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ABSTRACT

Fluid dynamics play a vital role in our understanding of the universe, where

the fluid forces and theories control the largest range of astrophysical phenomena.

Each type of flow we observe in terrestrial environments appears in the cosmos

but with a huge scale. Recently, the research area of astrophysical hydrodynamics

has rapidly developed due to the progress of observational data and numerical

simulations by powerful computer resources.

The purpose of this magister thesis is to present some astrophysical phenom-

ena treated with hydrodynamic equations, and we provide the necessary tools to

understand their observation and evolution.

One of the most essential research topics in this domain is the accretion disks,

because they are ubiquitously found around a variety of astrophysical systems,

and they offer the opportunity to study their evolution and instabilities, for in-

stance, the wide disk around young stellar objects (YSO) is an essential stage in

the formation of stars and planets. The disk around active galactic nuclei (AGN)

determines the emitted radiation from these objects, and in the case of interact-

ing binary systems, they represent the channel for mass transfer between the two

stars. Accretion disks are formed because the infalling matter onto the central ob-

ject from the interstellar medium has a considerable angular momentum to settle

into a disk’s shape. Then, to remove this matter it must redistribute the angular



momentum by giving it up to the outer parts of the disk due to a various insta-

bilities which develop in the disk, such as magnetorotational (MRI), gravitational,

and hydrodynamical instabilities that cause turbulence in the disk. The issue of

viscosity has been historically one of the most key issues to the understanding of

accretion disk physics. In this thesis, we consider that the viscosity is generated

only under the effect of turbulent instability, without taking neither magnetic nor

gravitational field effect. Therefore, we study the structure of these disks with

introducing a parameterization of the turbulent viscosity by the ?-disk model.

In the first chapter, we will illustrate the basic equations and theories of fluid

dynamics that we will need in the study of accretion disks. A brief introduction

of relativistic fluid dynamics is then give, with the computational codes which can

be use to solve the relativistic hydrodynamical problems in astrophysics.

The second chapter is an overview of the basic dynamics and fundamental

equations that determine the evolution of accretion disks. This is an essential

first step needed to embark on the discussion of the more complex phenomena

associated with them. Also, it represents the beginning of the study by the case

of Keplerian disks with constant viscosity.

The focus of the third chapter is on the study of steady state solution of both

thin and thick disks, where we applied the equations of the first case to disk around

a white dwarf, in order to get more information about their properties in this case.

In the last chapter, we have used the concept of turbulent viscosity to treat

time-dependent solutions for thin accretion disks, which allows us to understand
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their evolution with time.
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CHAPTER 1

Elements of fluid dynamics

Fluid dynamics play an important role in our understanding of the wide uni-

verse, from the stars, interstellar medium, intergalactic medium, internal structure

of giant planets, jets, stellar winds, to accretion disks. To identify the dynami-

cal behaviour of fluids, we need to have a set of five equations of conservation;

the mass conservation, the three compenents of momentum conservation and the

energy equation.

These fundamental equations derived by considering the fluid as a continu-

ous medium, the macroscopic description, which is realized when the macroscopic

length scale L of the system is very large compared to the mean free path λ of the

particles; L≫ λ .

In this thesis, the equations of conservation are written with the Eulerian

description, where the fluid properties vary in time at a fixed spatial position, as if

we observe a fixed point in space as time proceeds. The Eulerian time-derivative

of any measurable quantity f is ∂f/∂t evaluated with a fixed position. The other

approach which can formulate the equations of conservation is the Lagrangian

description. In this approach the fluid properties vary at a point that moves

with the fluid. The Lagrangian time-derivative of any measurable quantity f is

Df
Dt
= ∂f

∂t
+ (u.∇)f , where u is the velocity field.

In this chapter, we present some bases of fluid theory that we will need in our
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following study. We first define the principal conservation laws (mass, momentum

and energy conservation). Then, we describe two simplifying models (incompress-

ible and polytropic), they are used in our next calculations. We next define two

dimensionless numbers (Reynolds and Mach number) and the viscous forces which

play an important role in the transport of material in the disks. As turbulence

play a major role in the matter transport in accretion disks, we will describe some

fundamentals of this theory. Finally, we try to give an introduction about the

relativistic astrophysical fluids.

1.1 Conservation laws

To completely characterize the state of any fluid in motion, we need to deter-

mine five field functions which are the three components of velocity field v (r, t),

the pressure p (r, t) and the mass density ρ (r, t). Here we will write the conserva-

tion laws without mentioning the stages of their derivation, we will indicate only

the meaning of each term.

1.1.1 Conservation of mass (Continuity equation)

The continuity equation is one of the most essential conservation laws, used

in the analysis of flowing fluids. It is a differential equation form, it expresses the

mass conservation of moving fluids. The principle of this conservation law states

that the mass is neither created nor destroyed, it only changes into a different form

of matter, which means that for any control volume (Fig 1−1), the mass flow rate

entering equals the mass flow rate leaving in addition to the increase of mass in
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Figure 1.1: Fluid flow in a control volume.

this volume, and for any steady flow, the mass flow rate entering equals the mass

flow rate leaving.

The general form of the mass conservation law is

∂ρ

∂t
+
−→∇.(ρ−→v ) = 0 (1.1)

where v is the fluid velocity, the term
−→∇.(ρ−→v ) is the divergence of the mass flux

density. For steady flows, the density ρ is not a function of time and thus the

continuity equation is simplified to

−→∇.(ρ−→v ) = 0 (1.2)

1.1.2 Conservation of momentum (Navier-Stokes and Euler equations)
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The principle of momentum conservation law states that, for any control vol-

ume, the momentum is constant if there are no external forces acting on this

volume, which means that the rate of change of momentum is balanced by the

forces applied on it. There are two types of forces can affect the control volume,

body and surface or contact forces. The first are the forces that have the largest

influence on all the volume particles. The most important body force is that due

to gravity. The second forces arise due to pressure or viscous stresses, they only

affect one particular surface of the control volume.

Navier-Stokes equations express the equality between the quantity of acceler-

ation, and the external forces acting upon a unit volume. They are calculated

by the application of Newton’s second law of motion on an element of fluid, with

the assumption that the forces exerted on the fluid element are pressure, volumic

forces, gravity and viscous stresses. The general form of this equations is

ρ
∂vi
∂t
= − ∂p

∂xi
− ρvj

∂vi
∂xj

+ ρg +
∂σ

′

ij

∂xj
(1.3)

with p the pressure, g the acceleration due to gravity, σ
′

ij the viscous stress tensor

(see section 4), i represents the component and j the direction. Substituting with

expression of σ
′

ij, equation (1.3) becomes

ρ

(
∂vi
∂t
+ vj

∂vi
∂xj

)
= − ∂p

∂xi
+ρg+

∂

∂xj

{
η

(
∂vi
∂xj

+
∂vj
∂xi

− 2
3
δij

∂vk
∂xk

)}
+

∂

∂xj

(
ξ
∂vk
∂xk

)

(1.4)

where η and ξ are coefficients of viscosity. They are both functions of pressure

and temperature, but in many practical cases they may be considered as positive
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constants η > 0, ξ > 0. The vector form of this equation is

ρ

[
∂−→v
∂t

+ (−→v .−→∇ )−→v
]
= −−→∇p+ ρ−→g + η△−→v +

(
ξ +

1

3
η

)
−→∇.∇−→v (1.5)

Euler equations correspond to Navier-Stokes equations with the absence of

viscosity. They are the equations that describe the motion of inviscid fluid, given

by

ρ

[
∂−→v
∂t

+ (−→v .−→∇ )−→v
]
= −−→∇p+ ρ−→g (1.6)

Since Navier-Stokes and Euler equations are non-linear, partial and differential,

they cannot be solved exactly, so they are commonly used in computational fluid

dynamics. These equations can be simplified, a number of approximations make

them easier to solve.

1.1.3 Conservation of energy (Energy equation)

The energy equation is a partial differential equation discribes the dynamical

state of real fluid. It states that energy in a closed system cannot be created or

destroyed, it can only be changed in form, indicates that the total change in fluid

energy within the control volume equals the net thermal energy transferred, in

addition to the rate of work done by external forces, so the energy equation is

written on the form

∂

∂t

[
ρ

(
1

2
v2 + ε

)]
+ div

[
ρv

(
1

2
v2 + w

)]
= div

[
v.σ

′

]
+ ρvg − div [q] (1.7)

The left hand side of this equation represents respectively the change in total

fluid energy per unit volume plus the net transfer of energy through the control
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volume, or the flux of energy due to the simple mass transfer by the effect of the

fluid motion, where ε being the internal energy per unit mass, w being the heat

function. First term in the right hand side represents the rate of work done by the

surface forces per unit volume, that corresponds to the multiplication of velocity

with viscous stress. The second term is the rate of work done by the gravity force

per unit volume, and the last term is the net thermal energy transferred into the

control volume, where q is the heat flux density due to thermal conduction, given

as

q = −kgradT (1.8)

k is constant, called the thermal conductivity, it is always positive because the

thermal conduction causing a direct molecular transfer of energy from points of

high temperature to points of low temperature. In the case of ideal fluid, we elim-

inate the effect of viscous sterss and thermal conduction, the energy conservation

law is written

∂

∂t

(
1

2
ρv2 + ρε

)
= −div

[
ρv

(
1

2
v2 + w

)]
(1.9)

1.2 Simplifying models

1.2.1 Incompressibility

In fluid mechanics, a fluid is said to be incompressible if a volume element

is neither dilated nor compressed when moving with the flow. In other words,

the fluid moves with negligible changes in density (ρ=constant). In reality no

fluids are truly incompressible, because such fluids can have an increasing density
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through the application of sufficient pressure. This is a very useful simplifying

assumption because the treatment of incompressible flows is much easier than that

of the compressible ones.

In the incompressibility limit, the mass continuity equation is simplified to a

volume continuity equation, as follows (with ρ=constant)

−→∇ .−→v = 0 (1.10)

which gives that the divergence of velocity field is zero everywhere.

And Navier-Stokes equation becomes ( with ∇−→v = 0),

ρ

[
∂−→v
∂t

+ (−→v .−→∇ )−→v
]
= −−→∇p+ ρ−→g + η△−→v (1.11)

1.2.2 polytropic

A polytropic simplification method is to give a simple relation for the state

equation, where the name polytropic is derived from the polytropic process. This

latter is a thermodynamical reversible process, it obeys a relation used to accurately

characterize processes of compression or expansion of gases (generally regarded as

ideal gases), and in some cases, possibly liquids and solids. The polytropic relation

can be written in different forms, one of the most commonly used expression is to

give the variation of the pressure and the volume as

PV n = K (1.12)
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where P the pressure, V the volume, n the polytropic index (a real number),

and K is the polytropic constant. The index n depending on the process type,

some values of n correspond to particular states of matter, which are

•if n = 0, so P = K, it is an isobaric process (process with constant pressure).

•if n = 1, so PV = K, it is an isothermal process (process with constant

temperature).

•if n = γ, so PV γ = K, it is an adiabatic process for a perfect gas (process

with no heat transferred), where γ = Cp/Cv is the adiabatic index defined as the

ratio of specific heat at constant pressure to specific heat at constant volume.

•if n = ∞, so P
1
nV = K

1
n , it is an isochoric process (process with constant

volume).

•if n < 0, an explosion occurs.

The equation of a polytropic process can be written in a different other form

than (1.6). In stellar models, it is more appropriate to use the relation that gives

the variation of the pressure with density, which is

P = Kρ1+
1
n (1.13)

In this case the polytropic index n takes different values correspond to the nature

of the stellar object matter. for a fully ionized, degenerated and nonrelativistic

gas, n takes the value 3/2 (it is a good value for the study of the degenerate stars

cores as white dwarfs, red giant stars and giant gaseous planets), n = 3 is the case

of gas where the radiation pressure is the dominant, as stars in main sequence and

the Sun, for diatomic molecular gases, n is equal to 5/2.
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In astrophysics, this simplification method plays an important role in the study

of stellar structures, it helps to define the internal structure of stars by finding a

simple solution for the stellar density, similar to the solution which can be found

by a computational methods.

1.3 Dimensionless numbers

1.3.1 Reynolds number

The experimental study of the turbulent flow started with Reynolds expreri-

ences on the different flow regimes in pipes. He noted that the nature of the flow

depends on the fluid velocity v, its viscosity ν and the diameter d of the pipe. So,

he introduced the dimensionless number ℜ, called Reynolds number

ℜ = vd

ν
(1.14)

This dimensionless number plays the role of a control parameter because it helps to

identify the type of the flow. Laboratory experiences indicated a critical Reynolds

number ℜcr takes different values for each type of flow, ranging between 10 to

100 [Lan87]. For sufficiently small Reynolds number (ℜ < ℜcr), the flow exhibits

small instabilities (laminar case). For sufficiently large Reynolds number, the flow

becomes turbulent.

1.3.2 Mach number

The dimensionless Mach number is a flow property, it is defined as the ratio
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of the speed of an object to the sound speed in the surrounding medium, so it is

expressed as

M = v/cs (1.15)

where v is the flow velocity, and cs is the speed of sound. The Mach number is

used in the analysis of fluid flow problems where the compressibility effects and

shock waves are important. Therefore, it is important in the classification of flow

regimes in which these effects vary. According to the Mach number values, we can

classify the flow regimes in four classes, that are:

∗Subsonic regime (for M < 1), the flow velocity is lower than the speed of

sound, shock waves do not appear in the flow and the compressibility can be

ignored.

∗ Transonic regime (for M ∼ 1), the flow velocity approaches the speed of

sound, shock waves and compressibility effects begin to appear.

∗Supersonic regime (for 1 <M < 5), the flow velocity is higher than the speed

of sound. The study of shock waves be more important in this regime, they are

generated by the collision between the object surface and fluid particles, and the

compressibility effects are most important.

