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Introduction

The development of mobile robots is one of the most challenging research fields within
robotics. The hardware of a robot can be divided into its mechanical components and
implementation, actuators, sensors, and computing hardware. Building on top of this
hardware, it is the software that makes the difference between a simple machine and an
intelligent robot. Among the components and abilities to be implemented are the most
important ones related to motor control, speech processing and synthesis, visual perception,
and some kind of high-level planning or control module. All of these are integrated and
connected within an overall architecture, which is often referred to as the cognitive
architecture - whose design and implementation are currently among the most discussed

topics within the robotics community.

Visual information makes up about seventy five percent of all the sensorial
information received by a person during a lifetime. This information is processed not only
efficiently but also transparently. Our sight is the most perfect and most delightful of all our
senses. It fills the mind with the largest variety of ideas, converses with its objects at the
greatest distance, and continues the longest in action without being tired or satiated with its

proper enjoyments.

To understand why the performance of generic computer vision algorithms is still far
away from that of human visual perception, we should consider the hierarchy of computer

vision tasks. They can be roughly classified into three large categories:

— Low level, dealing with extraction from a single image of salient simple features, such as

edges, corners, homogeneous regions, curve fragments;

— Intermediate level, dealing with extraction of semantically relevant characteristics from one

or more images, such as grouped features, depth, motion information;
— High level, dealing with the interpretation of the extracted information.

A similar hierarchy is difficult to distinguish in human visual perception, which

appears as a single integrated unit. In the visual tasks performed by a human observer an
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extensive top-down information flow carrying representations derived at higher levels seems

to control the processing at lower levels.

A large amount of psychophysical evidence supports this “closed loop” model of
human visual perception. Preattentive vision phenomena, in which salient information pops-
out from the image, or perceptual constancies, in which changes in the appearance of a
familiar object are attributed to external causes, are only some of the examples. Similar
behavior is yet to be achieved in generic computer vision techniques. For example,
preattentive vision type processing seems to imply that a region of interest is delineated

before extracting its salient features.

Motivation and Objective

It is a challenge to mimic human visual perception imnmvolved sometimes in realizing complex
decision making tasks. Computer vision is a vast research area with many applications in
artificial intelligence. Furthermore many interesting higher-level skills, tasks, and scenarios

cannot be realized without a strong vision system as a basis.

Therefore, in the broadest sense, robustness of a computer vision algorithm is judged
against the performance of a human observer performing an equivalent task. In this context,
robustness is the ability to extract the visual information of relevance for a specific task, even
when this information is carried only by a small subset of the data, and/or is significantly

different from an already stored representation.

One of the most traditional disciplines and the objective of this thesis is the object

recognition with its two subproblems, object identification and object location.

Problem Statement: Model (Edge)-Based Object Recognition
Given an input image frame taken from the robot environment, it is asked to perceive its
location in terms of a reference fixed image based mark. In this context, model-based object

recognition addresses two problems:
Identification: which 2D shapes in the image will be identified?

Location: given that the geometric structure of the object in the image is identified what is

the location in space (rotation and translation) of the 2-D object imaged?




Perception and Navigation systems for mobile

robots

1.1. Mobile Rohots

After proving to be an efficient tool for improving quality, productivity, and competitiveness
of manufacturing organizations, robots now expand to service organizations, offices, and even
homes. Global competition and the tendency to reduce production cost and increase efficiency
creates new applications for robots that stationary robots can't perform. These new

applications require the robots to move and perform certain activities at the same time.

The proposed architecture for machine learning is also based on the perceptual
creative controller for an intelligent robot that uses a multi- modal adaptive critic for
performing learning in an unsupervised situation but can also be tramed for tasks in another
mode and then 1s permitted to operate autonomously. The robust nature is derived from the
automatic changing of modes based on internal measurements of error at appropriate locations

in the controller. [1]

1.1.1. Types of Mobile Robots

Many different types of mobile robots had been developed depending on the kind of
application, velocity, and the type of environment whether it is water, space, terrain with fixed

or moving obstacles. Four major categories had been identified:

i. Terrestrial or Ground-contact Robots

There are three main types of ground-contact robots: wheeled robots, tracked vehicles, and

limbed vehicles.
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Wheeled robots: exploit friction or ground contact to enable the robot to move. Different
kinds of wheeled robots exist: the differential drive robot, synchronous drive robot, steered
wheels robots and Ackerman steering (car drive) robots, the tricycle, bogey, and bicycle drive

robots, and robots with complex or compound or omnidirectional wheels.

Tracked vehicles: are robust to any terrain environment, their construction is similar to the
differential drive robot but the two differential wheels are extended into treads which provide

a large contact area and enable the robot to navigate through a wide range of terrain.

Limbed vehicles: are suitable in rough terrains such as those found in forests, near natural or
man-made disasters, or in planetary exploration, where ground contact support is not available
for the entire path of motion. Limbed vehicles are characterized by the design and the number
of legs, the mmimum number of legs needed for a robot to move is one, to be supported a
robot need at least three legs, and four legs are needed for a statically stable robot, six, eight,

and twelve legs robots exists.

TR

%= .“.- .f L
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Figure 1.1. Bxperimental Unmanned Vehicle in action at Ft. Indiantown Gap. Photo courtesy of the
Army Research Labs (Greenhouse & Notrris, 2002)
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i, Aquatic Robots

Aquatic vehicles support propulsion by utilizing the surrounding water. There are two

common structures:

Torpedo-like structures; where a single propeller provides forward, and reverse thrust
while the navigation direction i1s controlled by the control surfaces, the buoyancy of the vessel

controls the depth. The disadvantage of this type is poor manoeuvrability.

Twin-burger and URV wvehicles robots which use a collection of thrusters that are
distributed over the vessel, more manoeuvrable are attained by controlling sets of the thrusters
to change the vehicle orientation and position independently; however, the URV comes with

the expense of operational speed. An example of an aquatic robot is shown in FigureZa.

#ii. Flying Robots

Fixed-wing autonomous vehicles: This utilizes control systems very similar to the ones
found 1 commercial autopilots. Ground station can provide remote commands if needed, and
with the help of the Global Positioning System (GPS) the location of the vehicle can be

determined.

Automated helicopters: this use onboard computation and sensing and ground control, their

control is very difficult compared to the fixed-wing autonomous vehicles.

Buoyant (aerobots, aerovehicles, or Blimps) vehicles: These vehicles can float and are
characterized by having high energy efficiency ratio, long-range travel and duty cycle,

vertical mobility, and they usually has no disastrous results in case of failure.

Unpowered autonomous flying vehicles: These vehicles reach their desired destination by

utilizing gravity, GPS, and other sensors. An example of a flying robot is shown in Figure2b.
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b. Flying Vehicle

Figure 1.2. Aquatic and Flying vehicle (SSC San Diego, 2002)

iv. Space Robots

These are needed for applications related to space stations like construction, repair, and
maintenance. Free-flying systems have been proposed where the spacecraft 1s equipped with
thrusters with one or more manipulators, the thrusters are utilized to modify the robot

trajectory. [1]
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1.1.2. Integrated Perception and Navigation systems

Using highly developed sensors, mobile robots can accomplish very sophisticated tasks even
In human environment. This chapter concentrates on the sensors used in mobile robot systems
to avoid obstacles allocating position and gathering information from the environment and
reach its goal autonomously. The task of the sensor system is not only for collecting the
Information but to translate it to meaningful data to the control system. Acquainting
communication techniques and interfaces to connect the sensors to the control system is also
requited to be able to develop a mobile robot platform. For example an autonomous robot
could deliver parts between various assembly stations or stores. A robot team with on-board
cameras and Image processing system could guard a vast industrial or military area. Of
course, to accomplish these tasks, a robot has to have a sophisticated sensor system, durable
mechanic structure and highly developed computing system.

Figurel shows the basic structure of a robot. [2]

Mission commands

F ]

Control system

i
......... L]
=ensing Acting
h

Real world *
enviroment

Figure 1.3. Scheme of mobile robot systems

1.2. Perception

One of the most important tasks of an autonomous mobile robot of any kind is to acquire
some useful information about its environment. This is done by taking measurements using
various sensors and then extracting meaningful information data and translates it to the
control system. [3]

Sensors can be classified to proprioceptive and exteroceptive sensors.
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Proprioceptive sensors: measure values mternally to the system (robot), like motor speed,
wheel load, heading of the robot, battery status.
Exteroceptive sensors: acquire Information from the robots environment; like distances to

objects, intensity of the ambient light, unique features.

Furthermore, Sensors can be classified to active, energy emitting- emit their proper
energy and measure the reaction-(for example scanmners) and passive energy receiving

sensors- energy coming for the environment-(for example CCD cameras).

The sensors collecting information from the real world environment can be arranged to
other groups according to their functions. However, only depth perception 1s not adequate for
mobile robot navigation. In order to safely navigation obstacle detection must be done by the
robot perception system. Actually, not only obstacle detection butalso position measurement
of the robot has a crucial role’ during navigation. Because of that reason, Position
measurement and motion planning sub system has been' developed for safe navigation.

Perception system of mobile robots can be easily divided into two main groups:

Obstacle aveidance: sensing dynamic or static obstacles.

