REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université El-Hadj Lakhdar - BATNA 1

Faculté des Sciences de la Matière

Département de chimie

THÈSE

En vue de l'obtention du Diplôme de Doctorat Sciences Présenté par : MASMOUDI Rida

Thème :

Etude Théorique des interactions de quelques Hétérocycles et des cycles Aromatiques avec des cations, Des acides aminés et des clusters d'eau

Spécialité

: Chimie-Physique

Soutenu le xx/xx/ 2020

Devant le jury :

Président :	Bouzaher Yacine	Professeur	Université Batna 1
Rapporteur :	Dibi Ammar	Professeur	Université Batna 1
Examinateurs :	Abdelmalek Omar	M.C.A	Université Batna 2
	Djelloul Chawki	M.C.A	USTH Bab Ezzouar
	Madani Hakim	Professeur	Université Batna 2
	Messaoudi Abdelatif	Professeur	Université Batna 1

Dédicace :

Ce modeste travail est dédié :

- Aux âmes vivantes de nos martyrs de notre révolution d'indépendance.
- Un spécial dédicace pour l'âme vivante de notre martyr le chef éternel : Si Mohamed Larbi Ben m'hidi alias : le sage.
- *A l'âme de ma chère grande mère : Boulila Bahia fille et sœur de martyrs.*
- Aux âmes de ma mère et de mon père.
- A mes frères et ma sœur.
- A ma femme et mes filles.

<u>Remerciements :</u>

- Un remerciement spécial à mon directeur de thèse professeur *Ammar Dibi (oncle Ammar)*.
- Ainsi j'adresse mes sincères remerciements aux membres de jury qui ont acceptés d'examiner et de discuter ce modeste travail :

Pr: Bouzaher Yacine (Président).
Pr: Messaoudi Abdelatif (Examinateur).
Pr: Madani Hakim (Examinateur).
Dr: Abdelmalek Omar (Examinateur).
Dr: Djelloul Chawki (Examinateur).

Mon remerciement est adressé à :

Pr : Dif Abdessalem (Recteur université Batna1).

Pr : Belbacha Djemai (Ex Doyen de la faculté des sciences).

Pr : Laabassi Mohamed (Ex Recteur université Batna).

Pr: Benkhaled Mohamed.

Pr : Haba Hamada.

Pr : Djaballah Yacine.

Dr : Khettaf Sami.

- Ainsi j'adresse mon remerciement à mon cher frère et ami : Korra Nacer et à Soltane Abdessalem.
- Un chaleur remerciement à mon cher frère et ami : Toufik Rabia et ses deux fils : Ghani (el moudjahid) et aymen.

Je remercie toute personne qui a contribué de près ou de loin à la réussite de ce modeste travail.

Partie I : famille des S-Triazines	
<u>Chapitre 01 : Synthèse bibliographique</u>	
Tableau I.1.1. : Modes d'action des insecticides et acaricides	14
Tableau I.1.2. : Modes d'action des fongicides	14
Tableau I.1.3. : Modes d'action des herbicides	15
Tableau I.1.4. : Etat générale de la structure de Base (1.3.5 triazine)	20
Tableau I.1.5. : Propriétés physiques et chimiques de la structure de Base (1.3.5 triazine)	20
Tableau I.1.6. : Propriétés expérimentales de la structure de Base (1.3.5 triazine)	21
Tableau I.1.7. : Etat générale de la Propazine	22
Tableau I.1.8. : Propriétés physiques et chimiques de la Propazine	22
Tableau I.1.9. : Propriétés expérimentales de la Propazine	23
Tableau I.1.10. : Les propriétés physico-chimiques de la Simazine	23
Tableau I.1.11. : Propriétés expérimentales de la Simazine	24
Tableau I.1.12. : L'état général de la Simazine	24
Tableau I.1.13. : Les propriétés physico-chimiques de l'Ametryne	25
Tableau I.1.14. : Propriétés Expérimentales de l'Ametryne	25
Tableau I.1.15. : Les propriétés physico-chimiques de la Prometon	26
Tableau I.1.16. : Propriétés Expérimentales de la Prometon	27
Chapitre 03 : Etude des clusters S-Triazines-Eau	
Tableau I.3.1. : Paramètres géométriques calculés au niveau MP2/6-31G++(d,p)	41
Tableau I.3.2. : Paramètres géométriques calculés au niveau MP2/6-31G++(d.p)	41
Tableau I.3.3. : Paramètres géométriques calculés au niveau MP2/6-31G++(d.p)	42
Tableau I.3.4. : Paramètres géométriques calculés au niveau MP2/6-31G++(d.p)	43
Tableau I.3.5. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR de la	
(1.3.5 Triazine) dans la phase gazeuse	44
Tableau I.3.6. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR de la	
(1.3.5 <i>Triazine</i>) solvaté	44
Tableau I.3.7. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (1 3 5 Triazine)-H2O dans la phase gazeuse	45
Tableau I 3.8 · Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (1 3 5 Triazine).H2O état solvaté	46
Tableau 139 · Les paramètres thermodynamiaues de la formation du complexe (S-triazine-H2O)	10
calculós dans nlusiours nivoaur	47
Tableau I 3 10 · Paramètres géométriques calculés au niveau MP2/6-31G++(d n)	48
Tableau I.3.10 1 arametres geometriques calculés au niveau MP2/6-31G++(a,p)	40 49
Tableau I.3.11 1 arametres geometriques calculés au niveau MP2/6-31C++ (d.p)	50
Tableau I.3.12 1 aramètres géométriques calculés au niveau MP2/6-31C++ (d,p)	50
Tableau I.5.15 I aramètres geometriques calculés au niveau M1 $2/0-510^{++}$ (a,p)	51
Tableau I.3.14.: Furametres geometriques calculés au niveau MP2/6-31G++ (d,p)	51
Tableau I.S.15. : Faramètres geometriques calculés au niveau MP2/6-310++ (a,p)	51
Tableau 1.5.10.: Farametres geometriques calcules au niveau MP2/0-51G++ (a,p)	54 52
Tableau 1.5.17. : Parametres geometriques calcules au niveau MP2/0-516++ (a,p)	53 52
Tableau I.3.18.: Parametres geometriques calcules au niveau MP2/6-316++ (a,p)	53 54
Tableau 1.3.19. : Parametres geometriques calcules au niveau MP2/6-31G++ (a,p) Tableau 1.3.20	54 54
Tableau 1.3.20. : Parametres geometriques calcules au niveau MP2/6-31G++ (d,p) Tableau 1.3.21. : Parametres geometriques calcules au niveau MP2/6-31G++ (d,p)	54 55
Tableau 1.3.21.: Parametres geometriques calcules au niveau MP2/6-31G++ (d,p)	22
<i>Tableau 1.5.22.: Les frequences et les intensites des modes les plus importants sur le spectre FTIR de la</i>	= /
Simazine dans la phase gazeuse	50
Tableau 1.3.23. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR de	
la Simazine état solvaté	57

