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Université Hadj Lakhdar Batna
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Abstract
In this thesis, new methodologies of machine learning for regression problems are proposed and

applied in two main practical fields, which are the chemometrics, and Renewable energies fields.

In particular, in the last few years, spectroscopy has represented an important technology for

product analysis and quality control in different chemical fields. For example, it has been applied

successfully in pharmaceutical, food and textile industries.

Another very interesting field is related to renewable energies. Renewable energies have been of

great interest in recent years, as a consequence of increasing population and higher consumption

of energy by developing countries, oil resources, natural gas and uranium will be depleted within

a few decades. The unavoidable alternative becomes thus the development of renewable energy

sources like solar energy, geothermal and wind power. In fact, the best use of renewable energies

is an essential factor of development for all countries.

Machine learning methods exhibit the attractive advantage that they can provide very accurate

predictors. In this thesis, we concentrate our study on two different methodologies:

In the first one, we propose a two-stage regression approach, which is based on the residual based

correction concept (RBC) applied in chemometrics field, in order to improve the accuracy with

respect to the single regressor. A comparative study with another approach which exploits differ-

ently estimation errors, namely adaptive boosting for regression (AdaBoost.R), is also included.

The idea in our proposed method is to correct any adopted regressor, called functional estimator,

by analyzing and modeling its residual errors directly in the feature space. RBC is therefore not

a regressor but a correction method, whose aim is not to reach the best achievable accuracy for

a given data set but to possibly improve the estimation model of a given regressor.

In the second one, the regression process is undertaken by assuming that the training set is com-

posed of a sufficient number of samples in order to obtain reliable and accurate estimations.

However, from a practical point of view, the process of collecting training samples is not trivial,

because the concentration/wind speed measurements associated with the spectral data have to be

performed manually by human experts and thus are subject to errors and costs in terms of time

and money. For this reason, the number of available training samples is typically limited and

performances can be consequently affected due to data scarcity. A solution to this problem is

given by active learning in this thesis. Active learning represents an interesting approach pro-

posed in the literature to address the problem of training sample collection, in which training

samples are selected in an iterative way in order to minimize the number of involved samples

and the intervention of human users.

The experimental results on different real data sets show the effectiveness of the proposed solu-

tions.

Keywords: Spectrometric data analysis, Renewable energy, Wind speed prediction, Residual-

based correction (RBC), Boosting, Active learning, Regression.





Résumé

Dans cette thèse, de nouvelles méthodes d’apprentissage pour des problèmes de régression sont

proposées et appliquées dans deux grands domaines á savoir la chimiométrie et l’énergie re-

nouvelable. En particulier, au cours des dernières années, la spectroscopie a représenté une

technologie importante pour l’analyse des produits et le contrôle de qualité dans les différents

domaines de chimie. Par exemple, il a été appliqué avec succès dans les industries pharmaceu-

tique, alimentaire et textile.

L’énergie renouvelable, a fait l’objet d’un grand intérêt au cours des dernières années, par

conséquence de la croissance démographique et l’augmentation de la consommation d’énergie

par les pays en voie de développement, les ressources en pétrole, gaz naturel et uranium seront

épuisées d’ici quelques décennies. La solution inévitable devient ainsi le développement de sources

d’énergie renouvelables comme l’énergie solaire, géothermique et éolienne. En fait, la meilleure

utilisation des énergies renouvelables est un facteur essentiel du développement pour tous les

pays.

Les méthodes d’apprentissage présentent l’avantage attrayant qu’elles puissent fournir des prédic-

teurs très précis. Dans cette thèse, nous nous concentrons notre étude sur deux différentes

méthodologies :

Premièrement, nous proposons une approche de régression en deux étapes, qui est basé sur le con-

cept de la correction de l’erreur résiduelle (RBC) appliquée dans le domaine de la chimiométrie,

afin d’améliorer la précision par rapport à un régresseur unique. Une étude comparative avec

une autre approche qui exploite différemment les erreurs d’estimation, à savoir le Boosting (Ad-

aBoost.R), est également étudiée. L’idée de la méthode proposée est de corriger tout régresseur,

appelé estimateur fonctionnel, par l’analyse et la modélisation de ses erreurs résiduelles directe-

ment dans l’espace des caractéristiques. RBC n’est donc pas un régresseur, mais une méthode de

correction, dont le but n’est pas d’atteindre la meilleure précision possible pour un ensemble de

données, mais pour éventuellement améliorer le modèle d’éstimation pour un régresseur donnée.

Deuxièmement, le procédé de régression est effectué en supposant que l’ensemble d’apprentissage

est constitué d’un nombre suffisant d’échantillons afin d’obtenir des estimations fiables et précises.

Cependant, d’un point de vue pratique, le processus de collecte d’échantillons d’apprentissage

n’est pas trivial, car les mesures de concentration / vitesse de vent associées aux données

doivent être effectuées manuellement par des experts humains et sont donc sujets à des er-

reurs et les coûts en termes de temps et d’argent. Pour cette raison, le nombre d’échantillons

d’apprentissage disponibles est généralement limité et les performances peuvent en être affectées

en raison de la rareté des données. Une solution à ce problème est donnée par l’apprentissage

actif dans cette thèse. L’apprentissage actif représente une approche intéressante proposée dans

la littérature pour résoudre le problème de la collecte des échantillons d’apprentissage, dans



lequel les échantillons d’apprentissage sont choisis de façon itérative afin de minimiser le nom-

bre d’échantillons concernés et l’intervention des experts humains.

Les résultats expérimentaux sur différentes jeux de données réelles montrent l’efficacité des so-

lutions proposées.

Mots-clés: Analyse des données de spectrométrie, Énergie renouvelable, Prédiction de la vitesse

du vent, Correction basée sur résiduelle (RBC), Boosting, Apprentissage actif, Régression.
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and Dr. Noureddine GHOGGALI who accepted to be my jury members, and devoted their

precious time to review my thesis. I also want to thank Prof. Ahmed LOUCHENE for having

agreed to preside this jury.

I would like to thank the Averroès Erasmus Mundus program funded by the European Com-

mission about 18 months in university of Trento. I wish to thank the members of the DISI -

Dipartimento di Ingegneria e Scienza dell’Informazione, and more particularly to Dr. Edoardo

PASOLLI, who have shared their knowledge and experiences with me. I extend additional

thanks to Dr. Noureddine GHOGGALI. He has been a continual source of stimulation, help and

very useful comments on all my work and most important a good friend. I would particularly

like to thank Dr. Redha BENZID and Mr. Toufik BENTRCIA for their encouragement, help

and support.

I would like to thank all my friends, colleagues and the staff at the Department of Electronics,

University of Batna for their help along the realization of this work.

Finally, I am grateful to my parents, my brothers and my sister for their encouragement and

continuous support.

Fouzi Douak

The work compiled in this thesis has been partially supported by the Averroès Erasmus Mundus

program funded by the European Commission (unfolding during the period of February 2011 to

July 2012).



i

Contents

Page

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction and Dissertation Overview 1

1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problems and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Data Sets Description 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Near infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Relating absorbance to concentration . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 High-dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2.1 Orange juice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2.2 Diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2.3 Tecator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Nature of the wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Geographical variation in the wind resource . . . . . . . . . . . . . . . . . 20

2.3.3 Long-term wind speed variations . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Classification according to time horizons . . . . . . . . . . . . . . . . . . . 21

2.3.5 Wind prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5.1 Physical approach . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.5.2 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.5.3 Machine learning approach . . . . . . . . . . . . . . . . . . . . . 23

2.3.6 Low-dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.6.1 Geographic location of Algeria . . . . . . . . . . . . . . . . . . . 24



ii

2.3.6.2 Wind speed data sets in Algeria . . . . . . . . . . . . . . . . . . 25

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Linear and Nonlinear Regression 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Linear regression methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1.1 Least squares (LS) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1.2 Ridge regression (RR) . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Linear projection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2.1 Principal component regression (PCR) . . . . . . . . . . . . . . 37

3.2.2.2 Partial least squares regression (PLS) . . . . . . . . . . . . . . . 38

3.3 Nonlinear regression methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Kernel ridge regression (KRR) . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Support vector regression (SVR) . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Radial basis function neural network (RBFN) . . . . . . . . . . . . . . . . 43

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Residual Correction Concept for Spectroscopic Data Sets Regression 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Adaptive boosting for regression (AdaBoost.R) . . . . . . . . . . . . . . . . . . . 47

4.3 Proposed residual regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Theoretical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Experimental results on spectroscopic data set . . . . . . . . . . . . . . . . . . . 52

4.4.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Results with RBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.3 Results with AdaBoost.R . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Active Learning Methods 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Proposed active learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Proposed general active learning strategies . . . . . . . . . . . . . . . . . 73

5.3.1.1 Pool of regressors (PAL) . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1.2 Distance from the closest training sample (DAL) . . . . . . . . . 75

5.3.1.3 Residual regression (RSAL) . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Active learning strategy for SVR . . . . . . . . . . . . . . . . . . . . . . . 77



iii

5.3.2.1 Distance from the support vectors (SVR-DAL) . . . . . . . . . . 77

5.4 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Experiments on spectroscopic data set . . . . . . . . . . . . . . . . . . . . 79

5.4.1.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Experiments on wind speed data set . . . . . . . . . . . . . . . . . . . . . 86

5.4.2.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Final Conclusions and Future Works 100

6.1 Contributions and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Perspectives and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

List of Publications 104

Bibliography 105



iv

List of Tables

2.1 Classification of different time horizons. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Information about the meteorological stations considered in the experiments. . . 27

4.1 NMSE achieved on the orange juice data set by the five regression methods im-

plemented without and with residual based correction (RBC) . . . . . . . . . . . 62

4.2 NMSE achieved on the tecator data set by the five regression methods imple-

mented without and with residual based correction (RBC) . . . . . . . . . . . . . 62

4.3 Results in terms of NMSE and processing time achieved by adaptive boosting

regression (AdaBoost.R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Results in terms of NMSE and statistical test (p-value) achieved by the regression

method, the proposed RBC approach and the best adaptive boosting regression

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Data set information and experimental setup for the different data sets. . . . . . 79

5.2 NMSE, Standard Deviation (STD), # latent variables, # support vectors ob-

tained for the PLSR, RR, KRR and the SVR on (a) the diesel, (b) the orange

juice, and (c) the tecator data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE

Standard Deviation (STD), computation times obtained by the KRR predictor

on Tlemcen, Chlef and Alger data sets. . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE

Standard Deviation (STD), computation times obtained by the KRR predictor

on Annaba, Djelfa and Batna data sets. . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE

Standard Deviation (STD), computation times obtained by the KRR predictor

on El Oued and Ghardaia data sets. . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE

Standard Deviation (STD), computation times obtained by the KRR predictor

on Adrar and Tamanrasset data sets. . . . . . . . . . . . . . . . . . . . . . . . . . 97



v

5.7 Average RMSE Standard Deviation (STD), Average MAE Standard Deviation

(STD), Average NMSE Standard Deviation (STD), and average computation

time obtained on the ten data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 98



vi

List of Figures

1.1 Two Phases of Supervised Learning Algorithms. . . . . . . . . . . . . . . . . . . . 2

1.2 Flow chart of a general system of information extraction from Near infrared spec-

troscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Regions of the electromagnetic spectrum. . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Electromagnetic Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Absorbance according concentration . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Near-infrared reflectance spectra of orange juice data set. . . . . . . . . . . . . . 15

2.5 All the spectra of the orange juice data set. . . . . . . . . . . . . . . . . . . . . . 16

2.6 Principal components analysis (Pc1-Pc2) of the orange juice data set. . . . . . . 16

2.7 High leverage spectra (after centering and reduction) from the diesel data set. . . 17

2.8 All the spectra of the diesel data set. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Principal components analysis (Pc1-Pc2) of the diesel data set. . . . . . . . . . . 17

2.10 Near-infrared spectra of tecator data set. . . . . . . . . . . . . . . . . . . . . . . . 18

2.11 All the spectra of the tecator data set. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.12 Principal components analysis (Pc1-Pc2) of the tecator data set. . . . . . . . . . 19

2.13 Seasonal world wind resource map in January and July. . . . . . . . . . . . . . . 20

2.14 Algeria’s geographic location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Geographical location of the meteorological stations considered in the experiments. 26

2.16 Daily wind speed behavior for Tlemcen station. The blue curve show the training

samples, while the red curve show the test samples. . . . . . . . . . . . . . . . . . 27

2.17 Daily wind speed behavior for (a) Chlef, (b) Alger and (c) Annaba stations. The

blue curve show the training samples, while the red curve show the test samples. 28

2.18 Daily wind speed behavior for (a) Djelfa, (b) Batna and (c) El Oued stations. The

blue curve show the training samples, while the red curve show the test samples. 29

2.19 Daily wind speed behavior for (a) Ghardaia, (b) Adrar and (c) Tamanrasset

stations. The blue curve show the training samples, while the red curve show the

test samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 A one dimensional linear regression function. . . . . . . . . . . . . . . . . . . . . 34



vii

3.2 Example of ε-insensitive tube and error function used in the SVM-based regression

technique. Filled squares data are support vectors. Hence, SVs can appear only

on the tube boundary or outside the tube. . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Architecture of a Radial Basis Function Neural Network (RBFN). . . . . . . . . 44

4.1 Block diagram illustrating the training phase of the residual correction. . . . . . 50

4.2 Block diagram of the proposed approach in the global estimation phase. . . . . . 50

4.3 NMSE k -fold cross-validation with respect to the number of selected variables,

(a) orange juice and (b) tecator data set. . . . . . . . . . . . . . . . . . . . . . . 54

4.4 NMSE k -fold cross-validation with respect to the number of ℓv latent variables,

(a) orange juice and (b) tecator data set. . . . . . . . . . . . . . . . . . . . . . . 55

4.5 RBFN-Subset optimization number of neurons in hidden layer (P ) and the width

parameter of the Gaussian kernel (σ) for the orange juice data set, (a) Regression

and (b) Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 SVM-Subset optimization of parameters C, γ and ε for the orange juice data set

in the case of Regression. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε

= 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 SVM-Subset optimization of parameters C, γ and ε for the orange juice data set

in the case of Correction. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε

= 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 RBFN-All optimization number of neurons in hidden layer (P ) and the width

parameter of the Gaussian kernel (σ) for the orange juice data set, (a) Regression

and (b) Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 SVM-All optimization of parameters C, γ and ε for the orange juice data set in

the case of Regression. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε = 0.1. 60

4.10 SVM-All optimization of parameters C, γ and ε for the orange juice data set in

the case of Correction. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε = 0.1. 61

4.11 Behaviors of the Boosting-PLSR (linear, square and exponential) obtained by

iterations for orange juice data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.12 Behaviors of the Boosting (linear, square and exponential) obtained by iterations

for subset orange juice data set. (a) Boosting-RBFN-Subset, (b) Boosting-SVM-

Subset, (c) Boosting-RBFN-All, (d) Boosting-SVM-All. . . . . . . . . . . . . . . 64

5.1 Active learning cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Performance example of regression. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Performance example of regression based active learning. . . . . . . . . . . . . . . 71

5.4 Flow chart of the proposed active learning approach. . . . . . . . . . . . . . . . . 73

5.5 Block diagram of the method based a pool active learning (PAL). . . . . . . . . . 74

5.6 Block diagram of the method based a residual active learning (RSAL). . . . . . . 77



viii

5.7 Performances achieved on the diesel data set for (a) PLSR, (b) RR, (c) KRR

and (d) SVR in terms of NMSE and standard deviation. Each graph shows the

results in function of the number of interactions. All results are averaged over ten

runs of the approaches. (PLSR, RR, KRR, SVR)-Full = full, (PLSR, RR, KRR,

SVR)-Random = random, (PLSR, RR, KRR, SVR)-PAL = pool of regressors,

(PLSR, RR, KRR)-DAL = distance from the closest training sample in features

space, SVR-DAL = distance from the support vectors. . . . . . . . . . . . . . . . 81

5.8 Performances achieved on the orange juice data set for (a) PLSR, (b) RR, (c)

KRR and (d) SVR in terms of NMSE and standard deviation. . . . . . . . . . . 82

5.9 Performances achieved on the tecator data set for (a) PLSR, (b) RR, (c) KRR

and (d) SVR in terms of NMSE and standard deviation. . . . . . . . . . . . . . . 83

5.10 Illustration of learning samples, (a) 100 initial training samples, (b) 2419 unla-

beled samples, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Illustration of selected samples. (a), (b) and (c) samples selected by PAL, DAL

and RSAL, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.12 Example of active learning of (a) and (b) the evolution of sample selection at the

first to fourth iteration (100, 150, 200 and 250 training samples) by the PAL and

DAL, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.12 Example of active learning of (c) the evolution of sample selection at the first

to fourth iteration (100, 150, 200 and 250 training samples) by the RSAL. Each

graph shows the results in function of the number of samples to add at each

iteration (Ns). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.13 Performances achieved by the investigated methods on the (a) Tlemcen and (b)

Chlef data sets in terms of RMSE and standard deviation of RMSE versus the

number of selected samples. All results are averaged over ten runs. . . . . . . . . 91

5.14 Performances achieved by the investigated methods on the (a) Alger, (b) Annaba,

(c) Djelfa and (d) Batna data sets in terms of RMSE and standard deviation of

RMSE versus the number of selected samples. . . . . . . . . . . . . . . . . . . . . 92

5.15 Performances achieved by the investigated methods on the (a) El Oued,(b) Ghardaia,

(c) Adrar and (d) Tamanrasset data sets in terms of RMSE and standard devia-

tion of RMSE versus the number of selected samples. . . . . . . . . . . . . . . . . 93



ix

List of Algorithms

1 AdaBoost.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 The t− test for one-sided alternative hypothesis. . . . . . . . . . . . . . . . . . . 53

3 Resumes the general steps of the active learning approach. . . . . . . . . . . . . . 72

4 Resumes the proposed methodology based on the pool of regressors. . . . . . . . 74

5 Synthesizes the proposed strategy based on the distance from the closest training

sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Synthesizes the proposed method based on the residual regression. . . . . . . . . 76

7 SVR Active learning based on distance from the support vectors. . . . . . . . . 78



Chapter 1

Introduction and Dissertation

Overview

Contents

1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problems and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8



Chapter 1. Introduction and Dissertation Overview 2

1.1 Context and motivations

In order to face the regression problem from a methodological viewpoint, several approaches to

parameter estimation have been proposed. In this context, both linear and nonlinear regression

methods have been proposed [1–4]. In the literature, one can find three very well-established

approaches to envisage a regression task: 1) the supervised approach; 2) the unsupervised

approach; and 3) the semi-supervised approach.

The supervised approach algorithm try to learn the input-output relationship f(x) by using a

training data set X = [xi, yi], i = 1, ..., n, x ∈ ℜd where d is the feature space dimensionality

and the labels y are discrete (y ∈ {1, ..., T}, T number of considered classes) for classification

problems and real (y ∈ ℜ, continuous) value for regression tasks. The supervised learning

problem is divided into two types, namely, classification (pattern recognition) and the regression

(function approximation). In the regression problem, the task is to find the mapping between

input x ∈ ℜd and output y. In this context, the learning task in regression is to find the

underlying function between some d-dimensional input vectors xi and scalar outputs yi. There

are two phases when applying supervised learning algorithms for problem-solving as shown in

Figure 1.1. The first phase is so-called training phase where the learning algorithms design a

mathematical model of a dependency, function or mapping in a regression or classification based

on the training data given. While the second one is the test (application) phase, the parameters

selecting (models developed) by the supervised approach are used to predict the outputs yi of

the data which are unknown by the learning algorithms in the learning phase [5, 6].