Localization: collecting data to determine the accurate position of the robot. [2]

1.2.1. Obstacle avoidance

Time of flight active ranging. Time of flight ranging make use of the propagation speed of an
emitted wave and measure the traveling time. The transmitted wave can be sound, light or
electromagnetic wave. In the case of mobile robots, the measuring range is usually between 5
cm and 10 20 m. If sound is transmitted, the propagation speed 18342 mv/s, so the time of the
flight at a distance of 3 m i1s about 20 ms (to reach the target and get back) which 1s a
measurable value. If the transmitted wave 1s a laser beam, the propagation speed 1s 3.108 m/s
which i1s about 106 times faster than it was in the case of sound transmitter. The time of flight
18 20 ns! If the target is even closer than 3 m it is a very challenging task to measure so short
times with small error. On the other hand, if we need short scanning time and measuring huge

amount of points, the propagation speed of the sound does not suit our requirements.
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1.2.1.1. Ultrasonic sensors

The ultrasonic sensor’s basic principle is to transmit ultrasonic wave packages and to measure
the time 1t takes to get back to the receiver. The ultrasonic wave’s typical frequency is
between 40 and 180 kHz and it is generated by plezo-transcuders. The main disadvantage of
the ultrasonic sensors is that it can only give information whether there is an obstacle in an
area, but 1t cannot give information about the exact position. It is because the sound
propagates in a cone with an angle of about 30 degrees It cannot be determined which
direction the reflected wave came back within the distribution angle. There are several other
drawbacks of ultrasonic sensors. The speed of the sound depends on the temperature, and the
strength of the reflected signal depends on the acoustic behavior of the obstacle’s material.
Ultrasonic sensors have relatively slow cycle time. As it was described, at a distance of 3m,
the traveling time 1s 20m. If more sensors are used, and. interference needs to be avoided the

scanning time multiplies by the number of sensors.

1.2.1.2. Laser range finder

A laser rangefinder is a rangefinder which uses a laser beam to determine the distance to an
object. The most common form of laser rangefinder operates on the time of flight principle by
sending a laser pulse in a narrow beam towards the object and measuring the time taken by
the pulse to be reflected off the target and returned to the sender. Due to the high speed of
light, this technique is not appropriate for high precision sub-millimeter measurements, where

triangulation and other techniques are often used.

There are two methods to measure distance with laser light beam. One way, like in the case of
ultrasonic sensors, laser pulses are transmitted and the reflection time 1s measured. The other
easier method is to transmit 100% amplitude modulated light beam at a defined frequency and
compare the phase shift between the transmitted and the reflected light. This scanner has
much higher resolution than the ultrasonic sensor. Pointing the measuring beam to rotating
mirror a fast scanning can be accomplished 1 a vertical dimension, but the whole scanner has

to be able to move horizontally if 3D scanning is needed.

The distance between point A and B 1s given by:




Chapter 1: Perception and Navigation Systems for mobile robots

where c is the speed of light in the atmosphere and £ 1s the amount of time for the round-trip

between A and B.

where ¢ 1s the phase delay made by the light traveling and « 1s the angular frequency of

optical wave.
Then substituting the values in the equation,

lf_lcg.ﬂ_ c
27 2w  Axf

| Y
(N7 +Ap) = Z(N + AN)

In this equation, 4 is the wavelength ¢/f; Ag is the part of the phase delay that does not fulfill z
(that is, ¢ modulo z); N 1s the integer number of wave half-cycles of the round-trip and AN the

remaining fractional part. [4]

1.2.1.3. Triangulation-based active ranging

The triangulation-based measurement consists of a light source and a sensor installed at a
defined distance to each other. The lights source transmits a known light pattern (known
transmission vector) to the environment and the sensor measures the vector of the reflected

light so the distance can be calculated.
i. 1D laser triangulation sensors

The distance measurement with 1D laser triangulation sensors uses a coherent laser beam and
a line CCD installed at a defined “L” distance from each other. The orientation of the laser
beam is known and the line CCD chip can map the vector of the reflected laser beam (Figure
1.5). The distance “D” can be calculated from the measured reflection and the given

measuring layout.

10
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Transmitter I ‘Target
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Figure 1.5. Scheme of 1D friangulation sensor

ii. 2. 2D laser triangulation sensor

The base principle of 2D triangulation sensors i1s the same as described before, but the
transmitter is a line laser which excises a plane, and the reflected light is captured by a regular

2D CCD camera (Figure 1.6).

Line laser source

- CCD camera
| o ———— _--J'"%— ':,_| Y

Picture on screen

Figurel.6 Scheme of 21 laser range finders

11
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»  Optimizing the parameters of the 2D laser range finder

Choosing bigger, “a” makes the sensor less compact but it increases the distance
measuring resolution. If only one scanning laser line is used, the obstacles hanging down at
the height of the laser source cannot be detected and cause collision of the laser source with

the obstacle (Figure 1.7.4).

With proper settings of laser source direction, rapid declension or hole can be
detected. In the example shown at Figure 1.7.B.f the robot goes on a flat ground on the
picture, captured by the CCD camera, there is always a line. If obstacle comes a part of the
line goes up and the height of the line showed on the picture is in inverse proportion with the

distance of the obstacle. If the line disappears, there has to be'a gap or a hole.

S Obstacle

-

~| Line laser source

Line laser source

Figure 1.7. Opportunities and limitations of one laser line scanning

12
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»  FPGA based 2D laser range finder

The developed sensor is built on a Xilinx Spartan-3 FPGA platform and a Texas
Instruments RGB video A/D converter. The used FPGA has 250.000 system gates and 172
/O pins and it 1s driven by a 50 MHz quartz oscillator. At first the FPGA generate the proper
sample clock frequency for the A/D by dividing the system clock.

The digitalization runs constantly and the 8 bit parallel dataflow is received by the
FPGA. The second block separates the line and filed synes.

The digitalization has two steps. First a’ complete bitmap picture is red into the
memory “A” without the laser lines witched on. It takes 20 ms at a normal speed (25

frame/sec) camera since the composite PAL video signal sends two half pictures successively.

Using just a half picture decreases the resolution, but, what i1s more important, it
decreases the scanning time as well. During the second digitalization the laser line is switched
on and the bitmap is written into Memory “B”. At the next step the FPGA extracts Memory
“A” and Memory “B” and sends the results to a FIFO buffer. Using this method the laser
beam can be emphasized from the bitmap. Because of the mechanical oscillations of the robot
structure there are usually other differential errors on the picture, but they are not arranged but

scattered therefore with a low pass filter the errors can be filtered out.

After the data procession about 720 byte of information come off. Each byte stands for
a direction from the left to the right, and the value of the byte means the position (height) of
the laser line at that specific direction.

For example if there is a narrow obstacle i front of the robot just in the middle and
relatively close and the installation shown in Figure 1.7.B is used, the first ~300 bytes will be
low values (depending on there life). The next ~100 bytes will be relatively high values,
around 155 and the last ~300bytes will be small agamn. With the foreshowed sensor system
around 1° resolution can be reached at a horizontal 45° angle. The scanning frequency can be
about 20 Hz. The main limitation of the system is that it is very sensitive to the light
conditions. At normal daylight the system cannot filter out the light of the laser beam from the
surrounding sunlight. This drawback can be improved by using higher power lasers and

optical filter at the wave length of the used laser.

In the first row of Figure 1.8 the captured image can be seen without the filtering. In
the second row Median filter was used to remove impulse noise by replacing center pixels

with median values in its neighborhoods.

13
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Figure 1.8. Scheme of 2D laser range finder

Vision and stereo image based sensors. This sensing method is the most progressive
field of avolding obstacles and sensing real environment. The basic principle 1s similar to the
function of human vision, so it is'a very complex and calculation-intensive task. Because of

the limited volume of this article, this field cannot be detailed here. [8]

Figure 1.9. Captured image of 2D triangulation sensor

14
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1.2.2. Localization

The sensor used for localization highly depends on the mechanic structure of the robot and the
environment where the robot is used. In this section some commonly use mobile robot sensors

are demonstrated.
1.2.2.1. Wheel encoders

Figure 1.10 shows a simple mechanical structure. Using wheel encoders, the rotation of the
wheel can be measured very accurately. If flat area 1s assumed and non-kidding wheels are

used the position can be calculated by simple geometric equations.

UVheelencnder

Figure 1.10. A simple mechanical structure example of a mobile robot
1.2.2.2. Gyroscope
There are two commonly used types of gyros in mobile robot systems:

Optical gyrescopes work on a principle that the speed of light remains unchanged in a closed
mechanical system. If two rings of optical fiber are used and opposite directional laser beams
are sent from the same source to the rings phase difference can be measured between the two

laser beams in the case of mechanical rotation.

Solid state gyroscopes all work by detecting Coriolis forces. These are forces which can be
observed whenever linear motion occurs i a rotating frame. The simplest form of Coriolis
gyro, the simple oscillator, uses a single ‘beam’ of material (usually quartz or ceramic), which
18 vibrated to create a standing wave along its length. When subjected to rotation, this

standing wave moves around the beam, causing it to vibrate in a new direction. This change in

15
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the vibration position is proportional to the rate of rotation the gyro has been subjected to.