Tableau I.3.24. : Les fréauences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Simazine-H ₂ O) Position N 4 dans la phase gazeuse	58
Tableau I.3.25. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	20
cluster (Simazine-H ₂ O) Position N 5 dans la phase gazeuse	59
Tableau I.3.26. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	0,
cluster (Simazine- H_2O) Position N 6 dans la phase gazeuse	60
Tableau I.3.27. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	00
cluster (Simazine-H ₂ O) Position N 7 dans la phase gazeuse	61
Tableau I.3.28. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	•1
cluster (Simazine-H ₂ O) Position N 9 dans la phase gazeuse	62
Tableau I.3.29. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	02
cluster (Simazine-H ₂ O) Position N 4 état solvaté	63
Tableau I.3.30. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	05
cluster (Simazine-H ₂ O) Position N 5 état solvaté	64
Tableau I 3 31 · Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	υŦ
cluster (Simazine-H ₂ O) Position N 6 état solvaté	65
Tableau I 3 32 · Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	05
cluster (Simazine-H ₂ O) Position N 7 état solvaté	66
Tableau I 3 33 · I es fréquences et les intensités des modes les nlus importants sur le spectre FTIR du	00
cluster (Simazine-H ₂ O) Position N 9 état solvaté	67
Tableau I 3 34 · Los naramètres thermodynamiques de la formation des complexes (Simazine-H2O)	07
calculós dans plusiours pivoaux	69
Chanitre 0A · Ftude des clusters S-Triegines- alveine	00
<u>Chapure 04. Liuae aes classers 5-11 azines- giveine</u> Tableau I A 1. · Paramètres géométriques calculés au niveau MP2/6-31C++(d n)	94
Tableau 1.4.1 I arametres geometriques calcules au niveau 1912/0-510 + ((a,p)	00
Auston (1.2.5 Triazino) Choine dans la phase agrance	07
Ciusier (1.5.5 I ruzine)- Giveine uuns in phase gazeuse	87
Tableau 1.4.5. ? Les parametres inermoaynamiques de la formation du complexe (5-triazine-Giycine)	00
Tableau I 4 4 . Danamètrea cécmétriques calculés au niveau DET D21 VD aux CC DVD7	ðð 01
Tableau 1.4.4. : l'arametres geometriques calcules au niveau DF1-D5L11-aug-CC-FVD2	91
Tableau 1.4.5. : Les frequences et les intensites des modes les plus importants sur le specife F IIK de la	00
Tromeion aans la phase gazeuse	92
Tableau I.4.0. : Parameires geomeiriques calcules au niveau DFT-B5LIP-aug-CC-PVDZ	92
Tableau I.4.7. : Parameires geomeiriques calcules au niveau DFT-B5LYP-aug-CC-PVDZ	93
Tableau I.4.8. : Parametres geometriques calcules au niveau DFT-B3LYP-aug-CC-PVDZ Tableau I.4.8. : Parametres geometriques calcules au niveau DFT-B3LYP-aug-CC-PVDZ Tableau I.4.8. : Parametres geometriques calcules au niveau DFT-B3LYP-aug-CC-PVDZ	93
Tableau 1.4.9. : Parametres geometriques calcules au niveau DFT-B3LYP-aug-CC-PVDZ Tableau 1.4.9. : Parametres geometriques calcules au niveau DFT-B3LYP-aug-CC-PVDZ Tableau 1.4.9. : Parametres geometriques calcules au niveau DFT-B3LYP-aug-CC-PVDZ	94
Tableau I.4.10. : Parametres geometriques calcules au niveau DF1-B3LYP-aug-CC-PVD2 Tableau I.4.11. : La	94
Tableau I.4.11. : Les frequences et les intensites des modes les plus importants sur le spectre FTIR du	~ -
cluster (Prometon-Glycine) Position4-6 dans la phase gazeuse	95
Tableau I.4.12. : Les frequences et les intensités des modes les plus importants sur le spectre FTIR du	~ -
cluster (Prometon-Glycine) Position9-15 dans la phase gazeuse	96
Tableau I.4.13. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 10-13 dans la phase gazeuse	97
Tableau I.4.14. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 11-13 dans la phase gazeuse	97
Tableau I.4.15. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 11-15 dans la phase gazeuse	98
Tableau I.4.16. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ	99
Tableau I.4.17. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ	99
Tableau I.4.18. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ	100
Tableau I.4.19. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ	100

Tableau I.4.20. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ	101
Tableau I.4.21. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 4-6 –état Solvaté	102
Tableau I.4.22. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 9-15–état Solvaté	102
Tableau I.4.23. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 10-13 –état Solvaté	103
Tableau I.4.24. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 11-13 –état Solvaté	103
Tableau I.4.25. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Prometon-Glycine) Position 11-15 –état Solvaté	104
Tableau I.4.26. : Les paramètres thermodynamiques de la formation des complexes (Prometon-	
Glycine) calculés au niveau DFT/B3LYP-6-31G (d,p)	105
<u>Chapitre 05 : Etude des clusters S-Triazines- L-Alanine</u>	
Tableau I.5.1. : Paramètres géométriques calculés au niveau MP2/6-31G++(d,p)	106
Tableau I.5.2. : Paramètres géométriques calculés au niveau MP2/6-31G++(d,p)	106
Tableau I.5.3. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (1.3.5 Triazine)-L-Alanine dans la phase gazeuse	107
Tableau I.5.4. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (1.3.5 Triazine)-L-Alanine état solvaté	108
Tableau I.5.5. : Les paramètres thermodynamiques de la formation du complexe ((1.3.5 Triazine)- L-	
Alanine calculés dans plusieurs niveaux	109
Tableau I.5.6. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	117
Tableau I.5.7. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	117
Tableau I.5.8. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	118
Tableau I.5.9. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	118
Tableau I.5.10. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	119
Tableau I.5.11. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	119
Tableau I.5.12. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	120
Tableau I.5.13. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ	120
Tableau I.5.14. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N7-N4) –état isolé	121
Tableau I.5.15. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N4-N9) –état isolé	122
Tableau I.5.16. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N6-N7) –état isolé	123
Tableau I.5.17. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N9-N5) –état isolé	124
Tableau I.5.18. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N7-N4) –état solvaté	125
Tableau I.5.19. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N4-N9) –état solvaté	125
Tableau I.5.20. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N6-N7) –état solvaté	126
Tableau I.5.21. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (propazine –L-alanine) Position (N9-N5) –état solvaté	127
Tableau I.5.22. : Les paramètres thermodynamiques de la formation des complexes (propazine -L-	
alanine) calculés dans plusieurs niveaux	128
· •	

Chapitre 06 : Evaluation de la toxicité des s-Triazines	
Tableau I.6.1. : Valeurs de la toxicité de la structure de base (1,3,5 Triazine) pour les organismes	
aquatiques (mg / L) (ECOSAR V.2)	143
Tableau I.6.2. : Valeurs de la toxicité de la simazine et de ces clusters d'eau pour les organismes	
aquatiques (mg / L) (ECOSAR V.2)	143
Tableau I.6.3. : Valeurs de la toxicité de la propazine et de ces clusters d'eau pour les organismes	
aquatiques (mg / L) (ECOSAR V.2)	143
Tableau I.6.4. : Valeurs de la toxicité de l'Ametryne et de ces clusters d'eau pour les organismes	
aquatiques (mg / L) (ECOSAR V.2)	144
Chapitre 07 : Etude de l'interaction des S-Triazines avec des cations	
Tableau I.7.1. : Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires et	
charges partielles sur les Hétéro-atomes pour les molécules étudiées	147
Tableau I.7.2. : Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires et	
charges partielles sur les Hétéro-atomes des complexes avec Na ⁺	147
Tableau I.7.3. : Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires et	
charges partielles sur les Hétéro-atomes des complexes avec K ⁺	148
Tableau I.7.4. : Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires et	
charges partielles sur les Hétéro-atomes des complexes avec Mg ²⁺	148
Tableau I.7.5. : Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires et	
charges partielles sur les Hétéro-atomes des complexes avec Ca ²⁺	149
Partie II : familles des Phényle urée&Carbamates	
Chapitre 01 : Synthèse bibliographique	
Tableau II.1.1. : Evolution historique des classes des pesticides	156
Tableau II.1.2. : Propriétés calculée	166
Tableau II.1.3. : Propriétés calculées	167
Tableau II.1.4. : Propriétés calculées	168
Tableau II.1.5. : Propriétés calculée	169
Tableau II.1.6. : Propriétés calculées	171
Chapitre 03 : Etude des clusters Phényle urées -Eau	
Tableau II.3.1. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	184
Tableau II.3.2. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	185
Tableau II.3.3. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR de	
la Phényle urée (Cycle de base) dans la phase gazeuse	186
Tableau II.3.4. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR de	
la Phényle urée (Cycle de base) solvaté	186
Tableau II.3.5. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	188
Tableau II.3.6. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	188
Tableau II.3.7. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	189
Tableau II.3.8. : Parametres géométriques calculés au niveau MP2/6-31G++ (d,p)	189
Tableau II.3.9. : Parametres géométriques calculés au niveau MP2/6-31G++ (d,p)	190
Tableau II.3.10. : Paramétres géométriques calculés au niveau MP2/6-31G++ (d,p)	190
Tableau II.3.11. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phenyle uree -H ₂ O) Position N I dans la phase gazeuse	191
Tableau II.3.12. : Les frequences et les intensites des modes les plus importants sur le spectre FTIR du	
cluster (rnenyle uree -H ₂ U) Position U dans la phase gazeuse	192
Tableau 11.5.15. : Les frequences et les intensites des modes les plus importants sur le spectre FTIR du	102
ciusier (rnenyie uree -H ₂ U) rosition N2 aans la phase gazeuse	193
1 adieau 11.5.14. : Les jrequences et les intensites aes modes les plus importants sur le spectre F IIR du	10.4
ciusier (r nenyle uree -f120) rosulon ly letat solvate	194