∗Hypersonic regime (for M > 5), the flow velocity is much higher than the

speed of sound. As flow speed increases, the gas temperature increases, which

results the ionization and dissociation of fluid molecules behind the shock waves.
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1.4 Viscous forces

To study the real fluid flow we must take into account the effect of internal

fraction (viscosity) and thermal conduction, that cause an irreversible transfer of

thermodynamical properties and lead to dissipation of the energy during the fluid

motion. Viscosity generates an irreversible transfer of momentum from regions

where the velocity is large to those where it is small. Thermal conduction induces

a thermal energy transfer from regions where the temperature is high to those

where it is low, this transfer occurs because there is a heat transfer between the

different parts of the system resulting from the nonuniform distribution of the fluid

temperature throughout its volume.

If we apply some deformations to any real fluid, they realize an internal stress

inside it. The total force acting on the whole volume of this continuous medium

is given by the integral:

∫
FidV (1.16)

where Fi is the internal stress vector. We can write the vector Fi as a divergence

of a tensor,

Fi =
∂σij
∂xj

(1.17)

σij is a symmetrical rank two tensor, called the stress tensor, which give the flux

of the i component of the momentum in the j direction, takes the following form
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[Lan87]

σij = −pδij + σ
′

ij (1.18)

The first term represents the force exerted on the fluid element due to thermal pres-

sure differentials. σ
′

ij is the viscous sterss tensor which represents the irreversible

transfer of momentum.

Such friction can occur in different fluid parts only when these parts have

different velocities. If the gradients are small, we can suppose that σ
′

ij depends

only on the first derivatives of the velocity. Furthermore, we suppose that the

dependence is linear. The most general explicit form of the viscous stress tensor is

[Lan87],

σ
′

ij = η

{
∂vi
∂xj

+
∂vj
∂xi

− 2
3
δij

∂vk
∂xk

}
+ ξδij

∂vk
∂xk

where η [g.cm−1.s−1] is called shear or dynamic viscosity, represents the resistance

of a fluid to flow. It can be expressed from the kinetic theory of gases, by

η =
1

3
ρλu (1.19)

with λ is the mean free path of the particles and u is their random velocity relative

to the mean flow. We also can define η by

η = ν ρ (1.20)

with ν [cm2.s−1] is the kinematic viscosity, given as

ν =
1

3
λu (1.21)

ξ is called second viscosity, it can be given by [Dur08]

ξ = −2
3
η (1.22)
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Figure 1.2: The velocity fluctuation at a point in turbulent flow.

This viscosity related with the internal degrees of freedom of molecules in the fluid.

Therefore, ξ is zero for the perfect monoatomic gases.

1.5 Turbulence theory

Turbulence is a property of flows, not that of fluids. Therefore, the fluid flow

can occur in two different types which are:

-Laminar flow or streamline; where the fluid moves in straight paths with an

orderly and slowly motion. In this flow type, the viscous forces are dominant

enough to keep all the fluid particles in parallel adjoining layers and move with

constant properties (velocity, pressure,..) at each point as time passes.

-Turbulent flow ; where the fluid flows faster and suffers irregular fluctuations,

or mixing, and the flow properties (velocity, pressure,..) are rapidly and randomly

varied in both magnitude and direction, from moment to moment (depends on the

instant of observation). (Fig 1− 2) represents the signal of velocity at a point in
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Figure 1.3: Image of Orion Nebula show the turbulent environment of a stellar

nursery consisting of stars in the earliest stages of formation, (Photo NASA/ESA).

turbulent flow, we note that the velocity component fluctuates around an average

value known by the mean velocity.

In astrophysical and cosmological situations, the turbulence plays a crucial role

by the interplay with other physical processes, like gravitation and magnetic field.

The turbulent flow is the most common type in astrophysical problems such as the

formation of the large scale structures in the universe that are the stars, where

their formation takes place in highly dense turbulent molecular clouds (Fig 1−3),

and the interaction between the interstellar turbulence and gravity is one of the

most important reasons responsible for that stellar birth. Turbulence is also very

important in the evolution of stellar structure, for which the turbulence carries the

newly produced chemical elements from the centre to the outer layer of the star,

this chemical change can influence the transport of mass, angular momentum and
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Figure 1.4: The mean and fluctuating values of a turbulent flow variable.

a further evolution of the stars. The turbulence phenomena are often observed in

many other astronomical objects such as solar corona, accretion disks, generation

of stellar winds and jets.

1.5.1 Dynamics of turbulence

Turbulent flow is strongly rotational, therefore it is characterized by the pres-

ence of a large number of superposed eddies with different sizes which are distrib-

uted randomly. So, we can distinguish tow types of eddies, large and small. One

of the most successful theories in the description of turbulent flow is Kolmogorov

Theorem, which is concerned with the characteristics of different eddies formed

during this flow, as their size and energy. With this theory, the flow is regarded

as homogeneous (all points in space have the same properties) and isotropic (the
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properties of this flow have no preferred direction). The hypothesis of this theory

is that the energy passes from large to small eddies (cascaded) and dissipates due

to the viscosity of the fluid that is important only for small eddies, and the kinetic

energy is transformed into heat.

Another important theorem gives the statistical description of turbulent flow,

is Reynolds theory, that uses the statistical or averaged properties of the flow

by the decomposition of each flow variable f in two values, the mean f and the

fluctuating value f
′

as in (Fig 1 − 4). By the application of this theory, we find

a new set of fluid equations that are simpler to resolve the problem of turbulence

theory.

1.6 Relativistic fluid dynamics

Relativistic fluid dynamics has a wide field of use in modelling the modern

astrophysical problems, that failed to be treated by the classical theory, such as

the topic of the collisions of heavy nuclei, the collapse of stellar cores during the

supernovae and cosmology, and without forgetting its crucial role in modelling the

jets emerging from the active galactic nuclei and the gamma ray burst sources.

Here, we just provide an introduction about this theory and its importance.

This theory has a great importance because it includes various terms which

are completely neglected in the classical case, it describes the motion of relativistic

fluids, and as we said for classical fluid dynamics, the relativistic fluid theory also

needs five dependent functions to describe this state, which refer to points in a

four-dimensional continuum spacetime. This theory is based on the geometry of
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the spacetime and described by the metric, which is denoted by gµν = gνµ (a

symmetric tensor). In the relativity theory, the distance between two spacetime

points along a given curve can be given as

ds2 = gµν dx
µ dxν (1.23)

where µ, ν = 0, 1, 2, 3 and x0 = t(c = 1), x1 = x, x2 = y, x3 = z. To determine the

nature of this curve, we must first determine the value of the quantity gµνV
µV ν,

where V µ is a contravariant vector <<the tangent vector to the curve>>. So, we

can consider three types: if gµνV
µV ν < 0, the curve is timelike, if gµνV

µV ν > 0,

the curve is spacelike and it is null if gµνV
µV ν = 0. In relativistic fluids, the

particles paths are described by a timelike curves.

1.6.1 Relativistic hydrodynamics equations

In relativistic fluids, the particles are still conserved and the equations that

describe their evolution are given by five conservation laws, which are

∇µ jµ = 0 (1.24)

This is the conservation law of matter current density jµ, where jµ = ρu
µ
, ρ

is the rest mass density, u
µ

the 4-velocity of the fluid and ∇µ is the covariant

derivative associated with the 4-dimensional spacetime metric, this in addition to

four equations that we get from the the conservation law of stress-energy,

∇µ T µν = 0 (1.25)
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where Tµν is a symmetric tensor exists at each event in spacetime, it contains

information about energy density, momentum density and stress. The stress-energy

tensor defines viscous fluid as

T µν = ρ (1 + ε) u
µ

uν + (P − ζθ) hµν − 2ησµν + qµuν + qνuµ (1.26)

with the scalar θ = ∇αuα, it describes the divergence of the fluid world lines, ε is

the specific internal energy, P the isotropic pressure, qµ is the energy flux vector,

hµν = uµuν+gµν is the spatial projection tensor and σµν is the spatial shear tensor

defined by

σµν =
1

2
(∇γuµ hγν +∇γuν hγµ)−

1

3
θ hµν (1.27)

In perfect fluids, the stress-energy tensor given by

Tµν = ρhu
µ

uν + pgµν

where h = 1 + ε+ P
ρ

, it is the specific enthalpy.

The previous conservation laws can be closed by Einstein equation,

Gµν = 8πTµν (1.28)

where Gµν is the Einstein tensor associated with the stress-energy tensor and

the spacetime metric, this equation is given with the use of geometrized units

G = c = 1. This equation describes the dynamics of the gravitational field in

general relativity where the left hand side represents the curvature of spacetime as

determined by the metric and the right side represents the matter-energy content

of spacetime.
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1.6.2 Computational relativistic astrophysical hydrodynamics

The theoretical framework for studying the problems of relativistic astrophys-

ical hydrodynamics is more complicated than the classical limit. Therefore, many

problems encountered in relativistic astrophysics need computational methods. In

the last 10 years, active researches in the subject of computational astrophysical

fluid dynamics have been progressed and a number of powerful numerical codes

have been developped for simulating the application of relativity theory in the as-

trophysical environment. the most popular codes in use in relativistic astrophysics

are

*Pluto: Pluto code is a Godunov-type code, it is written in C programming

language and suitable for different astrophysical applications; Newtonian, rela-

tivistic, MHD or relativistic MHD. In this code, the source terms include gravity,

rotations and optically thin radiative losses. Pluto works on non-uniform grids and

runs either on a single processor or on parallel architectures.

*ZEUS: ZEUS are several different numerical codes for astrophysical gas dy-

namics in two and three-dimensions, they adapt with UNIX operating system and

perform 2D and 3D simulations. These codes began only as a hydrodynamical

codes then they expanded to include a wide variety of problems such as MHD, rel-

ativistic hydrodynamics and radiation hydrodynamics. ZEUS can provide a good

simulation results for accretion, disks especially in the transport of angular mo-

mentum and the magnetorotational instability (MRI) , but it is difficult to apply
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them with our possibilities, because it requires a powerful computers.

*Athena: Athena is a grid-based code, it was developed primarily for magne-

tohydrodynamical simulations but it is also used in other different astrophysical

applications (HD, relativistic). This code is allowed for cartesian or cylindrical

coordinates and for static (fixed) mesh refinement, it is built mainly to study the

interstellar medium, star formation and accretion flows.



CHAPTER 2

Accretion disks

Lately, there has been a renewed interest for the study of structure and evo-

lution of accretion disks. This is partly because the most energetic sources in the

universe must necessary be powered by accretion of matter onto a central body.

Another reason for this interest is the gathering of observational data and numer-

ical simulations both have shown that the accretion disk is an inescapable part in

the life of most stars. These disks are formed around newly born stars, where they

appear as a nurseries of planets, around supermassive black holes in the nuclei of

galaxies, in stellar binary systems and in many other astronomical cases.

In this chapter, we firstly give interest to the basic aspects of these disks

and their formation mechanisms. Secondly, we clarify where we can find them

in various astrophysical objects. Then, we will try to summarize the mechanisms

of angular momentum transport which is the basic idea of most accretion disks

models. Next, we will describe the fundamental physics and equations that govern

the structure of the accretion disks, and we will discuss the standard solution of

Keplerian accretion disks with constant viscosity. Finally, we will review the basics

of the standard model based on the Shakura and Sunyaev α-prescription for the

turbulent viscosity.



22

Figure 2.1: A protostar in NGC 1333 surrounded by a giant cloud of dust and

gaz. Credit: NASA/JPL-Caltech/R. Gutermuth (Harvard-Smithsonian Center for

Astrophysic).

2.1 Prototype of accretion disks

Accretion disk is gas and dust rotating around a central celestial body, formed

from inflowing or accreting matter. This latter is pulled into the accretion disk

from the interstellar medium or other stars, and it cannot fall directly onto the

gravitating object because it has a considerable angular momentum, that forces

it into orbits around the central object. It becomes hot until its gravitational

potential energy is converted into thermal energy. Once in the disk, the matter

loses its angular momentum and it slowly becomes spirals inward to fall onto the

central body.

The accreting matter radiates energy away as infrared , visible, ultraviolet, and

X-ray light, which astronomers detect and use to study both the accretion disk
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and the central body. Accretion disk has a remarkable efficiency for converting

gravitational energy into radiation or thermal energy. In the case of neutron stars,

the conversion efficiency can exceed 10% of the equivalent rest mass energy of the

accreting matter while the maximum efficiency can be achieved by rotating black

holes; up to 30%.

2.2 Accretion process in astrophysics

2.2.1 Accretion process

In astrophysics, accretion means the infall of matter onto a celestial body due

to the gravitational attraction of this body. The accretion process is the most

effective way of extracting energy from a normal matter, this process is more

efficient source of energy than nuclear fusion.

If a particle of mass dm falls from infinity and accretes onto an accretion

disk in a circular orbit of radiu R around a star of mass M , from the centrifugal

equilibrium we get

v2dm

R
=

GMdm

R2
(2.1)

So, the accretion energy released by the particle is

dEacc = dE∞ − dER =
GMdm

R
(2.2)

The accretion luminosity is the mass accreted per time interval dt

Lacc =
dEacc
dt

=
GM

R

dm

dt
(2.3)
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As long as this luminosity results from accretion, we can write

Lacc =
GM

.

M

R
(2.4)

where
.

M [g.s−1] is the accretion rate.

2.2.2 Spherical accretion

Spherical or Bondi accretion is the simplest type of accretion flow for treating

because thermal pressure is the only force counteracting with gravity. In this case,

the star placed in a static and uniform gaseous medium accreting a mass from its

surroundings, and the angular momentum of the gas is negligible.

In general, accretion is not spherical as the disk is flattered by radiation, for

that an outward transport of angular momentum can occur.