This type of gyro is highly susceptible to external shocks and vibration.
1.2.2.3. Mechanical, Hall Effect and Fluxgate Compasses

The Mechanic compasses based on a permanent magnet mounted in a low-friction bearing.
Four hall-effect semiconductors are arranged around the periphery of the magnet and detect
the rotation of it. The rise up time can be 2.5 s so it’s very slow. The Fluxgate compasses
make use of the manner of the magnetic lines getting trough permeable materials. When a
highly permeable material is placed into a uniform magnetic field, the magnetic lines of the
field are traveling through the lowest resistance path, presented by the permeable material
(Figure 1.11). However, if the permeable material is forced into saturation by an additional
forcing field, the material does not influence the external field. If the forcing field is switched

on an off periodically, the difference can be measured between the two states.

Figurel 11 Possible layout of a fluxgate compass. (A: saturated; B and C: not saturated)

Huall-Effect sensors are based on the effect that DC voltage can be measured across he

conductor or semiconductor when external magnetic field being present.

The compasses always detect other magnetic field noises from the robot itself or from

the environment therefore the measured values could be unreliable.
1.2.2.4. Global Positioning System (GPS)

If the mobile robot is used 1 an outdoor environment, for example in agriculture, GPS can be

used to determine its position. The GPS was originally developed for military purposes and

16
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great amount of satellites were put into orbit around the earth. The GPS recerver has to get at
least three satellites signal to be able to determine its position. The satellites synchronize their
transmission and send their location at the same time and the receiver measures the time it
took to arrive and also the time differences of the received signals. From this data it can
calculate its own position. The accuracy 1s 1m In the best case. GPS navigation cannot be
used in mdoor environment or in built-in area where the overlook is not covered (Figure
1.12). An average GPS receiver supplies information in every second so 1t has to be

complemented by a proprioceptive sensor to ensure the continuous navigation.

sy it:gk“’-
e -
GPS S y
L7 > satellites 7 ~
P e s -
& < ’

Figure 1.12. Global Positioning System

1.2.2.5. Camera posing system

If the mobile robot system is used in an indoor environment like in a manufacturing plat, an
mmstalled 1mmage processing system can recognize a specific mark on the board of the robot so
it can determine the accurate position of the robot as well This system could be a

complementary sensor to cotrect the calculated error of the wheel encoders or the gyroscope.

[2]
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CCD Camera
Mark on the board

_Mobile Robot

Figure 1.13. Camera posing system

1.3. Mobile Robot Navigation

For any mobile robotic system, the ability to navigate in its environment 18 one of the most
important capabilities. Mobile Robots, which are equipped with computer vision, may be able
to navigate around an unknown environment acquiring visual Imnformation of their
surroundings with the aim of estimating the position of obstacles which stay in front of it. In
other words, navigation can be roughly described as the process of determining a suitable and
safe path between a starting and a goal point for a robot travelling between them.

Several capabilities are needed for autonomous navigation:

o The ability to execute elementary goal achieving actions such as going to a given

location or following a leader;

¢ The ability to react to unexpected events in real time such as avoiding a suddenly

appearing obstacle;

¢ The ability to formulate a map of the environment;
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_The ability to learn which might include noting the location of an obstacle and of a
three-dimensional nature of the terrain and adapt the drive torque to the inclination of

hills.

The following, are common systems and methods for mobile robot navigation.

1.

Odometry and other dead-reckoning methods: These methods use encoders to

measure wheel rotation and/or steering orientation.

Sensor based navigation: Sensor based navigation systems that rely on sonar or laser
scanners that provide one dimensional distance profiles have been used for collision
and obstacle avoidance. A general adaptable control structure is also required. The
mobile robot must make decisions on its navigation tactics; decide which information
to use to modify its position; which path to follow around obstacles, when stopping is
the safest alternative, and which direction to proceed when no path is given. In
addition, sensors information can be used for constructing maps of the environment

for short term reactive planning and long term environmental learning.

Inertial navigation: This method uses gyroscopes and sometimes accelerometers to

measure the rate of rotation and acceleration.

Active beacon navigation systems: This method computes the absolute position of
the robot from measuring the direction of incidence of three or more actively
transmitted beacons.

The transmitters, usually using light or radio frequencies must be located at known

sites in the environment.

Landmark navigation: In this method distinctive artificial landmarks are placed at
known locations in the environment to be detected even under adverse environmental

conditions.

Map-based positioning: In this method information acquired from the robot's
onboard sensors 18 compared to a map or world model of the environment. The
vehicle's absolute location can be estimated if features from the sensor-based map and

the world model map match.
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7. Biological navigation: biologically-inspired approaches were utilized m the
development of mtelligent adaptive systems; biomimetic systems provide a real world
test of biological navigation behaviors besides making new navigation mechanisms

available for indoor robots.

8. Global positioning system (GPS): This system provides specially coded satellite
signals that can be processed in a GPS receiver, enabling it to compute position,

velocity, and time.

9. Vision based navigation: Computer vision-and image sequence techniques were
proposed for obstacle detection and avoidance for autonomous land vehicles that can
navigate in an outdoor road environment. The object shape boundary is first extracted
from the image, after the translation from the vehicle location i the current cycle to
that in the next cycle, the position of the object shape in the image of the next cycle is
predicted, then it 1s matched with the extracted shape of the objectin the image of the

next cycle to decide whether the object is an obstacle.[1]

Regardless of the type of vehicle, systems that use vision for navigation can be
roughly divided in those that need previous knowledge of the whole environment (Map-based
Systems) and those that perceive the environment as they navigate through it (Mapless

Navigation).[5]

1.3.1. Map-based Systems

The systems that need a map can be in turn subdivided in metric map using systems, metric
map-building systems and fopological map-based systems. Another kind of map-building
navigation systems can be found, as for example visual sonar-based systems or local map-

based systems.

i. Metric Map-using and -building Navigation Systems

This group includes systems that need a complete map of the environment before the
navigation starts. There are systems that are unable to map the environment and need to be
equipped with 1t (map-using systems). Other systems explore the environment and
automatically build a map of it (map-building systems). The navigation phase starts only if the
map of the environment is available for the robot or after the map has been build. The map

Information can be directly used for navigation, or it can be post-processed to improve the
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map accuracy, and thus, achieve a more precise localization. This 1s the navigation technique
that requires more computational resources, time and storage capability.

Since outdoor environments can be large in size and extremely irregular, visual navigation
techniques based on maps are 1n most occasions applied to indoor environments.

Maop building and self-localization in the navigation environment are two functionalities that
nonreactive systems tend to incorporate. In map-building standard approaches, it is assumed
that the localization 1n the environment can be computed by some other techniques, while in
pure localization approaches, the map of the environment is presumably available. Robots
using this navigation approach need to track their own position and orientation in the
environment in a continuous way.

Metric maps mclude information such as distances or map cell sizes with respect to a
predefined coordinate system, and, in general, are also more sensible to sensor errors.
Accurate metric maps are essential for good localization, and precise localization becomes

necessary for building an accurate map.

If the exploration and mapping of an unknown environment is done automatically and
on-line, the robot must accomplish three tasks: safe exploration/nhavigation, mapping and
localization, preferably in a simultaneous way. Simultaneous Localization and Mapping
(SLAM) and Concurrent Mapping and Localization (CML) techniques search for strategies to

explore, map and self-localize simultaneously in unknown environments.

ii. Topological Map-based Navigation Systems

A topological map is a graph-based representation of the environment. Each node corresponds
to a characteristic feature or zone of the environment, and can be associated with an action,
such as turning, crossing a doot, stopping, or going straight ahead. Usually, there are no
absolute distances, nor references to any coordinate frame to measure space. These kinds of
maps are suitable for long distance qualitative navigation, and specially for path planning. In
general, they do not explicitly represent free space so that obstacles must be detected and
avolded on line by other means. Topological maps are simple and compact, take up less

computer memory, and consequently speed up computational navigation processes.

iii. Local Map-building Navigation Systems and Obstacle Avoidance

The strategies seen so far base their strength in a global description of the environment. This
mode] can be obtained automatically by the robot, or In a previous human guided stage, but 1t

has to be acquired before the robot begins the navigation. Since the early nineties, some
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authors have developed solutions where visual navigation processes are suppotted by the on-
line construction of a local occupancy grid. In vision-based navigation, the local grid
represents the portion of the environment that surrounds the robot and the grid size is
determined by the camera field of view. This local mformation can be used for a subsequent
complete map construction or simply updated frame by frame and used as a support for on-
line safe navigation. Since robot decisions depend, to a large extent, on what the robot
perceives at every moment in the field of view, these navigation techniques arise a debate
about what can be considered deliberative and what can be considered reactive vision-based

navigation techniques.

iv. Visual Sonar

In recent years, visual sonar has become an original idea to provide range data and depth
measurements for navigation and obstacle avoidance using vision in an analogous way to
ultrasound sensors. Therefore, the originality of the concept is not in the navigation process

itself, but in the way the data is obtained.

1.3.2. Mapless Navigation

The system is able to produce enough information about the unknown and just perceived
environment to navigate through it safely.