Figure 1.1: Two Phases of Supervised Learning Algorithms.

In the unsupervised approach, there are only raw data xi ∈ ℜd, no labels data yi are available.

Several algorithms to face this issue have been proposed, such as clustering techniques, principal
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component analysis (PCA), and independent component analysis (ICA) [7–9].

Another method so-called semi-supervised learning can be considered as an attractive solution.

Their underlying idea is to exploit unlabeled samples that are readily available at zero cost from

the data sets under analysis, during the design of the regression model to compensate the deficit

in labeled samples [10–13]. The cause of an appearance of the unlabeled data points is usually an

expensive, difficult and slow process of obtaining labeled data. Thus, labeling brings additional

costs and often it is not feasible. As a result, the goal of a semi-supervised learning algorithm

is to predict the labels of the unlabeled data by taking the entire data set into account [5].

This thesis focuses firstly on the application of linear and nonlinear regression methods in the

field of food industry (near infrared spectroscopy) and secondly on the wind prediction (renew-

able energy) in different regions of Algeria.

In the last few years, the field of spectroscopy is continuously working on means to improve,

optimize and gain a better understanding of the way food productions are run. The increased

focus on food quality creates a big challenge for the industry into development and control of

food productions. Ensuring the quality of food products needs monitoring and evaluation of

every step from the raw material, to the production, to the final product, and in the distribu-

tion [14]. A general system of information-extraction from near infrared spectroscopy can be

described by the block diagram shown in Figure 1.2.

Figure 1.2: Flow chart of a general system of information extraction from Near infrared spec-

troscopy.

In the data-acquisition phase, modelling in laboratory where all measurements of variables must

be carried out and where parameters of the model (linear or non-linear) must also be estimated.

According on the reason of the application, the user may or may not be concerned in the spectral

contributions originating from the physical characteristics of the sample. Where these charac-

teristics are significant, the user may choose to work with the raw spectral data, otherwise some

preprocessing is usually carried out [15]. Several spectral preprocessing methods exist, two cat-

egories of the most widely used methods in data preprocessing are scatter correction methods

and spectral derivatives (smoothing methods) [16].
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In particular, automatic or semi-interactive calibration is a critical process monitoring and con-

trol in real time as they provide the data from which relevant process and product information

and conclusions should be extracted. Near Infrared spectroscopy is rich in information which is

representative of both the physical and chemical characteristics of the sample, these characteris-

tics have to be applied to take into account, for instance, pH, pressure, temperature, treatment

that can removes or isolates the measurement sample in real time, etc. Recently, automatic ap-

proaches to the analysis of spectroscopy data have attracted the attention of several researchers.

This is a direct result of both the growing interest of end-users in the capabilities of spectroscopy

and the scientific community’s realization that the automation of traditional “manual” analysis

techniques (i.e., based on the intervention of human experts) offers great advantages in terms

of time and economic cost. In this context, one of the main objectives of this dissertation is

to provide a modest contribution to the automatic or semi-interactive techniques. Finally, the

resulting preprocessed data can be fed to the analysis stage, which aims at extracting from

the data set of spectroscopy information (product) being of interest to a given end user. In

analytical chemistry, several linear calibration methods are applied to solve quantitative prob-

lems with the argument that the relation between the chemical composition and the measured

signal is linear [17]. However, there are many others where nonlinearity is present. In [18]

discusses important sources of nonlinearity in near-infrared spectroscopy, namely :1) deviations

from the Beer-Lambert law, which are typical of highly absorbing samples; 2) nonlinear detector

responses; 3) drifts in the light source; 4) interactions between analytes; 5) nonlinearity between

diffuse reflectance/transmittance data and chemical data. When the nonlinearity is significant,

one can use truly nonlinear calibration techniques, for example, support vector machine (SVM).

The exploitation of renewable energy and especially of wind power is receiving increased at-

tention the last years under the influence of novel guidelines adopted for energy management,

and the concerns for global warming and climate change. In this framework the accurate esti-

mation of the wind speed for short or long forecasting horizons is of primarily significance but

not always easy to be attained due to the variable nature and the complexity of the environ-

mental conditions that are implicated. In the literature, several wind speed prediction methods

can be found. They can be divided into three categories: statistical methods [19–22], physical

methods [19, 23], and machine learning methods including neural networks and support vec-

tor machines since the estimation of the wind speed can be designed as a nonlinear regression

problem [24–36].

1.2 Problems and solutions

The focus of this thesis is the development of models and algorithms for prediction. In this

work, we concentrate our study on two well known issues of the machine learning community:
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how to improve the prediction accuracy of a single regressor and how to deal with the issue of

a limited labeled training samples.

Concerning the first issue, quality control of production systems and authenticity testing of

products are increasing in importance in food industry, since they represent the new required

issues to compete in the present-day market. Both production systems and food products can

be described as complex systems, where several factors can interact and play a fundamental

rule: consequently all these factors should be monitored and their synergic effects controlled.

There is also a need in the food industry to rationalise and improve quality and process controls.

The modern production systems require fast and automatic on-line monitoring, which should

be able to extract the maximum amount of available information, in order to assure the opti-

mal system functioning. On the other hand, food products acquire a higher value when their

authenticity is protected, controlled and assured: in fact, consumers are more oriented towards

purchasing food products of a certified origin. Consequently, during recent years there has been

increasing interest in the origin authentication of food products, since authenticity can be often

associated with food quality [37].

The use of traditional analytical techniques does not always match with these constraints, be-

cause they can be time-consuming and expensive, while fast and cheap methods are essential,

in order to assure a continuous monitoring. As a results novel analytical techniques have been

used for these issues, since they enable more rapid and non-invasive characterisation of foods:

nuclear magnetic resonance (NMR), near infrared spectroscopy (NIR), electronic sensors and

image analysis are only a few of the involved analytical methods. A common property of these

techniques is also the production of a large amount of spectra, so that several data sets are

usually obtained and must be interpreted. Summarising, quality and authenticity control faces

with complex systems, described by a large amount of data: hence, specific tools should be used

in order to assure an effective prediction. Regression and classification can provide these specific

tools: in the last years regression proved to be able to handle a huge amount of data, to process

them, and to give useful results that can be explained by the users [38].

• In this context, in general all the three approaches (supervised, unsupervised and semi-

supervised) use only a single regressor in order to estimate the prediction. However, using

a single regressor usually is not capable of providing high accuracies over the entire input

space. This is due to the fact that any estimator provides usually an accuracy depending on

the region of the input space to which the analyzed pattern belongs to. In this dissertation

a new method based on a residual-based correction (RBC) concept applied in chemometrics

field. Its underlying idea is to correct any adopted regressor, called functional estimator, by

analyzing and modeling its residual errors directly in the feature space. RBC is therefore

not a regressor but a correction method, whose aim is not to reach the best achievable

accuracy for a given data set but to possibly improve the estimation model of a given

(poor or accurate) regressor. For this reason, we have proposed a regression approach that
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consists in correcting a given estimator by exploiting its systematic errors in the feature

space [39].

The second interesting field in this dissertation is renewable energy, as a consequence of increas-

ing population and higher consumption of energy by developing countries, oil resources, natural

gas and uranium will be depleted within a few decades. The unavoidable alternative becomes

thus the development of renewable energy sources like solar energy, geothermal and wind power.

In fact, the best use of renewable energies is an essential factor of development for all countries.

Algeria is a country rich in renewable energy resources, thanks to its geographical location and

its large area which offer it great opportunities to find renewable energy sources (e.g., solar,

wind, and geothermal) [40–42]. Focusing to the particular case of wind power, the estimation of

wind speed in the short or the long-term represents an important target to evaluate the possi-

bility to create new wind turbines or to predict the wind power production of existing ones [43].

Wind energy is seen as a green power technology for having less impacts on the environment.

Wind energy plants generate no air pollutants or greenhouse gases. At the end of 2009, world-

wide wind powered generators capacity was 159.2GW. All wind turbines installed worldwide are

generating 340 TWh/year, which is about 2 of worldwide electricity usage. Understanding the

site-specific nature of wind is a critical phase in planning a wind energy project and detailed

knowledge of wind on-site is needed to estimate the utility of a wind energy project [44].

The main reasons for invested and developed of renewable energies in Algeria are: 1) they con-

stitute a solution economically viable to provide energy services to the rural isolated populations

in particular in the Great South areas, where the demand consists essentially in satisfying basic

energy requirements (light, refrigeration, television and radio), 2) they allow a sustainable devel-

opment because of their inexhaustible character and of their limited impact on the environment

(protection of the environment) and contribute to the safeguarding of our fossil resources, 3)

the monetisation of these energy resources can have only positive repercussions as regards of

regional balance and creation of jobs [45].

• In the aforementioned works, the regression process is undertaken by assuming that the

training set is composed of a sufficient number of samples in order to obtain reliable and

accurate estimations. However, from a practical point of view, the process of collecting

training samples is not trivial, because the concentration/wind speed measurements have to

be performed manually by human experts and thus are subject to errors and costs in terms

of time and money. For this reason, the number of available training samples is typically

limited and performances can be consequently affected due to data scarcity. A solution to

this problem is given by semi-supervised approaches, in which the unlabeled samples are

exploited during the design of the regression model in order to compensate for the deficit in

labeled samples. By unlabeled samples, we mean samples whose spectral values are known,
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but for which the corresponding concentration/wind speed values are unknown. In the data

classification context, another solution to the problem of training sample collection is given

by the active learning approach [46]. Starting from a small training set, additional samples

are selected from a large amount of unlabeled data. These samples are labeled by the expert

and added to the training set. The process is iterated until a stop criterion is reached.

Active learning strategies have been applied successfully in different fields in classification

[46–50]. Similarly, the active learning approach has been studied for regression problems

by the machine learning and statistics communities, in which it is also known as optimal

experimental design. After the seminal paper by Cohn et al. [51], in which active learning

has been applied to two statistically-based learning architectures, such as mixtures of

Gaussian and locally weighted regression, several works have appeared in the last few years.

For instance, in [52], the authors focus on the problem of local minima in active learning for

neural networks, and two probabilistic solutions are proposed. In [53], after introducing the

fundamental limits in a minimax sense of active and passive learning for various function

classes, some strategies based on a tree-structured partition of the data are presented.

In [54], considering linear regression scenarios, a method using the weighted least squares

learning based on the conditional expectation of the generalization error is proposed. In

[55], the authors apply the query by committee approach in the regression context. The

main idea is to train a committee of learners and query the labels of the samples where the

committee’s predictions differ, thus minimizing the variance of the learner by training on

samples where the variance is largest. In [56], solving the problems of active learning and

model selection at the same time is suggested in order to improve further the generalization

performance. In [57], a solution to the problem of pool-based active learning in linear

regression is proposed. In [58], the authors develop a strategy for kernel-based linear

regression, in which the proposed greedy algorithm employs a minimum-entropy criterion,

derived using a Bayesian interpretation of RR. Note that while semi-supervised methods

integrate unlabeled samples automatically (without the intervention of human experts)

in the learning process, active learning works differently. Indeed, its aim is to minimize

the number of unlabeled samples to be labeled by human experts. For such a purpose,

it resorts to smart strategies for selecting the most significant unlabeled samples, that

is, those which, if labeled, would most improve the classification/regression model. For

this reason, the second objective of this dissertation is to propose new methodologies of

active learning in different application fields. In particular, two main fields have been

considered, namely chemometrics [59,60], and wind speed prediction [61]. Our motivation

and contribution in this dissertation is that the active learning has not yet been explored

for these two fields of interest.
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1.3 Organization of the thesis

This thesis is organized into six chapters. In Chapter 2, we present the background information

about the utilized data sets, in order to better understand the work present in this dissertation.

Specifically, we use two different field data sets: 1) near infrared spectroscopy data sets, and

2) wind speed data sets. In Chapter 3, we present briefly the different methods of linear and

non-linear regression that we use in this dissertation. In Chapter 4, we propose a two-stage

regression approach, which is based on the residual correction concept. Its underlying idea is

to correct any given regressor by analyzing and modeling its residual errors in the input space.

We report and discuss results of experiments conducted on two different data sets in infrared

spectroscopy and designed in such a way to test the proposed approach by: 1) varying the kind

of adopted regression method used to approximate the chemical parameter of interest. Partial

least squares regression (PLSR), support vector machine (SVM) and radial basis function neu-

ral network (RBF) methods are considered; 2) adopting or not a feature selection strategy to

reduce the dimension of the space where to perform the regression task. A comparative study

with another approach which exploits differently estimation errors, namely adaptive boosting

for regression (AdaBoost.R), is also included. In Chapter 5, we introduce an active learning

approach for the estimation of chemical concentrations from spectroscopic data. Its main ob-

jective is to opportunely collect training samples in such a way as to minimize the error of the

regression process while minimizing the number of training samples used, and thus to reduce

the costs related to training sample collection. In particular, we propose two different active

learning strategies, developed for regression approaches, based on partial least squares regres-

sion (PLSR), ridge regression (RR), kernel ridge regression (KRR) and support vector regression

(SVR). The first strategy is based on adding samples that are distant from the current training

samples in the feature space, while the second one uses a pool of regressors in order to select

the samples with the greatest disagreements among the different regressors of the pool. For

SVR, a specific strategy based on the selection of the samples distant from the support vectors

is proposed. Similarly, in the active learning approach is used for regression problems in the

renewable energy field. In particular, we consider the problem of the estimation of wind speed in

Algeria. In this case, the proposed strategies are specifically developed for kernel ridge regression

(KRR). In particular, we propose three different active learning strategies. The first strategy

uses a pool of regressors, while the second one relies on the idea to add samples that are distant

from the available training samples, and the last strategy is based on the selection of samples

which exhibit a high expected prediction error. Finally, general conclusions on the methodologi-

cal and experimental developments conveyed by the present dissertation are drawn in Chapter 6.
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The main contributions of the thesis are:

1. with respect to design of the regressors [39]:

• A new correction method for spectroscopy data set using linear and nonlinear regres-

sion is proposed.

2. with respect to the problem of training sample collection [59–62]:

• In order to use and to improve forecasting/concentration systems, the quality of the

predictions has to be evaluated, where “quality” and “quantity” refer to a judgement

of how good or bad the prediction. In the case of data sets such as wind speed

or spectroscopy, the easiest way to get an idea of the quality and quantity sample

collection of this data sets is by using the active learning.

• We investigate and develop different techniques and methods for the active learning

of spectroscopy and wind speed data sets. In particular, we address several issues

associated to different regression tasks of data sets (supervised and unsupervised

strategies).
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2.1 Introduction

In this chapter, we give an overview of some data sets used in the following chapters. The goal

here is to give all the necessary information to understand the work presented in this thesis. In

particular, two main fields have been considered, namely chemometrics, and renewable energy.

The first field is the chemometrics data, and more particularly the spectral data, which is a

high-dimensional data. Spectra are obtained from the analysis of the absorbance or reflectance

of the light at different wavelengths on physical or chemical products. The objective of spectral

analysis it to estimated a chemical parameters from product. The second field data set is

considered as a low-dimensional data. The renewable energy (wind speed data) depends on

meteorological variables such as relative humidity, temperature, etc. We use the data collected

from ten stations located in Algeria. In each station, different physical input parameters, such

as temperature measurements and average relative humidity, which in turn provides in output

an estimate of the mean wind speed (m/s). We are interested in long term wind prediction in

Algeria.

Depending on the applied fields, some other information can be needed in order to develop a

model.

The organization of this chapter is as follow. Section 2.2 describe the near infrared spectroscopy

data sets, while in Section 2.3, we present the wind speed data sets. Finally, we finish by a

conclusion.

2.2 Near infrared spectroscopy

Spectroscopy is an important technology for product analysis and quality control in different

chemical fields. For example, it has been applied successfully in the pharmaceutical [63, 64],

food [65] and textile industries [66]. Chemical analysis by spectroscopy relies on the fast ac-

quisition of a large number of spectral data, which can be analyzed in order to yield accurate

estimations of the concentration of the chemical component of interest in a given product.

Chemometrics can be defined as the chemical discipline that uses the methods and theory devel-

oped in mathematical, statistical, and computer sciences to design or select optimal measurement

procedures and experiments, and to provide maximum relevant chemical information by analyz-

ing chemical data [16,67,68].

In analytical chemistry infrared spectroscopy (IR) is mainly used for the analysis of organic com-

ponents. The qualitative assessment of organic components is performed for the identification

of unknown compounds, or for the determination of the chemical structure of the components.

In addition, IR analysis may be used for quantification of the components. IR spectroscopy is

also known as vibration spectroscopy, since the spectra arise from transitions between the vibra-

tional energy levels of a covalent bond of a molecule. The infrared spectrum, which ranges from

1 µm to 1000 µm, is part of the electromagnetic spectrum and is surrounded by the visible and
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microwave regions (Figure 2.1). The IR region may be further subdivided in the near infrared,

the Mid infrared and the Far infrared regions [69]. The NIR spectroscopy region is between

700-2500 nm (14300-4000 cm−1). Mid infrared and Far infrared light can be situated in the

2500-10,000 nm and 10-1000 µm range, respectively.

The instruments that measure electromagnetic radiation have several concepts and components

in common. Shared instrumental components are discussed in some detail in a later section.

Photometric instruments measure light intensity without consideration of wavelength. Most

instruments today use filters (photometers), prisms, or gratings (spectrometers) to select (iso-

late) a narrow range of the incident wavelength. Radiant energy that passes through an object

will be partially reflected, absorbed, and transmitted. Electromagnetic radiation is described

as photons of energy traveling in waves. The relationship between wavelength and energy E is

described by Planck’s formula [70]:

E = hv, (2.1)

where h is a constant (6.62 × 10−27 erg sec), known as Planck’s constant, and v is frequency.

Because the frequency of a wave is inversely proportional to the wavelength, it follows that the

energy of electromagnetic radiation is inversely proportional to wavelength. Figure 2.2 shows this

relationship. Electromagnetic radiation includes a spectrum of energy from short-wavelength,

highly energetic gamma rays and X-rays on the left in Figure 2.1 to long-wavelength radio

frequencies on the right. Visible light falls in between, with the color violet at 400-nm and red

at 700-nm wavelengths being the approximate limits of the visible spectrum [70].

Figure 2.1: Regions of the electromagnetic spectrum.
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Figure 2.2: Electromagnetic Spectrum.

2.2.1 Relating absorbance to concentration

Spectroscopy deals with the interaction of electromagnetic radiation with matter. Depending

on the energy of the electromagnetic radiation, different oscillations are excited. This excita-

tion involves absorption of the corresponding energy of the oscillation involved. For example,

microwave radiation excites rotational motions of the molecules, infrared radiation excites vibra-

tional modes, near-infrared radiation excites overtones and combination frequencies, ultraviolet

and visible radiation excite electronic transitions [71]. Spectroscopic methods used within the

food industry include ultraviolet and visual spectroscopy, fluorescence spectroscopy, nuclear

magnetic resonance, microwave absorption, ultrasound transmission, and infrared techniques

such as IR and NIR, and Raman spectroscopy covering most regions of the electromagnetic

spectrum (see Figure 2.1). In the present thesis the spectroscopic technique have been applied

is Near infraRed spectroscopy (NIR) (see Chapter 4 and Chapter 5). The relationship between

absorbance and concentration is given by the Lambert-Beer’s Law:

A = Mcd, (2.2)

where A is the absorbance, M is the molar absorptivity, c is the concentration, and d is the

sample path length.