2.2.3 Eddington luminosity and the accretion rate

The Eddington luminosity or Eddington limit is the maximum luminosity that

an object can emit without destroying itself, but there are other objects that can

exceed this limit, like gamma ray bursts, novae and supernovae. At this limit,

the outward force caused by radiation pressure is equal to the gravitation force,

this latter pulles the gas inward. But if the luminosity of a star exceeds the Ed-

dington luminosity, the radiation pressure overcomes the gravitational attraction

and pushes away the infalling matter from the accretion disk that stops the accre-

tion process, the star ejects its outer envelope like an intense stellar wind and it

becomes instable .
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Figure 2.2: Scheme shows the Eddington limit.

To calculate this limit, we consider a volume of a fully ionized hydrogen with

a steady spherical accretion, i.e, matter falling radially and uniformly onto the

volume, the gravitational force is

Fg =
GMmp
R2

(2.5)

And the force caused by radiation pressure is given by

Fr =
LσT
4πR2c

(2.6)

Where L is the luminosity of the volume and σT is the Thomson scattering cross-

section.

By equating these two forces, we find [Fra02]

Ledd =
4πGMmpc

σT
⋍ 1.3× 1038

(
M

M⊙

)
erg.s−1 (2.7)

We may also write

Ledd =
GM

.

ME

R0
(2.8)
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Figure 2.3: A protostar survives in Orion. Credit: J. Bally (U. Colorado), H.

Throop (SwRI), C.R. O’Dell (Vanderbilt U.), NASA.

Where
.

MEis the Eddington accretion rate, defined by [Bal96]

.
.

ME= 4πr0
mpc

σT
⋍ 9.5× 1011R0gs−1 (2.9)

r0 is the innermost radius.
.

ME does not mean the maximum, because there exists

no maximum on the accretion rate.

2.3 Disks in the universe

2.3.1 Protostellar and protoplanetary disks

The accretion process is an essential stage in the earliest formation of a star

as at this phase of its life, it acquires most of its mass by accretion from the

interstellar medium, where the disk is called protostellar disk. The star begins its

life as a protostar whith a mass less than 10−2M⊙ and it continues to grow while
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the matter continues to fall onto it as accretion shocks on its surface. The initial

stages of stars formation have been reviewed in various recent studies and we will

only mention the stage where the accretion process is important [Har96].

A star formation starts with a gravitational collapse of an instable and dense

mass within the molecular cloud, this mass may fragment into smaller cores to

form a rotating prostellar cores. Once the core becomes optically thick and it is

in hydrostatic equilibrium, the object now is called a protostar. The protostar is

embedded in an extended optically thick envelope, whose gas rains onto the core

with supersonic velocities. Under the effect of the magnetic field and the rotation,

the envelope disperses and reveals the accretion disk, then the central star begins

to bright and the spectrum components are seen in both visible and infrared .

Advances in telescope technology has revealed some unexpected characteristics

of both disks and young stars that were not predicted by any theoritical models .

(Fig 2 − 3) shows that the protostar drives an energetic bipolar jet into its sur-

roundings, they have already appeared very early during the 104 years of evolution

when the protostar was still obscured. The energy source of this outflow is believed

to be caused by the coupling of the helical magnetic field with the inner parts of

the circumstellar disk or with the central protostar.

Accretion disks not only play an important role in star formation, but in planet

formation as well. The protoplanetary disks are equally supposed to be the planets

formation place. In 1995, Mayor and Queloz have discovered the first extrasolar

planet. Since then, more than 400 planets have been discovered around near stars
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Figure 2.4: Artist’s conception of binary system with giant star and compact

object. Crédit: Nasa/Space Telescope Science Institute.

similar to the sun.

The planets are formed where the disk is dense enough, the dust grains lean to

be placed on one another, bonded by ices and eventually form the rocky cores of

planets. To form a gaseous giant planet such as jupiter, the core must subsequently

capture and accrete gas from the nearby disk.

2.3.2 Close binary systems

Observations show that the great majority of stars are formed in binary or

multiple systems. The formation of these systems is the usual result of a rotating

cloud core fragments during the isothermal phase of collapse [Clar01]. If the

binary system contains a sufficient massive star (M ≻ 2M⊙) [Sha73] and another

star may still be on the main sequence of stellar evolution, the primary star loses its
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stability and collapses to reach the end of its life as a compact object; white dwarf

, neutron star or black hole. When this happens, the strong gravitational field

of the compact object leads the normal star to overflow its critical equipotential

surface or Roche lobe and its matter falls onto the compact star [Fra02].

When the stars are close enough to each other, centrifugal forces become com-

parable to gravitational forces, the accreting matter begins to rotate in circular

orbits to form an accretion disk around the compact object, it gradually loses

its angular momentum by several mechanisms to spiral inward and fall onto the

compact object. We distinguish two types of interacting binary stars and they are:

Cataclysmic variables (CV)

Cataclysmic variables are a close binary systems containing a primary white

dwarf and a secondary main sequence or a red giant star. This type is characterized

with an accreting mass flowing from the secondary towards the primary and forms

an accretion disk around the white dwarf. The orbital period of these binaries

generaly varies from 80 min to 15 h. The destiny of the white dwarf depends on

the accretion rate
.
.

M :

∗ if
.

M≈ (10−11 − 10−8)M⊙yr
−1, the accreting gas accumulates on the surface

of the white dwarf where it is compressed and heated. At the surface accumulated

hydrogen layer, density and temperature rise enough so that, thermonuclear in-

teraction occurs, and it rapidly burns the hydrogen layers into helium causing the

eruption of novae.
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∗ if
.

M≈ (10−8 − 10−6)M⊙yr
−1, the accretion process continues and the star

mass closes to the Chandrasekhar mass (1.4M⊙), carbon burning begins at the

center of the star in the degenerate core and moves towards the surface. This

subsonic motion converting approximately one half of the white dwarf mass into

Iron, completely disrupts the star causing it to explode in the form of a supernova

type Ia.

∗ Up to 10−6, we can not observe the debris of the explosion because the white

dwarf is embedded in a large envelope.

X-ray binaries (XRB)

X-ray binaries are a close binary systems containing a primary neutron star or a

black hole and a secondary main sequence or a red giant star. The matter transfers

from the secondary to the primary star and forms an accretion disk around it. The

accreting matter becomes very hot and liberates gravitational potential energy up

to several tenths of its rest mass as X-rays.

XRB’s are the brightest X-ray sources in our galaxy and they are characterized

with dramatic variabilities in brightness on timescales ranging from milliseconds

to months and years; hydrogen accumulates on the surface of the primary star,

density and temperature increase and when they are high enough, explosions on

the primary star surface happen. There are two types of X-ray binaries, and the

mass of the companion star (secondary) determines the type of accretion that

occurs [Clar01].
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Figure 2.5: Hubble space telescope image shows the core of an AGN, NGC 4261.

∗ Law-mass X-ray binaries (LMXB): Involving a secondary star with a mass

smaller than or comparable to that of the sun, the accretion occurs through roche

lobe overflow.

∗ High-mass X-ray binaries (HMXB): These binaries are strong in X-rays in

which the secondary is a massive star (M � 10M⊙). The secondary of high mass

pushes its matter on the shape of a wind in the space, so a portion of it runs into

the primary star to start the accretion process around it.

2.3.3 Active galactic nucleus (AGN)

It is wide accepted now that the center of most or all galaxies hosts a super-

massive black hole (of up to some millions solar masses). The huge mass of these

objects grows, which means that galaxies are active from time to time. AGN’s
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are the brightest objects in the universe, which are prominent across the whole

electromagnetic spectrum and they often have a peak from radio to gamma-ray .

In addition to their large variability in the continum and spectral line emission,

they have enormous powerful outputs many billions of times the luminosity of our

sun (up to 1049erg/s). But as we know that the black hole emits nothing, so the

radiation from an AGN is believed to come from material heated to several million

degrees, this material close to the central black hole forms an accretion disk before

it falls into the black hole .

The modern observational technology has observed the existence of another

structure similar to the accretion disk, it is a torus of matter formed around the

disk, containing gas, dust and a debris of disrupted stars due to the close passage

from the black hole [Har06]. Radio observations of AGN’s often show powerful

jets which are extended linear beams that transport energy and particles from the

compact source to the extended regions.

2.3.4 Other astrophysical disks

In addition to the previously mentioned, there are many other examples of

accretion disks in universe.

Compact binaries

Compact binaries are a close massive binary systems, containing two compact

stellar remnants (a white dwarf, a neutron star or a black hole). Because the grav-
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Figure 2.6: Images of Black hole devours neutron star. Credit: Dana Berry/NASA.

itational field of the compact objects is so intense, the stars lose their energy while

emitting gravitational waves and spiral closer and closer together with velocities

converging the speed of light. When they sufficiently approach, tidal forces strip

the less massive companion to form an accretion disk around the more massive.

In some cases (double neutron stars binaries, black hole and white dwarf bina-

ries or black hole and neutron star binaries), the stars quickly merge (have been

proposed for the first time by Paczynski in 1986) and form a single black hole with

a torus of torn debris which is the accretion disk, where the matter rapidly accretes

onto the central black hole and produces a twin of relativistic jets out along the

rotation axis, (Fig 2− 6).

Each formation of a black hole by the coalescence of two compact objects

liberates a huge energy (∽ 1053erg.s) in the form of fireballs of a short duration

gamma-ray bursts(<2sec).

Herbig Ae/Be stars (HAEBE)
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Figure 2.7: Images show from left to right the rings of Jupiter, Uranus, Neptune

and Saturn.

HAEBE’s are pre-main sequence stars with mass of 2 to 10 solar masses and

strong hydrogen and calcium emission lines. They are fast rotators, hotter and

brighter than lower mass stars T Tauri (stars with M < 2M⊙) and live shorter

because they spend less time contracting toward the main sequence. These young

stellar objects are embedded in a massive molecular cloud of gas and dust, perhaps

arranged in a circumstellar accretion disk which associated with strong outflow of

infrared excess radiation due to free-free emission.

Planetary rings

Planetary rings are very thin rings surrounding the planets, they share some

dynamical properties with gaseous accretion disks. They compose of ice particles

ranging in size from dust to boulders of few meters in diameter. These ring systems

are present at all gas giant planets of our solar system, they exist around Jupiter,

Uranus, Neptune and Saturn, which is the only whose rings are easily visible

through telescopes. The origin of these ring systems is still controversial.
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Spiral galaxies

Since more than half of the observed galaxies are spiral, spiral galaxies are the

most common type in the univers, they be in the form of rotating disks of gas,

dust and stars. This galaxies have a complex structures with three components:

spiral arms, bulge, and halo. The spiral arms are regions of active star formation,

they are rich in gas, dust and youngest stars as blue and blue-white which make

the spiral arms extremely visible. The bulge is the nucleus of the galaxy, it is

much more dense and red in color due to the presence of many old stars in this

region as red stars, and at the very center, can be found a supermassive black hole

containing millions of times the mass of the Sun. Spiral galaxies are embedded

in an invisible and large halo of gravitating material which consists of stars, dark

matter and globular clusters of stars.

Disks of spiral galaxies are not Keplerian, they are strongly self gravitating

and the accretion processes need a long time-scales more than in stars.

Our galaxy, Milky Way, and the nearby Andromeda Galaxy, are both large

spiral galaxies. The image below left shows a nice spiral galaxy, NGC 3810, and

the right image shows Milky Way galaxy in a position allows to illustrate the

components of spiral galaxies.
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Figure 2.8: First image: NGC 3810 galaxy. Second image: Milky Way galaxy.

Credit: ESA/Hubble and NASA.

2.4 The transport of angular momentum in accretion disks

To understand the structure, stability and evolution of accretion disks, we

must understand the mechanisms which are responsible for the outward transport

of angular momentum in them. As mentioned previously, the disk matter cannot

fall directly, but it remains rotating around the central object because it has enough

angular momentum. Accretion of gas toward the central object requires physical

processes that can extract angular momentum of the rotating matter to break the

equilibrium between gravity and centrifugal force.

Naturally, the fluid viscosity could play this role. However, the calculations of

the molecular viscosity by Spitzer in 1962 show that it is too small to be impor-

tant. Other calculations show that the hydrodynamic viscosity is able to replace

the effect of molecular viscosity [Lyn74]. The first model which assumed the effect
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of turbulent viscosity in the transport of angular momentum is the phenomenolog-

ical ”alpha-viscosity prescription”, introduced by Shakura and Sunyaev [Sha73] as

known as the standard model, it gives a good estimate to the order of the viscosity

magnitude but the problem here is the unknown source of viscosity, because the

disk is expected to be turbulent, so it has a high Reynolds number, i.e, a low

molecular viscosity.

The outward transport of angular momentum can occur if the disk is subject

to internal torques (can either be gravitational or turbulent) or external torques

(can either be magnetic or tidal) [Pap95], [Bal03].

2.4.1 Magnetohydrodynamical turbulence

In the magnetized disks, when the degree of ionization is sufficient and mag-

netic coupling with gas is important, the magnetorotational instability MRI can

be much more effective to initiate and sustain magnetohydrodynamical turbulence

MHD. This latter is one of the most important ways of removing angular momen-

tum. MRI has been studied following the researchs of Balbus and Hawley [Bal96],

and since 1995 it has been considered as a possible source of transport in accre-

tion disks. if a disk obeys to the MRI, the only criterion for this instability is

(dΩ2/dr) < 0, that the angular velocity Ω of the disk decreases outwards. The

MRI is limited only if the magnetic field exceeds a certain strength or if the gas is

insufficiently ionized, this means that it may be neglected in large protoplanetary

disks.
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Figure 2.9: Numerical simulation by [Haw97], shows the developement of the MRI

in an accretion disk.

This transport mechanism appear naturally in disks that reside around com-

pact objects, where the accretion flow is hot and the ionization level is sufficient,

but this is not realized for the protoplanetary disks where the accretion flow is cold.

Actually, many researches have proved that this kind of instability is more effec-

tive in both outermost and innermost parts where the first is sufficiently ionized

by cosmic rays and the second by radiation from the central object, thus leading

to develop a ≪dead zones≫ in the disk.