Mostly, Mapless Navigation systems include reactive techniques that use visual clues derived
from the segmentation of an 1image, optical flow, or the tracking of features among frames. No
global representation of the environment exists; the environment is perceived as the system

navigates, recognizes objects or tracks landmarks.

i. Optical Flow-based Navigation Systems
Optical flow can be roughly defined as the apparent motion of features in a sequence of
Images.

During navigation, the robot movement is perceived as a relative motion of the field of
view, and, In consequence, it gives the impression that static objects and features move
respect to the robot. To extract optical flow from a video stream, the direction and magnitude
of translational or rotational scene feature movement must be computed at every pair of
consecutive camera frames. Optical flow between two consecutive frames is usually
represented by a vector for every pixel, where its norm depends on the motion speed and its
direction represents the movement of the corresponding pixel in consecutive images. In some
cases, the execution time and the computation resources required can be optimized by first

extracting the image prominent features, such as for corners or edges, and then computing the
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optical flow only for these features. Image optical flow has been used by some researchers to
implement reactive mobile robot navigation strategies, either for mdoor or for outdoor
environments. Object boundaries appear as regions with significant optical flow, and thus as
regions to be avoided. Specularities or irregularities on the floor and textured floors also
appear as regions with optical flow and therefore can be wrongly considered as obstacles

causing errors during navigation.

ii. Appearance-based Navigation

Appearance-based strategies consist of two procedures. First, in a pre-training phase, images
or prominent features of the environment are recorded and stored as model templates. The
models are labeled with certain localization mformation and/or with an associated control
steering command. Second, mn the navigation stage, the robot has to recognize the
environment and self-localize 1 it by matching the current on-line image with the stored
templates. The main problems of appearance-based strategies are: finding an appropriate
algorithm to create the environment representation, and defining the on-line matching criteria.
Deviations between the route followed in the guided pre-training phase and the route
navigated autonomously yield different sets of images for each case, and thus differences mn
the perception of the environment.

Main researchers have focused their contributions en mmproving the way how images
are recorded in the training phase, as well as on the subsequent image matching processes.
There are two main approaches for environment recognition without using a map:
Model-based Approaches, They utilize pre-defined object models to recognize features in

complicated environments and self-localize in it.
View-based Approach, No features are extracted from the pre-recorded images. The self-

localization is performed using image matching algorithms.

iii. Image Qualitative Characteristics Extraction for Visual Navigation

Reactive visual techniques for robot navigation and obstacle avoidance are often devised
around the extraction of image qualitative characteristics and their mterpretation. There are
two main types of reactive visual obstacle avoidance systems: model-based obstacle
avoldance systems, which need predefined models of known objects, and sensor-based
obstacle avoidance systems, which process every on-line sensor Information to determine
what could be an obstacle or what could be free space. These strategies can be mncluded in
what 1s known as qualitative navigation. Reactive navigation systems based on qualitative
Information avoild as much as possible using, computing or generating accurate numerical

data such as distances, position coordinates, velocity, projections from image plane onto real
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world plane, or contact time to obstacles. In general, a coordinated behavior-based
architecture i1s needed to manage all qualitative Image information and the subsequent

reactions.

Of particular relevance to this sort of navigation systems, due to their critical
dependence on unprocessed sensorial data, i1s the change of the imaging conditions:
Illumination intensity, position of light sources, glossiness of the scene materials, etc. As a
consequence, and mostly for outdoor applications, depending on time, weather conditions,

season, etc. the performance of certain visual navigation systems can be seriously limited.

iv. Navigation Techniques Based on Feature Tracking

Techniques for tracking moving elements (corners, lines, object outlines or specific regions)
In a video sequence have become robust enough so as to be useful for navigation. Many
times, the systems divide a tracking task into two sub-problems: first, motion detection,
which, given a feature to be tracked, identifies a region in the next frame where it is likely to
find such a feature, and second, feature matching, by which the feature tracked is identified

within the identified region.

In general, feature tracking-based navigation approaches do not comprise an obstacle
avoldance module, but this task has to be mmplemented by other means. Although video
tracking and mobile robot navigation belong to separate research communities, some authors
claim to bridge them to motivate the development of new navigation strategies. Some authors
center their research in detecting and tracking the ground space across consecutive images,

and steering the robot towards free space. [5]
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Hough Transform based Recognition

2.1. Introduction, Computer Vision

Scientists and science fiction writers have been fascinated by the possibility of building
mtelligent machines, and the capability of understanding the visual world is a prerequisite that
some require of such a machine. The important precise questions that we have to ask: What 18
the goal of computer vision, and which problems are we attempting to tackle? And how do we
plane to solve them?

The goal of computer visioniis-to make useful decisions about real physical objects
and scenes based on sensed images. In order to make decisions about real objects, it 1s almost
always necessary to construct some description or model of them from the image. Because of
this, many experts will say that the goal of computer vision is the construction of scene
descriptions from images.

The target problem 1s computing properties of the 3-D world from one or more digital
images. The properties that interest us are mainly geomerric (for instance, shape and position
of solid objects) and dynamic (for instance, object velocities). Most of the presented solutions
assume that a considerable amount of image processing has already taken place; that is, new
images have been computed from the original ones, or some image parts have been identified

to make explicit the information necessary to the target computation.

2.2. Computer Vision tools and applications

Computer vision involves computers interpreting images. Therefore, the tools needed by

computer vision system include hardware for acquiring and storing digital images in a
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computer, processing the mmages, and communicating results to users or other automated
systems. The part that interests us is the algorithms of computer vision; it contains very little
material about hardware, but suffusing enough to realize where digital images come from.
This does not mean that algorithms and software are the only important aspect of a computer
vision system. On the contrary, in some applications, one can choose the hardware and can
engineer the scene to facilitate the task of vision system; for instance, by controlling the
1llumination, using high-resolution cameras, ot constraining the pose and the location of the
objects. In many situations, however, one has little or no control over the scene. For instance,
in the case of outdoor surveillance or autonomous navigation in unknown environments,

appropriate algorithms are the key to success.

Image processing 1s a vast research area. For our purpoeses, it differs from computer
vision In that it concerns image properties and image fo image transformations; whereas the
main target of computer vision is the 3-D world. As most computer vision algorithms require
some preliminary Image processing, the overlap between the two disciplines is significant.
Examples of image processing mclude enhancement (computing an image of better quality
than the original one), compression (devising compact representations for digital images;
typically for transmission purposes), resforation (eliminating the effect of known
degradations), and fearure extraction (locating special image elements like contours, or

textures areas).

Pattern recognition has produced techniques for recognizing and classifying objects
using digital images. Many methods developed in the past worked well with 2-Dobjects or 3-

Dobjects presented 1n constrained poses, but were unsuitable for the general 3-Dworld.

Photogrammerry 1s concerned with obtaining reliable and accurate measurements
from noncontact imaging. The main differences are that photogrammetry pursues higher
levels of accuracies than computer vision, and not all of computer vision is related to

measuring.

— Research and application areas

Research areas refer to topics addressed by significant number of computer vision
publications, such as Image feature detection, Contour representation, Feature based
segmentation, Range image analysis, Shape modeling and representation, Shape

reconstruction from single image cues (shape from X)), Stereo vision, Motion analysis, Color
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vision, Active and purposive vision, Invariants, Uncelebrated and self-calibrating systems,
Object detection, 3-D object recognition and location, High-performance and real time
architectures.

While application areas refer to domain i which computer vision methods are used,
possibly In conjunction with other technologies, to solve real world problems. We can find:
Industrial inspection and quality control, surveillance and security, face recognition,

autonomous vehicles[6]

2.3. Recognition

Recognition implies that object descriptions, or models, are already available; we cannot
recognize what we do not know yet. Model-based recognition is the comparison of image
data with a database of models. When a model is found to correspond to a subset of the data
(for example, particular configuration of contouts), we say that a march has been found, or
that the model maiches the data, and the matches model is the identity of the object imaged
(data and model represent the same object in the scene). For our purpose, object recognition

entails two basic operations:

Identification: Determine the nature of objects 1maged. For instance we may want to know
whether there is a circle, for example, among the many objects in an image, or whether the
only object we are looking at is indeed a ecircle. TheHough transform that will be presented

later 1s a traditional method used for the recognition of 2D shapes.

Location: determines the position in the space of the object in view. [7]

2.4. Image Segmentation

Segmentation 18 the process that subdivides an image mnto a number ofuniformly
homogeneous regions. Each homogeneous region 1s a constituentpart or object in the entire
scene. In other words, segmentation of an image isdefined by a set of regions that are
connected and nonoverlapping, so that eachpixel in a segment in the image acquires a unique
region label that mdicatesthe region it belongs to. Segmentation 1s one of the most important
elementsin automated image analysis, mainly because at this step the objects or otherentities
of mterest are extracted from an image for subsequent processing, such as description and

recognition. For example, in case of an aerial imagecontaining the ocean and land, the
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problem is to segment the image initiallyinto two parts-land segment and water body or ocean
segment. Thereafterthe objects on the land part of the scene need to be appropriately
segmentedand subsequently classified. [§]

So, for many other image processing tasks, the basis is to extract relevant areas of the
image as a unit. These units can either be regions containing potential objects,geometric
primitives such as lines or circles, or point features. In this context,one distinguishes the
segmentation of global views, 1.e. containing an objectas a whole, and the segmentation of

local features, 1.e. features an object viewls composed of.