Tableau II.3.15. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée -H ₂ O) Position O état solvaté	195
Tableau II.3.16. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée -H ₂ O) Position N2 état solvaté	196
Tableau II.3.17. : Les paramètres thermodynamiques de la formation des complexes (Phényle urée -	
H ₂ O) calculés dans plusieurs niveaux	197
Tableau II.3.18. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	199
Tableau II.3.19. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	200
Tableau II.3.20. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	200
Tableau II.3.21. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	201
Tableau II.3.22. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	201
Tableau II.3.23. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	202
Tableau II.3.24. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	202
Tableau II.3.25. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	203
Tableau II.3.26. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position N1 dans la phase gazeuse	204
Tableau II.3.27. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position O dans la phase gazeuse	205
Tableau II.3.28. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position N2 dans la phase gazeuse	206
Tableau II.3.29. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position O2 dans la phase gazeuse	207
Tableau II.3.30. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position N1 état solvaté	209
Tableau II.3.31. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position O1 état solvaté	209
Tableau II.3.32. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position N2 état solvaté	210
Tableau II.3.33. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Linuron-H ₂ O) Position O2 état solvaté	211
Tableau II.3.34. : Les paramètres thermodynamiaues de la formation des complexes (Linuron- H_2O)	
calculés dans plusieurs niveaux	212
Chanitre 04 · Ftude des clusters Phényle urées -Glycine	
Tahleau II 4 1 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d n)	214
Tableau II 4.2 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	215
Tableau II 4 3 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	215
Tableau II 4 4 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	215
Tableau II 4.5 · Paramètres géométriques calculés au niveau MP2/6-31G++ (u,p)	216
Tableau II.4.5. : 1 arametres geometriques calculés au niveau MP2/0-510++ (a,p)	216
Tableau II 4.7 : Paramètres géométriques calculés au niveau MP2/6-31 G_{++} (d,p)	216
Tableau II.4.7 1 arametres geometriques calculés au niveau MP2/0-31 O^{++} (a,p)	217
Tableau II.4.0. : Les fréquences et les intensités des modes les plus importants sur le spectre ETIP du	
Iudieau 11.4.7 Les frequences et les intensités des modes les plus importants sur le specifie FIIK du	218
Tablagy II 4 10 · Los fráguences et les intensités des modes les plus importants sur le spectre ETIP du	210
Iudieau II.4.10 Les frequences et les intensues des modes les plus importants sur le specifie FIIK du	219
tusier (1 nenyie uree - Olycine) Complexe 2 :A0 auns la phase gazeuse	41)
alustar (Phónyla urác - Chyaina) Complexe 3 × 10 dans la phase agresse	220
cusser (1 nenyie uree - Olycine) Complexe 5 A9 auns la phase gazeuse	<i>44</i> 0
<i>Autor (De finale unio) Complete A A A dans le plus importants sur le spectre FIIK au aluster (De finale unio) Complete A A A dans le plus ances anno 1</i>	221
clusier (rnenyle uree - Glycine) Complexe 4 :A9 aans la phase gazeuse	441

Tableau II.4.13. : Les fréauences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - Glycine) Complexe 1 :A8 état solvaté	222
Tableau II.4.14. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - Glycine) Complexe 2 :A8 état solvaté	223
Tableau II.4.15. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - Glycine) Complexe 3 : A9 état solvaté	224
Tableau II.4.16. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - Glycine) Complexe 4 :A9 état solvaté	225
Tableau II.4.17. : Les paramètres thermodynamiaues de la formation des complexes (Phényle urée -	
Glycine) calculés dans plusieurs niveaux	226
Tahleau II 4 18 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d n)	229
Tableau II 4 19 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	229
Tableau II 4 20 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	22)
Tableau II 4 21 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	230
Tableau II 4.22 · Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p)	230
Tableau II.4.22 I arametres geometriques calculés au niveau MP2/6-310++ (a,p)	201
Tableau II.4.25 1 arametres geometriques calculés au niveau MP2/6.31C++ (d,p)	231
Tableau II.4.24 1 arametres geometriques calculés au niveau MP2/6-310++ (d,p)	232
Tableau II.4.25 I arameires geometriques calcules au niveau MI 2/0-510++ (a,p)	232
Indiena II.4.20. : Les frequences et les intensues des modes les plus importants sur le specife FIIK du abistan (Monumon Chaine) Complexe 1 : A9 dans la phase agranse	1 11
Tableau II 4 27 . Les fréquences et les intensités des modes les plus importants sur le spectre ETIP du	233
Tableau 11.4.27. : Les frequences et les intensues des modes les plus importants sur le specire FTIK du abistan (Monumon, Chiaina) Compleus 2 x 10 dans la phase agragues	224
cuusier (Monuron –Giycine) Complexe 2 :A10 aans in phase gazeuse	234
Tableau 11.4.28. : Les frequences et les intensues des modes les plus importants sur le specire FTIK du	225
cusier (Monuron – Giycine) Complexe 5 :A9 aans in phase guzeuse	235
Tableau 11.4.29. : Les jrequences et les intensues des modes les plus importants sur le specire FTIK au	226
ciusier (Monuron –Giycine) Complexe 4 :A9 aans ia pnase gazeuse	236
Tableau 11.4.30. : Les frequences et les intensités des modes les plus importants sur le spectre FTIR au	227
ciusier (Monuron – Giycine) Complexe I :A8 elai solvale	231
Tableau 11.4.51. : Les jrequences et les intensues des modes les plus importants sur le specire F11K du	A 20
ciuster (Monuron –Giycine) Complexe 2 :A10 etat solvate	238
Tableau II.4.32. : Les frequences et les intensités des modes les plus importants sur le spectre FIIR du	• • • •
cluster (Monuron –Glycine) Complexe 3 :A9 etat solvate	239
Tableau II.4.33. : Les frequences et les intensités des modes les plus importants sur le spectre FIIR du	• • •
cluster (Monuron –Glycine) Complexe 4 :A9 etat solvate	240
Tableau II.4.34. : Les parametres thermodynamiques de la formation des complexes (Monuron –	
Glycine) calcules dans plusieurs niveaux	241
<u>Chapitre 05 : Etude des clusters Phényle urées&carbamates –L-Alanine</u>	
Tableau II.5.1. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	243
Tableau II.5.2. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	244
Tableau II.5.3. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	244
Tableau II.5.4. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	245
Tableau II.5.5. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	245
Tableau II.5.6. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	246
Tableau II.5.7. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	246
Tableau II.5.8. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	247
Tableau II.5.9. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 1 :A8 dans la phase gazeuse	248
Tableau II.5.10. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 2 :A8 dans la phase gazeuse	248

Tableau II.5.11. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 3 :A9 dans la phase gazeuse	249
Tableau II.5.12. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 4 :A9 dans la phase gazeuse	250
Tableau II.5.13. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 1 :A8 état solvaté	251
Tableau II.5.14. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 2 :A8 état solvaté	252
Tableau II.5.15. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 3 :A9 état solvaté	253
Tableau II.5.16. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Phényle urée - L-Alanine) Complexe 4 : A9 état solvaté	254
Tableau II.5.17. : Les paramètres thermodynamiques de la formation des complexes (Phényle urée - L-	
Alanine) calculés dans plusieurs niveaux	255
Tableau II.5.18. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	258
Tableau II.5.19. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	258
Tableau II.5.20. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	259
Tableau II.5.21. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	259
Tableau II.5.22. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	260
Tableau II.5.23. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ	260
Tableau II.5.24. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Sevin - L-Alanine) Complexe 1 :A8 dans la phase gazeuse	261
Tableau II.5.25. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Sevin - I-Alanine) Complexe 2 : A9 dans la phase gazeuse	262
Tableau II 5 26 · Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Sevin - I-Alanine) Complexe 3 · A 10 dans la phase gazeuse	263
Tahleau II 5 27 · Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du	
cluster (Sevin - I-Alanine) Complexe 1 · A8 état solvaté	264
Tahleau II 5 28 · Les fréquences et les intensités des modes les nlus importants sur le spectre FTIR du	
cluster (Sevin - I-Alanine) Complexe 2 · A9 état solvaté	265
Tableau II 5 29 · I es fréquences et les intensités des modes les plus importants sur le spectre ETIR du	
cluster (Sevin - I-Alanine) Complexe 3 · A 10 état solvaté	266
Tableau II 5 30 · Les naramètres thermodynamiques de la formation des complexes (Sevin - L-	
Alanino) calculós dans nlusiours nivoaur	267
Chanitre 06 · Evaluation de la Toricité des Phényle-urées et des carbamates & Carbamates	207
Tableau II 6.1 · Valours de la toxicité de la structure de base et ses clusters d'eau pour les organismes	
aquatianos (ma / I) (FCOSAR V 2)	272
Tableau II 6.2 · Valours de la tovicité du Monuron et de ces clusters d'eau nour les organismes	
aquatiques (mg / I) (ECOSAR V 2)	273
Tableau II 6.3 · Valoure de la torioité de Linuren et de cos clusters d'aqu pour les organismes	215
aduationes (mg / I) (ECOSAP V 2)	273
Tableau II 6 1 . Valoure de la tonicité du Souir et de cas eluctore d'eau nour les progrismes agustiques	215
<i>Tableau 11.0.4. : V aleurs ae la toxicue au Sevin et ae ces clusiers a eau pour les organismes aqualques</i> (mg / L) (ECOSAD V 2)	274
(mg / L) (ECUSAR V.2)	2/4
Tableau 11.0.5. : Valeurs de la toxicue au Daygon et de ces clusiers à eau pour les organismes	275
aquanques (mg / L) (ECOSAR V.2)	215
Chapure 07: Elude de la reactivité des phényle-Orees (cas au Monuron)	270
Table 1. Calculated and experimental structural parameters of Monuron	417 201
1 adie 2. values of the charges aeterminea by DF1 calculations Table 2. Calculated and engravity and the angle of the calculations	201 202
<i>Table 5. Calculated and experimental parameters of neutral and protonated Monuron</i>	203 207
Table 4. Calculated energies at the B3LYP/6-311++G (d,p) level of theory in u.a	286