2.4.2 Self-gravitating transport

The transport with self-gravitating instability is another important mecha-

nism. If the disk mass is sufficiently large compared to that of the star, gravita-
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Figure 2.10: Surface density structure of a self-gravitating disk. From [Ric06].

tional instabilities become important. Weak gravitational instability may generate

spiral density disturbances (the form of spirals is the result of differential rotation)

[Pap95], which are responsible for removing the disk matter inward and the angu-

lar momentum outward. (Fig2− 10) is a snapshot taken from an hydrodynamical

simulation of self-gravitating disks, it shows the spiral structure. The criterion

governing the importance of disk self-gravity is the Toomre criterion,

Q ≃ csk

πGΣ
(2.10)

where Σ being the mass density, k being the epicyclic frequency in the disk, defined

by the relation

k2 =
1

r3
d(R4Ω2)

dr
(2.11)

Q is a dimensionless parameter, its role is to determine whether a gaseous disk is

gravitationally unstable or not, hence
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*if Q < 1, Instability in cylindrical symmetry develops in the disk.

*if Q > 1, The disk is stable (this is the case of disks with low mass).

*if Q ≃ 1, Asymmetric instabilities appear in the disk .

this mechanism proceeds only in very massive disks such as those formed in

the earliest stages of stars formation where the disk mass is more than that of

the protostar. Over time, this instability becomes negligible because the quick

redistribution of disk matter leads to reduce its mass by the accretion onto the

central star.

2.4.3 Tidal torque

If two stars of binary system are adequately close, the orbiting companion

exerts a tidal torque to the outer layers of the disk, which leads to an outward

exchange of angular momentum from the disk rotation to the orbital motion of the

binary. Such tidally torques create spiral disturbances in the accretion disk, which

propagate inward as acoustic waves carry negative angular momentum [Liv91].

The effect of tidal waves does not only exist in interacting binary stars, but it can

be generated by objects that are formed in the disk itself, like massive planets,

satellites and the impact of Saturn’s moons on its rings. A tidal torque is pro-

portional to the object mass, whenever the object mass increases, its gravitational

attraction and its impact on the disk increase.

We finally notice, that all these mechanisms which are described above, can

interact in very complicated ways and play an essential role in the transport of
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angular momentum in accretion disks .

2.5 The basic equations of accretion disks

In this section we set up the basic equations that govern the structure of

accretion disks.

*C�������	
�� ����

Since the basic idea of most accretion disks models is to study the outward

angular momentum transport and the inward mass transport in it, the evolution of

an accretion disk is organized by two conservation laws; conservation of mass and

conservation of angular momentum. In this thesis, we adopt the assumption that

the disk is axisymmetric, i.e. ∂
∂φ
= 0 or that no quantity depends on the azimuthal

angle φ, and the z-axis is the axis of rotation and that both conservation laws are

in cylindrical polar coordinates (r, φ, z) centred on the star. So,

The continuity equation is

∂ρ

∂t
+
1

r

∂ (ρrvr)

∂r
+
∂(ρvz)

∂z
= 0 (2.12)

The Navier-Stokes equations with (ρ = costant) and geff is the effective gravity,

[Spu08] is

r : ρ

{
∂vr
∂t
+ vr

∂vr
∂r

+ vz
∂vr
∂z

−
v2φ
r

}
= −∂P

∂r
+ ρgeffr +

∂

∂r

(
η
∂vr
∂r

)

+
∂

∂z

(
η
∂vr
∂z

)
+
1

r

∂

∂r
(ηvr)− η

vr
r2

(2.13)

φ : ρ

{
∂vφ
∂t

+ vr
∂vφ
∂r

+ vz
∂vφ
∂z

+
vrvφ
r

}
= ρgeffφ +

∂

∂r

(
η
∂vφ
∂r

)

+
∂

∂z

(
η
∂vφ
∂z

)
+
1

r

∂

∂r
(ηvφ)− η

vφ
r2

(2.14)
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z : ρ

{
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

}
= −∂P

∂z
+ ρgeffz +

∂

∂r

(
η
∂vz
∂r

)

+
∂

∂z

(
η
∂vz
∂z

)
+
1

r

∂

∂r
(ηvz) (2.15)

If the disk is geometrically thin, we use only the φ-component of Navier-Stokes

equations, because the circular velocity vφ is the dominant with a small radial

velocity vr (r, t) [Cla07]. In this case the matter moves very close to the plane

z = 0 (where, z = 0 is the mid-plane of the disk), i.e. vz = 0. However, in the case

of geometrically thick accretion disks, the calculation become more complicated

because we need to use the three components of the Navier-Stokes equations.

*A������ �����
	�

The angular velocity Ω (r) is

Ω (r) =
vφ
r

(2.16)

But when the disk is Keplerian, the angular velocity becomes Ω (r) = ΩK (r).

For this approximation, the matter moves with a centrifugal force balanced with

the gravitational force, so

Ω2K r =
GM

r2
(2.17)

thus

ΩK =

(
GM

r3

) 1
2

(2.18)

where M is the mass of the accreting star and G = 6.674× 10−8cm3g−1s−2 is the

gravitation constant.
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To get the expression of the surface density we integrate the density ρ in the

vertical direction [Cla07], so

Σ =

∫
ρdz = ρH (2.19)

with Σ [g.cm−2] is the mass per unit surface area of the disk.

*D
�� 	�
������

We take the typical thickness of the disk in the z-direction H. Where for geo-

metrically thin disks is small compared to its radius; H ≪ R, and for geometrically

thick disks H ∽ R. In thin-disk approximation, H is defined by [Fra02]

H ∼= cs
( r

GM

)1/2
r ∼= cs

Ω
(2.20)

cs is the sound speed, it is given in relation of the total pressure of the disk

c2s =
P

ρ
(2.21)

The thin-disk approximation requires that the disc flow is highly supersonic be-

cause the sound speed cs is much less than the rotational velocity rΩ (r).

*V
����� 	�����

The viscous torque is the flux of angular momentum transported by viscosity

across an annulus of the disc. We consider that the disk takes the form of adjacent

annuli. Such annulus limited between inner radius r and outer radius r + ∆r,

(Fig 2 − 11), its mass is 2πrΣ.∆r and its angular momentum is 2πrΣ.∆r.r2Ω.

G (r, t) is the viscous torque of an outer annulus acting on a neighboring inner one
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Figure 2.11: Schematic view shows the disk rings and the differential viscous

torque.

at radius r, thus [Pri81]

G (r, t) = 2πr.νΣA.r (2.22)

where A is the rate of shearing defined by

A = r
dΩ

dr
(2.23)

So, equation (2.22) becomes

G (r, t) = 2πνΣr3
dΩ

dr
(2.24)

It is very important to take into account this fluid property because it is one of the

fundamental agents responsible for the redistribution of angular momentum, that

leads to spread the annuli and to transport the matter toward the smaller radii to

be accreted dy the central star.
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Since we are interested with fully ionized disks, the total pressure P is the sum

of the two quantities; gas pressure due to particles and radiation pressure due to

photons, hence

P =
ρKT

µmp
+
4σ

3c
T 4 (2.25)

where

Pgas =
ρKT

µmp
and Prad =

4σ

3c
T 4 (2.26)

K is Boltzmann’s constant, σ the Stefan Boltzmann constant, and µ the mean

molecular weight, for fully ionized cosmic matter µ ≃ 0.615. The gas pressure can

dominate over the radiation pressure except in some cases as the innermost part

of luminous disks around black holes.

*O�	
��� ���	�

The optical depth τ represents the number of interactions suffered by a photon

between the equatorial plane and the surface of the disk where will be liberated,

thus

τ = ρ H κR (ρ, T ) = Σ κR (ρ, T ) (2.27)

with κR (ρ, T ) is the Rosseland mean opacity. This relation is verified for optically

thick and thin disks, where if τ � 1, the disk is called optically thin, in this case the

photon can escape directly from the gas without a further absorption or reemission,

this a property of stellar atmosphere. While if τ ≫ 1, the disk is called optically

thick, this is a property of stellar interiors.

*R�������� ���� ����
	�
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The Rosseland mean opacity is the most widely used opacity in the study

of disks with high-temperature. The opacity determines the interaction between

matter and radiation, it is generally depends on the chemical composition of the

gas, density and temperature. Therefore, it should have the following form

κ = κ (ρ, T, chemical composition) (2.28)

Several calculations have been done to define the opacity formula, the OPAL

opacity project at Lawrence Livermore National Laboratory approximate a power-

law form which is more appropriate for use to solve the equations of disk structure,

is

κ = κ0 ρ
a T b (2.29)

where a, b, and κ0 are constants depend on the regimes of opacity. For accretion

disk around a compact star, the opacity is given by two values:

First, Thomson opacity, it represents the scattering of photons by free electrons

and holds when the temperature of the disk is T > 104K [Fra02]

κ = constant ≃ 0.34 cm2g−1 (2.30)

Second, Kramer opacity, it holds when free-free and bound-free transitions are

dominant and the temperature of the disk is below 104K, T � 104K [Fra02].

κ = 4.5× 1024ρ T−7/2 cm2g−1 (2.31)

E����� 	�������	 ����	
�� <<	�� 	������	��� ����	
��>>
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The temperature of an accretion disk is given by the relation [Fra02]

4σ

3τ
T 4 = D(r) (2.32)

with D(r) is the viscous dissipation rate per unit face area, represents the energy

flux through the faces of the disk due to the viscous torques G, so

D(r) =
G

4πr

dΩ

dr
(2.33)

4πr is the plane area of each ring, with the viscous torque in relation (2.24), we

get

D (r) =
1

2
νΣr2

(
dΩ

dr

)2
(2.34)

We consider as a particular case, the Keplerian case, so D (r) becomes

D (r) =
9

8
νΣ

GM

r3
(2.35)

and the energy transport equation is

4σ

3τ
T 4 =

9

8
νΣ

GM

r3
(2.36)

2.6 Keplerian accretion disks

We start by the study of thin Keplerian accretion disks, because it helps us to

understand the effect of viscosity on the outward transport of angular momentum,

which can be then generalised to thick disks. As we mentioned earlier that the

evolution of an accretion disk is described by the two laws of conservation (1.1) and

(1.5) in cylindrical polar coordinates (r, φ, z). In the following study, we regard
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the disk as geometrically thin, stationary and Keplerian, so the continuity equation

(2.12) becomes

∂ρ

∂t
+
1

r

∂ (ρrvr)

∂r
= 0 (2.37)

and the φ-component of Navier-Stokes equations (2.14) becomes

ρ

{
∂vφ
∂t

+ vr
∂vφ
∂r

+
vrvφ
r

}
=

∂

∂r

(
η
∂vφ
∂r

)
+

∂

∂z

(
η
∂vφ
∂z

)
+
1

r

∂

∂r
(ηvφ)−η

vφ
r2

(2.38)

where the pressure and gravitational forces do not give any contribution due to the

assumption of axisymmetry. Now, we include the surface density Σ in the above

equations by integrating in the vertical z-direction. The introduction of Σ will help

us to eliminate any z term, so equations (2.37) and (2.38) become respectively

∂Σ

∂t
+
1

r

∂

∂r
(rΣvr) = 0 (2.39)

and

Σ

(
∂vφ
∂t

+ vr
∂vφ
∂r

+
vrvφ
r

)
=

∂

∂r

(
Σν

∂vφ
∂r

)
+
1

r

∂

∂r
(Σνvφ)−

Σν vφ
r2

(2.40)

In the right hand side of the last equation,
∫
∂
∂z

(
η
∂vφ
∂z

)
dz = 0 because we suppose

that η
∂vφ
∂z

vanishes on the bottom and top surfaces of the disk [Cla07]. We now

want to combine equations (2.39) and (2.40) in such a way that we obtain one

equation for the evolution of the surface density Σ (r, t), thus

∂

∂t
(rΣvφ) +

1

r

∂

∂r

(
Σr2vφvr

)
=
1

r

∂

∂r

(
Σνr3

∂Ω

∂r

)
(2.41)

The term on the right hand side represents the torques exerted by viscous forces

on the gas. We combine the equations (2.39) and (2.41) to eliminate vr, and using
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the assumption (2.18), we get the radial velocity expression

vr =
−3
Σr

1
2

∂

∂r

(
νΣr

1
2

)
(2.42)

Substituting in (2.39) to finally give the equation

∂Σ

∂t
=
3

r

∂

∂r

[
r
1
2
∂

∂r

(
νΣr

1
2

)]
(2.43)

This equation is one of the key equations in accretion disks theory, its temporal

evolution is determined only by the kinematic viscosity ν. In general, ν is a function

of local variables in the disk, which are Σ, r, and t. So, the equation (2.43) is a

nonlinear diffusion equation for Σ, and the viscous evolution of accretion disks

depends on the behaviour of viscosity ν. This clearly emphasises the extremely

important role of viscosity.

2.6.1 The solution of Keplerian disks with constant viscosity

In order to get the first idea of viscosity effects on the angular momentum

transport, and on the disk evolution and structure, let us first consider that the

viscosity ν is constant. This assumption makes the equation (2.43) linear for Σ

and the disk consists of only one annulus.

So, with ν =constant, equation (2.43) can be solved by separation of variables.