Humans are able to solve this so-called segmentation problem almost perfectly and
effortlessly, influenced by a lot of background knowledge and experience. Computer vision,
on the other hand, is still far from solving the segmentation problem as well as humans. In
practice, only partial solutions are available, which are adapted to a specific setup and require

certain assumptions in order to hold true. [9]

According to the application context and limits, we can apply one of the following

approaches:

The segmentation by thresholding, like binarization, this approach allows to obtain a black
(background) and white (foreground) image by using a threshold, previously defined, or
separately defined for every pixel (Algorithms by Niblack and Sauvola),

The background subtraction, the basic principle 1s to store a view [ of the empty scene,
which 1s subtractedfrom the images captured at all following time steps t > 0. For a gray

scale image, the mapping gives:

. 255 if |I.(u,v) — I{(u,v| > predefined threshold
Iu,v) =
0  otherwise

Region growing, in this algorithm, connected areas with similar gray value or color can be
determined. On the basis of one seed point which can be determined manually or
automatically, the surrounding area is searched. This 1s done by checking each of the four (or
eight, for more accuracy) direct neighbors to see if they possess a similar (or smoothly
different but close) value. If this 1s the case then the neighbor is added to the data structure for
the points to be checked. This list is then processed until it is finally empty. In order to

prevent pixels from being visited repeatedly, visited pixels must be marked.

Edge detectors, Edges, lines, and points carry a lot of information about the various regions in

the image. These features are usually termed as localfeatures, since they are extracted from
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the local property alone. Though theedges and lines are both detected from the abrupt change
In the gray level,yet there is an important difference between the two. An edge
essentiallydemarcates between two distinctly different regions, which means that anedge is
the border between two different regions. A line, on the other hand,may be embedded inside a
single uniformly homogeneous region. For example,a thin line may run between two plots of

agricultural land, bearing the samevegetation.

The edge detection operation Is essentially an operation to detect significantlocal
changes in the intensity level in an image. The change in intensity levelis measured by the

gradient of the image. [10]

The Hough transform can be used to identify the parameter(s) of a curve which best fits a set
of given edge points. This edge description is commonly obtained from a feature detecting
operator such as the Roberts Cross, Sobel or Canny Edge Detector and may be noisy; it may
contain multiple edge fragments corresponding to a single whole feature. Furthermore, as the
output of an edge detector defines only where features are in an image, the work of the Hough
transform 1s to determine both what the features are and sow many of them exist in the image.
We need to explain first the concept of Edge detection through the canny type Before
mtroducing the Hough transform in detail.

2.5. Canny Edge Detectox

Canny edge detector ensures good noise immunity and at the same time detects true edge

points with minimum error[16]. Canny has optimized the edge detection process by:

a) Maximizing the signal-to-noise ratio of the gradient,
b) An edge localization factor, which ensures that the detected edge 1s localized as
accurately aspossible,

¢) Minimizing multiple responses to a single edge.

The signal-to-noise ratio of the gradient is maximized when true edges are detected and
false edges are avoided. Thus by discarding the false responses when there are multiple
number of responses to a single edge, the noise-corrupted edges may be removed. In this

method the image is first convolved with Gaussian smoothing filter with standard deviation

o . This operation 1s followed by gradient computation on the resultant smoothed image.

2.5.1. Non-Maxima Suppression

The Canny's edge detector produces thick edges wider than a pixel. The operation of non

maxima suppression thins down the broad ridges of gradient magnitude. There are several
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techniques for such a thinning operation. In one technique, the edge magnitudes of two
neighboring edge pixels, perpendicular to the edge direction are considered and the one with

lesser edge magnitude is discarded.

2.5.2. Double Thresholding

The gradient image obtained after non-maxima suppression may still contain many false edge
points. To remove false edge points, an appropriate threshold is selected such that all the edge
points having magnitude greater than the threshold may be preserved as true edge points,
while others are removed as false edge points. If the threshold 1s small, then a number of false
edge points may be detected as true edge points, otherwise some true edge points may be

missed.

To avoid this problem, two thresholds Ty and Tamay be chosen to create two different
edge images Ejand E;, where T; = 1.5T:. Eywill contain some false edge points, whereas
E;will contain very few false edge points and miss a few true edge points. Threshold selection
algorithm starts with the edge pomts in E;, linking the adjacent edge points in Exforming a
contour, and the process continues till no more adjacent edge points are available. At the
boundary of the contour the algorithm searches for the next edge points from the edge image
Eiin its 8-neighborhood. The gaps between two edge contours may be filled by taking edge
points from Eitill the gap has been completely filled up. This process yields complete contour
constituted by the true edges of the image.

2.5.3. Edge Threshold Selection

The detection of edges is based on comparing the edge gradient with a threshold. This
threshold value can be chosen low enough only when there 1s no noise in the image, so that all
true edges can be detected without miss. In noisy images, however, the threshold selection

becomes a problem of maximum likelthood ratio optimization. [11]

2.6. The Hough Transform

The Hough Transform 1s a method for detecting straight lines, ellipses or curves defining the
contours of objects in gray tone (color) images. The method is given the family of curves

being sought and produces the set of curves from the family that appear on the image.

2.6.1. The Hough Transform for lines

The two basic steps of HT for lines are:
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Transform line detection into a line intersection problem: the line vy = mx+n
identified by the unique pair, (m, n) is represented by a point in the m, n plane (the
parameter space). Conversely, any point p = [x,y]" in the image corresponds to a
line n = x(—m)+ y in parameter space, which as m and n vary, represents all
possible image lines throughp; where the line defined by N collinear image points,
Py .. Py 18 1dentified in the parameter space by the intersection of the lines associated
with p; ... py, as illustrated in Figures; 2.1, 2.2and 2.3, For N = 2.

Transform line intersection in a simple peak detection problem: or search for a
maximum. Depending on the resolution (accuracy) we need, we divide the m, n plane
into a finite grid of cells, and associate a counter,c{m, n) initially set to zero, to each
cell. Assume that the image contains a line(+h, 1), formed by points p; ... py, for each
Image point p;, increment all counters on the corresponding line in parameter space.
All parameter space lines I; ... Iy associated to p; ... py, go through (#7,1), so that
c(th, ) = N. Any other counter on I, ..lyis 1. Therefore the image line is identified

by the peak of ¢(m, n) in the parameter space.

To avoid missing mmportant parameter ranges because m and n can take on values in

[—o0, +o0], which implies that we cannot sample the whole parameter space, in addition the

equation y = mx + b for straight lines does not wotk forvertical lines, so we use the polar

representation: d = x€os 8 + ysin 8 where d is the distance from the line to the origin and &

is the line orientation. The intervals of variation of d and 8 are finite, and any line can be

represented. This operation keeps parameter space finite, but at the price of reducing

resolution, as there 1s a limit to the size of the discrete parameter space that we can search at

acceptable time. [7]
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Note

i} Notice that any image point is now represented by sinusoid, not a line, 1n parameter

space.

it} Edge images can contain multiple lines, to find them all, we must look for all Jocal

maximaof c(m,n).

iti}  Edge images usually contain points not belonging to any line, for instance curved
contours, or Just noise introduced by the edge detector. These points result in spread of
low, random counter values throughout the parameter space. Consequently, a
multitude of local, noisy peaks appears, and we must divide it from those 1dentifying

lines. The simplest way to achieve this is to threshold c(m, n).

ivl  Because of pixelization and the limited accuracy of edge detection-presence of noisy
points-, not all the lines of parameter space corresponding to the pomts of an image
line intersect at the same point. Consequently, the image points contribute to several
counters within a small neighborhood of the correct one, so the peak is spread over
that neighborhood. Depending on the resolution of parameter space and the accuracy
required, one can estimate the true parameters just as the local maximum (#h, 1), or as

weighted average of the values (m, n) in a neighborhood of (i, ) with the condition:

c{m,n) > tc(h, ), where 7 is a fixed fraction (e.g., 0.9) and the weights are

proportional to the counters values. [7]

2.6.2. The Hough Transform for circles

U =uy+rcosb

V=1V, +rsing (2.1)
Based on this equation a suitable formulation for HT can be derived, 8¢[0, 7]:
Uy =U—TCOSH (2.2)

vy, =V trsiné
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Where r is the radius, w,, 1s the row coordinate of the center and v, is the column

coordinate of the center.

« The Hough Circle Transform works in a roughly analogous way to the Hough Line

Transform explamed in the previous tutorial.

« In the line detection case, a line was defined by two parameters (d, 8). In the circle

case, we need three parameters to define a circle:C (uyy,, v, 1)

Where(u,,, v, )define the center position and ris the radius, which allows us to

completely define a circle.

2.6.3. The Generalized Hough Transform

The generalized Hough transform is-uised when the shape of the feature that we wish to isolate
does not have a simple analytic equation describing its boundary. In this case, instead of using
a parametric equation of the curve, we use a look-up table to define the relationship between
the boundary positions and orientations and the Hough parameters. (The look-up table values

must be computed during a preliminary phase using a prototype shape).