Table 5. Proton affinity of neutral and protonated Monuron for 6-311G++ (d, p)	287
Table 6. Values of the charges determined by DFT calculations	287
Table 7. Values of the dipole moments	288
Table 8. Energies of frontier orbitals in u.a	288
Table 9. Global reactivity descriptors of Monuron at the B3LYP/6-311G++(d,p) level of theory in the	
gas phase and aqueous phase	292
Table 10. Local reactivity descriptors of Monuron at the B3LYP/6-311G++ (d,p) level of theory in the	
gas phase	293
Table 11. Local reactivity descriptors of Monuron at the B3LYP/6-311G++(d,p) level of theory in the	
aqueous phase	294
aqueous phase	294

Partie I : famille des S-Triazines	
Chapitre 01 : Synthèse bibliographique	
Figure I.1.1. : Les différentes familles des pesticides	12
Figure I.1.2. : Devenir des pesticides dans l'environnement	15
Figure I.1.3. : Épandage aérien de pesticides	16
Figure I.1.4. : Structures et nomenclatures des s-triazines étudiées	17
Figure I.1.5. : Mode d'action de l'atrazine au sein des plantes	18
Figure I.1.6. : Structure de Base (1.3.5 triazine)	20
Figure I.1.7. : Structure de la Propazi	21
Figure I.1.8. : Structure de la Simazine	23
Figure I.1.9. : Structure de l'Ametryne	25
Figure I.1.10. : Structure de la Prometon	26
Chapitre 03 : Etude des clusters S-Triazines-Eau	
Figure I.3.1. : Structure chimique de la (1.3.5 Triazine)	41
Figure I.3.2 : Structure du cluster (1.3.5 Triazine)-H2O	42
Figure I.3.3. : Spectre FTIR de la (1.3.5 Triazine) dans la phase gazeuse	43
Figure I.3.4. : Spectre FTIR de la (1.3.5 Triazine) solvaté	44
Figure 1.3.5. : Spectre FTIR du cluster (1.3.5 Triazine)-H2O dans la phase gazeuse	45
Figure 13.6 · Spectre FTIR du cluster (13.5 Triazine)-H2O état solvaté	т 5 Лб
Figure 13.7 · Structure chimiane de la Simazine	40 /18
Figure 13.8 · Différentes structures nossibles des Clusters Simazine-Ho	40
Figure 1.3.0. · Defferences structures possibles des Cluster's Stinuzine-1120	49
Figure 1.3.9. · Spectre FTIR de la Simuzine dans la phase gazeuse	30 57
Figure 1.3.10. Spectre FTIR du Cluster (Simazine-H-O) Position N A dans la phase agreuse	5/ 50
Figure 1.3.11. Spectre FTIR du Cluster (Simazine-H.O) Position N 5 dans la phase gazeuse	20 50
Figure 1.3.12. Spectre FTIR du Cluster (Simazine-H2O) Position N 6 dans la phase gazeuse	59 60
Figure 1.3.15 Spectre FTIR du Cluster (Simazine H.O) Position N 7 dans la phase gazeuse	00
Figure 1.3.14 Spectre FTIR du Cluster (Simazine H.O) Position N 0 dans la phase gazeuse	01
Figure 1.3.15 Spectre FTIR du Cluster (Simazine H O) Position N 4 átat solvatá	62 (2
Figure 1.5.10. : Specifie F TIK au Cluster (Simuzine H_2O) Fostion N 4 etai solvate	63
Figure 1.3.17. : Specire F TIR au Cluster (Simazine-H ₂ O) Position N 5 etai solvate	64
Figure 1.3.18. : Spectre F IIR au Cluster (Simazine-H ₂ U) Position N 6 etat solvate	65
Figure 1.3.19. : Spectre F IIR au Cluster (Simazine- H_2O) Position N / etat solvate	66
Figure 1.3.20. : Spectre F TIR du Cluster (Simazine-H ₂ O) Position N 9 etat solvate	67
<u>Chapitre 04 : Etude des clusters S-Triazines- glycine</u>	
Figure 1.4.1. : Structure du cluster (1.3.5 Triazine)-Glycine	86
Figure 1.4.2. : Spectre FTIR du cluster (1.3.5 Triazine)-Glycine dans la phase gazeuse	87
Figure 1.4.3. : Formes des orbitales frontières	88
Figure I.4.4. : Structure chimique de la Prometon	90
Figure I.4.5. : Spectre FTIR de la Prometon dans la phase gazeuse	91
Figure I.4.6. : Différentes structures possibles des Clusters Prometon-Glycine	92
Figure I.4.7. : Spectre FTIR du Cluster (Prometon-Glycine) Position4-6 dans la phase gazeuse	95
Figure I.4.8. : Spectre FTIR du Cluster (Prometon-Glycine) Position 9-15 dans la phase gazeuse	96
Figure I.4.9. : Spectre FTIR du Cluster (Prometon-Glycine) Position 10-13 dans la phase gazeuse	96
Figure I.4.10. : Spectre FTIR du Cluster (Prometon-Glycine) Position 11-13 dans la phase gazeuse	97
Figure I.4.11. : Spectre FTIR du Cluster (Prometon-Glycine) Position 11-15 dans la phase gazeuse	98
Figure I.4.12. : Spectre FTIR du Cluster (Prometon-Glycine) Position 4-6 –état Solvaté	101
Figure I.4.13. : Spectre FTIR du Cluster (Prometon-Glycine) Position 9-15 –état Solvaté	102
Figure I.4.14. : Spectre FTIR du Cluster (Prometon-Glycine) Position 10-13 –état Solvaté	103
Figure I.4.15. : Spectre FTIR du Cluster (Prometon-Glycine) Position 11-15-état Solvaté	104

Chapitre 05 : Etude des clusters S-Triazines- L-Alanine Figure I.5.1. : Structure du cluster (1.3.5 Triazine)-L-Alanine 106 Figure I.5.2. : Spectre FTIR du cluster (1.3.5 Triazine)-L-Alanine dans la phase gazeuse 107 Figure I.5.4. : Différentes structures possibles des Clusters (propazine –L-alanine) 116 Figure I.5.5. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N7-N4) –état isolé 121 Figure I.5.6. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N4-N9) –état isolé 122 Figure I.5.7. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N6-N7) –état isolé 123 Figure I.5.8. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N9-N5) –état isolé 123 Figure I.5.9. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N7-N4) –état solvaté 124 Figure I.5.10. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N4-N9) –état solvaté 130 Figure I.5.11. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N6-N7) –état solvaté 131 Figure I.5.12. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N9-N5) –état solvaté 132 Chapitre 07 : Etude de l'interaction des S-Triazines avec des cations Figure I.7.1. : Structures des matrices moléculaires étudiées 146 Partie II : familles des Phényle urée&Carbamates Chapitre 01 : Synthèse bibliographique Figure II.1.1. : Devenir des pesticides dans l'environnement 160 Figure II.1.4. : Structures, noms et masses moléculaires des carbamates étudiées 165 Figure II.1.6. : Structure du Monuron 166 Chapitre 03 : Etude des clusters Phényle urées -Eau Figure II.3.2. : Spectre FTIR de la Phényle urée (Cycle de base) dans la phase gazeuse 185 Figure II.3.4. : Structure du cluster Phényle urée (Cycle de base) -H₂O 187 Figure II.3.5. : Spectre FTIR du Cluster (Phényle urée $-H_2O$) Position N 1 dans la phase gazeuse 191 Figure II.3.6. : Spectre FTIR du Cluster (Phényle urée $-H_2O$) Position O dans la phase gazeuse 192 Figure II.3.7. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position N2 dans la phase gazeuse 193 Figure II.3.8. : Spectre FTIR du Cluster (Phényle urée $-H_2O$) Position N1 état solvaté 194 Figure II.3.9. : Spectre FTIR du Cluster (Phényle urée $-H_2O$) Position O état solvaté 195 Figure II.3.10. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position N2 état solvaté 196 Figure II.3.11. : Différentes structures possibles des Clusters (Linuron-H₂O) 199 Figure II.3.12. : Spectre FTIR du Cluster (Linuron-H₂O) Position N1 dans la phase gazeuse 203 Figure II.3.13. : Spectre FTIR du Cluster (Linuron- H_2O) Position O dans la phase gazeuse 204 Figure II.3.14. : Spectre FTIR du Cluster (Linuron-H₂O) Position N2 dans la phase gazeuse 205 Figure II.3.15. : Spectre FTIR du Cluster (Linuron-H₂O) Position O2 dans la phase gazeuse 206 Figure II.3.16. : Spectre FTIR du Cluster (Linuron-H₂O) Position N1 état solvaté 207 Figure II.3.17. : Spectre FTIR du Cluster (Linuron-H₂O) Position O1 état solvaté 208 Figure II.3.18. : Spectre FTIR du Cluster (Linuron-H₂O) Position N2 état solvaté 209 Figure II.3.19. : Spectre FTIR du Cluster (Linuron-H₂O) Position O2 état solvaté 210 Chapitre 04 : Etude des clusters Phényle urées -Glycine Figure II.4.1. : Structures des clusters (Phényle urée –Glycine) 214 Figure II.4.2. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 1 :A8 dans la phase gazeuse 217 Figure II.4.3. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 2 :A8 dans la phase gazeuse 218