We take Σ (r, t) = rβT (t).R(r), where β is a free parameter we choose at our

convenience. Then (2.43) becomes

T
′

(t)

T (t)
=

3ν

rβ+1 R(r)

∂

∂r

[
r
1
2
∂

∂r

(
rβ+1 R(r)

)]
= constant = −λ (2.44)
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with λ is a positive real number represents the separation constant, it defines the

decay rate of the mode.The time function solution is an exponential function, then

Σ can be written as Σ (r, t) = rβ e−λt R(r), hence

d2R(r)

dr2
+

(
2β +

3

2

)
1

r

dR(r)

dr
+ β

(
β +

1

2

)
1

r2
R(r) +

λ

3ν
R(r) = 0 (2.45)

For convenience, we choose β = −1
4

we find

d2R(r)

dr2
+
1

r

dR(r)

dr
+

(
k2 − 1

16r2

)
R(r) = 0 (2.46)

This differential equation is Bessel equation of order 1/4, with k2 = λ
3ν

, the general

solution is

R (r) = AJ1/4(kr) +BY1/4(kr) (2.47)

A and B are constants can be calculated from the boundary conditions. J1/4(kr)

is the BesselJ function of order 1/4, defined as

J1/4(kr) =
1

Γ
(
1
4
+ 1
)
(
kr

2

)
1/4

≈ r1/4 (2.48)

Y1/4(kr) the BesselY function of order 1/4, defined as

Y1/4(kr) =
−Γ

(
1
4

)

π

(
2

kr

)
1/4

≈ r−1/4 (2.49)

We take the solution with vanishing torque at r = 0, so it only remains the

BesselJ function in the solution (2.47) and the surface density form becomes

Σ (r, t) = r−
1
4 J1/4(kr) e

−3νk2t (2.50)

Now, we consider a general initial-value problem and we resolve the initial

surface density Σ (r, 0) into Bessel functions, so

Σ (r, 0) =

∫
∞

0

f(k) r−1/4 J1/4(kr) dk (2.51)
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Thus, the general solution Σ (r, t) is then found by evolving the previous relation

Σ (r, t) =

∫
∞

0

f(k) r−1/4 J1/4(kr) e
−3νk2t dk (2.52)

then, we need to use Hankel transforms, the transform pair realizes

A (r) =

∫
∞

0

a(k) Jν(kr) (kr)
1/2 dk (2.53)

a (k) =

∫
∞

0

A(r) Jν(kr) (kr)
1/2 dr (2.54)

applying this transform to the initial surface density Σ (r, 0). First, we can write

the formula (2.51) as

Σ (r, 0) = r−3/4
∫
∞

0

k−1/2 f(k) J1/4(kr) (kr)
1/2 dk (2.55)

then, the inverse relation is

f(k) = k1/2
∫
∞

0

s3/4 Σ (s, 0) J1/4(ks) (ks)
1/2 ds (2.56)

So, the general solution of Σ (r, t) can be written in the form of Green-function

solution

Σ (r, t) =

∫
∞

0

G (r, s, t) Σ (s, 0) ds (2.57)

where the Green function is given by the integral

G (r, s, t) = r−1/4s5/4
∫
∞

0

J1/4(kr) J1/4(ks)k e−3νk
2t dk (2.58)

Thus

Σ (r, t) =
r−1/4s5/4

6νt
exp

[
−r

2 + s2

12νt

]
I1/4

( rs

6νt

)
(2.59)
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Figure 2.12: The viscous evolution of the surface density Σ of a thin accretion disk

ring, for times τ = 0.064, 0.067, 0.084, 0.256.

with I1/4
(
rs
6νt

)
is the modified Bessel function. To simplify the solution we use the

two dimensionless variables x = r/s and τ = 12νts−2, equation (2.59) becomes

[Pri81],

Σ (x, τ ) =
1

τ x1/4s
exp

[
−1 + x2

τ

]
I1/4

(
2x

τ

)
(2.60)

(Fig 2− 12) shows the plot of this solution as a function of the dimensionless

radius x for a various values of the dimensionless time τ .

We can observe clearly from (Fig 2− 12) why this disk model is always called

the spreading ring. This model illustrates what can happen if the disk is under

the action of viscous forces, rather than merely accreting, it spreads both inwards

and outwards in a complex motion between the matter and angular momentum.
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The spread of the matter ring needs a characteristic timescale of order

tvisc ∽
r2

ν
(2.61)

at each radius r. This relation derived from the equation of radial velocity (2.42)

which shows that vr is of order vr ∽ ν/r, so the timescale for a radial flow is

tvisc ∽ r/vr ∽ r2/ν. tvisc gives an approximation of the time required for the

annulus of the disk to move a radial distance r.

When the particles fall and accrete onto an accretion disk, they lean to spiral

inwards by losing their energy and angular momentum. So a small amount of

matter moves outwards in order to conserve the angular momentum, this leads to

outward spreading the shape of the disk. Therefore, at late times, most of the mass

is eventually accreted and only the outermost parts of the disk move outwards.

For t → ∞, all the mass in the ring is accreted and the angular momentum is

transported to r→∞ by a negligibly small amount of mass.

2.6.2 The need for a non-constant viscosity

In the previous model, the value of the kinematic viscosity ν is unkown. We

can take values corresponding to viscosities measured for a classical fluids, i.e,

the molecular viscosity; is the viscosity due to thermal motion. The molecular

viscosity is fairly well known for many materials, it is of the order of 10−3 to

10 cm2.s−1 at the room temperature. For exemple, the molecular viscosity of

air is 1.5 × 10−1 cm2.s−1, of water 10−2 cm2.s−1, of mercury 1.2 × 10−3 cm2.s−1.

As the evolutionary models of accretion disks depend strongly on the nature of
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viscosity, so when we use the above values to give an estimate of the corresponding

viscous timescale, we find values much longer than the Hubble time; the age of

the universe τH ≈ 1.3 × 1010yr, which indicates that the magnitude of viscosity

must be much larger than the standard molecular viscosity. This latter is too

low to be responsible for the transport of angular momentum needed in observed

disks . Over several years, several modelers have adopted on a very successful

parameterization of viscosity in terms of an unknown dimensionless parameter,

called α. this prescription has been widely used, it helps us to give a good estimate

to the order of magnitude of viscosity.

2.7 The standard model ≪α-disk model≫

The standard model was proposed by Shakura and Sunyaev in 1973, it is just a

simple parameterization based on dimensional analysis of the viscosity. The basic

idea of this theory is that the hydrodynamic turbulence is the cause of an increased

turbulent viscosity in the disk. As a consequence of this assumption, we can write

the turbulent viscosity νturb from the equation (1.21) as

νturb =
1

3
lturb vturb (2.62)

with lturb and vturb are respectively the characteristic length and velocity scales of

the turbulence. However, both are unknown. The solution of this problem was

suggested by Shakura and Sunyaev, they made two assumptions:

First, the length scale equivalent to the thickness H of the disk which is the
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largest macroscopic length scale. So lturb is written as

lturb = αl H (2.63)

where αl is a constant, smaller or equal to unity.

Second, the turbulent velocity is supersonic and followed by a shock waves that

reduce the velocity and dissipate the energy, so vturb is written as

vturb = αν cs (2.64)

where αν is a constant must be smaller or equal to unity too.

Substituting the two equations (2.63) and (2.64) in the equation (2.62) to write

the basic assumption of the standard model

νturb =
1

3
αlαν cs H = αcs H (2.65)

The parameter α is the viscosity constant of Shakura and Sunyaev, α ≤ 1.

Another formalism that is sometimes used is to present the scaling of the viscous

stress as

Wrφ = α P (2.66)

with rφ being the component of the viscous sterss and P is the pressure in the

disk.



CHAPTER 3

Steady-state solutions

The stationary state does not mean that there is no flow, but it means that

the time derivatives of the fluid properties (velocity v, density ρ, temperature T ..)

vanish because these quantities remain unchanged. This state is not totally real,

but it gives results that have a good agreement with the observation. It is also an

important start in the analysis of the complex structure of accretion disks. Many

researches suggested that this approximation is verified in the inner regions of the

disk because the gas flows with a constant accretion rate.

In section 1, we describe briefly the disks structure in the steady state and

we define the equations that control this state. Then, we build a simple model

of steady and thin disk around a white dwarf in cataclysmic variable,and we try

to recognise the structure of this object from the solution of steady accretion disk

equations.

In section 2, we discuss a more complex case, the thick disks.

3.1 Steady thin disks

3.1.1 The structure of steady thin disks

To treat the stationary state of any accretion disk, we set the time-dependent

part equal to zero in conservation equations, so the stationary continuity equation
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(2.39) becomes

1

r

∂ (ρrvr)

∂r
= 0 (3.1)

Substituting the formula (2.19) in (3.1) with the integration, we get

rvrΣ = C1 (3.2)

with C1 is the integration constant, it represents the radial mass flow rate per unit

time, hence

.

M= 2πrΣ(−vr) (3.3)

The negative sign has been chosen because the radial velocity vR is negative (in-

wards direction). This definition of
.

M [g.s−1] is not only used in the stationary

case but in general definition as well, but the difference is to be a constant in

steady case.

Analogously, from the angular momentum equation (2.40), we get

Σr3Ω vR − νΣr3
dΩ

dr
= C

′

(3.4)

Then, substituting the equation (3.3), we get

−
.

M r2Ω− 2πνΣr3dΩ
dr
= 2πC

′

(3.5)

In this equation, the first term on the left-hand side represents the angular

momentum advected with the accretion process and the second term indicates

the viscous torque exerted by the star on the disk. The integration constant C
′

represents the net flux of angular momentum or the couple exerted by the star

on the inner edge of the disk. So, to determine it we need to consider an inner
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boundary condition for the disk. The constant C
′

determined by assuming that

the disk extends to connect with the central object, hence r = r∗ and dΩ
dr
= 0

(because the angular velocity Ω becomes very close to the Keplerian value ΩK),

therefore, the viscous torque vanishes, [Fra02], and equation (3.5) becomes

C
′

=
−

.

M r2∗ΩK
2π

=
−

.

M

2π
(GMr∗)

1
2 (3.6)

Substituting this into equation (3.4), we get

Σr3/2vr +
3νΣ

2
r1/2 =

−
.

M

2π
r1/2∗ (3.7)

where we set Ω = ΩK. Using (3.3) we find

νΣ =

.

M

2π

[
1− (r∗

r
)
1
2

]
(3.8)

This formula gives the linear dependence between the viscosity and the surface

density with the accretion rate, for steady disks with a slowly rotating star (where

Ω = ΩK). Although, this is an important result, there are cases where it is not

valid, when the disk does not realise the above conditions. We place now this result

in equation (2.35) to find the energy flux through the faces of the steady thin disk

D(r) =
3GM

.

M

8πr3

[
1− (r∗

r
)
1
2

]
(3.9)

This formula is independent from viscosity when the accretion rate
.

M be constant,

it is important because it uses to find the total luminosity produced by the disk.

By integrating over the whole disk surface by assuming that the disk extends to

infinity, we have the disc luminosity

Ldisk = 2

∫
∞

r∗

(2πr) D(r) dr (3.10)
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Here, we added the factor 2 because we need to calculate the luminosity produced

from both sides of the disk. Substituting the expression (3.9), we get

Ldisk =
3GM

.

M

2

[∫
∞

r∗

1

r2
dr −

∫
∞

r∗

(
r∗
r5
)
1
2dr

]
(3.11)

Hence,

Ldisk =
GM

.

M

2r∗
=
1

2
Lacc (3.12)

This result is similar to our old result in equation (2.4), where GM
.

M /r∗ is

the rate of gravitational energy loss due to the accretion process at the surface of

the star. Therefore, this equation proves that the luminosity is only half of the

potential energy and it is emitted from the disk. The rest energy remains as kinetic

energy needed to keep the disk in Keplerian rotation that is radiated after from

the boundary layer.

Finally, Let us summarize what have been found so far. Thus, we collect the

equations that describe the evolution of steady and thin accretion disks in the

following

ρ =
Σ

H
(3.13)

H =
cs
ΩK

(3.14)

c2s =
K

µmp
T (3.15)

P =
ρKT

µmp
(3.16)

4σT 4

3ΣκR
=
3GM

.

M

8πr3

[
1− (r∗

r
)
1
2

]
(3.17)

νΣ =

.

M

2π

[
1− (r∗

r
)
1
2

]
(3.18)
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3.1.2 The solutions of steady and thin α-disks

Now, we will solve the previous equations with imposing that the viscosity

given by the standard model is

ν = αHcs (3.19)

To specify our model, we need to give the form of the opacity, we utilise the analyti-

cal form of Kramer (2.31), and to simplify the calculation we set
[
1− ( r∗

r
)
1
2

]
= f4,

and 3GM
.
M

8πr3

[
1− ( r∗

r
)
1
2

]
= D. From (3.15), (3.18) and (3.19), we get the surface

density form

Σ =
(µmp
3πK

G1/2
)
α−1

.

M M1/2 r−3/2 f 4 T−1 (3.20)

and from (3.13), (3.14) and (3.15) we get the density form

ρ =
(µmp

K
G
)1/2

Σ M1/2 r−3/2 T−1/2 (3.21)

Now, we place this two forms into the equation of temperature (3.17), we get

T =

[(
3G

8π

)
3κ0
4σ

(µmp
K

G
)1/2]1/8

Σ1/4
.

M1/8 M3/16 r−9/16 f1/2 (3.22)

Then, we place this result into the equation (3.20), we obtain

Σ = A4/5 α−4/5
.

M7/10 M1/4 r−3/4 f14/5 (3.23)

where A is a constant equals to

A =
(µmp
3πK

G1/2
)[(3G

8π

)
3κ0
4σ

(µmp
K

G
)1/2]−1/8

= 4.74× 10−15 (3.24)
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Then, the other solutions followed with some calculation, we find

T = B α−1/5
.

M3/10 M1/4 r−3/4 f6/5 (3.25)

H = C α−1/10
.

M3/20 M−3/8 r9/8 f 3/5 (3.26)

ρ = D α−7/10
.

M11/20 M5/8 r−15/8 f 11/5 (3.27)

τ = E α−4/5M1/5 f4/5 (3.28)

ν = F α4/5
.

M3/10 M−1/4 r3/4 f 6/5 (3.29)

vr = −G α4/5
.