In a more practical sense, the absorbance is defined as the negative logarithm of the transmit-

tance. This is given mathematically as:

A = − log T = − log
I

I0
, (2.3)

where I is the intensity of the light beam on the sample, I0 is the intensity of the light beam after

having passed the sample and T is transmittance. In infrared transmittance the relationship

between the absorbance and the concentration log 1
T

is described by the Beer-Lambert’s law,

i.e. this relation is linear [72]. However, that law should not be applied to near-infrared diffuse

reflectance log 1
R
, because of the light scattering [73] and the light path length shortening [74],

as shown in Figure 2.3.



Chapter 2. Data Sets Description 14

Figure 2.3: Absorbance according concentration

2.2.2 High-dimensional data

In the past, high dimensionality used to mean four or five attributes. Nowadays, we have to deal

with, comparatively, super high-dimensional data, described by thousands of attributes. Data

are nowadays complex and high-dimensional. In scene analysis, face recognition, document cate-

gorization, speech recognition, optical character recognition, spectral and hyperspectral analysis,

and many others, one has to deal with data that are described by many attributes, and con-

sequently described with high-dimensional. Each data element is thus viewed as a point in a

vector space whose dimension is the number of numerical features necessary to describe each

data element [75, 76]. Feature selection is a step of major importance for the high-dimensional

data sets. Indeed, learning with high-dimensional data is generally a complicated task due to

many undesirable facts denoted by the term curse of dimensionality. Among the various ap-

proaches to feature selection, principal component analysis (PCA) is very popular method that

is able to adapt to this problem of dimensionality were developed.

In case the number of variables p is larger than the number of observations n, if X contains more

variables than observations (p >> n) its covariance structure can be estimated by means of a

PCA. In general, PCA constructs a new set of k << p variables, called loadings, which are linear

combinations of the original variables and which contain most of the information. These loading

vectors span a k-dimensional subspace. Projecting the observations onto this subspace yields the

scores ti which for all i = 1, ..., n satisfy [77]. In following are three data sets illustrative of the

context and needs of high-dimensional data analysis (This section gives additional information

about the near-infrared spectroscopy data sets used in the Chapter 4 and Chapter 5).
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2.2.2.1 Orange juice

The first data set deals with the problem of determining sugar (saccharose) concentration in

orange juice samples by near-infrared reflectance spectroscopy [78]. In this case, training (for

model learning and selection) and test (for model assessment) sets contain respectively 149 and

67 samples, with 700 spectral variables that are the absorbance (log 1/R) at 700 wavelengths

between 1100 and 2500 nm (where R is the light reflectance on the sample surface). The

saccharose concentration ranges from 0 to 95.2% by weight. Figures 2.4-(a) and 2.4-(b) shows

the spectra of orange juice used in the training and test sets, respectively. Figure 2.5 shows all

the spectra of the orange juice data set. Both spectra 130 and 194 are considered as outliers

in figure 2.5, where in Figure 2.6 gives a typical example of a score plot for two first principal

components (Pc1-Pc2), after the application of the PCA on the 218 orange juice spectra. In

Figure 2.6, two dense regions and few outliers can be seen, and we can consider that samples

130 and 194 are outliers, and can consequently be eliminated from the orange juice data set [79].

Figure 2.4: Near-infrared reflectance spectra of orange juice data set.
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Figure 2.5: All the spectra of the orange juice

data set.
Figure 2.6: Principal components analysis (Pc1-

Pc2) of the orange juice data set.

2.2.2.2 Diesel

The second data set refers to multispectral acquisitions of diesel fuels [80]. It was built by the

Southwest Research Institute in order to develop instrumentation to evaluate fuel on battle fields.

Along with the spectral acquisitions, different properties are available, such as boiling point at

50% recovery, cetane number, density, freezing temperature, total aromatics and viscosity. The

data set contains only summer fuels, and outliers were removed. In our experiments, we consider

one of the most difficult prediction tasks in this data set, that is, the prediction of the cetane

number of the fuel. All spectra range from 750 to 1550 nm, discretized into 401 wavelength

values. The data set contains 20 high leverage spectra, shown in Figure 2.7-(a), and 225 low

leverage spectra, the latter being separated into two subsets labeled a and b. As suggested by

the providers of the data, we have built a learning set with the high leverage spectra and a

subset of the low leverage spectra (thus yielding 133 spectra). Figure 2.7-(b) show the test set

is made up of the low leverage spectra of subset b (gathering 112 spectra). In Figures 2.8 and

2.9 the all original spectra and their principal components analysis are shown. Note that the

spectra look already pre-processed and no outlier was detected.
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Figure 2.7: High leverage spectra (after centering and reduction) from the diesel data set.

Figure 2.8: All the spectra of the diesel

data set.

Figure 2.9: Principal components analysis (Pc1-

Pc2) of the diesel data set.
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2.2.2.3 Tecator

The third data set deals with the determination of the fat content of meat samples analyzed by

near infrared transmittance spectroscopy [81]. The spectra have been recorded on a Tecator In-

fratec Food and Feed Analyzer working in the wavelength range 850-1050 nm. The spectrometer

records light transmittance through the meat samples at 100 wavelengths in the specified range.

The corresponding 100 spectral variables are absorbance defined by the measured transmittance.

Each sample contains finely chopped pure meat with different moisture, fat and protein con-

tents. Those contents, measured in percent by weight, are determined by analytic chemistry

and range from 0.9 to 49.1%. The data set contains 172 training samples and 43 test samples

(see Figure 2.10). The spectra are normalized according to the SNV method (standard normal

variance, mean equal to zero and variance equal to 1). From the 215 original spectra, 2 outliers

where detected. Figures 2.11 and 2.12 presents the all original spectra and the outlier detection

procedure. It should be noted that the outliers detected in the tecator data set will not be

eliminated [82].

Figure 2.10: Near-infrared spectra of tecator data set.
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Figure 2.11: All the spectra of the tecator

data set.

Figure 2.12: Principal components analysis

(Pc1-Pc2) of the tecator data set.

2.3 Wind speed

2.3.1 Nature of the wind

The energy available in the wind varies as the cube of the wind speed, so an understanding

of the characteristics of the wind resource is critical to all aspects of wind energy exploitation,

from the identification of suitable sites and predictions of the economic viability of wind farm

projects through to the design of wind turbines themselves, and understanding their effect on

electricity distribution networks and consumers.

From the point of view of wind energy, the most striking characteristic of the wind resource is its

variability. The wind is highly variable, both geographically and temporally. Furthermore this

variability persists over a very wide range of scales, both in space and time. The importance

of this is amplified by the cubic relationship to available energy. On a large scale, spatial

variability describes the fact that there are many different climatic regions in the world, some

much windier than others. These regions are largely dictated by the latitude, which affects the

amount of insolation. Within any one climatic region, there is a great deal of variation on a

smaller scale, largely dictated by physical geography the proportion of land and sea, the size

of land masses, and the presence of mountains or plains for example. The type of vegetation

may also have a significant influence through its effects on the absorption or reflection of solar

radiation, affecting surface temperatures, and on humidity [43].
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2.3.2 Geographical variation in the wind resource

The winds are driven almost entirely by the sun’s energy, causing differential surface heating.

The heating is most intense on land masses closer to the equator, and obviously the greatest

heating occurs in the daytime, which means that the region of greatest heating moves around

the earth’s surface as it spins on its axis. Warm air rises and circulates in the atmosphere to

sink back to the surface in cooler areas [43]. The tendency of climate remain which lead to clear

climatic differences between regions. These differences are tempered by more local topographical

and thermal effects [43,83]. The study of geographical distribution of wind speeds, characteristic

parameters of the wind, topography and local wind flow and measurement of the wind speed

are very essential in wind resource assessment for successful application of wind turbines [84].

The mountains and hills result in local regions of increased wind speed. This is partly a result

of altitude - the earth’s boundary layer means that wind speed generally increases with height

above ground, and hill tops and mountain peaks may ‘project’ into the higher wind-speed layers.

It is also partly a result of the acceleration of the wind flow over and around hills and mountains,

and funneling through passes or along valleys aligned with the flow. Equally, topography may

produce areas of reduced wind speed, such as sheltered valleys, areas in the lee of a mountain

ridge or where the flow patterns result in stagnation points [43]. For example, Figure 2.13 shows

a geographical map of the distribution of wind speed in January and July.

Figure 2.13: Seasonal world wind resource map in January and July.
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The thermal effect is another important factor may also result in considerable local variations.

Coastal regions are often windy because of differential heating between land and sea. This effect

may also be produced by differences in altitude. Thus cold air from high mountains can sink

down to the plains below, causing quite strong and highly stratified ‘downslope’ winds [43].

2.3.3 Long-term wind speed variations

There is evidence that the wind speed at any particular location may be subject to very slow

long-term variations. Although the availability of accurate historical records is a limitation

[85]. Clearly these may be linked to long term temperature variations for which there is ample

historical evidence. There is also much debate at present about the likely effects of global

warming, caused by human activity, on climate, and this will undoubtedly affect wind climates

in the coming decades. Apart from these long-term trends there may be considerable changes in

windiness at a given location from one year to the next. These changes have many causes. They

may be coupled to global climate phenomena, changes in atmospheric particulate resulting from

volcanic eruptions, and sunspot activity. These changes add significantly to the uncertainty

in predicting the energy output of a wind farm at a particular location during its projected

lifetime [43].

2.3.4 Classification according to time horizons

The various forecasting models in the literature can be different based on the forecasting hori-

zons, which can vary according to the required application and the technique used. The fore-

casting system is divided into four categories according to time horizons: very short term, short

term, medium term, or long term. The time span is different in various literature descriptions.

The specific classification is listed in Table 2.1, this table also presents the application for each

prediction horizon [86,87].
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Table 2.1: Classification of different time horizons.

Time Horizon Range Application Purpose

Very short term
Few seconds to 30 minutes ahead

• Electricity Market Clearing

(in minutes) • Wind Turbine Control

Short term
30 minutes to 48(or 72) hours ahead

• Economic Load Dispatch Planning

(in hours) • Load Increment/Decrement Decisions

Medium term

48(or 72) hours to 1 week ahead

• Generator Online/Offline Decisions

(in days) (Arrangements for Maintenance)

• Unit Commitment Decisions

Long term

1 week to 1 year or more ahead

• Maintenance Scheduling to Obtain

Optimal Operating Cost

(in years) • The Feasibility Study for Design of

the Wind Farm

2.3.5 Wind prediction

In general, different methods are used for wind prediction. The easiest ones are based on clima-

tology or averages of past production values. They may be considered as reference forecasting

methods since they are easy to implement. The famous of these reference methods is certainly

persistence. This is one of the simplest models. It is very effective for very short term fore-

casting. It’s based on the idea that under similar conditions the next forecast data point will

be approximately the same or constant to present data point value, due the simplicity, reduced

complexity and low cost implementation. This model is very popular. However, this model

suffer from a drawback, which is the larger the time horizon is the bigger the prediction error.

Advanced approaches for wind power forecasting necessitate predictions of meteorological vari-

ables as input. Then, they differ in the way predictions of meteorological variables are converted

to predictions of wind power production, through the so-called power curve [43].

Wind power generation is directly linked to weather conditions and thus the first aspect of wind

power forecasting is the prediction of future values of the necessary weather variables at the level

of the wind farm. This is done by using numerical weather prediction (NWP) models. Such

models are based on equations governing the motions and forces affecting motion of fluids. From

the knowledge of the actual state of the atmosphere, the system of equations allows to estimate

what the evolution of state variables, e.g. temperature, velocity, humidity and pressure, will be

at a series of grid points. The meteorological variables that are needed as input for wind power

prediction obviously include wind speed and direction, but also possibly temperature, pressure

and humidity. The distance between grid points is called the spatial resolution of the NWPs.

The main disadvantage of using this model is that the cost of implementation, complexity in-

volved in it takes a long time in processing to train the model [88].
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In the literature, several wind speed prediction methods can be found. They can be divided into

three categories: physical methods, statistical methods, and machine learning methods.

2.3.5.1 Physical approach

It is based on a detailed physical considerations to predict the future wind speed like terrain,

obstacle, pressure, and temperature. Sometimes they are only the first step to forecast the

wind, which is supplied as auxiliary input of other statistical models. Numeric weather prediction

(NWP) is developed by meteorologists for large-scale area weather prediction. NWP is a physical

approach to wind forecasting, it is operate by solving complex mathematical models that use

weather data [86,89].

2.3.5.2 Statistical approach

The statistical approach is based on training with measurement data and uses difference between

the predicted and the actual wind speeds in immediate past to tune model parameters, it is not

based on any predefined mathematical model and rather it is based on statistical linear and

nonlinear models [86,90,91].

2.3.5.3 Machine learning approach

Models based on machine learning techniques such as Artificial Neural Network (ANN), bayesian

networks, fuzzy logic, support vector machine (SVM) and hybrid models, are used for the wind

speed data in recent years, because of their excellent ability to learn non-linear relationships

from experience, many researchers found these techniques to be effective for wind speed and

power output prediction [24–36].

In this context, different architecture and types of artificial neural network is presented. For

instance, Fadare [24] compared three different artificial neural networks (ANNs) applied to wind

speed in Nigeria and used different configurations of the ANN. Li [92] investigated a method

to do one-step-ahead prediction of wind power generation using recurrent multilayer perceptron

neural networks (RMLP). Results showed that the RMLP model performed better in 1-hour

prediction than that for 10-min prediction. In [25], three types of neural networks, namely,

adaptive linear element, back propagation, and radial basis function, are compared. Mohan-

des [29] used neural networks (ANN) to forecast the mean of monthly and daily wind speed.

The forecasting accuracy was compared with the autoregressive (AR) model. The results indi-

cated that the ANN model outperformed the AR model for all examined forecasting horizons.

In [28], introduced the support vector machines (SVM) for wind speed prediction and compared

it with the multilayer perceptron neural networks (MLP). The results proved that the SVM

model is better than MLP model. In [33], hybridization of linear regression (MLR, SVM-linear)

and nonlinear regression (ANN, SVM-Gaussian, SVM-polynomial). Sfetsos [93] examined and
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compared various artificial intelligence based forecasting models based on time series analysis.

The models examined in this study include ARMA models, feed-forward and recurrent neural

networks, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Neural Logic Networks (NLN).

In [94], used an artificial neural network (ANN) to predict the average hourly wind speed and

the related power production.

Among several nonlinear regression approaches, KRR, which is a kernel version of the ridge

regression (RR), has a very good generalization performance by selecting the suitable regular-

ization parameter [95]. The nonlinear maps can be approximated by means of kernel ridge

regression, an extension of linear ridge regression based on kernel functions. KRR offers the

advantage of being fast to evaluate, requiring only a single matrix inversion which depends on

the number of points but is independent of the number of attributes in the input space [96].

The focus of this thesis lies on machine learning approach for wind speed prediction.

2.3.6 Low-dimensional data

Many data analysis borrowed from statistics or machine learning were designed for low-dimensional,

large sample data, based on a scheme that the human mind can apprehend, in this case we do

not need to features selection.

Let us consider a set of n training samples X = (x1, ..., xn) with xi = (xi1, ..., xid) represented

in the d-dimensional feature space ℜd. In this section of wind speed data set, we assume in

addition that the data are low-dimensional. Here, this means that d should at least be smaller

than n (This section gives additional information about the wind speed data sets used in the

Chapter 5).

2.3.6.1 Geographic location of Algeria

Algeria’s geographic location has several advantages for extensive use of most of the renewable

energy (solar and wind). Algeria situated in the centre of North Africa between the 38-35◦ of

latitude north and 8-12◦ longitude east, has an area of 2,381,741 km2 [97].

Administratively speaking, Algeria is divided into 48 provinces and lies, in the north, on the

coast of the Mediterranean Sea. The length of the coastline is 2400 km. In the west Algeria

borders with Morocco, Mauritania and occidental Sahara, in the southwest with Mali, in the

east with Tunisia and Libya, and in the southeast with Niger (see Figure 2.14) [41].
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Figure 2.14: Algeria’s geographic location.

2.3.6.2 Wind speed data sets in Algeria

We used different wind speed data measurement stations distributed over the vast Algerian

territory, which cover a period of ten years (between January 1st, 2001 to December 31st, 2010)

based on ten different stations in Algeria, namely, Tlemcen, Chlef, Alger, Annaba, Djelfa, Batna,

El Oued, Ghardaia, Adrar and Tamanrasset. These stations are distributed in different regions

of the country as depicted in Figure 2.15.
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Figure 2.15: Geographical location of the meteorological stations considered in the experiments.

Table 2.2 provides the exact location of these stations, their altitude as well as the related

number of daily measurements used for training and testing the investigated methods. The

month number, the day number (within the month), three temperature measurements (average,

maximum and minimum temperatures) and the average relative humidity are used as input

features for the prediction, which in turn provides in output an estimate of the mean wind

speed.
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Table 2.2: Information about the meteorological stations considered in the experiments.

Location Data set information

Name Latitude Longitude Altitude # training # test

(m) samples samples

(days) (days)

Tlemcen 35.01 -1.46 247 2519 1095

Chlef 36.21 1.33 143 1679 961

Alger 36.76 3.1 12 965 1013

Annaba 36.83 7.81 4 2514 1090

Djelfa 34.33 3.25 1144 2401 1042

Batna 35.75 6.18 1052 2415 1086

El Oued 33.5 6.11 63 2473 954

Ghardaia 32.4 3.81 450 2486 1092

Adrar 27.88 -0.28 263 2262 1001

Tamanrasset 22.8 5.51 1364 2319 1087

For each station, the wind speed data set was divided into two sets: 1) a training set, from 1st

January 2001 to 31st December 2007; and 2) a test set, from 1st January 2008 to 31st December

2010. Figures 2.16-2.19 illustrates ten different wind speed data sets used in the experimental

analysis.

Figure 2.16: Daily wind speed behavior for Tlemcen station. The blue curve show the training

samples, while the red curve show the test samples.
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Figure 2.17: Daily wind speed behavior for (a) Chlef, (b) Alger and (c) Annaba stations. The

blue curve show the training samples, while the red curve show the test samples.
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Figure 2.18: Daily wind speed behavior for (a) Djelfa, (b) Batna and (c) El Oued stations. The

blue curve show the training samples, while the red curve show the test samples.
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Figure 2.19: Daily wind speed behavior for (a) Ghardaia, (b) Adrar and (c) Tamanrasset sta-

tions. The blue curve show the training samples, while the red curve show the test samples.
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2.4 Conclusion

This chapter has presented a literature review on spectroscopy and forecasting of wind speed data

sets. After the representation of the data sets, it can be noted that in the case of spectroscopy

data, the variation of the concentration can be considered as a linear or nonlinear problem.

However, in the case of wind speed we have a nonlinear estimation problem. Visualization

is the paramount aim of data analysis. Several methods to visualize the data with a low-

dimensional representation are of great help. As seen in this chapter among the most used

methods is the projection of data (e.g. PCA). A two-dimensional representation is often preferred

as representations of higher dimensional require training to be used properly, this representation

provides interesting information about the data distribution and other such as outliers.

In the second section of this chapter, we have introduced the most important principles related to

the wind energy, its nature, geographical variation in the wind resource and the long-term wind

speed variations. Finally, the representation of the ten data sets used in the following chapters

is provided. This main constituents is related to a good understanding of its characteristics.