For example, suppose that we know the shape and orientation of the desired feature
(Figure 2.5) We can specify an arbitrary reference point (x;.q5, ¥y ) within the feature, with
respect to which the shape (the distance rand angle of normal lines drawn from the boundary
to this reference point w) of the feature 18 defined. Our look-up table (R-table) will consist of

these distance and direction pairs, indexed by the orientationwof the boundary.

The Hough transform space 1s now defined in terms of the possible positions of the shape

in the image (the possible ranges of (Xyqf, ¥rer)). In other words, the transformation is

defined by:

Xrof =X+ TCOSS

VYref =¥ +78IinG (2.3)

The v andfvalues are derived from the R-table for particular known orientationw. If the
orientation of the desired feature 1s unknown, this procedure is complicated by the fact that
we must extend the accumulator by incorporating an extra parameter to account for changes

In orientation. [12].
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(xreﬁ yref)

X — XIS

Figure 1.5. Description of R-table components

2.6.4. The Hough Transform Algorithms [10]

Lines, (inputs:  a binarized input image 7, of heights and width »w,
a: number of discretizations of the angle 8 € [0, 7],)
(output: H: the two-dimensional Hough space)

n=1+ 2(ent(\/m) + 1)
for t=0 to a-1 do
for r=0 to n-1 do
H({r,8) =0
end for

end for

for all pixels {(u,v) in I do

ifr{u,v)=q then
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for £t=0 teo a-1 do
g =tnj/a

r=ucosf +vsing

n—1

7 = round (T + T)
H(t, ) =H{t, M +1
end for

end if

end for

Circles, (inputs: a binarized input image I, of height A and width »w,
a: number of discretizations of the angle 8 € [0, ],

Ymins Tmax)

{output: H: the two-dimensional Hough space)

N=w+2%q
m=h+2%qx
for r=tgm LO Tnae do
for v=0 ta m-1 do
for u=0 to n-1 do
H{r,v,u) =0
end for
end for

end for

for all pixels {(u,v) in I do
ifr{u,v)=q then

for £=0 to a-1 do

g =tnj/a
for r=t,m CTO fhge do
i, = round(u — rcos 9)
V1 = round(v — rsing)
V2 = round(v + rsin §)
H{T = Ty Vot + Tmase U + Tmax) =

1+ H{" = Toin, Vi + Bnaxe Ym + Tmax)
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H{" = Toin, Vimz + Timaze Um + Tmax) =
1+ H{" = Toin, Vm,z + Tnaxe Ym + Tmax)
end for
end for
end if

end for
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The perception system modeling considerations.

—Camera Calibration and the Artificial Neural
Networks based nonlinear approximation

3.1. Camera calibration
3.1.1. Objectives and techniques overview

Camera calibration is a necessary step in 3D computer vision in order to extract metric
information from 2D images. It has been studied extensively in computer vision and
photogrammetry, and even recently new techniques have been proposed.

According to the dimension of the calibration objects, we can classify those techniques

roughly into three categories.

i 3D reference object based calibration

Camera calibration is performed by observing a calibration object whose geometry in 3-IJ space

is known with very good precision. Calibration can be done very efficiently.

The calibration object usually consists of two or three planes orthogonal to each other.
Sometimes, a plane undergoing a precisely known translation is also used, which equivalently
provides 3D reference points. This approach requires an expensive calibration apparatus andan

elaborate setup.
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ii. 2D plane based calibration

Techniques in this category requireobserving a planar pattern shown at a few different

orientations.

The knowledge of the plane motion is not necessary,because almost anyone can make

such a calibrationpattern by him/her-self, the setup is easier for camera calibration.

iii. 1D line based calibration

Calibration objects used in this category arecomposed of a set of collinear points, a cameracan be
calibrated by observing a moving line around a fixed point, suchas a string of balls hanging from

the ceiling.

iv. Self-calibration

Techniques in this category do not use any calibrationobject, and can be considered as 0D
approach because only imagepoint correspondences are required. Just by moving a camera in
astatic scene, the rigidity of the scene provides m general two constraints on the cameras’ internal
parameters from one cameradisplacement by using image information alone. Therefore, if
imagesare taken by the same camera with fixed internal parameters, correspondencesbetween
three images are sufficient to recover both theinternal and external parameters which allow us to
reconstruct 3-Dstructure up to a similarity. Although no calibration objectsare necessary, a large
number of parameters need to be estimated, resultingin a much harder mathematical
problem.Other techniques exist: vanishing points for orthogonal directions,and calibration from

pure rotation.

Before going further, I’d like to point out that no single calibration techniqueis the best for
all. Tt really depends on the situation. [10]

3.1.2. Camera model and camera calibration

The camera model consists of the mtrinsic camera parameters fy, f;, ¢y, ¢yandd, ... d,, and the

extrinsic camera parametersi, t.

3.1.2.1. Coordinate Systems

First, the three commonly used coordinate systems are defined; an illustration is given in Fig.1.
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Image coordinate system: The image coordinate system is a two-dimensionalcoordinate system.
Its origin lies in the top left-hand corner of theimage, the u-axis points to the right, the v-axis

downward. The units are inpixels.

Camera coordinate system: The camera coordinate system is a three-dimensionalcoordinate
system. Its origin lies in the projection center 7, the x-and y-axes run parallel to the u- and v-axes
of the image coordinate system.The z-axis points forward i.e. toward the scene. The units are in

millimeters.

World coordinate system: The world coordinate system is a three-dimensionalcoordinate
system. It is the basis coordinate system, and can lie anywherein the area arbitrarily. The units are

in millimeters.[1]

image coordinate
system

u

>

world coordinate
system

camera coordinate
system principal peint

z
optical axis
r'd

x b

¢

//Image plane

Fignre3. Llllustration of the coordinate systems of the camera model.
The optical axis and the image plane are perpendicular.
The x- and the u-axes run parallel, as do the y- and v-axes.
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3.1.2.2. Intrinsic Camera Parameters of the Linear Mapping. [12]

The linear mapping function of the camera model is described by the intrinsiccamera
parameters f,, fy, ¢,, ¢;,. The parameters f, and fy denote the cameraconstants in u- and v-
direction, usually referred to as the focal length, theunits are in pixels. They contain the
conversion factor from [mm] to [pixels],independently for each direction, and can therefore also
model non-square pixels. The principal point (¢, ¢,) is the intersection of the optical axis with the
image plane, specified in image coordinates. Using a purelylinear projection defined by the
intrinsic  parameters fy, fy, ¢y, ¢y, the mapping from cameracoordinates Xy Z:to image

coordinates u, vreads

Uu _ Cyx 1 fxcx
(v) B (Cy) + z_c(fny) (3.1)
This mapping can also be formulated as a matrix multiplication with the calibration matrix
.0 ¢,
K = (0 fycy). (3.2
001

using homogeneous coordinates:

u.zZ, Xe
V.Ze | = K| ¥e (3.3)
Zg Zg
The inverse of this mapping is ambiguous; the possible points (X, V., Z., ) that are mapped to the

pixel (u,v) lie on a straight line through the projection center. It can be formulated through the

inverse calibration matrix

1 Cy
0Tk

K—l — 0 fi_(fi_y (34)
¥ ¥
0 O 1

and the equation
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b W Ze
Ye | = K71 v.z¢ (3.5)
Ze Ze

Here the depth z.s the unknown variable, for eachz. the coordinatesx.y.of the point

(Xe, Vo, Ze, ) that maps to the pixel (u,v) are calculated. In line with the notation from

Eq. (1), the mapping defined by Eq. (5) can analogously be formulated as

Xe fx
Ve | = z.[ v (3.6)
Ze fy

3.1.2.3. Extrinsic Camera Parameters

Arbitrary twists and shifts between the camera coordinate system and theworld coordinate system
are modeled by the extrinsic camera parameters. They define a coordinate transformation from
the world coordinate system tothe camera coordinate system, consisting of a rotation Rand a

translationt:

Xe = Roxyy +1 (3.7)

wherex,, = (X,v,z) define the world coordinates and x. = (X., Ve, Z., )the camera coordinates of
the same 3D point. The complete mapping from the world coordinate system to the image

coordinate system can finally be described in closed-form by the projection matrix
P = K(R\t)

using homogeneous coordinates:

U. Ze X
_ ¥
(V- Zc) =r|’ (3.8)
Z¢ 1
The inversion of the mapping from Eq. (7) reads
Xy = RT.x. —RT.t (3.9)
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Thus the inverse of the complete mapping from Eq. (8), which is ambiguous like the inverse
mapping from Eq. (5), can be formulated as:

. Z¢

X
(y) =pi| " (3.10)
C
z 1

with the inverse projection matrix

P~ = RT(K™\—1t)

3.1.2.4. Distortion Parameters

The intrinsic camera parameters d, ...d,model the effects that are caused by lens distortions,
which lead to non-linearities during the camera mapping. The most important kind of distortion is
radial lens distortion, which arises particularly strongly from lenses with a small focal length<

dmm.