M3/10 M−1/4 r−1/4 f−14/5 (3.30)

where we use the equation (2.42) to give vr. B, C, D, E, F and G which are

constants given by

B = A−4/5
(µmp
3πK

G1/2
)
= 8.1× 10−2 (3.31)

C = A−2/5 (3π)−1/2G−1/4 = 1.08× 107 (3.32)

D =
A4/5

C
= 3.199× 10−19 (3.33)

E = κ0 A
4/5B−7/2 D = 3.66× 10−2 (3.34)

F =
A−4/5

3π
= 3.05× 1010 (3.35)

G =
A−4/5

2π
= 4.57× 1010 (3.36)

Then, we treat the time independent bihaviour of mass transferring binaries,

we apply the above equations on a white dwarf of mass M ≃ 1M⊙ and radius

r∗ ≃ 109cm, with a constant accretion rate
.

M= 5 × 1016g.s−1 coming from the

secondary star as a stream of matter. We selected these numerical values to verify
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Figure 3.1: The scale-height evolution as a function of the radius r.

our results by the comparison with [Bat81], and we chose the cataclysmic binaries

for the following reasons:

∗ Accretion process is the natural consequence of mass transfer in interact-

ing binary stars, and in most of them, the energy output at all the wavelengths

spectrum is dominated by this process.

∗ They are good candidates for testing simple ideas about thin disk approxi-

mation, because radiation pressure is unimportant.

In this case, we neglect the effect of mass-transfer-rate bursts because we con-

sider a constant accretion rate, and we also do with the tidal effect exerted by

the companion star. Taking α = 0.4 and the radius of the disk in the range

109cm − 1010cm, using these numerical values to complete steady disk solutions,
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Figure 3.2: Section in disk around a white dwarf, shows the concave shape.

hence

Σ = 7.47× 108 r−3/4
[
1−

(r∗
r

)1/2]7/10
g.cm−2 (3.37)

H = 1.24× 10−3 r9/8
[
1−

(r∗
r

)1/2]3/20
cm (3.38)

ρ = 6.02× 1011 r−15/8
[
1−

(r∗
r

)1/2]11/20
g.cm−3 (3.39)

T = 2.103× 1012 r−3/4
[
1−

(r∗
r

)1/2]3/10
K (3.40)

τ = 1.66× 102
[
1−

(r∗
r

)1/2]1/5
(3.41)

ν = 7.102× 106 r3/4
[
1−

(r∗
r

)1/2]3/10
cm2.s−1 (3.42)

vr = −1.06× 107 r−1/4
[
1−

(r∗
r

)1/2]−7/10
cm.s−1 (3.43)

Now, we represent the previous solutions by the computational software pro-

gram <<Maple>>. The evolution of some flow properties is shown schematically

in figures (3.1, 3.3, 3.5, 3.6, 3.7 and 3.8 ).
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Figure 3.3: The velocity evolution as a function of the radius r.

We note from (Fig 3− 1) that the disk thickness changes from 107 to 108cm,

and the ratio H/r as

H/r ≈ α−
1
10 r1/8 ≈ 10−2 (3.44)

This implies that H ≪ r, which supports the hypothesis that the disk is geometri-

cally thin. As well as H increases with the radius r and decreases with α, but the

decrease is more slower compared to the increase. So, we can conclude the disk

shape by using (Fig 3− 1) which displays a part of the disk form as a function of

r, the disk takes a concave shape (Fig 3− 2).

The negative sign that appears in the radial velocity equation (3.43) shows

that the particles move in the opposite direction, the inward radial direction. From

(Fig 3 − 3), we note that particles begin the movement with low radial velocity,
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Figure 3.4: Diagram shows the Roch lobe in cataclysmic variable.

but when they approach the star, they take the maximum value where they are

under the influence of gravitational field of the star and also because they lose their

angular momentum, this latter helps the particles to remain stable. Moreover, the

sound speed of this disk ranging from ∽ 16−28 km.s−1, and the Keplerian angular

velocity between 1000−2500 km.s−1, while the Mach number is M ∽ 62−89, i.e.

cs is much less than vφ and the velocity flow is Hypersonic.

In this steady solution, we take the opacity according to the Kramer law,

where it is valid for temperature below to 104K. We apply this condition to the

temperature equation (3.40) and we find

r ≤ 1011cm (3.45)

This means that our solution is broken if the disk extends out to r > 1011cm, it

quites the Roch Lobe (Fig 3− 4), and stops the accretion process.
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Figure 3.5: The temperature evolution as a function of the radius r.

Figure 3.6: The optical depth evolution as a function of the radius r.
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(Fig 3 − 5.) displays that the temperature of the disk varies from 6 × 104 to

16×104K, with a small ratio∽ 2.66, hence the disk temperature is almost uniform

from the center to the surface. As we said before that we deal with Kramer opacity

law, as it is consistent with the hypothesis of ignoring the radiation pressure. For

this law, we need a disk temperature ≤ 104K, but our temperature solution gives

values more than this limit. This is due to the value of the accretion rate used

(we recall that we used this value to compare the validity of this solution with

[Bat81]), but when we used values of accretion rate lower than 1016 g.s−1, we

found temperature solutions less than 104K.

So, we conclude that for regions with high accretion rate
( .

M> 1016g.s−1
)
, the

temperature degrees rise to be more than 104K, and the ionization degree increases

too, to support the radiation pressure and the electron scattering (Thomson opac-

ity). These regions can generally exist in disks around neutron stars and black

holes. These results supported by [Sha73].

From (Fig3 − 6) and the expression of the optical depth (3.41), we observe

that the disk is surely optically thick for any value of the accretion rate because it

achieves the condition τ ≫ 1.

(Fig 3− 7) shows the evolution of Σ for different values of α, we can see that

the difference between the three curves is not remarkable as we will find in the

time-dependent case. Also, the viscosity enters almost in all precedent solutions,

but with an order of magnitude not sensitive, it does not make a significant change

in the disk structure, because of this, the study of viscosity effect on accretion disks
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Figure 3.7: The evolution of the surface density as a function of the radius r, for

three values of α.

Figure 3.8: The evolution of the kinematic viscosity as a function of the radius r.
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has no importance in steady state.

But this does not negate to note from the figure that, as the viscosity increases

with radius, the disk rings spread out .

All results which we have found before are comparable with [Bat81], where

they found that the maximum value of the surface density at the inner radius is

Σ = 40 g.cm−1, of the thickness H = 2.1× 109cm with the ratio H/r ≈ 2.5× 10−2

and of the temperature T = 5 × 104K . These results are supported by the

observation too, that considers the gas temperatures in disks around white dwarfs

are several 104K and the thickness is ranging from 107 to 109 cm.

3.2 Steady thick disks

3.2.1 General formulation

The objective of this section is to explore some of the physical properties of

thick accretion disks. First, let us summarize some of the important equations

that describe the structure of the disk in this case. This theory is based on the

assumption that the disk is in hydrostatic equlibruim outside a certain radius rin

(the inner disk radius), and its rotational velocity is not Keplerian. That means

that the radial and vertical velocity components are much smaller than the speed

of sound. In the following, we shall consider a thick torus around an isolated

star which is in the gravitational field of a black hole. Further, to describe the

relativistic effects which are important for accretion disks around black holes, we

use the pseudo-Newtonian potential instead of using the general relativity. The
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form of this potential proposed by Paczyński and Wiita (1980) and given by

Φ =
−GM
R − rg

(3.46)

with rg is the gravitational radius, it is chosen equal to the Schwarzschild radius,

so rg = 2GM/c2. R is the spherical radial coordinate, it gives the total distance

from the origin to a point on the surface of the disk, R = (r2 + z2)
1/2

with r and

z are cylindrical coordinates.

The equation of hydrostatic equilibrium has the form

1

ρ
∇P = −∇Φ− 1

2
∇
(
Ω2r2

)
+Ω∇

(
Ωr2

)
(3.47)

In this case of disks, we use the continuity equation (2.12) and the three com-

ponents of Navier-Stokes equations (2.13), (2.14) and (2.15), taking into account

that the effective gravity is the vectorial sum of gravitational and centrifugal ac-

celeration, so

geff = −∇Φ + Ω2r (3.48)

In thin disks study, we have been assumed that the vertical velocity vz = 0,

and the derivative ∂
∂z
= 0, this means that we have a strict cylindrical symmetry.

The most realistic assumption is that vz and vr change as vz ∽ (H/r) vr and ∂
∂z
∽

(H/r) ∂
∂r
[Fra02], so with this approximation we can neglect all terms containing

vz and z derivatives in the continuity and Navier-Stokes equations. Equation (2.12)

becomes

∂

∂r
(ρrvr) +H

∂

∂r

(
ρH

r
vr

)
= 0 (3.49)
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and the three equations (2.13), (2.14) and (2.15) become respectively

r : ρ

{

vr
∂vr
∂r

+

(
H

r

)2
vr
∂vr
∂r

−
v2φ
r

}

= −∂P
∂r

+ ρgeffr +
∂

∂r

(
η
∂vr
∂r

)
(3.50)

+
H

r

∂

∂r

(
ηH

r

∂vr
∂r

)
+
1

r

∂

∂r
(ηvr)− η

vr
r2

φ : ρ

{

vr
∂vφ
∂r

+

(
H

r

)2
vr
∂vφ
∂r

+
vrvφ
r

}

= ρgeffφ +
∂

∂r

(
η
∂vφ
∂r

)
(3.51)

+
H

r

∂

∂r

(
ηH

r

∂vφ
∂r

)
+
1

r

∂

∂r
(ηvφ)− η

vφ
r2

z : ρ

{

vr
∂

∂r

(
Hvr
r

)
+

(
H

r

)2
vr

∂

∂r

(
Hvr
r

)}

= −∂P
∂z

+ ρgeffz

+
∂

∂r

(
η
∂

∂r

(
Hvr
r

))
+
H

r

∂

∂r

(
η
H

r

∂

∂r

(
Hvr
r

))
+
1

r

∂

∂r

(
η
Hvr
r

)
(3.52)

3.2.2 Resolution of the disk equations

From the previous section, we notice that all the disk equations depend on

Ω(r). Wherefore, we need to specify the angular velocity Ω(r) only as a function

of the position coordinate r, according to the Von Zeipel theorem for the polytropic

state equation. This velocity must realize the condition (dΩ (r) /dr < 0) for the

inward accretion. Hence we choose

Ω (r) =
Ω0
r3/2

exp(−λr) (3.53)

where it is equal to the Keplerian velocity if λ = 0, and the constant Ω0 =
√
GM .

Therefore, the specific angular momentum is given by

j (r) = r2Ω (r) = Ω0r
1/2 exp(−λr) (3.54)
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Radial velocity

Now, we deal with the assumption that the radial velocity is slowly changing

with r meaning that

∂vr
∂r

= 0 (3.55)

Therefore, the conservation equation (3.50) becomes

vr =
−∂P
∂r
+ ρ

[
geffr +

Ω20 exp(−2λr)

r2

]

η
r2
− 1
r
∂η
∂r

(3.56)

The surface density

By the application of the condition (3.55), the equation (3.51) becomes

ρ

{

vr

[(
Ω (r) + r

∂Ω (r)

∂r

)(

1 +

(
H

r

)2)

+Ω(r)

]

− geffφ

}

(3.57)

= 2Ω (r)
∂η

∂r
+
∂Ω (r)

∂r

(
3η + r

∂η

∂r

)
+ rη

∂2Ω (r)

∂r2
+
H

r
×

[
∂2Ω (r)

∂r2
(ηH) +

∂Ω (r)

∂r

(
ηH

r
+ η

∂H

∂r
+H

∂η

∂r

)]

+
HΩ (r)

r2
×
[
H
∂η

∂r
+ η

∂H

∂r
− ηH

r

]

After some calculations we can find the surface density equation, which is

Σvr

{
1

2Hr
− λ

H
− H

2r3
− Hλ

r2
− Ω0 exp(−λr)

r3/2Hvr

}
(3.58)

=
∂H

∂r
×
[
Hη

r2

(
λ− 1

2r

)]
− ∂η

∂r

[(
H

r

)2(
1

2r
+ λ

)
− 1

2r
+ λ

]

+η

[(
Hλ

r

)2(
1 +

2

λr
+

5

4r2λ2

)
+

(
1

ηr
− 3

4r2
+ λ2

)]
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The surface equation

1-the approximate expression: Since the main objective of the study of thick

accretion disks is to know the shape of the disk, we use the continuity equation

(3.49) to find the expression of H. We place the equation (2.19) in (3.49), we find

∂

∂r

(
Σrvr
H

)
+H

∂

∂r

(
Σvr
r

)
= 0 (3.59)

Supposing that the accretion rate is constant,
.

M= −2πrvrΣ =constant, so equa-

tion (3.59) becomes

∂

∂r

(
−

.

M

2πH

)

+H
∂

∂r

(
−

.

M

2πr2

)

= 0 (3.60)

Thus

∂

∂r

(
1

H

)
+H

∂

∂r

(
1

r2

)
= 0 (3.61)

Finally we get the following differential equations

∂H

∂r
+
2H3

r3
= 0 (3.62)

The solution of this equation is given as

H (r) =
1√
2a

r
√
r2 − 1

a

(3.63)

(Fig 3−9) represents the evolution of the disk thickness but with an approximative

method, the following calculations will give us a more accurate information about

the disk shape.
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Figure 3.9: The evolution of the disk thickness.

2-the exact expression: The condition of hydrostatic equilibrium at the disk sur-

face will help us to find the equation of the disk shape. We cosider that z0(r) is

the relation that describes the disk surface, so it verifies the following equation

[Pac80]

(
de

dr

)

z0(r)

=

(
dj

dr

)

z0(r)

.Ω (r) (3.64)

where j is the specific angular momentum, e the specific binding energy and it is

given as

e = Φ+
1

2
v2φ (3.65)

and the derivative of Φ is

(
dΦ

dr

)

z0(r)

=

(
∂Φ

∂r

)

z0(r)

+

(
∂Φ

∂z

)

z0(r)

dz0(r)

dr
(3.66)
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substituting in equation (3.64), and after some calculation we find the following

differential equation

dz0(r)

dr
=

√
r2 + z20(r)

[√
r2 + z20(r)− rg

]2

(GM) z0(r)
× (3.67)






−GMr
√
r2 + z20(r)

[√
r2 + z20(r)− rg

]2 + r2Ω (r)

(
dΩ (r)

dr
+
Ω(r)

r
− 1
)





This equation describes the variation of the disk surface (the half-thickness) and

does not contain any information about the disk interior. Therefore , in the fol-

lowing we study only the variation of the disk surface.