Liste des figures

Figure II.4.4. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 3 :A9 dans la phase gazeuse	219
Figure II.4.5. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 4 : A9 dans la phase gazeuse	220
Figure II.4.6. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 1 :A8 état solvaté	221
Figure II.4.7. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 2 :A8 état solvaté	222
Figure II.4.8. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 3 : A9 état solvaté	223
Figure II.4.9. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 4 : A9 état solvaté	224
Figure II.4.10. : Différentes structures possibles des Clusters (Monuron-Glycine)	224
Figure II.4.11. : Snectre FTIR du Cluster (Monuron –Glycine) Complexe 1 :A8 dans la phase gazeuse	220
Figure II.4.12. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 2 :A10 dans la phase gazeuse	233
Figure II 4 13 Spectre FTIR du Cluster (Monuron –Glycine) Complexe 3 ·A9 dans la phase gazeuse	237
Figure II 4 14 : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 4 : A9 dans la phase gazeuse	235
Figure II 4 15 · Spectre FTIR du Cluster (Monuron –Glycine) Complexe 4 :19 duits du phase guçeuse	230
Figure II 4 16 · Spectre FTIR du Cluster (Monuron –Glycine) Complexe 2 · A 10 état solvaté	231
Figure II 4 17 : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 2 :A10 clui solvaté	230
Figure II.4.17. : Spectre FTIR du Cluster (Monuron Chycine) Complexe 5 :A) etai solvaté	239
Chapitro 05 : Etudo dos alustors Dhónylo urács & carbamatos I Alanino	240
<u>Chapure US : Elude des clusters l'henvie drees&carbamales –L-Alanine</u>	242
Figure II.5.1. Survival sets the set of the	243
Figure 11.5.2. : Spectre F11K au Cluster (Pnenyle uree – L-Alanine) Complexe 1 :A8 dans la phase gazeuse	247
Figure 11.5.5. : Spectre F11R du Cluster (Phenyle uree – L-Alanine) Complexe 2 :A8 dans la phase gazeuse	248
Figure 11.5.4. : Spectre F11R du Cluster (Phenyle uree – L-Alanine) Complexe 3 :A9 dans la phase gazeuse	249
Figure 11.5.5. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 4 :A9 dans la phase gazeuse	250
Figure 11.5.6. : Spectre F IIR du Cluster (Phenyle uree – L-Alanine) Complexe 1 :A8 etat solvate	251
Figure 11.5.7. : Spectre F TIR du Cluster (Phenyle uree – L-Alanine) Complexe 2 :A8 etat solvate	252
Figure 11.5.8. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 3 :A9 état solvaté	253
Figure 11.5.9. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 4 :A9 état solvaté	254
Figure II.5.10. : Différentes structures possibles des Clusters (Sevin- L-Alanine)	257
Figure II.5.11. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 1 :A8 dans la phase gazeuse	261
Figure II.5.12. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 2 : A9 dans la phase gazeuse	262
Figure II.5.13. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 3 :A10 dans la phase gazeuse	263
Figure II.5.14. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 1 :A8 état solvaté	264
Figure II.5.15. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 2 : A9 état solvaté	265
Figure II.5.16. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 3 :A10 état solvaté	266
Chapitre 06 : Evaluation de la Toxicité des Phényle-urées et des carbamates & Carbamates	
Figure II.6.1. : Structure de base (Phényle-urée)	272
Figure II.6.2. : Structure du Monuron	272
Figure II.6.3. : Structure de Linuron	273
Figure II.6.4. : Structure du Sevin	274
Figure II.6.5. : Structure du Baygon	274
Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)	
Fig. 1. The optimized Structure of Monuron 3-(4-chlorophenyl)-1,1-dimethylurea	279
Fig. 2. Structure of Monuron and active sites of protonation	283
Fig. 3. Schematic representation of the frontier orbitals for Monuron	289
Fig. 4. Schematic representation of the frontier orbitals for Protonated Monuron	290
Fig. 5. Fukui functions /aqueous phase	298
Fig. 6. Fukui functions /Gas phase	298
Fig. 7. IR spectra of the neutral and protonated isomers of Monuron in gaseous and aqueous phases	299

Liste des abréviations

DDT	Dichlorodiphenyltrichloroethane	
MCPA	Acide 2-méthyl-4-chlorophénoxyacétique	
MA	matières actives	
SA	substances actives	
PSII	photo-système II	
D1	plastoquinone B	
IUPAC	International Union of Pure and Applied Chemistry	
CAS	Chemical Abstracts Service	
InChI	Identifiant chimique international	
TN	l'énergie cinétique des noyaux	
Te	l'énergie cinétique des électrons	
VNN	répulsion électrostatique internucléaire	
Vee	répulsion électrostatique inter électronique	
VNe	l'attraction des électrons vers les noyaux	
DFT	La théorie fonctionnelle de la densité	
<i>MP2</i>	Approche perturbative Mol1er-Plesset	
HF	Hartree-Fock.	
CASSCF	La Méthode de l'Espace Actif Complet	
СРСМ	Modèle de calcul de conducteur polarisable	
ZPE	Energie point-Zéro	
СР	Correction de contrepoids	
BSSE	erreur de superposition d'ensemble de base	
QSAR	Quantitative Structure Activity Relationship	
NOEC	No observed effect concentration	
HOMO:	Highest Occupied Molecular Orbital	
LUMO:	Lowest Unoccupied Molecular Orbital	
SCF:	Self ConsistantField	
B3LYP	Becke 3-Parameter Lee-Yang-Parr	
FTIR	infrarouge à transformée de Fourier	