Since in the last years, these data sets have so increased in uses and applications that now

modern learning techniques are usually combined with them. The objective of the next chapters

is to describe and used regression methods to predict the concentration of food product and

wind speed prediction by means of a classical and new methods.
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3.1 Introduction

In the literature, two main approaches of regression have been proposed. The first is based on

linear models, such as the multiple linear regression (MLR), the principal component regression

(PCR) and the partial least square regression (PLSR) methods. The MLR is a simpler approach

for calibration model creation than PCR and PLS, because it performs regression directly on

the original variables while PCR carries out regression on principal components that do not

necessarily have a physical meaning and PLSR finds a projection subspace by exploiting the

target variable. However, due to the colinearity between original spectral variables, overfitting

problems can be encountered in MLR [98]. PCR first consists of applying a principal com-

ponents analysis (PCA) to the matrix of the spectral data. Then, PCA replaces the original

spectral variables (typically redundant) by principal components (linear combinations of the

original variables), which contain most of the conveyed information and have the advantage of

being uncorrelated [99]. The most important principal components are then used as inputs for

a multiple linear regression (MLR) [100]. PLSR aims at finding linear projections which exhibit

the maximum correlation with the target (output) variable; a linear regression model is then

estimated in the subspace defined by the projected coordinates [101]. Linear regression has the

advantage of being simple and cheap in terms of computation load, but is not reliable if the true

relationship between the inputs and the output is nonlinear, unless opportune preprocessing

methods are adopted. The second approach makes use of nonlinear models such as artificial

neural networks and support vector machines (SVM) [2, 3, 102, 103]. The most popular neural

networks are the multilayer perceptrons (MLP) which are composed of layers of neurons (com-

puting units). MLP have some drawbacks associated with the training process: 1) no guarantee

of convergence toward the global optimum, 2) long training time, 3) empirical architecture defi-

nition and free parameter setting. Moreover, they are affected by a serious risk of overfitting the

training data in particular when increasing the size of the network [104, 105]. However, radial

basis function neural network (RBFN) and SVM have proved to perform nonlinear multivariate

function estimation and nonlinear regression tasks in an effective way. RBFN are based on a

single hidden layer of neurons using Gaussian transfer functions, and a linearly activated output

layer. In comparison with MLP, RBFN appear to offer some advantages such as robustness to

noise and much faster training procedures. SVM rely on the principle of structural risk mini-

mization, which promises good generalization capability and very good performance when just

few training samples are available [106,107].

In this chapter we present briefly the different methods of linear and nonlinear regression that

we used in this thesis. In Section 3.2, the basic concepts of two linear regression and two

linear projection techniques, being, least squares (LS), ridge regression (RR), principal com-

ponent regression (PCR) and partial least squares regression (PLS), respectively, are recalled.

Section 3.3, three nonlinear regression methods, kernel ridge regression (KRR), support vec-

tor regression (SVR), radial basis function neural network (RBFN), respectively, are described.
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Finally, conclusions in Section 3.4.

3.2 Linear regression methods

3.2.1 Linear regression

The problem of linear regression consists in finding a linear function:

f(x) =< w · x > +b, (3.1)

where w ∈ ℜd is a vector of weights and b ∈ ℜ is the bias. The weights and bias are the

parameters of the model. That best interpolates a given set of training points labeled from

Y ⊆ ℜ . Geometrically this corresponds to a hyperplane fitting the given points. Figure 3.1

shows a one dimensional linear regression function. The distance shown as ξ in the figure is the

error for the particular training example.

The estimation of the best-known solution is related of choosing the line that minimizes the sum

of the squares of the distances from the training points. This technique is known as least squares,

and is known to be optimal in the case of linear targets corrupted by Gaussian noise [107].

Figure 3.1: A one dimensional linear regression function.

3.2.1.1 Least squares (LS)

The prediction of a dependent variable y from independent variable x1, x2, ..., xn is defined by

the equation:
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y = f(x) =< w · x > +b. (3.2)

The least squares approach prescribes choosing the parameters (w, b) to minimize the sum of

the squared deviations of the data,

L(w, b) =
l
∑

i=1

(y− < w · xi > −b)2. (3.3)

The function L is known as the square loss function as it measures the amount of loss associated

with the particular choice of parameters by a sum of squares. The loss function L is minimized

by differentiating with respect to the parameters (w, b), and setting the resulting n + 1 linear

expressions to zero [107]. This is best expressed in matrix notation by setting ŵ = (w
′

, b)
′

, and

X̂ is represented by a vector:

X̂ =





























x̂
′

1

x̂
′

2

.

.

.

x̂
′

l





























, where x̂
′

i = (x
′

i, 1)
′

. (3.4)

With this notation the vector of output discrepancies becomes

y − X̂ŵ, (3.5)

with y a column vector. Hence, the loss function can be written as

L(ŵ) = (y − X̂ŵ)
′

(y − X̂ŵ). (3.6)

Taking derivatives of the loss and setting them equal to zero,

∂L

∂ŵ
= −2X̂

′

y + 2X̂
′

X̂ŵ = 0, (3.7)

yields the well-known normal equations

X̂
′

X̂ŵ = X̂y, (3.8)
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and, if the inverse of X̂
′

X̂ exists, the solution of the least squares problem is

ŵ = (X̂
′

X̂)−1X̂
′

y. (3.9)

If X̂
′

X̂ is singular, the pseudo-inverse can be used, or else the technique of ridge regression

described below can be applied [107].

3.2.1.2 Ridge regression (RR)

Because of the high degree of collinearity as d increases, the matrix X̂
′

X̂ tends to be singular,

and the estimates become unstable, thus leading to an inappropriate regression model. In order

to solve this problem, one can resort to RR for which:

ŵ = (X̂
′

X̂ + λIn)
−1X̂

′

y, (3.10)

where λ is the ridge parameter (λ ∈ ℜ, λ ≥ 0) and In is the identity matrix with the (n+1, n+1)

entry set to zero [107,108].

The ridge regression algorithm minimizes the penalized loss function [107]:

L(w, b) = λ < w · w > +
l
∑

i=1

(< w · xi > +b− yi)
2, (3.11)

so that the parameter λ controls a trade-off between low square loss and low norm of the

solution.

Note that ridge regression also admits a dual representation. The solution needs to satisfy
∂L
∂w

= 0, which gives the following expression for the hypothesis:

λw = −
∑

i (< w · xi > b− yi)xi, which implies that there exist scalars αi = − 1
λ
(< w·xi > b−yi),

such that the solution can be written as w =
∑

i αixi.

Once we know that the solution can be expressed in dual form we can derive conditions that

α must satisfy. We can express the duality condition in vector form by expressing the weight

vector in terms of the vector α:

w = X
′

α, (3.12)

where X is the matrix with the last column (of 1s) removed. We can rewrite Equation (3.10)

as follows, where we have set b to zero for simplicity:



Chapter 3. Linear and Nonlinear Regression 37

L(w) = λα
′

XX
′

α+
l
∑

i=1
(α

′

Xxi − yi)
2

= λα
′

Gα+
l
∑

i=1
((Gα)i − yi)

2

= λα
′

Gα+ (Gα− y)
′

(Gα − y)

= λα
′

Gα+ α
′

GGα − 2y
′

Gα+ y
′

y,

(3.13)

where G = XX
′

= G
′

. Taking derivatives with respect to α and setting to zero we obtain the

equation

2G(λα +Gα− y) = 0. (3.14)

This equation will be satisfied if

(λI +G)α = y, (3.15)

giving a predictive function of

f(x) = y
′

(λI +G)−1z, (3.16)

where zi =< x · xi >. Note how this dual equation depends on the Gram matrix of inner

products of the training examples, G = XX
′

[107].

3.2.2 Linear projection techniques

Two of the most popular multivariate projections techniques are Principal Component Regres-

sion (PCR) and Partial Least Squares Regression (PLSR). They both use a linear inner relation.

3.2.2.1 Principal component regression (PCR)

One problem with multivariate data is that the sheer volume may make it difficult to see pat-

terns and relationships. The aim of many methods of multivariate analysis is data reduction.

Quite frequently there is some correlation between the variables, so some of the information is

redundant. In PCR, Principal component analysis (PCA) [109] is a technique for reducing the

amount of data when there is correlation present. It is worth stressing that it is not a useful

technique if the variables are uncorrelated [110]. In the first step, the PCA are calculated. PCA

are intimately related to covariance matrix. For instance, the loading vectors of Principal Com-

ponent Analysis (PCA) can be extracted either from a mean centered data set X or from the

corresponding covariance matrix C = (XTX)/(N − 1), with N is the number of samples in X.
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To identify the loadings from X, this can be done using e.g. the NIPALS algorithm [111] or the

Singular Value Decomposition (SVD) [112], among others, can be employed.

In the final step in PCR, the output variable, y is regressed on the principal components using

ordinary multiple linear regression (MLR) [113].

PCR can be characterized as an unsupervised method, since the principal components are not

found using information about the output variable y. Instead, PCR is a variance maximizing

method, because only those principal components which contribute the most to the variability

in X are considered [114].

3.2.2.2 Partial least squares regression (PLS)

Another strategy to adjust the flexibility of a linear model is to reduce the dimensionality of

the input vectors by projecting them on a small dimensional linear subspace. Let us consider

a set of labeled samples L = {xl, yl}
n
l=1, where xl = [xl1, ..., xld] ∈ ℜd represents a vector of d

spectral acquisitions and/or processed features and yl ∈ ℜ is the associated target value, that

is, the measurement of the concentration value of interest. Let us aggregate all xl’s l = 1, ..., n

into a n× d feature matrix X and all yl’s (l = 1, ..., n) into a target vector y so that L = {X, y}.

The goal is to deduce from the set of labeled samples L the function f(.) so that y = f(x).

Contrary to PCR, PLSR is a supervised method, where the influence of y is incorporated when

the latent variables are found. PLSR aims to find a linear regression model by projecting data

to a new space [115–118]. In particular, it tries to find the multidimensional direction in the

space X that explains the maximum multidimensional variance direction in the space y. The

user has to supply the number ℓv of latent factors in the regression. If ℓv equals the rank of the

matrix X, the method yields simply the least squares regression estimates. After centering the

input X and y, the following steps are performed for each latent factor k (k = 1, ..., ℓv) [113]:

1. find the weight vector wk by maximizing the covariance between the linear combination

Xk−1wk and y under the constraint that w
′

kwk = 1. This corresponds to find the unit

vector wk that maximizes w
′

kX
′

k−1yk−1 , i.e., the scaled covariance between Xk−1 and yk−1

wk =
X

′

k−1yk−1
∥

∥X
′

k−1yk−1

∥

∥

. (3.17)

2. find the factor score tk as the projection of Xk−1 on wk, so that the X-residuals E

Xk−1 = tkwk + E. (3.18)

Since w
′

kwk = 1 , the solution is

tk = Xk−1wk. (3.19)
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3. regress Xk−1 on tk to find the loadings p
′

k

Xk−1 = tkp
′

k + E. (3.20)

The least square solution is given by

pk = X
′

k−1tk/t
′

ktk. (3.21)

4. regress yk−1 on tk to find qk , so that the y-residuals F

yk−1 = tkqk + F. (3.22)

The solution is given by

qk = y
′

k−1tk/t
′

ktk. (3.23)

5. subtract tkp
′

k from Xk−1 in order to obtain Xk. Similarly, yk is obtained by subtracting

tkq
′

k from yk−1. After the computation of the latent factors, the matrix X is deflated by

subtracting tkq
′

k from X. In this way, the model refers to the residuals after previous

dimension E instead of relating to the variables X themselves

E = Xk−1 − tkp
′

k, (3.24)

F = yk−1 − tkq
′

k. (3.25)

Replacing Xk−1 and yk−1 by the residuals E and F and increasing k of one, we obtain

Xk = E, (3.26)

yk = F, (3.27)

k = k + 1. (3.28)

The regression coefficients b are given by
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b = W
(

P
′

W
)

−1
q, (3.29)

where W = (w1|w2|...|wℓv ) , P = (p1|p2|...|pℓv ) , q
′

= (q1|q2|...|qℓv ) . Finally, the prediction

of a generic sample x∗ is given by

y∗ = x∗b. (3.30)

3.3 Nonlinear regression methods

3.3.1 Kernel ridge regression (KRR)

Kernel ridge regression (KRR) is a nonlinear regression method, which exploits the so-called

kernel trick, namely a nonlinear kernel function applied in the original space for defining an

inner product in a transformed space of higher dimensionality k(x, z) =< φ(x) ·φ(z) > (x and z

are two generic points of the original space, and φ(x) and φ(z) their respective transform) [107].

The (primal) problem can be written as follows:

minimise λ ‖w‖2 +
l
∑

i=1
ξ2i ,

subject to yi− < w · φ(xi) >= ξi, i = 1, ..., l.

(3.31)

from which the following Lagrangian can be derived:

L(w, ξ, α) = λ ‖w‖2 +
l
∑

i=1

ξ2i +
l
∑

i=1

αi(yi− < w · φ(xi) > −ξi). (3.32)

Differentiating and imposing stationarity, we obtain:

w = 1
2λ

l
∑

i=1
αiφ(xi),

ξi =
αi

2 .

(3.33)

The reformulation of Equation (3.32) leads to α = 2λ(K + λI)−1y and to the following final

KRR prediction function:

f(x) = k
′

(K
′

+ λI)−1y. (3.34)

where K is the so-called Gram matrix with entries Kij =< φ(xi) ·φ(xj) >, and k is a vector with
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entries Ki =< φ(xi) · φ(xi) > with i = 1, ..., n . n stands for the number of training samples. I

is the identity matrix and λ the ridge parameter, λ ∈ ℜ, λ ≥ 0 . This last controls the degree

of regularization of the regression function. In the implementation of KRR, a typical choice of

kernel function is the Gaussian kernel (or radial basis function), which expresses the components

of the kernel matrix as follows [119,120]:

Kij = K(xi, xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

, (3.35)

where σ > 0 represents the kernel width. The best value of both σ and λ can be empirically

estimated in different ways. In this work, we will adopt the well-known k-fold cross-validation

procedure.

3.3.2 Support vector regression (SVR)

In the SVM regression approach [106,107], the goal is to find a function f(x) that has at most

ε deviation from the desired targets yi and, at the same time, is as smooth as possible. This is

obtained by mapping the data from the original d-dimensional domain to a higher dimensional

feature space, i.e., Φ(x) ∈ ℜd′(d′ > d) both in order to increase the flatness of the function and

to approximate it in a linear way as follows:

f(x) = w.Φ(x) + b. (3.36)

The optimal linear function in the higher dimensional feature space is the one that minimizes

the cost function defined as:

Ψ(w, ξ) =
1

2
‖w‖2 + C

N
∑

i=1

(ξi + ξ∗i ). (3.37)

This cost function minimization is subject to the following constraints:







yi − (w.Φ(xi) + b) ≤ ε+ ξi

(w.Φ(xi) + b)− yi ≤ ε+ ξ∗i

i = 1, 2, ..., N (3.38)

and

ξi, ξ
∗

i ≥ 0, i = 1, 2, ..., N, (3.39)

where the ξi and ξ∗i are the slack variables introduced to account for samples that do not lie
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in the ε-deviation tube. Constant C represents a regularization parameter. The formulation of

the error function is equivalent to dealing with a so-called ε-insensitive loss function typically

defined as [121] :

|ξ|ε =







0,

|δ| − ε,

if |δ| ≤ ε

otherwise
(3.40)

where δ represents the deviation with respect to the desired target. This means that the differ-

ences between the targets and the estimated values are tolerated inside the ε-tube (error smallest

than ε), while a linear penalty is assigned to estimates lying outside the ε-insensitive tube (see

Figure 3.2).

Figure 3.2: Example of ε-insensitive tube and error function used in the SVM-based regression

technique. Filled squares data are support vectors. Hence, SVs can appear only on the tube

boundary or outside the tube.

The above optimization problem can be reformulated through a Lagrange functional. The

Lagrange multipliers can be found by a dual optimization leading to a QP solution [106, 107].

We may state the dual problem for nonlinear regression using support vector machine as follows:

given the training set {(xi, yi)}
N
i=1, find the Lagrange multipliers {αi}

N
i=1 and {α∗

i }
N
i=1 that

maximize the objective function:

Q(αi, α
∗

i ) =
N
∑

i=1

yi(αi − α∗

i )− ε
N
∑

i=1

yi(αi + α∗

i )−
1

2

N
∑

i=1

N
∑

j=1

(αi − α∗

i )(αj − α∗

j )K(xi, xj), (3.41)
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subject to the following constraints:

N
∑

i=1
(αi − α∗

i ) = 0

0 ≤ αi ≤ C, i = 1, 2, ..., N

0 ≤ α∗

i ≤ C,

(3.42)

where C is a user-specified constant. The final result is a function of the data conveniently

expressed in the original (lower) dimensional feature space as:

f(x) =
∑

i∈S

(αi − α∗

i )K(xi, x) + b∗, (3.43)

where K is a kernel function. S is the subset of indices (i = 1, 2, ..., N) corresponding to the

nonzero Lagrange multipliers. The Lagrange multipliers weight each training sample according

to its importance in determining a solution. The training samples associated to nonzero weights

are called support vectors. In S, margin support vectors that lie within the ε-insensitive tube

and non-margin support vectors that correspond to errors coexist. The kernel must satisfy the

condition imposed by the Mercer’s theorem so that it can correspond to an inner product in

the transformed (higher) dimensional feature space. Examples of common kernels that fulfill

Mercer’s condition are the linear kernel, the polynomial kernel functions, the Gaussian radial

basis functions, and the hyperbolic tangent kernel [106,107].

3.3.3 Radial basis function neural network (RBFN)

Radial-Basis Function Networks (RBFN) can be used for a wide range of applications, primarily

because they can approximate any function and their training is faster compared to Multilayer

Perceptrons (MLP). This fast learning speed comes from the fact that RBFN have just two

layers (see Figure 3.3) of parameters (centers, widths and weights). The RBFN is based on the

idea of approximating a function F (x) through a linear combination of radial basis functions

Ψ [99,122–125]:

F̂ (x) =
P
∑

j=1

λjΨj(‖x− cj‖), (3.44)

where P , λj , and cj are the number, the weight and the center (prototype) of the radial

functions, respectively. A typical choice for the radial basis function is the Gaussian kernel:

Ψj ( ‖x− cj‖ ) = exp

(

−
1

2

(

‖x− cj‖

σj

)2
)

, (3.45)

where σj is the width parameter of the jth hidden unit (basis function) of the hidden layer.
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Figure 3.3: Architecture of a Radial Basis Function Neural Network (RBFN).

For a given RBFN architecture based on the Gaussian kernel (i.e., for a fixed value of P ),

the training algorithm consists in finding the parameters λj, cj and σj such that F̂ (x) fits the

desired function F (x) as best as possible. Since F (x) is unknown, the goodness of fit is measured

empirically by means of the available training samples. Briefly, the training of the hidden layer,

which is equivalent to the computation of the kernel parameters (cj and σj), is performed by

applying the k-means clustering algorithm (with k = P ) to the available training samples. In

this work, for the sake of simplicity, we will assume that all kernel functions have the same

width (σj = σ) [126]. The training of the output layer (i.e., the estimation of the λj parameter)

is accomplished by formulating the estimation problem as a linear system of equations solved

according to the pseudo-inverse technique.

3.4 Conclusion

In this chapter, we have highlighted the basic concept regarding linear and nonlinear methods.

Some approaches are based on mathematical models that relate the concentration of the studied

parameters to the measures acquired by the spectroscopy or wind speed. Other approaches are

based on the use of regression methodologies that estimate parameter concentration/speed on

the basis of interpolation techniques applied to a set of available training samples.

