte bdans chacune des isotopes de Er
étudier sont obtenus directement par la résolufier’équation de Schrodinger en utilisant

une Méthode numérique, par projection la fonctimmde d’'un systeme sur la base fonctions
d’onde de I'oscillateur harmonique en utilisanpdegramme de Fortran. Nous avons obtenu

une bonne concordance entre le résultat théoatjagpérimentale.

Aspect algébrique:

Il y'a des phénoménes dans le noyau qui ne pe@enfacilement décrits par le modéle de
couche ou le modéle collectif. Pour les descrifgioas phénomeénes, un troisieme modéle a
éte présente, c’est le modele de cluster. Ce madgletilisé pour étudier les noyaux comme
état des structures moléculaires. Dans les apigiiataux noyaux lourds, I'un des deux
clusters ou les deux peuvent se déformer. Ceciigomplun couplage des degrés de liberté
d’'un dipble avec le quadrupole. Dans cette panibels utilisons les algebres U (4) et U (6)
Nous pouvons traiter les particules par intégrer les deux en grand clu&erintégrant les
deux o dans un grand cluster), cette hypothese condtédaire la structure du groupe au

groupe suivant



G=U(6)®U @)

Nous discutons un traitement algébrique des systéde deux clusters, dans lequel le
probleme de la valeur propre est résolu par lactialisation de la matrice au lieu de résoudre
un ensemble d'équations différentielles. Dans ledat® cluster algébriques (ACM), la
méthode de quantification des bosonic est utilitkéeU (6) ® U (4) Lie algebre, étudié par
lesopérateurs.

Le Hamiltonien de I'algebres U (6) U (4). peut étre écrite comme

H=H,+H,+H_
Ha : Hamiltonien de I'algébre U (6) dans boson sala#iné pour une ou deux corps, :H
Hamiltonien de l'algébre U (4) dans s,p boson nmé&epaur une ou deux corps interactions.
Cette Hamiltoniens, peut étre diagonalisé analgigent, dans certains cas, cette travail est
obtenu par introduire la notion de symétries dympmidu systeme couplé de (s, d) et (s ", p)
bosons.

Nous avons présenté ici taclustering SU (3) limite, Cette limite correspoadune
harmonique vibration du cluster dans une déforma@aiale en noyau, nous pouvons
résoudre cette limite en utilisant les méthodes  lytigaes.

La structure du spectre de taclusters sont dépend du moment angulaire des modes

d'excitation élémentaire a partir des laquellasketusters sont construits



Abstract

The clustering phenomenon is field of researcimuclear physics. the cluster model that
reduces many bodies problem to a tow bodies ormykras microscopic cluster model, has
been applied to the structure (energy levels an&2B( of ™*'"%r isotopes. The
corresponding Schrodinger equation has been satuederically after a projection on a
harmonic oscillation basis. On the other hand,xdarsion of the SU(3) limit of the algebraic
cluster model (the nuclear vibron model) has besived.

Resume

Le phénomene du clustering est un nouveau chanmpaterche en physique nucléaire. Le
modeéle du clustering, un modéle qui réduit le systéle plusieurs corps a celui deux corps,
connu sous le nom « le modéle du clustering micqasgeie » a été appliqué a la structure des
isotopes™® " Er (les niveaux d'énergie et B(E2)). L'équationSehrodinger correspondante
été résolu numeériqguement aprés la projection surake de l'oscillateur harmonique. Par
ailleurs, une extension de la limite SU(3) du medallgébrique du clustering (le modéle du
vibron nucléaire) a été dérivée.
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