Introduction Générale	01
Introduction	06
<u>Chapitre 01 : Synthèse bibliographique</u>	vv
1)- Généralités sur les herbicides étudiés	10
1. 1)- Les pesticides	10
2)- Présence des pesticides dans l'environnement	10
3)- Principales familles de pesticides utilisées	11
3.1)- Les fongicides	11
3.1.1)- Les fongicides minéraux	11
3.1.2)- Les fongicides organiques	11
3.2)- Les insecticides	11
3.3)- Les herbicides	12
4)- Modes d'action des pesticides	12
5)- Impacts environnementaux des pesticides	15
6)- Les familles des pesticides étudiés	16
6.1)- Les S-Triazines	16
6.2)- Mode d'action (Exemple de l'atrazine)	17
63)- Les S-Triazines et les dommages cellulaires	18
6 4)- Les pronriétés des structures étudiées	20
6 4 1)- La structure de Base (1 3 5 triazine)	20
642). La propazine	20 21
643)- I a simazina	21 22
644). A motryno	25 25
645)- PROMETON	25 26
	20
Rótóroncos	70
Références	28
Références	28
Références	28 30
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2 1)- La théorie fonctionnelle de la densité	28 30 31 31
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DET	28 30 31 31 21
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2 1)- Théorèmes de Hohenherg et Kohn	28 30 31 31 31 31
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1)- Premier théorème	28 30 31 31 31 31 31
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2 .1)- Théorèmes de Hohenberg et Kohn 2.2 .1.1)- Premier théorème 2.2 .1.2)- Dauxième théorème	28 30 31 31 31 31 31 31 22
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2 .1)- Théorèmes de Hohenberg et Kohn 2.2 .1.1)- Premier théorème 2.2 .1.2)- Deuxième théorème 2.2 .1.2)- Approche perturbative Moller-Plesset	28 30 31 31 31 31 31 31 32 22
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2)- Approche perturbative Moller-Plesset 2.3)- La Méthode da l'Espace Actif Complet (CASSCE)	28 30 31 31 31 31 31 32 33 22
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4)	28 30 31 31 31 31 31 31 32 33 33 24
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4)- Fonctions de base	28 30 31 31 31 31 31 31 32 33 33 34
References <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1)- Ensembles de base minimaux 2.4.1)- Ensembles de base de valence	28 30 31 31 31 31 31 31 32 33 33 34 35
References Chapitre 02 : Les méthodes théoriques 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.2.1.2)- Deuxième théorème 2.2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1)- Ensembles de base minimaux 2.4.2)- Ensembles de base de valence	28 30 31 31 31 31 31 32 33 34 35 35
Références Chapitre 02 : Les méthodes théoriques 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.1.2)- Deuxième théorème 2.2.1.2)- Approche perturbative Moller-Plesset 2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4)- Fonctions de base 2.4.1)- Ensembles de base de valence 2.4.2)- Ensembles de base de valence 2.4.3)- Base polarisée	28 30 31 31 31 31 31 31 32 33 34 35 36
References <u>Chapitre 02 : Les méthodes théoriques</u> 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.2)- Approche perturbative Moller-Plesset 2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1)- Ensembles de base 2.4.1)- Ensembles de base minimaux 2.4.2)- Ensembles de base de valence 2.4.3)- Base polarisée 2.4.4)- Fonctions diffusées	28 30 31 31 31 31 31 32 33 34 35 36 36 36
References Chapitre 02 : Les méthodes théoriques 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.1.2)- Deuxième théorème 2.2.1.2)- Approche perturbative Moller-Plesset 2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1)- Ensembles de base minimaux 2.4.2)- Ensembles de base de valence 2.4.3)- Base polarisée 2.4.4)- Fonctions diffusées 3)- Les modèles de solvatations 2.4.3)- Madèles de solvatations	28 30 31 31 31 31 31 31 32 33 34 35 36 36 36 36
Rejerences Chapitre 02 : Les méthodes théoriques 1) - Équation de Schrödinger 2) - Les méthodes utilisées 2.1) - La théorie fonctionnelle de la densité 2.2) - Les différentes approximations de la DFT 2.2) - Les différentes approximations de la DFT 2.2.1) - Théorèmes de Hohenberg et Kohn 2.2.1.1) - Premier théorème 2.2.1.2) - Deuxième théorème 2.2.1.2) - Deuxième théorème 2.2.3) - La Méthode de l'Espace Actif Complet (CASSCF) 2.3) - La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1) - Ensembles de base 2.4.1) - Ensembles de base minimaux 2.4.2) - Ensembles de base de valence 2.4.3) - Base polarisée 2.4.4) - Fonctions diffusées 3) - Les modèles de solvatations 3.1) - Modèle de calcul de conducteur polarisable CPCM	28 30 31 31 31 31 31 31 32 33 34 35 36 36 36 36 36 36 36
Références <u>Chapitre 02 : Les méthodes théoriques</u> 1) - Équation de Schrödinger 2) - Les méthodes utilisées 2.1) - La théorie fonctionnelle de la densité 2.2) - Les différentes approximations de la DFT 2.2.1) - Théorèmes de Hohenberg et Kohn 2.2.1.1) - Premier théorème 2.2.1.2) - Deuxième théorème 2.2.1.2) - Deuxième théorème 2.2.3) - La Méthode de l'Espace Actif Complet (CASSCF) 2.3) - La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1) - Ensembles de base 2.4.1) - Ensembles de base minimaux 2.4.2) - Ensembles de base de valence 2.4.3) - Base polarisée 2.4.4) - Fonctions diffusées 3) - Les modèles de solvatations 3.1) - Modèle de calcul de conducteur polarisable CPCM 41) Lesiziel Caussing	28 30 31 31 31 31 31 31 31 32 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37
References Chapitre 02 : Les méthodes théoriques 1) - Équation de Schrödinger 2) - Les méthodes utilisées 2) - Les méthodes utilisées 2.1) - La théorie fonctionnelle de la densité 2.2) - Les différentes approximations de la DFT 2.2.1) - Théorèmes de Hohenberg et Kohn 2.2.1) - Théorèmes de Hohenberg et Kohn 2.2.1.1) - Premier théorème 2.2.1.2) - Deuxième théorème 2.2.2) - Approche perturbative Moller-Plesset 2.3) - La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1) - Ensembles de base 2.4.1) - Ensembles de base minimaux 2.4.2) - Ensembles de base de valence 2.4.3) - Base polarisée 2.4.4) - Fonctions diffusées 3) - Les modèles de solvatations 3.1) - Modèle de calcul de conducteur polarisable CPCM 4.1) - Logiciel Gaussian 4.1) - Logiciel Gaussian	28 30 31 32 33 34 35 36 36 36 36 36 36 37 37 37 37 37 36 37 37 36 37
References Chapitre 02 : Les méthodes théoriques 1) - Équation de Schrödinger 2) - Les méthodes utilisées 2) - Les méthodes utilisées 2.1) - La théorie fonctionnelle de la densité 2.2) - Les différentes approximations de la DFT 2.2.1) - Théorèmes de Hohenberg et Kohn 2.2.1.1) - Premier théorème 2.2.1.1) - Premier théorème 2.2.1.2) - Deuxième théorème 2.2.2. Approche perturbative Moller-Plesset 2.3) - La Méthode de l'Espace Actif Complet (CASSCF) 2.4) - Fonctions de base 2.4.1) - Ensembles de base minimaux 2.4.2) - Ensembles de base de valence 2.4.3) - Base polarisée 2.4.4) - Fonctions diffusées 3) - Les modèles de solvatations 3.1) - Modèle de calcul de conducteur polarisable CPCM 4) - Les Logiciels utilisés 4.1) - Logiciel Gaussian 4.2) - ECOSAR Détérmener	28 30 31 32 33 34 35 36 36 36 36 36 36 37 38 40 37 36 37 38 37 36<
Réferences Chapitre 02 : Les méthodes théoriques 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.1.2)- Deuxième théorème 2.2.2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4)- Fonctions de base 2.4.1)- Ensembles de base minimaux 2.4.2)- Ensembles de base de valence 2.4.3)- Base polarisée 3)- Les modèles de solvatations 3)- Les modèles de solvatations 3.1)- Modèle de calcul de conducteur polarisable CPCM 4.1)- Logiciel Gaussian 4.2)- ECOSAR Références Chariere 02 - Etudo des dusters S Triaginge Equ	28 30 31 32 33 34 35 36 36 36 36 36 36 37 38 40 31 32 33 34 35 36
Réferences Chapitre 02 : Les méthodes théoriques 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1)- Deuxième théorème 2.2.1.2)- Deuxième théorème 2.2.2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.3)- La Méthode de l'Espace Actif Complet (CASSCF) 2.4.1)- Ensembles de base 2.4.1)- Ensembles de base minimaux 2.4.2)- Ensembles de base de valence 2.4.3)- Base polarisée 2.4.4)- Fonctions diffusées 3)- Les modèles de solvatations 3.1)- Modèle de calcul de conducteur polarisable CPCM 4.1)- Logiciel Gaussian 4.2)- ECOSAR Références Chapitre 03 : Etude des clusters S-Triazines-Eau L1). Etude Introductrine de la 1.2.3 Triazines (Cruele de herce)	28 30 31 32 33 34 35 36 36 36 36 36 36 36 36 36 36 37 38 40 41 37
Réferences Chapitre 02 : Les méthodes théoriques 1)- Équation de Schrödinger 2)- Les méthodes utilisées 2.1)- La théorie fonctionnelle de la densité 2.2)- Les différentes approximations de la DFT 2.2.1)- Théorèmes de Hohenberg et Kohn 2.2.1.1)- Premier théorème 2.2.1.2)- Deuxième théorème 2.2.1.2)- Deuxième théorème 2.2.1.2)- Deuxième théorème 2.2.3.1.2 Approche perturbative Moller-Plesset 2.3.1.4 Méthode de l'Espace Actif Complet (CASSCF) 2.4.1)- Ensembles de base 2.4.1)- Ensembles de base minimaux 2.4.2)- Ensembles de base de valence 2.4.3)- Base polarisée 2.4.4)- Fonctions diffusées 3)- Les modèles de solvatations 3.1)- Modèle de calcul de conducteur polarisable CPCM 4.1)- Logiciels utilisés 4.1)- Logiciels utilisés 4.1)- Logiciel Gaussian 4.2)- ECOSAR Références Chapitre 03 : Etude des clusters S-Triazines-Eau I.1)- Etude Introductrice de la 1,2,3 Triazine (Cycle de base) 2)- Cosmertere (Croud de ker H-O)	28 30 31 32 33 34 35 36 36 36 36 36 36 37 38 40 41 41 41 41