Various alternative regression procedures have been described for the analysis of data in which

the predictor variables are highly correlated such as principal component regression, partial least

squares regression and ridge regression.
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Among the nonlinear methods, neural networks represent a promising tool for an accurate

evaluation of parameter values. In this research we have chosen to use Radial Basis Functions

Networks (RBFN), because they can be used for a wide range of applications and their training

is faster compared to the popular multilayer perceptrons (MLP). This fast speed comes from

the fact that RBFN have just two layers of parameters which can be determined sequentially.

RBFN allows the modelling of nonlinear data using a linear approach, which is therefore fast,

with the additional benefit of avoiding the problem of local minima usually encountered when

using MLP.

Another more recent and promising regression approach based on support vector machines

(SVMs). It is noteworthy that RBFN and SVM are two regression models sharing common

properties. In particular, the regression model is expressed as a linear combination of kernel

distances. Their main difference relies on the way the combination weights are inferred from the

training samples. While RBFN are derived from a minimum empirical risk principle, SVM take

origin from a structural risk minimization which in theory makes them less subject to overfitting

problems.

Among several kernel-based approaches, kernel ridge regression (KRR), a kernel version of the

ridge regression (RR), makes it possible to perform a sparse nonlinear regression by constructing

a linear regression function in feature space.

The different regression methods presented in this chapter used in all the following chapters.

There are several questions about these methods of single regression. The performance of some

single regressors, the behavior of the systematic residuals influence by the accuracy improvement

and the use of the correction of regressors are all major subject, that will be addressed in the

next chapter.
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4.1 Introduction

Near infrared spectroscopy (NIR) is widely used in food and pharmaceutical industries for anal-

ysis and quality control. In reflection-based NIR spectroscopy, NIR radiation is guided into

the product, and some of the backscattered radiation is captured and related to variables of

interest via chemometric techniques. As the backscattered radiation spectrum is affected by

both the scattering and absorption properties of the product, it provides information about its

physical structure as well as its chemical composition. From the NIR spectrum, quantitative

and qualitative information can thus be obtained with regression and classification models, re-

spectively [127–129].

From a methodological point of view, the problem of concentration estimation can be viewed

as an inverse modeling issue in which it is necessary to define a model that relates the acquired

observations to the concentration of interest. Typically, the choice of the regression algorithm

depends on the statistical distribution of the data under study and the related noise, which

have a direct impact on its prediction performance [120, 127, 130]. In the literature, two main

approaches of regression have been proposed. The first is based on linear models, while the

second approach makes use of nonlinear models.

In this chapter, we propose a two-stage regression approach that is based on a residual-based

correction (RBC) concept. Its underlying idea is to correct any adopted regressor, called func-

tional estimator, by analyzing and modeling its residual errors directly in the feature space.

RBC is therefore not a regressor but a correction method, whose aim is not to reach the best

achievable accuracy for a given data set but to possibly improve the estimation model of a given

(poor or accurate) regressor. Experimental results based on PLSR, SVM and RBFN regression

methods and conducted on two different data sets in infrared spectroscopy point out that the

proposed approach can improve the estimation accuracy achieved by traditional regression or

by adaptive boosting. The work was published in [39].

The remaining part of the chapter is organized as follows. In section 4.2, we present briefly the

adaptive boosting technique for regression. Section 4.3 describes the proposed residual-based

correction approach. Section 4.4 reports the experimental results obtained on two infrared spec-

troscopy data sets. Finally, Section 4.5 draws the advantages and drawbacks of the present

method.

4.2 Adaptive boosting for regression (AdaBoost.R)

The method proposed in this work relies thus on an opportune exploitation of the errors gener-

ated by a given regressor. Another way to exploit estimation errors can be found implemented

in the popular AdaBoost.R (adaptive boosting for regression) which is based on the boosting

principle [131]. Other variants derived from the boosting principle are available in [132–139]. In

the following, we describe briefly this conceptually interesting alternative [140].
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First, all samples in the original training set are allocated with equal weights w
(1)
i = 1, i =

1, ..., N . Then, for each calculation cycle t = 1, ..., T (T being the total number of iterations),

the following steps are performed:

Algorithm 1 AdaBoost.R

1: For each sample, a probability value is computed as follows:

f
(t)
i =

w
(t)
i

N
∑

i=1

w
(t)
i

, i = 1, ..., N. (4.1)

According to the resulting sampling probability distribution f (t), N samples are picked from the original

training set to yield the so-called boosting set. Note that samples with high probability values may appear

several times in the boosting set.

2: Train a regressor R(t) on the current boosting set and generate the estimates for the original training samples

y
(t)
i , i = 1, ..., N .

3: Compute a loss value for each sample of the original training set with one of the following three loss functions:

L
(t)
i =

|ŷ
(t)
i − yi|

max
i

{|ŷ
(t)
i − yi|}

, (Linear) (4.2)

L
(t)
i =

|ŷ
(t)
i − yi|

2

max
i

{|ŷ
(t)
i − yi|2}

, (Square) (4.3)

L
(t)
i = 1− exp



−
|ŷ

(t)
i − yi|

max
i

{|ŷ
(t)
i − yi|}



 , (Exponential) (4.4)

4: Calculate the mean loss:

L̄
(t) =

N
∑

i=1

L
(t)
i f

(t)
i . (4.5)

5: Let βt =
L̄(t)

1−L̄(t) and update the weight of each sample in the original training set by:

w
(t+1)
i = w

(t)
i β

(1−L(t)
i

)

t . (4.6)

6: If t ≤ T , go to Step 1. At the end of the training process, each regression model R(t)(t = 1, ..., T ) given by

an unknown sample x will provide a prediction y(t). The resulting T predictions are combined as follows to

obtain a final prediction.

(Step A) Sort the T predictions y(t)(t = 1, ..., T ) in increasing order to get y(n1) ≤ y(n2) ≤ ... ≤ y(nJ ), where

nj(j = 1, ..., J ; J = T ) is a permutation of the original cycle number t.

(Step B) Take the sum of log(1
/

βnj
) over j from the smallest term to the r-th term nr, when the following

inequality starts to be satisfied:
r

∑

j=1

log(1
/

βnj
) ≥

1

2

J
∑

j=1

log(1
/

βnj
). (4.7)

(Step C ) Take the final prediction as the one yielded by the nr-th regressor.
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While, in our approach, a regressor is devoted to the modelling of the estimation errors to play

the role of error corrector, in Adaboost.R the errors are exploited to build a cascade of regressors,

where the last one is very likely to be trained only on difficult training samples. In other words,

by moving in the cascade, the regressors become more and more specialized in handling difficult

samples. The concepts and implementations of the two approaches are thus different though

they take origin from the same idea, namely exploit errors to improve the estimation process.

4.3 Proposed residual regression

4.3.1 Description

Let us consider a set of N training samples xi(i = 1, 2, ..., N) represented in the d-dimensional

measurement space ℜd. Let us assume that a target f(xi) ∈ ℜ(i = 1, 2, ..., N) is associated to

each variable xi.

Let us consider an estimator (called functional estimator) whose task is to provide an estimation

model f̂(x) of the concentration of the chemical parameter of interest in the input feature space.

No constraint is imposed on the choice of the functional estimator; it can be based on any

kind of regression approach. The idea behind the proposed approach consists in exploiting the

systematic residuals (i.e., errors) that are generated by the functional estimator for correcting it.

For such purpose, a second estimator (called residual corrector) is trained to accomplish the task

of estimating the residuals of the functional estimator. In other words, the residual estimator

analyzes and models in the feature space the error function associated with the functional

estimator and defined as:

e (x) = f (x)− f̂ (x) . (4.8)

The training phase related to the residual correction is depicted in Figure 4.1. It is worth

recalling that, during the training phase, xi(i = 1, ..., N) represents a training sample for which

f(xi) stands for its corresponding (known) target value while f̂(xi) refers to the corresponding

estimate generated by the functional estimator. The residual corrector is a regressor of the same

kind of the functional estimator. This means that if, for instance, PLSR is adopted as regression

method for the functional estimator, it is too for the residual corrector with the difference that

the functional estimator is trained on sample pairs (xi, f(xi)) with i = 1, 2, ..., N , while the

training of the residual corrector is performed on sample pairs (xi, e(xi)) with i = 1, 2, ..., N .

Once the training phase is finished, the correction (global estimation) phase takes place. Any

unknown sample x is given in input to both the functional estimator and the residual corrector,

the former providing an estimate of the chemical parameter concentration f̂(x) while the latter

yielding an estimate of the corresponding error ê(x). A simple addition of the contributions

of the two estimators (see Figure 4.2) makes it possible to obtain a global estimation model
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F̂ (x) (of the parameter of interest) with a higher expected accuracy. This aspect is discussed in

greater detail in the following sub-section.

Figure 4.1: Block diagram illustrating the training phase of the residual correction.

Figure 4.2: Block diagram of the proposed approach in the global estimation phase.

4.3.2 Theoretical considerations

Let us try to understand in which conditions the residual correction can help in improving the

accuracy of the estimation. To do so, let us adopt as an accuracy measure the commonly used

mean squared error (MSE). The MSE of the functional estimator (MSEF ) can be calculated

in the following way:

MSEF = E
{

(f(x)− f̂(x))2
}

. (4.9)

Similarly, the MSE of the residual corrector (MSER) is defined as:

MSER = E
{

(e(x)− ê(x))2
}

. (4.10)
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The MSE of the global estimation system (MSES) composed of the functional and residual

corrector takes the following expression:

MSES = E
{

[f(x)− F̂ (x)]2
}

= E
{

(e(x)− ê(x))2
}

⇒ MSES = MSER.
(4.11)

From Equation (4.11), it is interesting to point out that the accuracy of the global estimation

system is independent on the one of the functional estimator. It only depends on the accuracy

of the residual corrector. In other words, in order to obtain a system that is capable to improve

the accuracy with respect to the functional estimator, it is necessary that:

MSER ≤ MSEF . (4.12)

For the sake of simplicity, we will drop in the following the feature vector term x. The condition

expressed in Equation (4.12) can be written as:

E
{

(e− ê)2
}

≤ E
{

e2
}

. (4.13)

After development, we get:

E
{

ê2
}

≤ 2E {e · ê} . (4.14)

The residual estimate ê can be written as:

ê = e+∆e, (4.15)

where ∆e represents the error incurred by the residual estimator. Such an error can be considered

as a second-order residual. Thus, the condition in Equation (4.14) can be rewritten as:

E
{

ê2
}

≤ 2E
{

e2
}

+ 2E {e ·∆e} (4.16)

Let us assume that the second-order residual ∆e is of zero-mean and let us adopt the worst case

reasoning that is, we suppose that the first and second-order residuals, e and ∆e respectively,

are independent of each other. Such reasoning aims at understanding the limits of the proposed

approach in the most unfavorable conditions since the correlation between the first and second-

order residuals is neglected. Accordingly, the condition in Equation (4.16) can be simplified

to:

E
{

ê2
}

≤ 2E
{

e2
}

. (4.17)
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This relationship means that, in order to improve the accuracy with respect to the functional

estimator, it is enough to find a residual estimator characterized by a residual estimate power

less than two times the actual residual power. Since such a condition is weakly constraining, it

can be concluded that it is very likely to find and design a residual estimator that will permit

to exploit the information contained in the systematic residuals of the functional estimator and,

accordingly, to improve its accuracy. At the limit, if one adopts only a zero-order residual

estimator such that:

ê = ē = E {e} , (4.18)

the expected accuracy of the global estimator must necessarily be improved (unless the residuals

are already with zero-mean) since the following condition is always verified:

ē2 ≤ E
{

e2
}

. (4.19)

4.4 Experimental results on spectroscopic data set

4.4.1 Experimental design

All results are given in terms of the normalized mean square error (NMSE) criterion achieved

on the test set, which is expressed as:

without correction:

NMSE =

1
NT

NT
∑

i=1
(yi − f̂(xi))

2

var(y)
, (4.20)

with correction:

NMSE =

1
NT

NT
∑

i=1
(yi − F̂ (xi))

2

var(y)
=

1
NT

NT
∑

i=1
(ei−êi)

2

var(y)
, (4.21)

where NT is the number of test samples, var(y) is the variance of the output values. This last,

which plays the role of normalizing constant, is estimated on all available samples (i.e., on both

training and test samples). Accuracy comparison will be expressed in terms of gain:

Gain [%] = 100 ×
NMSE(reference regressor)−NMSE(considered regressor)

NMSE(reference regressor)
. (4.22)

Another interesting criterion used in statistical tests is t − test. Van der Voet [141] proposed

a randomization t − test to compare the predictive accuracy of two models f̂(xi) (without

correction) and F̂ (xi) (with correction RBC) using the distribution of prediction errors. The
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application of randomization t − test to the prediction method comparison problem is defined

as follows:

MSEF =

NT
∑

i=1
e(xi)

2

NT
, (4.23)

MSES =

NT
∑

i=1
eRBC(xi)

2

NT
, (4.24)

where e(xi) and eRBC (xi) are the NT -dimensional vectors of the predictive errors and the mean

squared error of prediction given by:

e(xi) = yi − f̂(xi), (4.25)

eRBC (xi) = yi − F̂ (xi). (4.26)

A comparison between models without correction and with correction (RBC) is made using the

test statistic (T ):

di = e(xi)
2 − eRBC (xi)

2, (4.27)

T = MSEF −MSES =

NT
∑

i=1
di

NT

= d̄, (4.28)

where di is the difference of predictive errors of dimension NT × 1 and d̄ the mean of difference.

The t− test for one-sided alternative hypothesis MSEF > MSES , the test proceeds as follows:

Algorithm 2 The t− test for one-sided alternative hypothesis.

1: Calculate di.

2: Compute T , for the actual evaluation data (T
′

).

3: Repeat Steps A and B m times:

A: Fix random signs to di.

B: Calculate T = d̄.

4: Calculate the significance level p = k
m+1 , where m is the number of randomization trials,

and k is the rank of T
′

among the randomization values of T when ranked from decreasing

order.

The main objective of the experiments was to assess thoroughly the proposed correction tech-

nique. For such purpose we conducted experiments: 1) by adopting a feature selection strategy
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(namely, the Sequential Forward-Backward selection [99, 142] using k -fold cross-validation (k

= 4) on the training set) so that to perform both the regression and correction tasks in the

resulting feature subspace (performance is measured using k -fold cross-validation (k = 4) on the

training set); and 2) by working directly in the original (hyperdimensional) input space. In all

what follows, we assume that the choice of the best parameter is based on the minimum of the

normalized mean square error k -fold cross-validation (NMSE CV).

Due to the nature of NIR spectra, the large baseline regions without chemical information and

many non significant variables, variable selection can become necessary. In forward selection,

the variables are added to the model one at a time. At each step, each variable that is not

already in the model is tested for inclusion in the model. Forward selection has drawbacks,

including the fact that addition of new variables may render one or more of the already included

variables non significant. An alternate approach is backward selection where all the variables

are included from the start. Then the bad features are then removed. With an initial subset

in each iteration to which features are added/removed (Forward/Backward). On the both data

sets, orange juice and tecator, the best results for forward selection is 19 and 12, respectively,

as shown in Figure 4.3-(a) and Figure 4.3-(b). Forward/Backward selects 25 variables for the

juice data set and 10 variables for the tecator (see Figures 4.3-(a) and 4.3-(b)).

Figure 4.3: NMSE k -fold cross-validation with respect to the number of selected variables, (a)

orange juice and (b) tecator data set.
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Concerning the parameter setting of PLSR, the optimal number of latent variables was estimated

in the range [1, 20]. Figures 4.4-(a) and 4.4-(b) show the evaluation of the normalized mean

square error k -fold cross-validation (NMSE CV) according to the number of latent variable, on

the orange juice and tecator data set, respectively. For the orange juice, the optimal number of

latent variables is equal to 12. The same optimal number of latent variables in the case of the

tecator data set.

Figure 4.4: NMSE k -fold cross-validation with respect to the number of ℓv latent variables, (a)

orange juice and (b) tecator data set.

For both experimental scenarios, we considered two different kinds of regressors: i) a nonlinear

SVM based on the Gaussian kernel function (SVM-RBF), and ii) a nonlinear RBFN. For the

SVM-RBF, it was necessary to set three parameters, i.e., the width parameter of the Gaussian

kernel (γ), the regularization parameter (C), and the size of the insensitive loss tube (ε). These

parameters were adjusted empirically so as to minimize the prediction error using k -fold cross-

validation (k=4).

In particular, C, γ and ε were varied from 10−4 to 103 , from 10−4 to 103 and from 10−4 to

10−1, respectively. For the RBFN, as mentioned above, the widths of the radial basis functions

were chosen the same for all hidden units (σj = σ). Another parameter to set is the number

of hidden units (P ). We carried out experiments varying the value of this parameter from 2 to

40, while the width (σ) of the radial functions was varied in the range 10−3 to 50. The best
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values of these two parameters were obtained through k -fold cross-validation (k=4). Finally, in

order to complete our experimental study, the results of the RBC are compared with those of

AdaBoost.R.

4.4.2 Results with RBC

In this section, we highlight the results obtained by usual regression and with RBC on the

orange juice data set by considering the two scenarios (with and without features selection,

respectively) denoted by the words “Subset” and “All”, respectively. The first experiment

using RBFN-subset gives a value of NMSE equal to 0.1611 with regression and to 0.1574 with

RBC. In this experiment the best number of selected spectral variables (by using the Sequential

Forward-Backward selection) was 25 spectral variables for the two cases, with regression and

with RBC, respectively. The best architecture of the RBFN network was 19 and 15 hidden units,

respectively, and σ was equal to 11.88 and 0.008 with regression and with RBC, respectively, the

optimization of the parameters of RBFN with subset features selection is shown in Figures 4.5-(a)

and 4.5-(b).

Figure 4.5: RBFN-Subset optimization number of neurons in hidden layer (P ) and the width

parameter of the Gaussian kernel (σ) for the orange juice data set, (a) Regression and (b)

Correction.
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Figure 4.6: SVM-Subset optimization of parameters C, γ and ε for the orange juice data set in

the case of Regression. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε = 0.1.



Chapter 4. Residual Correction Concept for Spectroscopic Data Sets Regression 58

Figure 4.7: SVM-Subset optimization of parameters C, γ and ε for the orange juice data set in

the case of Correction. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε = 0.1.
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The second experiment shows the results obtained with the second nonlinear regression method

used in this work, namely SVM-RBF. By considering the SVM-RBF parameters C, γ and ε, we

variate C and γ for fixed values of ε (10−4, 10−3, 10−2 and 10−1), we calculate NMSE CV for

each case and we retain the best values for which NMSE CV is minimal. The set of results for

single regression (without correction) and with RBC (with correction) approach are reported in

Figures 4.6 and 4.7, respectively. The NMSE is equal 0.3191 with regression and to 0.2497 with

RBC. Also, in this experiment the number of selected spectral variables by using the forward

selection is 25 for both cases. The optimal parameters C, γ and ε were equal to 103, 0.0162,

0.01 and 103, 0.003, 0.1 for regression and RBC, respectively.

In the case of using all spectral variables, the best model (RBFN-All) obtained on the test set

corresponds to an error value of 0.1255 and 0.1212 for regression and RBC, respectively. The

correction model used in this experiment was based on a RBFN. It was characterized by 13

and 3 neuron in the hidden layer and their corresponding width σ was equal to 50 and 0.0941,

respectively, as indicated in Figure 4.8.

Figure 4.8: RBFN-All optimization number of neurons in hidden layer (P ) and the width

parameter of the Gaussian kernel (σ) for the orange juice data set, (a) Regression and (b)

Correction.