From the vertical component of the (3.47), we find the differential equation

of the surface density, this property can be computed by assuming a polytropic

equation of state (1.13), we get

ρ
1
n
−1dρ

dr
=

nGM

K (n+ 1)
√
r2 + z20(r)

[√
r2 + z20(r)− rg

]2

(
z0(r)

dz0(r)

dr

)
(3.68)

With the proposed formula (3.53) of rotational velocity, the surface equation

becomes

z0(r)
dz0(r)

dr
= −r − exp (−2λr)

√
r2 + z20(r)

[√
r2 + z20(r)− rg

]2

×
[
2λr + 1

2r2
+ r1/2 exp(λr)

]
(3.69)

From now, we present our results in terms of non-dimensional units. We take

GM = 1, rg the unit of length. Moreover, the last equation becomes,

z0(r)
dz0(r)

dr
= −xrg −

√

x2 +

(
z0(r)

rg

)2




√

x2 +

(
z0(r)

rg

)2
− 1





2

×(3.70)

[
exp (−2λrgx) (2λrgx+ 1)

2x2
+
(
r−3g x

)1/2
exp(−λrgx)

]
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Figure 3.10: Cross section in the r−z plane represent one-half of a Keplerian thick

disk.

where x = r/rg.

The second key step is to choose the value of λ. if λ = 0, the particles move with

Keplerian velocity, from this condition we can conclude the nature of the particles

motion; it can be sub-Keplerian if λ > 0 and super-Keplerian if λ < 0. For the

comparision with the results obtained by [Rub05], we adopt the sub-Keplerian

velocity distribution with λ = 1.

In order to evaluate the above equations, we must also choose the radius range

and the star mass. We take a torus orbiting a 2.5M⊙ black hole, and the disk radius

is chosen according to the supposition of pseudo-Newtonian potential; r > 3rg (3rg

is the last stable circular orbit).
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Figure 3.11: Cross section in the r− z plane represent one-half of a non-Keplerian

thick disk.

Now, we can solve numerically the equation (3.70), we take the boundary

condition that the disk surface z0 (r) → 0 where r → ∞, we use the numerical

method of Runge-Kutta RK-45.

First, we solve the surface equation (3.64) for the Keplerian velocity case, i.e.

for λ = 0, and the solution is represented in (Fig 3− 10).

The variation in the surface form for a non-Keplerian velocity distribution is

shown in (Fig 3 − 11). The small figure in the upper right shows the correct

proportion of the disk shape, taken from [Zur86], it shows the funnel opening

which is formed near the black hole. It should be noted that as r increases, z0(r)

decreases for r > 3rg, and for r < 3rg.the surface z0(r) increases with r.
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Next, we solve the mass density equation, we take from [Hor04],

K = RT ρ
−
1
n

µ
(3.71)

This formula is realised for perfect gases, where R is the perfect gas constant and

it is equal to R =8.3143× 107erg.K−1.mole−1, T is the disk temperature. In this

case, the disk is supported by radiation pressure and electron scattering, we accept

that the temperature must be more than 104K and the polytropic index n = 3.

Therefore, in the next calculation, we take T = 105K. Now, we place the formula

of the angular velocity in the equation (3.68), we find

4

3
ρ−

2
3
dρ

dr
=

−r
√
r2 + z20(r)

[√
r2 + z20(r)− rg

]2 − (3.72)

exp (−2λr)×
[
2λr + 1

2r2
+ r1/2 exp(λr)

]

Then, substituting the values of n and K and using the non-dimensional units,

the recent equation becomes

(
1.78× 1013

)
ρ−1

dρ

dr
=

−x

rg
√
r2 + z20(r)

[√
r2 + z20(r)− rg

]2

−exp (−2λrgx) (2λrgx+ 1)
2 (rgx)

2 + (rgx)
1/2 exp (−λrgx)(3.73)

The solution of this equation is shown in (Fig 3− 12).

3.2.3 Results and outlooks

In this section, we have performed a model of geometrically thick fluid disk

in axisymetric, we have neglected the self-gravity because the disk mass is small
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Figure 3.12: The density distribution of thick accertion disk in unit of rg.

compared to that of the cental object, but we have used a pseudo-Newtonian

potential to embody the effect of strong gravity for the potentiel produced by this

object. Also, we build initial conditions in hydrostatic equilibrium and we describe

the rotation law by giving the distribution of the non-Keplerian angular velocity, a

polytropic equation of state has been used. This type of models has been computed

by several articles under a number of assumptions (see ref [Pac80], [Lu00]).

One of the most attractive features in the study of thick accretion disks is the

funnel (cusp) forming at the their inner regions (along the rotation axis). This

cusp forms particularly due to the large amount of luminosity that can realise in

this region and also to the non-Keplerian distribution of angular momentum. The

surface curve supports the realization of this theory, and that this cusp is at 3rg and
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can extend until 2rg (the marginally bound circular orbit) [Pac80]. Close to the

rotation axis, the hydrostatic equilibrium breaks down and it becomes not possible

because an axial region known as <<the disk funnel>> forms, and the matter in this

vortex funnel will either fall into the hole or will be thrown by radiation pressure.

All this can happen only when a non keplerian angular momentum distribution

exists, as is shown in (Fig 3− 10), which represents the surface of thick Keplerian

disk with λ = 0, we can see the non-existence of the disk cusp at its inner edge,

and the surface distribution of the disk begins from the center. The surface curve

found from the precedent calculation is not totally compatible with the results of

[Rub05], but it is acceptable and it can show the shape of the disk that must be

found.

This shape not realised in the case of thin accretion disks, as we found in the

precedent section. The disk can obtain this form when the radiation pressure is the

dominent and both accretion rate and luminosity can exceed the normal critical

limits.

The shape of the density curve is similar to all models of this type, it indicates

that the density exhibits a maximum near the black hole due to the accumulation

of the particles in this region, and finally it becomes constant in the outer region.



CHAPTER 4

Time-dependent solutions

In chapter 2, we have seen the effect of viscosity on the evolution of accretion

disks by solving the diffusion equation (2.43), with the assumption that the kine-

matic viscosity ν is constant. In reality, accretion disks do not have a constant

viscosity. Therefore, we will resolve the viscous equation (2.43) with another vis-

cosity expression that depends on the two variables, radius r and time t, in addition

to the parametre α. Then, we will examine the dynamical (i.e. time-dependent)

behaviour for different values of α, and as we shall see for different timing.

The use of this viscosity expression, means that in this model the turbulence

is the dominant process for the outward transport of angular momentum, and it

makes the equation (2.43) nonlinear, so we will need a numerical solution.

In this chapter, we discuss a model of time-dependent, geometrically thin and

optically thick accretion disk with a non constant viscosity, where it resides around

a supermassive black hole.

4.1 The characteristic timescales

Before moving on to discuss the time dependent solutions of accretion disks, it

is useful to briefly present the various timescales over which they form and evolve.

We take into account only the important time scales which are four types:

*T�� �����
��� 	
�������
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The dynamical timescale is the time needed to reach centrifugal equilibrium,

this is the shortest characteristic timescale, given by

tdyn =
r

vφ
= Ω−1 (4.1)

This is also the typical growth time of some important instabilities, such as

gravitational and magneto-rotational instability.

*T�� ���	
��� 	
�������

The vertical timescale is the time needed to reach the hydrostatic balance in

the vertical direction, it evaluates the speed with which hydrostatic equilibrium in

the vertical direction is established. Hence

tz =
H

cs
=

H

HΩ
= Ω−1 = tdyn (4.2)

*T�� �
����� 	
�������

As we have seen in the second chapter, the viscous timescale is given by

tvisc ∽
r2

ν
∽

r

vr
(4.3)

tvisc is the scale for the evolution of the surface density, so it is the time on

which the matter flows from the outer to the inner parts of the disk under the

effect of viscous torques. Using the α-prescription for viscosity, we get

tvisc ∽
r2

αcsH
∽

(
H

r

)−2 1

αΩ
∽ α−1tdynM2 (4.4)

*T�� T������ 	
�������

The thermal timescale is the time needed by the disk to modify its thermal

structure, and its temperature. It is defined as follows [Fra02]

tth =
heat content per unit disk area

dissipation rate per unit disk area
(4.5)
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thus,

tth ∽
Σ c2s
D(r)

(4.6)

substituting by the formula of the dissipation rate D(r) with Ω (r) = Ωk (r), we

get

tth ∽
Σ c2s
νΣGM

r3

∽ c2s
r

GM

r2

ν
∽M−2tvisc (4.7)

hence,

tth ∽ α−1tdyn (4.8)

We can see from the previous analyses that the various timescales are ordered

in the following way

tdyn ∽ tz ∽ αtth ∽ αM−2tvisc (4.9)

thus,

tvisc ≫ tth ≫ tdyn ∽ tz (4.10)

This means that the hydrostatic balance in the vertical direction and the cen-

trifugal balance in the radial direction are very rapidly achieved, while the tem-

perature of the disk evolves on a longer timescale.

4.2 Time-dependent thin disks

4.2.1 The viscosity equation

In this case of time-dependent disks, the influence of viscosity on their evolution

is more appearing than in the case of steady disks. The inclusion of the turbulent

viscosity parameterization in terms of the single parameter α, equation (2.65),
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allows us to find another formula for the kinematic viscosity ν that would help us

to solve numerically the equation (2.43). To derive the viscosity equation that we

will use in time-dependent solution for thin accretion disks. First, we set all the

equations that describe their evolution, which are

Σ = H ρ (4.11)

H = cs

(
r3

GM

)1/2
(4.12)

c2s =
K

µmp
T (4.13)

4σ

3ΣκR
T 4 =

9

8
νΣ

GM

r3
(4.14)

κR = κ0 ρ
a T b (4.15)

ν = αcsH (4.16)

∂Σ

∂t
=
3

r

∂

∂r

(
r1/2

∂

∂r
(νΣr1/2)

)
(4.17)

All these equations are derived before. Now, we try to solve this system of equations

to get the formula of the viscosity. First, we write respectively the five equations

(4.11), (4.12), (4.13), (4.15), and (4.16) in terms of Ωk, Σ and T , we get [Del02]

ρ = Σ Ωk

(
K

µmp

)−1/2
T−1/2 (4.18)

H = Ω−1k

√
K

µmp
T 1/2 (4.19)

cs =

√
K

µmp
T 1/2 (4.20)

κR = κ0

(
K

µmp

)−a
2

ΣaΩakT
b−a

2 (4.21)
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ν = α

(
K

µmp

)
T

Ωk
(4.22)

Substituting these forms in equation (4.14), we find the temperature equation

in terms of Ωk and Σ, thus,

T =

(
27ακ0
32σ

) 2
6−2b+a

(
K

µmp

) 2−a
6−2b+a

Σ
2(a+2)
6−2b+a Ω

2(1+a)
6−2b+a

k (4.23)

then, we place this result in equation (4.22), using the relation of Keplerian velocity

(2.18) to find the equation of ν, we get

ν = α
2

6−2b+a
+1

(
27κ0
32σ

) 2
6−2b+a

(
K

µmp

) 2−a
6−2b+a

+1

Σ
2(a+2)
6−2b+a (GM)

a+1
6−2b+a

−
1
2 r−3(

a+1
6−2b+a

−
1
2)

(4.24)

We can write this relation as

ν = C rp Σq (4.25)

with

C = α
2

6−2b+a
+1

(
27κ0
32σ

) 2
6−2b+a

(
K

µmp

) 2−a
6−2b+a

+1

(GM)
a+1

6−2b+a
−
1
2 (4.26)

and

p = −3
(

a+ 1

6− 2b+ a
− 1
2

)
(4.27)

q =
2 (a+ 2)

6− 2b+ a
(4.28)

Equation (4.25) gives the expression of the viscosity as a power-law formula of

r and Σ. We use this relation to find the time-dependent solution of the diffusion

equation (4.17) in terms of the constants p and q.
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4.2.2 Numerical technique

Starting with solving the surface density equation (4.17), then the rest of the

fluid equations, because they all depend on Σ. Using the viscosity form (4.25) to

get the effect of the turbulent viscosity at the transport of both, matter and angu-

lar momentum in accretion disks evolved with time. To simplify the calculation,

we make (4.17) non-dimensional by scaling the variable r with its typical value,

a non-dimensional parameter appears x =
(
r
r0

)1/2
. So, the application of this

transformation gives

∂Σ

∂t
=

3

4x3r20

∂2

∂x2
(xνΣ) (4.29)

Then, using the method of variables separation, we can write the surface density

as

Σ (r, t) = T (t) .X (x) (4.30)

Substituting in equation (4.25), we get

ν = C rp0x
2p T q (t) Xq (x) (4.31)

Now, we place this form with (4.30) in (4.29), we find

T ′ (t)

T q+1(t)
= C

′

(2p (2p+ 1)x2p−4Xq (x) + 2 (2p+ 1) (q + 1)x2p−3Xq−1 (x)
∂X (x)

∂x

+q (q + 1) x2p−2Xq−2 (x)

(
∂X (x)

∂x

)2
+ (q + 1) x2p−2Xq−1 (x)

∂2X (x)

∂x2
) (4.32)

with C
′

=
3Crp−20

4
. Because the left-hand side of equation (4.32) is only function

of t and the right-hand side is only function of x, where x and t are independent
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variables, the unique way that can hold for all values of x and t is to set each side

equal to a constant. Doing so, we get the two differential equations

T ′ (t) + λT q+1(t) = 0 (4.33)

and

2p (2p+ 1)x2p−4Xq (x) + 2 (2p+ 1) (q + 1) x2p−3Xq−1 (x)
∂X (x)

∂x
(4.34)

+q (q + 1)x2p−2Xq−2 (x)

(
∂X (x)

∂x

)2
+ (q + 1)x2p−2Xq−1 (x)

∂2X (x)

∂x2
+

λ

C ′

= 0

λ is the separation constant. The first equation in t is an ordinary first-order differ-

ential equation, and the second is an ordinary second-order differential equation.