Sommaire

3)- Analyse vibrationnelle des structures (courbes FTIR)	43
3.1)- Cas de la (1.3.5 Triazine)	43
3.2)- Cas du cluster (1.3.5 Triazine)- H_2O	45
4)- Etude thermodynamique de la formation du cluster (1.3.5 Triazine)- H_2O	47
II)- Cas de la Simazine	48
2)- Clusters (Simazine-H ₂ O)	49
2.1) Etude structurelle des clusters (Simazine-H ₂ O)	50
2.1.1) Etat Isolé	50
2.1.2) Etat solvaté	53
3)- Analyse vibrationnelle des structures (courbes FTIR) au niveau MP2/6-31G++(d,p)	56
3.1)- Cas de la simazine	56
3.2)- Cas des clusters (Simazine-H ₂ O)	58
4)- Etude thermodynamique de la formation des clusters (Simazine- H_2O)	68
5)- Analyse des orbitales frontières des clusters étudiées	70
III)- Les orbitales frontières des structures étudiées	71
(1.3.5 Triazine) état isolé MP2/6-31G++(d,p)	71
(1.3.5 Triazine) état excité isolé	72
(1.3.5 Triazine) état excité solvaté	73
(1.3.5 Triazine) état solvaté MP2/6-31G++(d,p)	74
Cluster (1.3.5 Triazine)– H_2O)	75
(1.3.5 Triazine-H ₂ O)Etat solvaté MP2/6-31G++(d,p)	76
IV)- Les orbitales frontières des clusters (simazine-H ₂ O)	76
Chapitre 04 : Etude des clusters S-Triazines- glycine	
I.1)- Etude de la formation du cluster la (1,2,3 Triazine) avec la glycine	77
2)- Analyse vibrationnelle des structures (courbes FTIR)	86
3) Analyse des orbitales frontières	87
4)- Etude thermodynamiaue de la formation du cluster (1.3.5 Triazine)-Glycine	88
II) - Cas de la Prometon	88
1) Etude structurale	90
2) Analyse vibrationnelle des structures (courbes FTIR) au niveau DFT-B3LYP-aug-CC-PVDZ	91
3.) Clusters (Prometon-Glycine)	91
3.1) Etude structurelle des clusters (Prometon-Glycine) - Etat Isolé	01
3 2) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (Prometon-Glycine) niveau	71
DFT-R31 VP-nug-CC-nVD7) - Ftat Isoló	02
3 3) Ftude structurelle des clusters (Prometon-Glycine) - Etat Salvaté	94
3.4) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (Prometon-Glycine) niveau	95
DFT-R31 VP-aug-CC-nVD7) - Ftat Solvaté	00
3 5) Etude thermodynamiaue de la formation des elusters (Prometon Chysine)	99 101
S.S) Etude inermouynamique de la formation des clusters (1 rometon-Otycine)	101
<u>Chaptile 05. Eliade des clusters 5-11 azines- L-Alanine</u>	105
1.)- Elude de la formation du cluster la (1,2,5 Triazine) avec la L-Alanine	105
1.1) Etude structurette de la formation du cluster (1,2,5 Triazine)-L-Alanine	106
1.2) Analyse viorationnette au cluster (1,2,5 Triazine)-L-Alanine (courdes FTIK) au niveau MF2/0-	10-
J(0++(a,p))	107
1.3) Etuae inermoaynamique ae la formation au cluster (1.3.5 Triazine)-L-Alanine	109
1.4) Analyse aes orbitales frontieres des clusters etudiees	109
1.5) Les orbitales frontieres au cluster (1,2,3 Triazine)-L-Alaine	110
II) Clusters (Propazine-L-Alanine)	116
11.1) Etude structurelle des clusters (propazine –L-alanine)- Etat Isolé	117
11.2) Etude structurelle des clusters (Prometon-Glycine) - Etat Solvaté	119

Sommaire

II.3) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (propazine –L-alanine) au	
niveau DFT-B3LYP/aug-cc-pVDZ -Etat isolé	121
II.4) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (propazine –L-alanine) au nivern DET D21 VD/mm es pVD2 Et et schutté	104
II 5) Etc. do the same due and in a form at on des chusters (mon mine I alguine)	124
11.5) Etude inermodynamique de la formation des clusters (propazine –L-auanine)	128
11.6) Analyse des orbitales frontieres des structures etudiees	129
II. /) Les orbitales frontieres du complexes (propazine-alanine)	130
Chapitre 06 : Evaluation de la toxicité des s-Triazines	
1)- Approche QSAR	138
2)- Le code ECOSAR	138
3)- Les différentes Classes chimiques de l'ECOSAR	139
4)- Tests étudiés	141
5)- Les critères de la toxicité aquatique	141
5.1)- Toxicité aigue	141
5.2)- La toxicité chronique	142
6)- Résultats et discussions	143
6.1)- Résultats	143
6.2)- discussions	144
Références	145
Chapitre 07 : Etude de l'interaction des S-Triazines avec des cations	
1)- Présentation des Structures étudiées	146
2)- Calculs théoriques	146
3)- Résultats et Discussions	147
3.1)- Résultats	147
3.2)- Discussions	149
Conclusion	150
Partie II : familles des Phényle urée & Carbamates	
Introduction	151
Chapitre 01 : Synthèse bibliographique	
1) Historique	155
2) Les pesticides	156
3) Classification	157
3. 1) Classement par cible	157
a. Les insecticides	157
b. Les fongicides	157
c. Les herbicides	158
3. 2) Classement par groupe chimique	158
4) Mécanisme d'action	159
4.1) Les effets des pesticides sur l'environnement	159
4.2) Les effets toxiques des pesticides sur la santé	161
5) Présentation générale des phényle-urées et des carbamates étudiées	164
5.1) Formule et nomenclature	164
6) Les propriétés physiauo- chimiques des phényle-urées et des carbamates étudiées	165
6.1) Cas des Phényle-urées	165
6.2) Cas des Carbamates	169
Références	171
Chapitre 02 : Etude Théorique et Méthodologique	±/1
1) Introduction	173
2) Base théorique	173
3) Méthodes des fonctionnelles de la densité (DFT)	174
,	1/T

4) Théorèmes de Hohenberg et Kohn	175
4.1) Premier théorème de Hohenberg et Kohn	176
4.2) Second théorème de Hohenberg et Kohn	176
5) Les équations de Kohn-Sham	177
6) Energie point-Zéro	178
7) Méthodes d'analyse de population	178
7.1) Analyse de la population naturelle NPA (1985)	179
7.2) Analyse de bond naturel NBO	179
7.3) Méthodes basées sur le potentiel électrostatique	179
8) Les logiciels utilisés	180
8.1) Logiciel Gaussian	180
9) Calcul des enthalpies de formation	180
10)Le modèle de solvatation «Modèle de calcul de conducteur polarisable » (CPCM)	181
11) Modélisation de l'allure du spectre d'absorption IR	182
Références	183
Chapitre 03 : Etude des clusters Phényle urées -Eau	
I.1)- Etude Introductrice de la structure du Phényle urée (Cycle de base)	184
I.2) Analyse vibrationnelle des structures (courbes FTIR)	185
I.3)- Complexes (structure de base-H ₂ O)	187
I.4) Analyse vibrationnelle (courbes FTIR) des clusters (Phényle urée -H ₂ O)	191
I.5) Etude thermodynamique de la formation des clusters (Phényle urée -H ₂ O)	197
I.6) Analyse des orbitales frontières des clusters étudiées	198
II) Clusters (Linuron-H ₂ O)	199
II.1) Etude structurelle des clusters (Linuron-H ₂ O)	199
II.2) Analyse vibrationnelle (courbes FTIR) des clusters (Linuron-H ₂ O)	203
II.3) Etude thermodynamique de la formation des clusters (Linuron-H ₂ O)	212
II.4) Analyse des orbitales frontières des clusters étudiées	213
Chapitre 04 : Etude des clusters Phényle urées -Glycine	
I.)- Complexes (Phényle urée -Glycine)	214
I.1) Etude Structurale des clusters (Phényle urée –Glycine)	214
I.2) Analyse vibrationnelle (courbes FTIR) des clusters (Phényle urée - Glycine)	217
I.3) Etude thermodynamique de la formation des clusters (Phényle urée -Glycine)	226
I.4) Analyse des orbitales frontières des clusters étudiées	227
II) Complexes (Monuron-Glycine)	228
II.1) Etude Structurale des clusters (Monuron –Glycine)	229
II.2) Analyse vibrationnelle (courbes FTIR) des clusters (Monuron –Glycine)	233
II.3) Etude thermodynamique de la formation des clusters (Monuron –Glycine)	241
II.4) Analyse des orbitales frontières des structures étudiées	242
Chapitre 05 : Etude des clusters Phényle urées & carbamates –L-Alanine	
I) Complexes (Phényle urée –L-Alanine)	243
I.1) Etude Structurale des clusters (Phényle urée – L-Alanine)	243
I.2) Analyse vibrationnelle (courbes FTIR) des clusters (Phényle urée – L-Alanine)	247
I.3) Etude thermodynamique de la formation des clusters (Phényle urée –L-Alanine)	255
I.4) Analyse des orbitales frontières des clusters étudiées	256
II) Complexes (Sevin-L-Alanine)	257
II.1) Etude Structurale des clusters (Sevin – L-Alanine)	258
II.2) Analyse vibrationnelle (courbes FTIR) des clusters (Sevin - L-Alanine)	261
II.3) Analyse des orbitales frontières des structures étudiées	267
II.4) Etude thermodynamique de la formation des clusters (Sevin - L-Alanine)	267