For the last experiment, concerning the orange juice data set using all spectral variables, the
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smallest NMSE obtained by the SVM-RBF with regression and with RBC were 0.2488 and

0.2081, respectively. The optimization parameter is similar to the previous mentioned one for

the SVM-RBF structure, where the results with single regression and with RBC are shown in

Figures 4.9 and 4.10, respectively. The best values of the parameter C were 183.2981 and 103,

the optimal kernel width parameter γ was found equal to 0.0013 and 0.0001, and ε to 0.01 and

0.1 for regression and RBC, respectively.

Figure 4.9: SVM-All optimization of parameters C, γ and ε for the orange juice data set in the

case of Regression. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε = 0.1.
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Figure 4.10: SVM-All optimization of parameters C, γ and ε for the orange juice data set in

the case of Correction. (a) ε = 0.0001, (b) ε = 0.001, (c) ε = 0.01, and (d) ε = 0.1.
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As shown in Table 4.1, for all regression strategies (PLSR, RBFN-Subset, SVM-Subset, RBFN-

All and SVM-All), the correction-based (RBC) improves the accuracy, though not all the im-

provements are statistically significant as discussed in the next subsection. On an average, the

proposed RBC approach provides an accuracy gain of the order of 8.96 %, with gains varying

from 0.98 % to 21.75 %. The smallest improvement was achieved with PLSR (from 0.1626 to

0.1610).

Table 4.1: NMSE achieved on the orange juice data set by the five regression methods imple-

mented without and with residual based correction (RBC)

Regression
Features

Regression RBC
Gain [%]

Method NMSET Time [s] NMSET Time [s]

PLSR 13 0.1626 0.03 0.1610 0.03 0.98

RBFN-Subset 25 0.1611 207 0.1574 200 2.30

SVM-Subset 25 0.3191 485 0.2497 479 21.75

RBFN-All 700 0.1255 351 0.1212 352 3.43

SVM-All 700 0.2488 1803 0.2081 1783 16.36

Similar experiment was performed on the other data set, namely the tecator data set. The

obtained results are reported in Table 4.2. In brief, the achieved accuracy gains were equal to

14.79 %, 10.35 %, 29.27 %, 8.33 % and 32 % for the PLSR (12 features), RBFN-Subset (10

features), SVM-Subset (10 features), RBFN-All and SVM-All, respectively. On an average, for

this data set, the gain is equal to 18.95 %.

Table 4.2: NMSE achieved on the tecator data set by the five regression methods implemented

without and with residual based correction (RBC)

Regression
Features

Regression RBC
Gain [%]

Method NMSET Time [s] NMSET Time [s]

PLSR 12 0.0284 0.01 0.0242 0.01 14.79

RBFN-Subset 10 0.0029 302 0.0026 308 10.35

SVM-Subset 10 0.0041 473 0.0029 442 29.27

RBFN-All 100 0.0024 459 0.0022 468 8.33

SVM-All 100 0.0025 664 0.0017 649 32
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4.4.3 Results with AdaBoost.R

As mentioned in the previous methodological section, AdaBoost.R represents a conceptually

interesting alternative to our approach. For the sake of coherence, we thus assessed it on the

two data sets and the five regression methods we considered in our experimental framework.

Moreover, we tested the three different loss functions defined in Equations (4.1)-(4.3). Since all

the boosting sets are constructed by drawing samples from the original training set according to

the sampling probability distributions, the parameters optimized based on the original training

set can be a good approximation to those for regressor modeling in every cycle [136]. Another

parameter to tune in AdaBoost.R is the iteration number, which is critical since it may lead to

overfitting problems. Indeed, a large number of iterations may create a very complex cascade

of regressors, built in such a way to fit perfectly the training samples, i.e., to minimize the

empirical risk. To contain the overfitting issue, it is therefore desirable to keep the number

of iterations as small as possible [143]. In our case, the maximum number of iterations was

fixed to 100 and the best iteration number was estimated by minimizing the NMSE on the

training set. Figure 4.11 shows the behaviors of the Boosting (linear, square and exponential)

for the PLSR with iterations versus the NMSE for orange juice data set. The optimal value of

iteration number on this data set is 19, 3 and 15 for linear, square and exponential, respectively.

Therefore, we repeated the experiments also on a Boosting of the same data set, obtained from

(RBFN, SVM)-Subset and (RBFN, SVM)-All are shown in Figure 4.12. Similar experiments

were performed on the second data set tecator. The results achieved on the test set are given

in Table 4.3.

Figure 4.11: Behaviors of the Boosting-PLSR (linear, square and exponential) obtained by

iterations for orange juice data set.
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Figure 4.12: Behaviors of the Boosting (linear, square and exponential) obtained by iterations

for subset orange juice data set. (a) Boosting-RBFN-Subset, (b) Boosting-SVM-Subset, (c)

Boosting-RBFN-All, (d) Boosting-SVM-All.
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Table 4.3: Results in terms of NMSE and processing time achieved by adaptive boosting regres-

sion (AdaBoost.R).

Regression
Features

Loss Function
Time [s]

Method Linear Square Exponential

Orange juice data set

PLSR 13 0.2083 0.1744 0.2130 19.6

RBFN-Subset 25 0.1519 0.1506 0.2273 47.6

SVM-Subset 25 0.2896 0.2968 0.3226 96.9

RBFN-All 700 0.1684 0.1975 0.2256 186.9

SVM-All 700 0.2593 0.2736 0.2605 5494.8

Tecator data set

PLSR 12 0.0197 0.0204 0.0212 5.7

RBFN-Subset 10 0.0034 0.0042 0.0045 50.4

SVM-Subset 10 0.0027 0.0038 0.0030 77.9

RBFN-All 100 0.0039 0.0048 0.0035 125.4

SVM-All 100 0.0031 0.0030 0.0028 386.8

These results point out how the choice of the loss function can be important. It actually depends

on the density of noise characterizing the data (e.g., Gaussian, Laplacian), which a priori is not

trivial to know. The linear loss function appears in general to be a good option.

For a direct comparison, we have gathered the results obtained by RBC and AdaBoost.R in

Table 4.4. Moreover, for the sake of assessing the statistical significance of the prediction error

decreases, we performed the statistical t− test. In particular, the p− value associated with the

simple regression and the best model among RBC and AdaBoost.R are reported (see Table 4.4).

The error decrease is said statistically significant if the p − value is less than the 5 % level. 6

cases (5 for RBC and 1 for Adaboost.R) among 10 cases (2 data sets and 5 regressors) exhibit

a statistically significant decrease in the prediction error. Other 2 cases are close to the 5 %

threshold. This confirms that our method can improve the results of the original functional

estimator. When this is note situation, it does not worsen them in any case, making it more

attractive than AdaBoost.R.
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Table 4.4: Results in terms of NMSE and statistical test (p-value) achieved by the regression

method, the proposed RBC approach and the best adaptive boosting regression method.

Regression Method Regression RBC Boosting p-value

Orange juice data set

PLSR 0.1626 0.1610 0.1744 0.86

RBFN-Subset 0.1611 0.1574 0.1506 0.56

SVM-Subset 0.3191 0.2497 0.2896 0.025

RBFN-All 0.1255 0.1212 0.1684 0.115

SVM-All 0.2488 0.2081 0.2593 0.015

Tecator data set

PLSR 0.0284 0.0242 0.0197 0.03

RBFN-Subset 0.0029 0.0026 0.0034 0.02

SVM-Subset 0.0041 0.0029 0.0027 0.08

RBFN-All 0.0024 0.0022 0.0035 0.035

SVM-All 0.0025 0.0017 0.0028 0.005

4.5 Conclusion

In this chapter, we have presented a regression approach that consists in correcting a given

estimator by exploiting its systematic errors in the feature space. The rationale is that it is

rather difficult to obtain a single estimator capable of providing high accuracies over the entire

input space. This is due to the fact that any estimator provides usually an accuracy depending

on the region of the input space to which the analyzed pattern belongs to. It is noteworthy that

the proposed RBC is not a regressor but a correction method, whose aim is not to reach the

best achievable accuracy for a given data set but to possibly improve the estimation model of a

given (poor or accurate) regressor. The performance of RBC was assessed on the basis of two

different chemometric data sets.

The following conclusions could be drawn from the obtained experimental results:

• It is shown that using a residual correction strategy can improve the estimation accuracy.

Indeed, the achieved gains vary from 0.98 % to 32 % depending on the data set and the

regression tool adopted. Not all these gains are statistically significant but, at the same

time, no case of accuracy decrease has been observed.

• The proposed approach is independent from the kind of functional estimator used to

approximate the chemical parameter of interest. Its general nature makes it applicable

with any regression method.
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• It is lowly sensitive to the optimization problem of the functional estimator, thus allowing

a significant gain of time in the design of this latter. By contrast, a greater attention

should be given in the choice and the design of the residual corrector.

• Compared with AdaBoost.R, RBC performs generally better despite it just involves an

additional regressor in the system while AdaBoost.R makes use of a relatively large number

of regressors. Its original way to exploit the estimation errors makes it less exposed to the

overfitting risk with respect to AdaBoost.R.

Machine learning methods exhibit the attractive advantage that they can provide very accurate

predictors. However, their accuracy depends on the quality and the quantity of samples used

to train the considered predictor. A solution to the training sample scarcity is given by active

learning approaches. The next chapter originates from a study on the use of active learning to

spectroscopy and wind speed.
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5.1 Introduction

In this chapter, we investigate a new strategy of the active learning approach for regression ap-

plied to spectroscopy/wind-speed prediction. The idea in our proposed method is to minimize

the error of the prediction for concentration/speed in such a way as to minimize the quantity of

training samples used, and thus to reduce the costs related to the training sample collection. For

this reason, we propose to select the most significant sample among a large number of training

samples by using active learning for regression problem. To solve this problem, we propose three

general active learning strategies (i.e., applicable with any regression method) and one method

specifically for support vector regression. The work was published in [59–61].

The first strategy uses a pool of regressors in order to select the samples with the greater dis-

agreements between the different regressors. The second one relies on the idea to add samples

that are distant from the available training samples, while the third strategy is based on the se-

lection of samples which exhibit a high expected prediction error. For support vector regression,

a specific strategy based on the selection of the samples distant from the current support vec-

tors is proposed. These strategies are tested on different linear and nonlinear methods, namely

PLSR, RR, KRR and SVR.

To illustrate the capabilities of the proposed strategies, we conduct an experimental study in

different fields. In particular, two main fields have been considered, namely chemometrics and

wind speed.

The remaining part of the chapter is organize as follows. In Section 5.2, we introduce the

general criterion for active learning. In Section 5.3, the four active learning strategies proposed

in this chapter are described. Section 5.4 presents the experiments results on Spectroscopic and

wind speed prediction data sets. Finally, conclusions are drawn in Section 5.5.

5.2 Active learning

Active learning is a subfield of machine learning and, more generally, artificial intelligence. The

key hypothesis is that if the learning algorithm is allowed to choose the data from which it learns

to be “curious”, if you will it will perform better with less training. Why is this a desirable

property for learning algorithms to have? Consider that, for any supervised learning system to

perform well, it must often be trained on hundreds (even thousands) of labeled instances. Some-

times these labels come at little or no cost, but for many other more sophisticated supervised

learning tasks, labeled instances are very difficult, time consuming, or expensive to obtain [46].

For examples, in speech recognition, information extraction, classification and filtering, near

infrared spectroscopy, wind speed.

Active learning systems attempt to overcome the labeling (i.e. manually labeling of samples for

each concept) by asking queries in the form of unlabeled instances to be labeled by an human

expert. In this way, the active learner aims to achieve high accuracy using as few labeled in-



Chapter 5. Active Learning Methods 70

stances as possible, thereby minimizing the cost of obtaining labeled data. Active learning is

well-motivated in many modern machine learning problems where data may be abundant but

labels are scarce or expensive to obtain.

Figure 5.1 illustrates the active learning cycle [46]. A learner may begin with a small number of

instances in the labeled training set L, request labels for one or more carefully selected instances,

learn from the query results, and then leverage its new knowledge to choose which instances to

query next. Once a query has been made, there are usually no additional assumptions on the

part of the learning algorithm. The new labeled instance is simply added to the labeled set L,

and the learner proceeds from there in a standard supervised way [46].

Figure 5.1: Active learning cycle.

A performance example of regression based active learning is shown in Figures 5.2 and 5.3.

These figures show regression curves derived from the regression (PLSR or SVR). In Figure 5.2,

the curve is obtained from training from nine data points. However, the Figure 5.3 is drawn

closer to the target function. The main difference between both figures is that we have added

more data points to the significant figure on the 5.3 so that data points are now well distributed.

Hence, one of the advantages of active learning in the area with data points of the paucity of

data add samples to draw an accurate regression function.

There are several strategies in which active learners may pose queries, and there are also several

different query strategies that have been used to decide which instances are most informative.

Section 5.3 describes, all the proposed active learning strategies.
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Figure 5.2: Performance example of regression.

Figure 5.3: Performance example of regression based active learning.
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5.3 Proposed active learning methods

Let us consider a training set composed initially of n labeled samples L = {xl, yl}
n
l=1 and an

additional learning set composed of m-unlabeled samples U = {xu}
n+m
u=n+1, with m >> n. The

initial training samples (L) required by the active learning process were selected randomly from

the whole training set U . In order to increase the training set L with a series of samples chosen

from the learning set U and labeled by the expert, an active learning algorithm has the task of

choosing them properly so that to minimize the error of the regression process while minimizing

the number of learning samples to label, and thus to reduce the costs related to the training

sample collection.

In Figure 5.4, we show the generic flow chart of the active learning approach for regression

problems proposed in this work. Starting from the initial and small labeled training set L, the

unlabeled samples of the learning set U are evaluated and sorted using an opportune criterion

fAL. In particular, we suppose for convention that the criterion fAL has to be minimized. At

this point, from the sorted samples Us, the first Ns samples are selected, where Ns is the number

of samples to be added in the training set L. Finally, the selected samples U
′

s are labeled by the

human expert and added to the training set L. The entire process is iterated until the predefined

convergence condition is satisfied (e.g., the total number of samples to add to the training set

is reached, or the accuracy improvement on an independent calibration/validation set over the

last iterations becomes insignificant). In the following algorithm, we describe the different steps

of the active learning approach:

Algorithm 3 Resumes the general steps of the active learning approach.

Input:

L: initial training set, composed of n labeled samples.

U : learning set, composed of m (m >> n) unlabeled samples.

Ns: number of samples to add at every iteration of the active learning process.

Start

1: Sort the learning set U using the criterion fAL in order to obtain the set Us.

2: Select the first Ns samples from Us.

3: Label the selected samples U
′

s.

4: Add the labeled samples L
′

s to the training set L and remove them from U .

5: Go to Step (1) until the predefined convergence condition is satisfied.

End

Output:

L: final training set
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Figure 5.4: Flow chart of the proposed active learning approach.

In the next subsections, we present the different active learning strategies proposed in this thesis.

5.3.1 Proposed general active learning strategies

5.3.1.1 Pool of regressors (PAL)

The first strategy, named PAL in the rest of the chapter, is based on a pool of regressors,

being, PLSR, RR, KRR, or SVR depending on the adopted regression method. Considering

the original training set L, q training subsets are constructed by a down sampling of L. PAL

can be achieved by two possible sampling: 1) sampling in the spectral domain, in the case of

High-Dimensional data (spectroscopy data); 2) sampling in the training samples, in the case

of Low-Dimensional data (wind speed data). Each training subset is considered independently

from each other and used to train a different regressor. In this way, q parallel regressors are

used. As depicted in Figure 5.5 .Therefore, q different estimations are obtained for each sample.

Let µu,ks be the prediction value yielded for sample xu (u = n+1, n+2, ..., n+m) by regressor

rks (ks = 1, 2, ..., q). For each sample, the predictions are exploited to calculate the variance

value on them:

fPAL,u =
1

q

q
∑

ks=1

(µu,ks − µ̄u)
2, (5.1)

where

µ̄u =
1

q

q
∑

ks=1

µu,ks. (5.2)

The samples characterized by the greater disagreements between the different regressors, i.e.
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the greater values of variance, are selected. Indeed, a high disagreement means that the corre-

sponding sample has been estimated with high uncertainty, and thus adding it to the training

set could be useful to improve the regression process. In the following, the different steps of the

PAL technique are summarized:

Algorithm 4 Resumes the proposed methodology based on the pool of regressors.

Input:

L: initial training set.

U : learning set.

q, number of training subsets.

Ns: number of samples to add at every iteration of the active learning process.

1: Considering the current training set L, construct q different training subsets Lg (g =

1, 2, ..., q) by sampling the training samples or spectral domain.

2: Predict the target value of each sample xu of the learning set U for each regressor rks

(ks = 1, 2, ..., q) beforehand trained on its corresponding training subset.

3: Compute the variance on the predictions fPAL,u given by the different regressors using

Equation (5.1).

4: Set fPAL(u) = −fPAL,u.

5: Select and label the Ns samples with the greater disagreements between the different regres-

sors.

Output:

L
′

s: new subset of labeled samples to add in the training set.

Figure 5.5: Block diagram of the method based a pool active learning (PAL).
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5.3.1.2 Distance from the closest training sample (DAL)

The second strategy (DAL) consists to calculate for each sample xu (u = n+1, n+2, ..., n+m)

the Euclidean distances Du ∈ ℜn = [Du,1,Du,2, ...,Du,n] in the feature domain from the samples

xl (l = 1, 2, ..., n) already composing the current training set:

Du,l = ‖xu − xl‖ . (5.3)

After that, for each sample xu (u = n + 1, n + 2, ..., n +m), the closest training sample trmin,u

is identified and the corresponding distance value Dmin,u is considered to define the selection

criterion:

fDAL(u) = −Dmin,u = − min
l=1,...,n

{Du,l}. (5.4)

In this way, we favor the selection of sample placed in areas of the original space not covered

by training samples and avoid to choose samples similar to those already present in the current

training set. In the following, the different phases of the DAL strategy are summarized:

Algorithm 5 Synthesizes the proposed strategy based on the distance from the closest training

sample.

Input:

L: initial training set.

U : learning set.

Ns: number of samples to add at every iteration of the active learning process.

1: Compute the Euclidean distances Du ∈ ℜn = [Du,1,Du,2, ...,Du,n] from the n different

training samples for each sample xu (u = n+ 1, n + 2, ..., n +m) of the learning set U .

2: Identify the training sample trmin,u closest to each sample xu.

3: Consider the distance value Dmin,u associated with the training sample trmin,u.

4: Set fDAL(u) = −Dmin,u.

5: Select and label the Ns most distant samples.

Output:

L
′

s: new subset of labeled samples to add in the training set.

5.3.1.3 Residual regression (RSAL)

The third strategy, denoted RSAL, is based on the residual regression approach described in

[39] (see Chapter 4) and is depicted in Figure 5.6. Its underlying idea consists in exploiting

the systematic residuals (i.e., errors) which are generated by the predictor, i.e., the regression
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model (see Figure 5.6). For such purpose, a second model (called residual model) is trained to

accomplish the task of estimating the residuals of the predictor. In other words, the residual

estimator analyzes and models the error function associated with the predictor and defined as:

e(xl) = yl − f̂(xl). (5.5)

It is worth recalling that, during the training phase xl (l = 1, 2, ..., n), represents a training

sample for which yl stands for its corresponding target value while f̂(xl) refers to the corre-

sponding estimate generated by the predictor. The residual model is a regressor of the same

kind of the predictor. This means that if, for instance, KRR is adopted as regression method

for the predictor, it is too for the residual regression with the difference that the predictor is

trained on sample pairs (xl, yl) with (l = 1, 2, ..., n), while the training of the residual regressor

is performed on sample pairs (xl, e(xl)) with (l = 1, 2, ..., n).