So far,u, v have denoted the image coordinates for the purely linear mapping.Now, u, v
denote the undistorted image coordinates, i.e. those coordinates that are calculated by the pure
linear mapping from 3D to 2D. Additionally, the distorted image coordinates u,, v4; are now
introduced. These are the coordinates of that point that is eventually mapped onto the image
sensor. The task of modeling the lens distortions is the mathematical description of the
relationship between the undistorted image coordinates u,v and the distorted image
coordinatesu,, v4. For this, usually u,, v are expressed as a function ofu, v. As the basis for the
following calculations serve the projection of u, vonto the plane z = 1in the camera coordinate

system. The result of thisprojection is calculated by

(;:) - ﬁ (3.11)

From the coordinates x,,, y,, the distorted coordinates x4, y4 are then calculated in the planez = 1

in accordance with the distortion model. For the distorted image coordinates it applies
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ugy  [fexg e
(vd) N (fyyd + cy) (3.12)

On the basis of the radius f(an + y,2 ) the corrective terms for the description of the lens

distortion are defined. If two parameters d;,d, are used for radial lens distortion, then the
relationship between x4, y, and x,,, x,canbe expressed as

(i):a+qﬂ+@ﬁﬂi) (3.13)

Independently from radial lens distortion, tangential lens distortion can be described with the two

parameters ds, d, by the relationship

(Xd) _ (Xn) d3(2'xnyn) + d4(1'2 + 2 Xﬂz) (3 14)
¥4 ¥u d, (1‘2 + 2.yn2 +) +dy(2.xy,) '
The relationship between x4, y, and x,, x,, finally reads
Xy Xy d3(2}iy ) +d4(1'2+2X112)
=1+ dir* +dpr? + - 3.15
6 = v e BOG)+ (6o 50T a1

3.2. Artificial Neural Network hased nonlinear approximation [13]
3.2.1. The Multilayer Perceptron

The most common neural network found in applications today is the feedforward multilayer
perceptron {MLP), also known simply as the multilayer feedforward neural network. It is a
collection of artificial neuronsin which the output of one neuron is passed to the input of another.
Theneurons {or nodes) are typically arranged in collections called layers, suchthat the output of

all the nodes in a given layer are passed to the inputs ofthe nodes in the next layer.

An mput layer is the input vector x, while the output layer is the connectionbetween the
neural network and the rest of the world. A hiddenlayer is a collection of nodes which lie

between the input and output layersas shown in fig.3.2.
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Figure 3.2 shows an MLP with:

" ‘m’ input neurons,
* ‘g’ hidden neurons: activations functions {5}, weights {w}, biases {/},

* One output neuron: linear activation function, weights {c;}, bias d,

y = Flx, B)

Quiput layer

Hidden layer

Input layer

Figure 3.2.Multilayer perceptron

In a fully connected MLP, each neuron output is fed to each neuron inputwithin the next
layer. If we let @ be a vector of all the adjustable parametersin the network (weights and biases,
and sometimes the parameters of theactivation functions), then we denote the input-ouptut

mapping of a MLP{with one hidden layer) by:

q 7
F(x,0) :chv,bj (Z cu,;jxi+bj)+d (3.16)
=1 i=1

Where

T
9= [Q{Cl,. .. ,Cq, bl,. . ,bq, Wit.. .. ,an]

Within a multilayer perceptron, if there are many layers and many nodesin each layer, there
will be a large number of adjustable parameters (e.g.,weights and biases). MLP’s with several

hundred or thousands of adjustableweights are common in complex real-world applications.
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3.2.2. Radial Basis Neural Network

A radial basis neural network (RBNN) is typically comprised of a layerof radial basis activation
functions with an associated Euclidean input mapping{but there are many ways to define this
class of neural networks). Theoutput is then taken as a linear activation function with an inner
productor weighted average mput mapping. A RBNN with two inputs and 4 nodesis shown in

Fig3.3.

Cutput: v

X
Inputs: X = [xy, X3]'
Figure 3.3.RBNN with 4 nodes
The input-output relationship in a RBNN with x =[x;,. . . , x,]" as an input is given by:
4 2
F(X,B):Zcujexp | jl/yg
=1 / (3.17)

= 07¢{()

Where

0 = [w,,..., w,]": the weights vector,

¢=[cin . .. ,cjn]T: /™ hidden layer gaussian function center
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Typically, the values of the vectors {cj}andthe scalar y are held fixed, while the values of
0 are adjusted so that themapping produced by the RBNN matches some desired mapping. [19].

3.2.3. Gradient Optimization

Consider the situation in which it is desired to cause an approximator F(x, 0) to match a given
function. For the ANN, it is a Learning problem (how to adjust in time the parameters 8 so that

the matching error converges to an acceptable minimal limit)
i.  Single training data pair

It is desired to cause an approximator F(x,9) to match the function at only a single point x'

where y' = Ax"). How to adjust 8 so that the difference,

e=y'- F(x',0) (3.18)
is reduced?
In terms of an optimization problem, we want to minimize the cost function:

J(G)z%eTe (3.19)

Taking infinitesimal steps along the negative gradient of J(8) with respect to 8 will ensure that

J(©) is nonincreasing. That is, choose

T
G (3.20)
dz |,
. are) [oxe)  axe)
Wh t tant, 8 — [0y, .. . .0 d =
ere,77positive constant, [01, .8,], an 26 { 30, >0,
The proof,
A0 _0Kz)| 48 _0Kz)| 4
df oz |, At oz |,
2
=—ng—‘é <0 (3.21)
How to adiust® ?
b, VO __n o
T T 208
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0 (yl - F(x, 9))T(y1 - F(x, 9))

ra -3

)
0
o0

ra -3

(le ¥ —2F(x.8)"y' + F(x,8) F(x, 9))

oF(x', o)’ oF(x', o)’
2_??[_ (29 ) y1+ (29 ) F(Xlaﬂ)]

oF(x, )
:}? % '()}I_F(XI,B))
z— @
then,
. 1
d=nc(x 0)e (3.22)
where

T

Z(x0)= OFx.6) (3.23)

’ oz

-

ii. Multiple training data pairs

Now consider the problem when 3/ input-output pairs, or patterns, (x' 1) where v' = Ax); -1 u

are to be matched. In this case;we let
¢ =y~ F(x', ) (3.24)
and let the cost function

J(ﬁ):feﬂ‘ei (3.25)

Using an approach similar to the single input-output pair case, we can show that the gradient

update law is defined by

8=n) (¢ (3.26)
i-1
where
oR(x,2)[
i_ X,Z
== (3.27)

z—B

This update law will adjust the approximator parameters such that f(0) does not increase over

time:
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The cost function for multiple data pairs in (4.30) is typically moreuseful in off-line training than
the one for a single data pair since it maybe used to cause an approximator F(x,0) to
approximate the continuousfunction f(x) over DcR”. In other words, it may be possible

tochoose some 8 such that

sup ‘f(x)—F(x,G)‘<g (3.28)

Discretizedversion (programmable formula)
M . .
8(k+1) =80k + 1Y &' (be'k) (3.40)
i1

This is often referred to as a gradient update law or batchback propagation in the neural network

community.[13]
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The problem, and basic solution design

4.1. Problem definition

The objective of this work is to provide an Artificial Intelligence solution that enablesa
mobile robot to percelve its environment for a given global system to be able to perform
practical tasks autonomously in anindoor environment for example. Here an embedded

camera system primarily employed for other tasks 18 exploited in the perception problem.

{ven an input image-frame taken from the robot environment, it 1s asked to perceive
1ts location, which allows to identify (sign and value) its status of approaching or leaving this

reference position.
4.2. Basic solution Design
r contribution is based upon the following considerations:
— The reference point is chosen to be a typical printed mark on the facing plane,

— The robot 1s supposed to act (move) perpendicularly (special case) to this reference

plane, or with a non-zero angle with the perpendicular axis,
— The system (Camera - Digital Computer) is employed to:
e Acquire an instantaneous reference mark image,a circle.

¢ Identify the robot position/velocity with respect to the reference coordinates,

by means of image processing.
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4.2.1. Off-line step

The objective of this step 1s to find a localization model; we applied for this purpose the
camera calibration algorithm with a curve fitting process. With the camera calibration,
mmtrinsic and extrinsic parameters are computed, while the relationship between the image
and the robot position is defined in the fitting step, this one is tried by exponential
interpolation and an RBF based nonlinear approximator. The Hough transform is considered

In the modeling process.
4.2.1. On-line activity

Here, the position and velocity are estimated in real time. The mobile robot, mechanical
plant, 18 supposed to be relatively slow. The frame acquisition rate 1s considered to be 0.5Hz
(one mmage every 2seconds). Every sample time, the radius and center coordinates are

computed by the HT, the fitting phase estimates the actual position with respect to the

reference mark.

4.3. Identifying positions

The experience shows how to use the Hough Transform as a method for detecting objects
defining their contours in gray tone (color) images. From a given family of curves being
sought, this method produces the set of curves from the family that appear on the
image.Furthermore, this experience shows how to calibrate the camera and how to use it to

measure the distance from the recognized object (circle).

The experience is repeated for many different distances 1n order to determine how a
given feature of the seen object changes according to the distance variation. Therefore, any

distance can be predicted from the measured feature of a given object.