Now, we can find the time solution of the surface density in terms of p and q.

Then, we specify some quantities that are needed to complete the numeri-

cal solution, and we use the numerical method Runge-Kutta RK-45 to solve the

equations by the computational software program Maple.

4.2.3 Accretion disks around black holes

The study of accretion disks around black holes has much importance, because

these compact objects radiate neither gravitational nor electromagnetic waves, the

only way to detect them is by the detection of the emitted radiation from the

neighbouring disks or by their impact on the adjoining stars.

Accretion disks are formed around black holes as a natural consequence of the

tidal disruption of the nearby stars (there are other mechanisms which can support
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in the formation of accretion disks in this stellar case, but this mechanism is the

most effective). For this, we suppose that the supplied mass to the disk then to the

black hole is only due to the tidal disruption. When a star passes close enough to

a supermassive black hole, its tidal gravity exceeds the self-gravity of the star, this

leads to pull the matter of this star till it shredes, so a half of the stellar material

is ejected and the other half falls onto the black hole. Once the stellar debris are

fallen, they begin to rotate in orbits and form an accretion disk. [Ree88] was able

to make an estimate for the tidal radius in which the star cannot escape, is

rT ≃ r∗

(
Mb

M∗

) 1
3

≃ 1.5× 1013
(
M∗

M⊙

)− 1
3
(

Mb

107M⊙

) 1
3
(
r∗
r⊙

)
cm (4.35)

where Mb is the black hole mass, r∗ andM∗ are radius and mass of the incoming

star.

In the next calculation, we consider an accretion disk around a non rotating

black hole (a Schwarzschild black hole) of mass M ≃ 107M⊙, with the existence

of an effective way to remove the angular momentum. The innermost stable orbit

must be outside the event horizon in order to take the non-relativistic case, i.e.

must be more than three times the Schwarzschild radius (is the radius of the

horizon), so r ≥ 3 × 2GM
c2

= 8.84 × 1012cm. We choose a 107M⊙ black hole

becuase many indirect evidences are compatible with the presence of great number

of 106 − 108M⊙ black holes type in the nuclei of many nearby galaxies such as in

the center of our galaxy.

We use simple physical assumptions to make the disk sensitive only to the

viscosity variation and the black hole is just like a supermassive star, which are
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* Neglecting the radial pressure, due to thin approximation.

* Neglecting also the self-gravity effect of the disk because its mass will be

much smaller than that of the black hole.

* Taking not into account the relativistic effects.

4.2.4 Initial and boundary conditions

We have to solve two ordinary differential equations for the surface density Σ

as a function of x and t. The differential equation of time (4.33) has no solution

where the initial condition is T (0) = 0, so we must impose a non vanishing initial

condition, but it also must be small enough to have no influence on the evolution

of the disk, hence we take T (0) = 1.

The differential equation (4.34) is a second-order equation, we must therefore

impose a boundary condition for both inner and outer parts of the disk. At the

inner radius x = xin, and from the steady study, we note that all the gas properties

are vanishing at this limit, because the orbits are more stable and the matter falls

at the central star, so Σ (x = xin) = 0, we have a boundary condition of type

Dirichlet ≪vanishing of the zero derivative≫. This condition does not mean that

the mass flux is zero, but the viscous torque is zero [Pri81].

Since we will apply this calculation on a binary system, we must take into

account that Roch Lobe is the one that determines the outer limit of the disk. At

this limit, x = xout, the radial velocity vr = 0, and ∂Σ
∂x
= 0. We have a boundary

condition of type Neumann ≪vanishing of the first derivative≫.
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Figure 4.1: The evolution of the surface density in radius and time function.

4.2.5 Time-dependent solutions

The surface density

To complete the set of the constants, we need to know the opacity expression.

The observation confirms that the temperature of accretion disks in black hole

must exceed 104K, so we deal with Thomson opacity (2.30),

κ0 = 0.34cm
2g−1 (4.36)

where a = b = 0. The constant C as a function of viscosity parameter α and

according to the above values becomes

C = α
4
3 (10.73) cm7/3g−2/3s−1 (4.37)
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From the two equations (4.27) and (4.28), we find that p = 1 and q = 2
3
.

Therefore, the equations (4.33) and (4.34) become

T ′ (t) + λT
5
3 (t) = 0 (4.38)

and

5

3
x X (x)

∂2X (x)

∂x2
+10xX (x)

∂X (x)

∂x
+
10

9
x2
(
∂X (x)

∂x

)2
+6X2 (x)+

λ

C
x2X

4
3 (x) = 0

(4.39)

Even in time-dependent state, a complete solution of the disk structure requires

specifcation of the viscosity, so we need to specify the α value. We have no physical

reason for this, and the only known condition is from the researches of Shakura

and Sunyaev, which they confirmed that α must be α ≤ 1. So, we choose the three

values 0.01, 0.1, 1.

Now, we solve these equations by the numerical method Runge-Kutta RK-

45 and the computational software program Maple, but first we must put the

value of the separation constant λ, we take λ = 10−12. To illustrate the effect of

turbulent viscosity, we fix the time and vary α = 0.01, 0.1, 1. The gradual moving

of the surface density to the black hole in both space and time function is shown

schematically in (Fig 4− 1).

The plot, from top to bottom, represents the surface density Σ (r, t) at times

t = 3, 30, 300, 3000yr. From these results, we can see that our model of time-

dependent thin accretion disks is compatible with [Can90] model. (Fig 4 − 1)

shows that at t = 3yr, the mass initially orbits in rings at 7 × 1013cm, and the

maximum surface density Σmax ≃ 8.2× 104 g.cm−2 in the inner parts of the disk.
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Figure 4.2: The viscosity evolution in function of radius and time.

After 30yrs, the disk rings spread to outer radius till 1.9×1014cm, and the surface

density decreases. From then on, the rings spread out with time even up to a

radius of order 7.96× 1014cm after 3000yrs. This means that the matter moves to

the outer parts of the disk.

As the accretion process proceeds, the matter that falls onto the disk tends to

rotate around the star in stable orbits, because it has enough angular momentum.

As we said before that in this calculation, we neglect the effect of self-gravity

of the disk and do not bear in mind the magnetic field, so the only effective

mechanism that can extract the angular momentum from the particles to accrete

is the turbulent viscosity. The following results of the viscosity (Fig 4− 2) show

the large values of it, up to 6× 1017cm2.s−1.
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Figure 4.3: The evolution of the temperature in both radius and time.

The temperature

From the temperature equation (4.23), we find

T =
C

α
(2.71× 108)Σ2/3 r−1/2 (4.40)

Substituting with the previous surface density solution to design the evolution of

T with radius and time.

The plot (4− 3) gives the radial distribution of temperature T (r, t) with times

t = 3, 30, 300, 3000yr, our results are in good agreement with [Can90], but the

unique difference is the maximum value of T . The plot illustrates that the same

general features with the surface density Σ are shown by the changes of T .
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Figure 4.4: The evolution of the accretion rate in function of both radius and time.

Once the accretion onto the black hole has started, the temperature exhibits

a rapid rise to T ∼ 1.37× 106K , and continues to increase as the particles move

toward the innermost regions of the disk, where most of the energy releases. This

increase of temperature arises because when the disk particles move toward the

central star, due to their loss of the angular momentum, they lose their gravita-

tional energy too, this energy heats the disk to be emitted as a radiation. Also, the

shocks experienced by the disk particles raise its temperature. Then, temperature

decreases and the disk becomes cool with time.

The accretion rate

The accretion rate is given by the integral
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.
.

M=
dmdisk
dt

=

∫ rout

rin

2πr
dΣ

dt
dr (4.41)

thus
.
.

M=
dT (t)

dt

∫ rout

rin

2πrX(x)dr (4.42)

It is important to calculate the accretion rate because it is used to determine

the disk luminosity. (Fig 4−4) shows the evolution of the rate
.

M in both position

and time function, the values of
.

M in the range of 8.2× 1019 to 7.38× 1024g.cm−1.

Many calculations have been completed in order to get an estimation for the tidal

disruption rate [Ree88], the result was that for M32, our galaxy and other nearby

galaxies is M ∼ 1019−1020g.cm−1. The range of our accretion rate solution exceeds

these values, which confirms the tidal disruption efficiency of stars near a 107M⊙

black hole.

The total disk luminosity Ldisk

Using the above temperature solution to represent the luminosity solution in

(Fig 4 − 5). From this curve, we find the range of luminosity in disks around

the supermassive black hole, from 1.4 × 1039 to 3 × 1044erg.s−1. Accretion disks

in this case are considered as a big source of energy due to the large amount of

luminosity that they can release, where half of this gravitational energy converts

into thermal energy to radiate from the disk surface mainly in ultraviolet and X-

ray bands [Sha73], and the other half increases the kinematic energy of rotation.

This large amount of luminosity can not escape from the disk without affecting
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the black hole, the neighbouring stars or the disk itself. In close binary systems,

a part of this radiation can reach the surface of the companion star, to radiate by

its atmosphere, this leads to an unusual optical appearance in this system, such as

that observed in the binary HZ Her / Her X-1.

The extraction of this gravitational energy releases with a radiative efficiency

η =
L
.

M c2
≃ 0.04 (4.43)

η represents the efficiency with which the rest mass of the accreted material can

be transformed into radiation. The value η ≃ 0.04 is supported by [Sha73] for

disks around non rotating supermassive black holes, and it means that the disk

in this case can convert and emit up to 4% of its accreted rest mass as radiation.

This radiative efficiency depends on the magnetic field strength, we can find larger

values if we take the effect of magnetic field (the real case), up to η = 4, which

distinguishes the case of a rotating or Kerr balck holes. The study of this type of

holes demonstrates that the accretion around a black hole is the most efficient way

of transforming gravitational potential energy into radiation.

The critical value of the luminosity is determined by the Eddington limit, The

value of this limit for a black hole of mass 107M⊙ is

Ledd = 1.3× 1038
(
M

M⊙

)
erg.s−1 = 1.3× 1045erg.s−1 (4.44)

Hence, the luminosity values of this solution are approach to this limit especially

in the early phase of disk evolution, and this is due to the large viscous stress in

accretion disks formed from stellar debris, that are made to keep the luminosity
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close to Eddington limit, then it begins decreasing, thus our values are correct

as long as they are less than Ledd. For this, the Eddington limit is a necessary

condition to the validity of thin approximation. Also we can define the critical

accretion rate as

.

M crit=
12

c2
Ledd ≃ 1.73× 1025g.s−1 (4.45)

4.3 Results and outlooks

Here we built a model of time-dependent accretion disk by assuming that the

disk is geometrically thin and optically thick, and we compared it with [Can90],

the results are supported with the curves. This time-dependent study is considered

as one of the most important sources of quantitative information about the disk

properties.

This study confirms that the accretion process provides a huge source of energy,

and the time dependence of disk flow is controlled by the size of the viscosity, where

the viscous dissipation is necessary to transport angular momentum, it will also

heat the gas where this heat can be radiated away or advected inward with the

accreting gas.

In order to accrete gas, its particles must move inward from orbit to another

by losing their angular momentum and gravitational energy. Since total angular

momentum must be conserved, other gas particles must gain angular momentum

and move outward, this leads to spread out the disk structure.

The viscous timescale is the required time for the particles to diffuse through

the disk under the effect of the viscous torque, it is inversely dependent on the
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change of viscosity. In the outer regions of the disk, the viscosity suddenly rises,

the viscous timescale is short and the matter rapidly accretes (low surface density).

In the inner regions, the viscosity decreases, so the viscous timescale is long, which

allows the matter to accumulate in this region (high surface density). This increase

in the surface density explains the high luminosity in the inner regions, because it

leads to raise the disk temperature that becomes unstable.

Conclusion and perspectives

To understand the structure of an accretion disk, we must follow the motion of

the particles that fall onto it from large to small radius. The numerical simulation

shows that the viscosity is one of the main agents responsible for this transport.

In this thesis, we have studied the structure and properties of accretion disks

that are formed around stellar objects, with using the concept of turbulent viscosity

”α-disk model” in the two cases; steady and time-dependent state.

We have begun by studying the steady solution of geometrically thin disks

around white dwarfs; this study has provided good information about the shape

and the properties of the disk. Since the case of thin disks is more theoretical than

realistic, we have imposed a model that describes the geometrically thick disks,

and we have solved the equations of this model to get more information about the

structure of the disk in this case.

In this thesis, we have tried to find solutions to the following questions

* What happens if the disk viscosity is not constant?

* Can turbulent viscosity proposed by standard model drive the mass transport
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in accretion disks?

* What happens if the disk is not thin?

* What happens if the gas in an accretion disk does not follow Keplerian orbits?

In order to answer the previous questions, we have proposed a new solution of

time-dependent thin accretion disks, with using the α-prescription of the viscosity.

We have obtained results supported with the experimental observations and other

models.

There are several reasons for extending the steady study to time-dependent

one. The most important is that the observable properties of the disk are almost

independent of the viscosity, and do not give much information about the disk

viscosity, while the time-dependent hydrodynamical study that has been presented

in chapter four, clearly shows that the evolution of the disk with time is strictly

dependent of the viscosity size.

The question that still arises for this study is: what is the physical origin of

turbulence and viscosity in accretion disks? Other mechanisms might be important

in carrying angular momentum, and giving more information about the source of

viscosity. The most promising possibility at present is the one that depends on the

magnetic instability or that well known by MHD. There are number of available

numerical codes to simulate this instability, but they all need powerful computers.

Our next perspective is the study of magnetorotational instability in accretion

disks and the use of one of the previous codes that have been mentioned in chapter

one.
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