Once the training phase is finished, the residual phase takes place. All unlabeled samples xu

(u = n+ 1, n + 2, ..., n +m) are given in input to the residual regressor for the purpose of esti-

mating their corresponding residual f̂r(xl), on its turn, exploited to define the selection criterion

of RSAL:

fRSAL,u =
∣

∣

∣
f̂r(xu)

∣

∣

∣
. (5.6)

Accordingly, RSAL favors the selection of samples for which the predictor exhibits a higher

likelihood of error. The RSAL algorithm can be summarized as follows:

Algorithm 6 Synthesizes the proposed method based on the residual regression.

Input:

L: initial training set.

U : learning set.

Ns: number of samples to add at every iteration of the active learning process.

1: Train an estimator f̂(·) with the training set L.

2: Compute the residuals on L using Equation (5.5).

3: Train a residual regression model f̂r(·) with the resulting training set (xl, e(xl)).

4: Estimate the residuals on the unlabeled samples U by means of f̂r(·).

5: Using Equation (5.6), compute fRSAL,u.

6: Set fRSAL,u(u) = −fRSAL,u.

7: Select and label the Ns samples characterized by the highest residual values.

Output:

L
′

s: new subset of labeled samples to add in the training set.
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Figure 5.6: Block diagram of the method based a residual active learning (RSAL).

5.3.2 Active learning strategy for SVR

5.3.2.1 Distance from the support vectors (SVR-DAL)

The proposed method (SVR-DAL) for SVR is very similar to DAL presented previously for

PLSR, RR, KRR, or SVR. However, while for DAL we calculate the distances with respect to

all training samples, in this case we consider only the training samples identified as support

vectors (SVs) after the regressor training on L. This is motivated by the fact that while for

DAL all training samples contribute to describing the regression model, for SVR only the SVs

are necessary to define the regression function. Moreover, more complex sorting and selection

strategies are performed in order to take into account the distribution in the feature space of the

samples. First, for each sample xu (u = n+1, n+2, ..., n+m), the closest support vector smin,u

is identified and the corresponding distance value Dmin,u is calculated. Then, we define as α̃u

the absolute value of the Lagrange multiplier associated with smin,u, that is, α̃u = |αu − α∗

u|.

We recall that the Lagrange multipliers weight each training sample according to its importance

in determining the final solution. The most important training samples are those for which the

corresponding Lagrange multipliers are, in absolute terms, equal to the regularization parameter

C. At this point, the samples of the learning set U are ordered first by function of the value α̃u

and then by function of the distance value Dmin,u. Finally, an additional constraint is included

in the sample selection step since, at each iteration, it is required that the selected samples

cannot share the same closest support vector. In this way, we tend to select most distributed

samples possible in the feature space.
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Algorithm 7 SVR Active learning based on distance from the support vectors.

Input:

L: initial training set.

U : unlabeled samples.

Ns: number of samples to add at every iteration of the active learning process.

1: Identify the Sn support vectors of the regressor on the training set L.

2: Compute the Euclidean distances Du ∈ ℜSn = [Du,1, Du,2, ..., Du,Sn] from the Sn different support vectors

for each sample xu (u = n+ 1, n+ 2, ..., n+m) of the learning set U .

3: Identify the support vector smin,u closest to each sample xu.

4: Consider the distance value Dmin,u associated with the support vector smin,u.

5: Consider the absolute value α̃u of the Lagrange multiplier associated with the support vector smin,u.

6: Set fDAL−SVR(u) = −α̃u, fDSVAL−SV R(u) = −Dmin,u.

7: Select first by function of fDAL−SVR and then by function of fDSVAL−SV R if the same value of fDAL−SVR

is obtained for successively sorted samples. During the selection, if a sample shares the same closest SV with

respect to a previously selected sample, skip it.

Output:

L
′

s: new subset of labeled samples to add in the training set.

5.4 Experimental design

Two experiments are described in order to assess the accuracy and performance of the active

learning. In Subsection 5.4.1, an active learning in chemometrics data set is considered. In

Subsection 5.4.2, the second experiment refers to a renewable energy data set. In order to assess

the performances of different strategies, three different performance metrics are used: the root

mean square error (RMSE), the mean absolute error (MAE), the normalized mean square error

(NMSE), and the standard deviation STD of the error E (i.e., RMSE, MAE, and NMSE):

RMSE =

√

√

√

√

1

t

t
∑

i=1

(yi − ŷi)
2, (5.7)

MAE =
1

t

t
∑

i=1

|yi − ŷi|, (5.8)

NMSE =

1
t

t
∑

i=1
(yi − ŷi)

2

var(y)
, (5.9)

STD =

√

√

√

√

1

NR − 1

NR
∑

j=1

(Ej −
1

NR

NR
∑

j=1

Ej)2, (5.10)

where yi and ŷi indicate the actual and forecast wind or concentration measurements values of
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the sample i, t is the number of test samples. The parameter var(y) represents the variance on

the output values and plays the role of normalizing constant. It is calculated on all available

samples (i.e., both learning and test samples), NR is the number of run (NR = 10).

5.4.1 Experiments on spectroscopic data set

In the following subsections, two general active learning strategies (PAL, DAL) and one method

specifically for SVR (SVR-DAL) applied to chemometrics field, developed for linear and nonlin-

ear regression approaches, namely PLSR, RR, KRR and SVR. In the present study, the above

three strategies are tested and compared with them.

For all spectroscopic data sets, the initial training samples required by the active learning pro-

cess were selected randomly from the learning set U . For the diesel data set, starting from

33 samples, the active learning algorithms were run until all the learning samples were added

to the training set, adding 20 samples at each iteration. Similarly, 20 samples were added at

each iteration by starting from 49 and 32 samples for the orange juice and tecator data sets,

respectively.

The details of the experimental setup on the different data sets are summarized in Table 5.1.

To yield statistically reliable results, the entire active learning process was run ten times, each

time with a different initial training set. At each run, the initial training samples were chosen

in a completely random way. Linear and nonlinear regressors were also trained on the entire

learning set in order to have a reference-training scenario, called “full” training (named PLSR-

Full, RR-Full, KRR-Full and SVR-Full, respectively). On the one hand, the regression results

obtained in this way represent a lower boundary for the errors. On the other hand, we expect

that the upper error boundary will be given by the completely random selection strategy (named

PLSR-Random, RR-Random, KRR-Random and SVR-Random, respectively). We recall that

the purpose of any active learning strategy is to converge to the performance of the “full” train-

ing scenario faster than the random selection method. Regression performances were evaluated

on the test sets in terms of the normalized mean square error (NMSE).

Table 5.1: Data set information and experimental setup for the different data sets.

Data set information Experimental setup

Name # features

# learning

# test samples

# initial # samples

samples training added at each

samples iteration

Diesel 401 133 112 33 20

Orange juice 700 149 67 49 20

Tecator 100 172 43 32 20
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Concerning the parameter setting, in the case of PLSR, the optimal number of latent variables

was estimated in the range [1, 20]. For RR, the value of the ridge parameter λ is in the range

[2−23, 2−6]. For the KRR and SVR, we adopted a Gaussian kernel. This choice is motivated

by the generally good prediction accuracy associated with this kernel. For KRR, the value of

the kernel width (σ) was chosen in the interval [23, 27], while λ is comprised in [2−23, 2−6]. For

SVR, the regularization (C) and kernel width (γ) parameters were tuned empirically in the

ranges [2−9, 29] and [2−11, 23], respectively. For all algorithms, parameter values were estimated

by k -fold cross-validation (k = 5). Regarding the number q of regressors for the active learning

strategy based on the pool, it was fixed to four in all experiments.

5.4.1.1 Experimental results

Figures 5.7-5.9 report the results obtained for the diesel, orange juice, and tecator data sets,

respectively, by evolving the active learning process. In particular, the graphs refer to (a) PLSR,

(b) RR, (c) KRR and (d) SVR in terms of NMSE and standard deviation. First, we note that,

before starting the active learning process, poor performances were obtained, both in terms of

prediction errors (NMSE) and related standard deviations (STD). This result can be expected

because of the small number of training samples used to train the regressors, which has also a

direct impact on the regression model quality as shown by the strong variability (STD) of the

prediction errors. Another expected result is given by the improvement of performances when

additional samples are inserted in the training set. This results in graphs with an approximately

monotonous decreasing behavior of NMSE and STD, which tend to converge to the results

yielded by the “full” regressors, for which the entire learning set is exploited to train the model.

Although such decreasing is verified for both active and random selection, we note that in

general the active methods allow a faster convergence to the “full” result with respect to the

random strategy, both in terms of NMSE and STD. In particular, the improvements in terms of

STD indicate greater levels of stability in defining the regression model. While for the random

selection the entire set of learning samples is necessary to converge for all experiments, in some

cases the active learning process allows complete convergence using just a subset of the learning

set. Moreover, before convergence, the proposed active learning strategies give, in general, an

improvement with respect to the random one. This means that similar values of prediction

errors can be obtained using a minor quantity of training samples, which implies a reduction

in the expert work and a decrease in the computational time necessary to train the regressor.

Among the proposed strategies, the PAL method, based on the pool of regressors, yields, in

general, better results with respect to those of DAL (based on the distances in the feature space

between labeled and unlabeled samples). This is verified for PLSR, RR, KRR and SVR.
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Figure 5.7: Performances achieved on the diesel data set for (a) PLSR, (b) RR, (c) KRR and

(d) SVR in terms of NMSE and standard deviation. Each graph shows the results in function

of the number of interactions. All results are averaged over ten runs of the approaches. (PLSR,

RR, KRR, SVR)-Full = full, (PLSR, RR, KRR, SVR)-Random = random, (PLSR, RR, KRR,

SVR)-PAL = pool of regressors, (PLSR, RR, KRR)-DAL = distance from the closest training

sample in features space, SVR-DAL = distance from the support vectors.
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Figure 5.8: Performances achieved on the orange juice data set for (a) PLSR, (b) RR, (c) KRR

and (d) SVR in terms of NMSE and standard deviation.
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Figure 5.9: Performances achieved on the tecator data set for (a) PLSR, (b) RR, (c) KRR and

(d) SVR in terms of NMSE and standard deviation.
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The obtained results are shown in greater detail in Table 5.2 (a)-(c), for the diesel, orange juice,

and tecator data sets, respectively. In particular, we considered the performances obtained

when 40 additional samples are inserted in the training set. Therefore, the number of training

samples equal to 73, 89 and 72 are considered for the different data sets, respectively. We

report the values of NMSE and the corresponding STD. The best results are highlighted in

bold font. Moreover, for PLSR we indicate the number of optimal latent variables estimated

automatically by k -fold cross-validation, while for SVR we show the number of support vectors

identified in the training process. As can be seen, the proposed strategies are characterized by

better performances with respect to the random method from different points of view. First,

better values of accuracies are obtained using the same number of training samples. Then, better

values of standard deviations associated with the prediction errors are verified.
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Table 5.2: NMSE, Standard Deviation (STD), # latent variables, # support vectors obtained for the PLSR, RR, KRR and the

SVR on (a) the diesel, (b) the orange juice, and (c) the tecator data sets.

Linear regression Nonlinear regression

PLSR RR KRR SVR

Method
# training

NMSE STD
# latent

NMSE STD NMSE STD NMSE STD
# support

samples variables vectors

(a)

Full 133 0.3270 – 7 0.3648 – 0.3630 – 0.4672 – 110

Initial 33 0.4881 0.0733 4.4 0.4197 0.0217 0.4225 0.0243 0.6044 0.0428 31.6

Random

73

0.4176 0.0356 4.8 0.3965 0.0118 0.3921 0.0088 0.5120 0.0261 65.5

PAL 0.3918 0.0335 5.5 0.3762 0.0086 0.3774 0.0070 0.4759 0.0103 68

DAL 0.4064 0.0325 4.9 0.3898 0.0109 0.3861 0.0111 0.4907 0.0216 66.2

(b)

Full 149 0.1493 – 13 0.1405 – 0.1320 – 0.3038 – 142

Initial 49 0.2422 0.0883 9.8 0.2218 0.0662 0.2180 0.0790 0.4679 0.1921 47.7

Random

89

0.2001 0.0365 10.6 0.1799 0.0209 0.1731 0.0400 0.3848 0.0526 89

PAL 0.1790 0.0215 13.3 0.1624 0.0169 0.1477 0.0188 0.3730 0.0551 88.7

DAL 0.1803 0.0231 11.6 0.1752 0.0294 0.1714 0.0246 0.3918 0.0778 89

(c)

Full 172 0.0282 – 10 0.0275 – 0.0019 – 0.0024 – 151

Initial 32 0.0556 0.0448 4.5 0.0446 0.0253 0.0349 0.0234 0.0298 0.0138 30

Random

72

0.0348 0.0134 9.6 0.0447 0.0249 0.0060 0.0020 0.0060 0.0024 65.6

PAL 0.0288 0.0033 8.2 0.0304 0.0055 0.0035 0.0012 0.0052 0.0015 65.8

DAL 0.0282 0.0042 9.6 0.0283 0.0037 0.0033 0.0009 0.0060 0.0027 66.6
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5.4.2 Experiments on wind speed data set

Similarly to the previous Subsection 5.4.1, the active learning approach is applied in the re-

newable energy field. In particular, we consider the problem of the estimation of wind speed in

Algeria. In this case, the proposed strategies are specifically developed for kernel ridge regression

(KRR). In particular, three different active learning strategies (PAL, DAL, RSAL) are applied

and tested.

In all the following experiments and for all wind speed data sets, the initial training samples

required by the active learning process were selected randomly from the whole training set U .

Starting from 100 samples, the active learning algorithms were run until all the learning samples

were added to the training set, adding 50 samples at each iteration. The entire active learning

process was run ten times, each time with a different initial training set to yield statistically

reliable results. At each run, the initial training samples were chosen in a completely random

way.

Nonlinear regressors were trained on the entire learning set in order to have a reference-training

scenario, called “full” training (named KRR-Full). On the one hand, the regression results ob-

tained in this way represent a lower bound for the errors. On the other hand, we expect that the

upper error bound will be given by the completely random selection strategy (KRR-Random).

We recall that the purpose of any active learning strategy is to converge to the performance of

the “full” training scenario faster than the random selection method.

Regression performances were evaluated on the test sets by means of three different performance

metrics which are the root mean square error (RMSE), the mean absolute error (MAE), and

the normalized mean square error (NMSE).

Regarding the KRR parameter setting, the value of the kernel width was chosen in the interval

[10, 100], while λ was tuned in the range [10−7, 10−4]. All parameter values were estimated

by k -fold cross-validation (k=5). Regarding the number q of regressors for the active learning

strategy based on the pool, it was fixed to four in all experiments.

5.4.2.1 Experimental results

Let us first focus on a specific station, for instance the one located in Tlemcen. With the available

100 training samples, we trained a KRR predictor whose parameters were tuned by k -fold cross-

validation as mentioned above. Repeating this operation 10 times, each with a different initial

training set and averaging the error incurred on the test samples, KRR yields a RMSE equal

to 1.6647 as reported in Table 5.3-(a). As expected such an error is higher than what could be

obtained by KRR-Full, namely by involving all the available 2519 training samples (instead of

just 100 training samples, see Figures 5.10-(a) and 5.10-(b)) in which case the RMSE is equal

to 1.4034. Now the question which arises is: would it be possible to get closer to the error

of KRR-Full by however consuming (much) less training samples? To answer to this
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question, we ran the three proposed active learning strategies (PAL, DAL, RSAL) as described

in the previous section. Figures 5.11-(a), 5.11-(b) and 5.11-(c) show an example of sample

selection on the Tlemcen data set by the three methods (i.e., PAL, DAL and RSAL). In this

example, the best 50 unlabeled samples are identified by each method. Note that the distribution

of the samples is not uniform along the time index as the sample selection is guided by a criterion

which follows a concept of variance maximization for PAL, distance maximization for DAL, and

residual error maximization for RSAL. Subsequently, for each method, each selected sample was

labeled by the expert. By “labeled”, we mean that the true target is assigned to the sample,

making it a new training sample ready to integrate the current training set.

Figure 5.10: Illustration of learning samples, (a) 100 initial training samples, (b) 2419 unlabeled

samples, respectively.
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Figure 5.11: Illustration of selected samples. (a), (b) and (c) samples selected by PAL, DAL

and RSAL, respectively.
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To better understand the behavior of the proposed methods, in Figure 5.12 (a)-(c) we show the

evolution at each iteration of the variance, distance and the residual on the Tlemcen data set.

According to the previous figure (Figure 5.11), we can represent the evaluation of the proposed

methods as function of the number of iterations. For the first to fourth iterations, the number of

training samples are 100, 150, 200 and 250 (at each iteration we are add 50 sample), respectively.

It is interesting that these values decrease with each iteration, so we have a decrease in the values

of the variance, distance and residual only when a sufficient number of samples were added to

the training set. The decrease of the values of the different criteria’s proposed means that at

each iteration the difficult samples for prediction are added to the training set. However, these

new samples are very informative and thus allow improving the generalization performance.

Figure 5.12: Example of active learning of (a) and (b) the evolution of sample selection at

the first to fourth iteration (100, 150, 200 and 250 training samples) by the PAL and DAL,

respectively.
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Figure 5.12 (Continued): Example of active learning of (c) the evolution of sample selection at

the first to fourth iteration (100, 150, 200 and 250 training samples) by the RSAL. Each graph

shows the results in function of the number of samples to add at each iteration (Ns).

The above process was repeated several times, each by detecting and labeling the best 50 unla-

beled samples. Figure 5.13-(a) shows the behavior of the RMSE by pushing the active learning

process up to 1000 training samples. What can be expected and is confirmed in this figure is

that the larger the number of training samples the smaller the error. An interesting observation

is that the error can go also below the one achieved by KRR-Full. This means that the active

learning is a way to filter the training set by potentially discarding those noisy samples which

impact negatively on the prediction model. Note that all three active learning methods behave

better than the simple random sample selection strategy (KRR-Random). This desirable be-

havior is also expressed in terms of standard deviation of the RMSE (STD), which means that

the active learning is more stable than random sampling. Among the active learning methods,

RSAL is the one which converges faster and thus is less sample-demanding with respect to PAL

and DAL. In greater detail, as shown in Table 5.3-(a), with already 250 training samples, RSAL

achieves a result very close to KRR-Full (RMSE=1.4439 against 1.4034). For achieving a similar

result, the random sampling requires twice the number of training samples (i.e., 500 samples).
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Figure 5.13: Performances achieved by the investigated methods on the (a) Tlemcen and (b)

Chlef data sets in terms of RMSE and standard deviation of RMSE versus the number of selected

samples. All results are averaged over ten runs.

Moving to the other nine stations (see Figures 5.13-(b), 5.14, 5.15, and Tables 5.3, 5.4, 5.5, 5.6),

whatever the error measure (RMSE, MAE and NMSE), active learning confirms that a smart

selection of the samples permits to optimize the construction of the training set, namely reaching

a good accuracy while using a contained number of training samples.
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Figure 5.14: Performances achieved by the investigated methods on the (a) Alger, (b) Annaba,

(c) Djelfa and (d) Batna data sets in terms of RMSE and standard deviation of RMSE versus

the number of selected samples.
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Figure 5.15: Performances achieved by the investigated methods on the (a) El Oued,(b)

Ghardaia, (c) Adrar and (d) Tamanrasset data sets in terms of RMSE and standard devia-

tion of RMSE versus the number of selected samples.
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Table 5.3: RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE Standard Deviation (STD), computation

times obtained by the KRR predictor on Tlemcen, Chlef and Alger data sets.