In curve fitting we have raw data and a function with unknown coefficients. We want
to find the best values for the coefficients such that the function matches the raw data as well

as possible,
4.3.1. Preliminary tests

Detecting lines. The HT of a pentagon
The Hough peaks are the locations of peaks in the Hough transform matrix, H.
The number of groups of peaks refers to the number of lines in the image; we have five

groups so we have five lines.
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The Hough peaks
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Figure 4.1. Hough for a pentagon
y .

20
40
60
80
100
120

20 40 60 80100120

Original image After applying Hough Transform

Figure 4.2. Lines detected by the Hough Transform

ting the Hough transform algorithm for lines, we can extract line segments in the image.
When we find the peaks in the Hough transform matrix H; we can determine theta and rho
vectors thatcontaing the row and column coordinates of the Hough transform binsto be used

in searching line segments. The Hough transform algorithm for linesreturns lines,a structure
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array whose length equals the number of merged line segmentsfound. It extracts all lines of

the polygon in the image, and the number of lines is equal to the number of peaks.

Detecting circles

A circle image is taken for a given distance; this experience is repeated for 9distance
cases.Detection of contours by The Hough Transform algorithms is shown in figd# The

experimental (distance vs radius) 1s shown in table 4

Table 4 1. Center coordinates and radius of circles detected by the Hough Transform versus

experimentally measured distance

Distance: d (cm) | Radius (pixels) | Center: (u,v) (pixels)

20 449.00 (546.19,7.01)

30 303.57 (592.85,89.04)

40 221.92 (657.58,176.24)

50 180.40 (611.18,208.75)

60 148.92 (607.11,235.48)

70 127.75 (593.78,277.24)

80 111.85 (580.45,283.19)

90 99.82 (553.33,311.949)

100 89.94 (556.14,306.63)
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d=80cm
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. d=90cm
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d=100cm

Figure 4.3. original images on theleft and their corvesponding edge detection on the right

Two main features can be deduced from the circle contour obtained, the radius and the center

coordinates. The radius of the circle decreaseswhen the distanceis increasing.

4.3.2. Camera calibration

Camera calibration is the process of estimating the parameters of the lens and the mage
sensor. These parameters are needed to measure objects captured by the camera; we first

need to take multiple images of a calibration pattern from different angles.

A typical calibration pattern is an asymmetric checkerboard, where one side contains
an even number of squares, both black and white, and the other contains an odd number of
squares. The pattern must be affixed to a flat surface, and it should be at approximately the

same distance from the camera as the objects we want to measure.

fire we calibrate the camera and estimate its parameters (intrinsic and extrinsic
parameters), we use them to compute the transformation matrix from world to image and

then apply the inverse transformation from image to world to find the experimental distance.

Finally, we obtain the mathematical model that allows finding distance (a real world

measure) from a reference image (image measure). This model is a fitting curve R = f(D).

Experimentally, the system (robot-camera-computer) moves towards the circle-
printed mark and computes the distanceto this reference by using the fitting process found

with the camera calibration procedure.
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The camera calibration experiments

As known, the camera calibration is a procedure that highly depends on the type of the used
camera. In our case, we have used a canon camera with features BwerBot A2
Kt PKI.SThe calibration of this latter is carried out on a checkerboard and an image

with a shape that 1s considered as shown by the figure 4

Sven photos of the pattern (checkerboard)a re taken for each distance, and we use
two separate Images:one containing the patter n, and the other containing the reference mark.
Furthermore, the objects and the pattern must be i the same plane and the 1mages must be

captured from exactly the same view point. A test image sample is given in fig. 4

Figure 4.4-a. image captured at &m

Figure 4.4-b. checkerboard captured at &km
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Figure 4.4-¢. checkerboard samples for the camera calibration step

The IntrinsicRrametershirix is:

24 0 13
K=0°0 29 07
¢ 0 1
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The extrinsic parameters:

Rotation matrix: Translation vector:
00 -09 -08 -8 3

R=0 %09 0.0 -042 tr=| & 8
04 08 0.9 8 &

ting these three parameters we can find the co  ordinates of any point in the real world.
4.3.3.The fitting step results

The fitting step results are shown in figdh for exponential interpolation model type; and
figd/ for a (linput,sidden neurons, butput) RBF model type found using 2

samples. The table &ummarizes the computed ra dius of the circle taken by the camera ata
real distance d,, the distance de deduced from the camera calibration and d. computed by
curve fitting method. The three curves (fitted, real and experimental) are acceptably close

each to the other.

The considered RBF neural network(linput, thidden neurons, butput)with  y = 80,
7 = 0.01, and the centers evenly spaced in the practical distance domain, is trained for 8terations

to reach the following parameter
setting:6 = [10.168 — 10.831 42953 22.382 30.999 44.325 81.901117.474457.272]

This fitter will be then inserted inside the whole system as shown 1 figd

C
F
c 6 &
[®] > e] et
= Y c — — position
e -
& 2 R
S E o — ——= velocity
= e =]
c 2 % 2
=} = S 5 — — orientation
= < = ;
g e ;
g = =
<< T 3
o) a3 ., o
22 3 :
'_
E T Y =

Other embedded use:

Feedback control,
decision making, ..

Figure 4.5. The RBF neural network inside the perception system
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Table 4.2. computed radius of the circle vs distance

Real Computed Radius | Distance found using the Distance computed by
Distance {pixels) camera, degp(cm) curve fitting method,
d; (cm) d{cm)
20 g ) B
30 & B B
40 n B i
50 8 B &
60 4 6 &
70 Jii & B
80 B B =
90 B ) B
100 1) [ 8t
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Figure 4.7, image based measured distance model

(a} Costfunction (B) RBF model




Chapter 4: Problem definition, and context of the work

With this model mmplemented, the robot has 1n real time its position while the reference

Image is acquired; the distance i1s measured with sufficient accuracy.

The velocity of an object 1s defined as the rate of change of position with time.
Gren the position of an object, we  can estimate its velocity as:

t+AL)=x(t
v(t)z% “

Where At is the time increment. This expression is called the right derivative approximation
for the velocity. When At 1s sufficiently small, we should obtain an accurate value for the

velocity.
We assume that the robot 18 moving with constant velocity.
1 IfAd = constant =0

* Ad =V, - T=>static obstacle; approaching ot going away depends on the sign of
the robot velocity.

* Ad # V.3 - T=>dynamic obstacle.
-If Ad > V,.4p, - T=> dhapproaching case.
-If Ad < V,.4p, - T=> approaching case.

2 If Ad = 0= the obstacle and the robot are moving in the same sense with the same

velocity

The sign of velocity and its rate allow to identify if the robot is approaching or going far
from the reference mark, at a given rate. Additional geometric computation is simple to

msert when dealing with a non-zero angle direction.
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Conclusion

Because of the ability of the robots to deal with a human-like thinking, high-level skills,
tasks, and scenarios, involving the intelligent computer vision tools in the decision making
schemeare promising ways to solve complex industrial problems.. A great part of research in
thisfield is interested in software development and improvement. The autonomy of a mobile
robot is highly related to how is its working environment perceived. That is why in the

mobile robots research field, the perception are of great interest.

In this project, we designed a visual perception based method of localization for a
mobile robot. In the off-line step, we find a model that describes the relationship between the
position information and an image type information. It is a hybrid process that uses the
camera calibration and the backpropagation algorithm based RBFs learning. This model will
allow the robot to identify, in real time, its instantaneous position and velocity with respect to
a reference point, by expleiting the Hough Transform. We can include many other measures
upon this basic computing like the approaching-fo-obstacle process quantification (sign and

rate).

The Hough Transform is time consuming; the given problem is solvable for low
velocities given the sufficient operating frequency of the existing hardware (computer,
camera). It will be interesting in a future work to improve the Hough computing (time
execution) or to try an other segmentation method with additional design considerations, or
to try this software using a more sophisticated hardware (professional camera, high speed

computer).

Experimental results show the applicability of the designed system under some
practical constraints, an other future work that deals with an intelligent mark extraction from
a noisy image (when the robot is far) may reduce this limitations.The designed software
allows a real time accurate position/velocity measuring in terms of dimensions of the shape

of the selected image.
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Abstract

In this work, we designed a visual perception based method of localization for a mobile
robot. In the off-line step, we find a mode/ that describes the relationship between the
position mformation and an image type information. It is a hybrid process that uses the
camera calibrvation and the backpropagation algorithm based RBFs learning. This model
will allow the robot to identify, in real time, its instantaneous position and velocity with
respect to a reference point, by exploiting the Hough Transform. The method may be applied

with acceptable efficiency for low speed robots.

Résumé

Dans ce travail, nous avons congu une méthode de localisation par perception visuelle pour
robot mobile. Hors ligne, il s’agit de trouver un modéle décrivant I’information position en
fonction d’une autre information du type image. C’est un processus parallele qui fait appel
aux techniques de calibrage de camera et apprentissage de RBFs par une version de
I’algorithme de rétropropagation. Le modele validé permettra-au robot mobile d’identifier sa
position, parapport a un point. de référence, et vitesse instantanée en temps réel par
détermination et exploitation de la Transformée de Hough. La méthode est applicable pour

des robots a faible vitesse.
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