Location Method Full Initial Random PAL DAL RSAL Random PAL DAL RSAL

Tlemcen

# training samples 2519 100 250 500

RMSE 1.4034 1.6647 1.5023 1.4847 1.4496 1.4439 1.4256 1.3976 1.4192 1.3793

± STD – 0.0951 0.0719 0.0375 0.0401 0.0425 0.0311 0.0274 0.0273 0.0162

MAE 0.8925 1.1647 0.9869 0.9869 0.9552 0.9539 0.9252 0.9127 0.9123 0.9024

± STD – 0.0718 0.0421 0.0228 0.0296 0.0284 0.0207 0.0184 0.0130 0.0117

NMSE 0.9483 1.3382 1.0889 1.0620 1.0124 1.0045 0.9789 0.9408 0.9701 0.9161

± STD – 0.1566 0.1041 0.0538 0.0558 0.0589 0.0424 0.0365 0.0373 0.0215

Time [s] 368.00 0.36 1.55 2.40 1.57 3.07 8.96 11.02 9.22 18.24

Chlef

# training samples 1679 100 250 500

RMSE 1.6068 1.7667 1.6584 1.6485 1.6379 1.6422 1.6367 1.6206 1.6298 1.6173

± STD – 0.0645 0.0287 0.0383 0.0186 0.0353 0.0198 0.0166 0.0109 0.0095

MAE 1.1494 1.2824 1.1971 1.1901 1.1924 1.1957 1.1694 1.1712 1.1690 1.1755

± STD – 0.0507 0.0371 0.0228 0.0256 0.0285 0.0188 0.0138 0.0110 0.0089

NMSE 0.9851 1.1923 1.0497 1.0374 1.0238 1.0294 1.0222 1.0021 1.0135 0.9980

± STD – 0.0875 0.0364 0.0489 0.0233 0.0445 0.0248 0.0205 0.0134 0.0117

Time [s] 145.58 0.35 1.56 2.34 1.55 2.92 9.14 11.04 9.11 18.31

Alger

# training samples 965 100 250 500

RMSE 2.2717 2.6496 2.4716 2.3111 2.3296 2.3280 2.3419 2.2695 2.2862 2.2678

± STD – 0.2199 0.1181 0.0416 0.0425 0.0371 0.0255 0.0095 0.0146 0.0150

MAE 1.7556 1.9871 1.8848 1.7880 1.7954 1.7981 1.7969 1.7556 1.7717 1.7570

± STD – 0.1217 0.0639 0.0266 0.0265 0.0196 0.0167 0.0059 0.0141 0.0044

NMSE 1.1374 1.5570 1.3491 1.1776 1.1965 1.1947 1.2090 1.1352 1.1520 1.1335

± STD – 0.2710 0.1304 0.0427 0.0439 0.0383 0.0263 0.0095 0.0148 0.0151

Time [s] 37.44 0.34 1.49 2.34 1.56 3.18 9.10 10.94 9.09 18.12
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Table 5.4: RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE Standard Deviation (STD), computation

times obtained by the KRR predictor on Annaba, Djelfa and Batna data sets.

Location Method Full Initial Random PAL DAL RSAL Random PAL DAL RSAL

Annaba

# training samples 2514 100 250 500

RMSE 0.9149 1.3873 1.1037 1.0521 1.0509 1.0172 1.0046 0.9884 0.9874 0.9772

± STD – 0.2228 0.0655 0.0449 0.0559 0.0381 0.0267 0.0189 0.0215 0.0227

MAE 0.6674 0.9887 0.8007 0.7835 0.7795 0.7524 0.7315 0.7321 0.7288 0.7203

± STD – 0.1230 0.0443 0.0334 0.0413 0.0266 0.0191 0.0150 0.0165 0.0197

NMSE 0.5241 1.2329 0.7651 0.6941 0.6931 0.6487 0.6322 0.6118 0.6107 0.5981

± STD – 0.4416 0.0945 0.0591 0.0748 0.0500 0.0335 0.0233 0.0268 0.0277

Time [s] 339.34 0.34 1.55 2.35 1.61 3.07 8.86 11.00 9.04 18.32

Djelfa

# training samples 2401 100 250 500

RMSE 2.4486 3.3832 2.7241 2.6319 2.6226 2.5989 2.5691 2.4877 2.4917 2.4949

± STD – 0.1942 0.1047 0.0789 0.0655 0.0611 0.0437 0.0250 0.0262 0.0332

MAE 1.8747 2.5119 2.0775 2.0197 2.0110 1.9957 1.9719 1.9157 1.9127 1.9336

± STD – 0.1379 0.0757 0.0582 0.0476 0.0523 0.0329 0.0229 0.0239 0.0291

NMSE 0.8589 1.6444 1.0644 0.9930 0.9858 0.9680 0.9457 0.8865 0.8894 0.8918

± STD – 0.1874 0.0809 0.0588 0.0493 0.0455 0.0324 0.0178 0.0187 0.0238

Time [s] 277.88 0.35 1.56 2.40 1.61 3.15 9.24 11.32 9.25 18.82

Batna

# training samples 2415 100 250 500

RMSE 1.6692 2.0479 1.7999 1.7395 1.7314 1.7028 1.6883 1.6878 1.6882 1.6365

± STD – 0.1496 0.0996 0.0552 0.0480 0.0354 0.0471 0.0495 0.0388 0.0322

MAE 1.2653 1.5623 1.3649 1.3344 1.3142 1.2965 1.2747 1.2904 1.2766 1.2374

± STD – 0.1223 0.0703 0.0447 0.0579 0.0319 0.0313 0.0431 0.0393 0.0233

NMSE 0.7294 1.1033 0.8505 0.7929 0.7854 0.7594 0.7467 0.7464 0.7465 0.7014

± STD – 0.1691 0.0947 0.0495 0.0435 0.0316 0.0418 0.0438 0.0346 0.0276

Time [s] 280.01 0.35 1.56 2.43 1.58 3.12 9.17 11.15 9.22 18.60
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Table 5.5: RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE Standard Deviation (STD), computation

times obtained by the KRR predictor on El Oued and Ghardaia data sets.

Location Method Full Initial Random PAL DAL RSAL Random PAL DAL RSAL

El Oued

# training samples 2473 100 250 500

RMSE 1.6793 2.4412 1.9765 1.8565 1.8786 1.8517 1.8229 1.7627 1.7606 1.7694

± STD – 0.2746 0.1210 0.0588 0.1105 0.0770 0.0608 0.0396 0.0536 0.0416

MAE 1.3071 1.8397 1.5390 1.4796 1.4858 1.4754 1.4233 1.4059 1.3912 1.4154

± STD – 0.1677 0.0933 0.0528 0.0895 0.0638 0.0412 0.0376 0.0456 0.0424

NMSE 0.5763 1.2317 0.8010 0.7049 0.7234 0.7018 0.6797 0.6352 0.6340 0.6401

± STD – 0.2753 0.0941 0.0450 0.0866 0.0584 0.0458 0.0284 0.0381 0.0300

Time [s] 294.08 0.35 1.54 2.41 1.56 3.11 9.17 11.06 9.10 18.41

Ghardaia

# training samples 2486 100 250 500

RMSE 1.7940 2.7561 2.1581 1.9365 1.9104 1.9718 1.9164 1.8438 1.8749 1.8582

± STD – 0.7512 0.1278 0.0771 0.0618 0.0669 0.0722 0.0484 0.0486 0.0394

MAE 1.4017 1.9001 1.6341 1.5252 1.4946 1.5567 1.4930 1.4541 1.4744 1.4736

± STD – 0.2288 0.0752 0.0585 0.0515 0.0596 0.0556 0.0363 0.0505 0.0300

NMSE 0.7239 1.8227 1.0508 0.8446 0.8216 0.8754 0.8271 0.7651 0.7911 0.7769

± STD – 1.2250 0.1216 0.0679 0.0531 0.0592 0.0624 0.0403 0.0412 0.0328

Time [s] 294.42 0.34 1.50 2.38 1.52 3.03 9.08 11.01 9.04 18.20
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Table 5.6: RMSE Standard Deviation (STD), MAE Standard Deviation (STD), NMSE Standard Deviation (STD), computation

times obtained by the KRR predictor on Adrar and Tamanrasset data sets.

Location Method Full Initial Random PAL DAL RSAL Random PAL DAL RSAL

Adrar

# training samples 2262 100 250 500

RMSE 1.9764 2.3466 2.1982 2.1155 2.1031 2.0702 2.0721 1.9940 2.0057 1.9876

± STD – 0.0889 0.1367 0.0358 0.0491 0.0600 0.0391 0.0269 0.0352 0.0270

MAE 1.5274 1.8145 1.6770 1.6533 1.6347 1.6129 1.6042 1.5500 1.5581 1.5428

± STD – 0.0642 0.0577 0.0291 0.0413 0.0472 0.0313 0.0213 0.0283 0.0175

NMSE 0.9400 1.3268 1.1669 1.0773 1.0649 1.0322 1.0336 0.9570 0.9684 0.9509

± STD – 0.1006 0.1521 0.0367 0.0494 0.0597 0.0387 0.0259 0.0341 0.0260

Time [s] 238.07 0.34 1.45 2.32 1.53 2.99 8.98 10.95 9.02 18.15

Tamanrasset

# training samples 2319 100 250 500

RMSE 1.1370 1.4880 1.3412 1.2383 1.1948 1.2083 1.1912 1.1616 1.1349 1.1605

± STD – 0.1759 0.1148 0.0352 0.0400 0.0426 0.0374 0.0250 0.0224 0.0258

MAE 0.8714 1.0951 0.9905 0.9487 0.9169 0.9220 0.9090 0.8837 0.8679 0.8804

± STD – 0.0955 0.0658 0.0324 0.0318 0.0385 0.0248 0.0216 0.0201 0.0217

NMSE 0.4960 0.8602 0.6947 0.5888 0.5483 0.5608 0.5449 0.5180 0.4944 0.5170

± STD – 0.2160 0.1222 0.0336 0.0368 0.0396 0.0342 0.0223 0.0196 0.0232

Time [s] 314.01 0.36 1.55 2.33 1.48 2.87 9.09 11.03 9.23 18.16
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For an easiest readability of these results, we averaged them over the ten stations and reported

the outcome in Table 5.7. This last shows that it is possible to save about 75 % of the samples

(from 2200 to 500 training samples), while keeping almost unchanged the prediction accuracy. If

one desires to save more training samples, active learning demonstrate to be the right approach to

construct a small training set and in the same time to get a good prediction performance. Slight

differences are observed between the three active learning methods. The best one is however

RSAL in particular if one takes into consideration the stability as performance criterion.

Regarding the computation times, the Random, PAL, DAL and RSAL consumed 1.53, 2.37, 1.56

and 3.05 seconds for learning the prediction model on 250 training samples, and 9.08, 11.05, 9.13

and 18.33 seconds for the case of 500 training samples, respectively. As expected, the RSAL

strategy results the most time demanding as it involves the training of two models without

bagging the training sets. It is however noteworthy that computation times are much shorter

for the proposed active learning strategies with respect to the KRR-Full (258.88 [s]).

Table 5.7: Average RMSE Standard Deviation (STD), Average MAE Standard Deviation

(STD), Average NMSE Standard Deviation (STD), and average computation time obtained on

the ten data sets.

Method RMSE±STD MAE±STD NMSE±STD Time [s]

#
tr
a
in
in
g
sa

m
p
le
s

∼2200 Full 1.6901 – 1.2712 – 0.7919 – 258.88

100 Initial 2.1931 0.2237 1.6147 0.1184 1.3310 0.3130 0.35

250

Random 1.8934 0.0989 1.4153 0.0625 0.9881 0.1031 1.53

PAL 1.8015 0.0503 1.3709 0.0381 0.8973 0.0496 2.37

DAL 1.7909 0.0532 1.3580 0.0443 0.8855 0.0516 1.56

RSAL 1.7835 0.0496 1.3559 0.0396 0.8775 0.0486 3.05

500

Random 1.7669 0.0403 1.3299 0.0292 0.8620 0.0382 9.08

PAL 1.7214 0.0287 1.3071 0.0236 0.8198 0.0268 11.05

DAL 1.7279 0.0299 1.3063 0.0262 0.8270 0.0279 9.13

RSAL 1.7149 0.0263 1.3038 0.0209 0.8124 0.0239 18.33

5.5 Conclusion

In this chapter, we presented a study focused on active learning applied in two different applica-

tion fields, namely spectroscopy and wind speed forecasting. In particular, for spectroscopy we

propose three active learning methods to construct the training set for a prediction based on the

PLSR, RR, KRR and SVR. Two different active learning strategies (PAL, DAL) applicable with

any regression method and a specific strategy for the support vectors regression (SVR-DAL). By
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contrast, we propose three active learning strategy (PAL, DAL, RSAL) applied to wind speed

prediction in Algeria, developed for regression approach based on the kernel ridge regression

(KRR).

Starting from a small and suboptimal training set, an iterative process selects from a set of

unlabeled data the samples which are considered very significant for the prediction process, i.e.,

those able to give smaller prediction errors while minimizing the number of required training

samples and thus the costs for collecting the final training set.

In global, four methods are proposed, the first strategy uses a pool of regressors in order to select

the samples with the greater disagreements between the different regressors, while the second

one relies on the idea to add samples that are distant from the available training samples. The

third strategy is based on the selection of samples which exhibit a high expected prediction

error, and the last, a specific strategy for SVR based on the selection of the samples distant

from the current support vectors.

The experimental results obtained on different data set fields show good capabilities of the

proposed strategies for selecting significant samples. In general, the proposed methods are char-

acterized by higher performances in terms of errors and stability, with respect to a completely

random selection strategy.

For similar error values, active learning reduces substantially the number of required training

samples when compared to random sampling. The best active learning strategy appears the one

based on pool of regression (PAL) for spectroscopy and residual estimation (RSAL) for wind

speed prediction. It is, however, the most computationally demanding since it needs the training

of different regressors to build the pool for spectroscopy and residual for wind speed.
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6.1 Contributions and conclusion

In this thesis, several methodological aspects and theoretical solutions have been presented and

investigated to circumvent some of the most important issues that the chemometrics and wind

speed community has been facing recently. Such issues have been identified with the objective to

increase the weight of the new technology in numerous applications. In particular, the method-

ological issues that have been considered in the present thesis are the: i) Residual Correction

Concept; ii) Active Learning Regression. In the following, we briefly summarize the conclusions

drawn for each of the addressed topics.

For the first issue, in Chapter 4, we proposed a new method based on a residual-based cor-

rection (RBC) concept. Its underlying idea is to correct any adopted regressor, by analyzing

and modeling its residual errors directly in the feature space. RBC is therefore not a regressor

but a correction method, whose aim is not to reach the best achievable accuracy for a given

data set but to possibly improve the estimation model of a given regressor. Experimental re-

sults based on linear and nonlinear regression methods and conducted on different data sets in

infrared spectroscopy point out that the proposed approach can improve the estimation accu-

racy achieved by traditional regression and compared with another well-known method based

on exploiting the errors to improve the estimation process so-called AdaBoost.R.

The use of residual correction strategy can improve the estimation accuracy with respect to sin-

gle predictor. The proposed approach is independent from the kind of functional estimator used

to predict the chemical concentrations of interest. Comparison with AdaBoost.R, RBC performs

better than AdaBoost.R and less exposed to the overfitting risk with respect to AdaBoost.R.

However, when compared with traditional regressor in terms of time computation, the RBC

method needs a huge time computation to tune the best parameters of the model during the

training phase.

For the second issue, in Chapter 5, we introduced the active learning approach for regression

problems to estimate the chemical concentrations from spectroscopic data. Some strategies are

tested on different linear and nonlinear methods. The proposed general active learning is di-

vided into two strategies; the first method is based on adding samples that are distant from the

current training samples in the feature space, while the second is based on the pool of regressors.

Other methods proposed specifically for SVM, the method based on the pool of regressors and

an additional strategy based on the selection of the samples distant from the current support

vectors are presented. The experimental results on three different real data sets show higher

performances of the proposed strategies in terms of both accuracy and stability with respect to

a completely random selection strategy. Comparing them, the best active strategy appears the

one based on the pool of regressors for both linear and nonlinear methods.

Similarly to the previous section, in Chapter 5 the active learning has been applied for regression
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problems for wind speed prediction, but in this case we proposed an active learning strategy de-

veloped for regression approach based only on the kernel ridge regression (KRR). In particular,

we proposed three different active learning strategies. The first strategy uses a pool of regressors

in order to select the samples with the greater disagreements between the different regressors.

The second one relies on the idea to add samples that are distant from the available training

samples, while the third strategy is based on the selection of samples which exhibit a high ex-

pected prediction error. The experimental results obtained on ten different Algerian stations

show good capabilities of the proposed strategies for selecting significant samples. In general,

the proposed methods are characterized by higher performances in terms of errors (RMSE, MAE

and NMSE) and stability, with respect to a completely random selection strategy. By averaging

over the three error measures, the error reduction is of the order of 5 % and the improvement in

terms of stability (STD) is of the order of 40 %. For similar error values, active learning reduces

substantially the number of required training samples when compared to a random sampling.

The best active learning strategy appears to be the one based on residual estimation (RSAL).

Computational cost is the main drawback of the active learning approach. This drawback is

however widely compensated by the reduction of required training samples, which involves a

substantial benefit in terms of time and economic cost incurred by the demanding training sam-

ple collection as well as the prediction of the learning model when compared to a full-learning.

Moreover, in some cases, active learning has shown to be able to outperform PLSR-Full, RR-

Full, KRR-Full and SVR-Full regarding of accuracy thanks to its intrinsic ability to filter out

the training samples.

6.2 Perspectives and future work

The contributions provided in this thesis were mainly focused on the development of new strate-

gies for exploiting errors to improve the estimation process and new active learning methodolo-

gies to address the problem of training sample collection for regression problem. Such contribu-

tions have been critically analyzed considering the state-of-the-art of the related research topics,

and have been compared with reference approaches by means of in-depth testing experiments.

The results turned out to be satisfactory, and confirmed that the research reported in this dis-

sertation have made interesting contributions to the faced methodological issues. We cite here

some possible futures research directions.

1. Residual correction concept:

• The correction mechanism could be implemented as well beyond the first level of

correction. For instance, a second level of correction would involve the use of a third

regressor (second corrector) to correct the errors incurred by the first corrector. A

third level of correction would require in total four regressors, and so on. Experiments
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would be needed to analyze up to which level the correction process could be envi-

sioned without being trapped in generalization problems like AdaBoost.R. In order

to limit the overfitting risk, weights could be assigned to the different correctors to

control their possible misleading effects.

2. Active learning:

• In this thesis, we focused on PLSR, RR, KRR and SVR, the active selection of

the training samples could be used in combination with other supervised regression

approaches, for example gaussian process.

• The initial training set was chosen in a random way, more sophisticated initialization

strategies could be envisioned in order to further improve the performances of the

active learning process.

• Other active learning strategies could be considered for SVR in particular, for in-

stance by combining sample distance, pool disagreement and Lagrange multiplier

information sources.

• Another interesting idea is to adopt a hybrid strategy which will take advantage

of both semi-supervised and active learning. In the beginning, the most significant

samples are selected by the active learning technique. After that, the selected samples

are automatically labeled (zero cost) with the semi-supervised approach which has

the advantage in this case to eliminate the human expert and thus resulting in fully-

automatic hybrid approach.
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