Chapitre 06 : Evaluation de la Toxicité des Phényle-urées et des carbamates & Carbamates	
1) Evaluation de la Toxicité des Phényle-urées et des carbamates	268
2) Approche QSAR	268
3) Outil utilisé	268
3.1) Le code ECOSAR	268
3.2) Les différentes Classes chimiques de l'ECOSAR	269
3.3) Tests étudiés	269
3.4) Les critères de toxicité aquatique	270
4)- Résultats et discussions	272
4.1)- Résultats	272
4.2)- discussions des résultats	275
Références	276
Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)	
Introduction	277
Matériels et méthodes	278
Résultats et discussion	278
Conclusion	300
Références	301
Conclusion de la partie II	304
Conclusion finale	305
Résumé	

Introduction générale

Introduction Générale

Le monde est témoin d'une contamination croissante de l'environnement par les produits utilisés comme pesticides en raison de leur consommation croissante et de leur nature récalcitrante[1].Les sources d'eau comme les rivières, les lacs et même les eaux souterraines ont été trouvés contaminés par ses produits[2].

L'exposition à ces contaminants montre déjà des effets néfastes sur la vie biologique, cette exposition chronique à ses produits, même à l'état de traces, peut également avoir des effets néfastes sur la santé humaine à long terme[3].

Bien qu'il ait été difficile de fournir des données substantielles sur cette pollution, La présence de ces composés dans le milieu aquatique a été reconnue comme l'un des problèmes émergents de la chimie environnementale.

Dans certaines enquêtes menées en Autriche, Brésil, Canada, Croatie, Angleterre, Allemagne, Grèce, Italie, Espagne, Suisse, Pays-Bas et aux États-Unis, ces composés ont été détectés dans le milieu aquatique. Ces études montrent que les contaminants provenant de l'application de ses pesticides ne sont pas complètement éliminés dans les stations d'épuration des eaux et sont donc rejetés en tant que contaminants dans les eaux potable[4].

L'évaluation de la **génotoxicité**des des eaux usées peut devenir une exigence de routine ,Cela s'explique par un risque accru des dommages génétiques ou de cancer chez l'homme [5],[6].

La classe bien connue des herbicides, les dérivés de la s-triazine, sont couramment utilisés comme réactifs dans la fabrication des résines et de produits pharmaceutiques, et aussi des charbons raffinés au solvant.

Récemment, les dérivés de la s-triazines ont été observés comme formant des nanostructures à auto-assemblage sur les surfaces métalliques.

Dans cette première partie de ce travail, nous discutons sur divers aspects ce problème, en commençant par la présentation de la famille de la s-triazine, les modes d'actions de ces pesticides, l'étude structurelle de ces matrices moléculaires, ainsi que leurs interactions avec la molécule d'eau et puis avec les deux acides aminés protéinogénes « Glycine et L-alanine » et finalement on va se focalisé sur leurs interactions avec les cations Na⁺, K⁺, Mg²⁺, Ca²⁺.

Dans cette étude basée sur les méthodes de la chimie computationnelle, on va s'intéressé essentiellement à l'analyse du comportement de quelques structures cristallines qui comportent un cycle azinique : <u>(6-chloro-2-N,4-N-di(propan-2-yl)-1,3,5-triazine-2,4-diamine</u>,

6-chloro-2-N,4-N-diethyl-1,3,5-triazine-2,4-diamine,4-N-ethyl-6-methylsulfanyl-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine ,6-methoxy-2-N,4-N-di(propan-2-yl)-1,3,5-triazine-2,4diamine).

Cette étude se focalise sur l'interaction de ces structures avec une molécule de H_2O et en deuxième lieu, on va s'intéresse à la compléxation de ses azines avec les deux acides aminés protéinogénes « Glycine et L-alanine».

L'approche théorique se base sur l'utilisation de plusieurs approches quantiques : entre autre l'optimisation des géométries, calcul des fréquences, analyse conformationnelle, analyse des charges nettes et finalement l'établissement des courbes des profils énergétiques.

Ces approches vont être effectuées dans plusieurs niveaux de calculs : DFT/B3LYP, MP2, CASSF pour les états excités.[7]

La méthode consiste à optimiser les géométries des molécules choisis, et effectuer une recherche conformationnelle sur les structures correspondantes aux points stationnaires à un [8], en utilisant le code Gaussian16[9].[10].

Les énergies du point zéro et les corrections thermiques aux énergies libres de Gibbs ont été obtenues à partir des calculs des modes de vibrations.

Les effets du solvant ont été pris en compte en utilisant la méthode **CPCM**[11] au niveau pour imiter les conditions expérimentales.

Les résultats obtenus ont été évalués par l'utilisation du logiciel **ECOSAR** pour l'identification de la toxicité des composés organiques dans le milieu aquatique pour une estimation précise des dangers et des risques de ses matrices moléculaires et des clusters formés⁻.

Cette première partie de ce travail est structuré en sept chapitres :

- Le premier chapitre de ce mémoire sera consacré à une étude bibliographique sur ces structures ainsi que ses caractéristiques physico-chimiques, son impact sur l'environnement. Egalement, nous présentons les différents mécanismes d'actions avec les organismes vivants.
- Le deuxième chapitre, décrira la méthode théorique et les différentes techniques Méthodologiques utilisées au cours de cette étude, ainsi que les logiciels utilisés au cours de cette étude.

- Le troisième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de H_2O^- en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP**₂.
- Le quatrième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « Glycine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP**₂.
- Le cinquième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « L-Alanine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP**₂.
- Le sixième chapitre étudiera la toxicité du cluster avec le H₂O dans le milieu aquatique en utilisant le code ECOSAR.
- Le septième chapitre se focalise sur l'étude de la compléxation des S-Triazines avec les cations : Na⁺, K⁺, Mg²⁺, Ca²⁺.

Dans cette deuxième partie de ce travail, nous discutons sur divers aspects ce problème, en commençant par la présentation de la famille des phényl-urées et la famille des carbamates, les modes d'actions de ces pesticides, l'étude structurelle de ces matrices moléculaires, ainsi que leurs interactions avec la molécule d'eau et puis avec les deux acides aminés protéinogénes « Glycine et L-alanine »et on termine par l'étude de la réactivité des phényl-urées (cas du monuron).

Dans cette étude basée sur les méthodes de la chimie computationnelle, on va s'intéressé essentiellement à l'analyse du comportement des structures cristallines suivantes :

(3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea,3-(4-chlorophenyl)-1,1-dimethylurea, (2,3,4,5,6,7,8-heptadeuterionaphthalen-1-yl)N-methylcarbamate,(2-propan-2yloxyphenyl) Nmethyl carbamate).

Cette étude se focalise sur l'interaction de ces structures avec une molécule de H_2O et en deuxième lieu, on va s'intéresse à leurs compléxations avec les deux acides aminés protéinogénes « Glycine et L-alanine».

L'approche théorique se base sur l'utilisation de plusieurs approches quantiques : entre autre l'optimisation des géométries, calcul des fréquences, analyse conformationnelle, analyse des charges nettes et finalement l'établissement des courbes des profils énergétiques.

Ces approches vont être effectuées dans plusieurs niveaux de calculs : DFT/B3LYP, MP2, CASSF pour les états excités.[7]

La méthode consiste à optimiser les géométries des molécules choisis, et effectuer une recherche conformationnelle sur les structures correspondantes aux points stationnaires à un [8], en utilisant le code Gaussian 16[9].[10].

Les énergies du point zéro et les corrections thermiques aux énergies libres de Gibbs ont été obtenues à partir des calculs des modes de vibrations.

Les effets du solvant ont été pris en compte en utilisant la méthode **CPCM**[11] au niveau pour imiter les conditions expérimentales.

Les résultats obtenus ont été évalués par l'utilisation du logiciel **ECOSAR** pour l'identification de la toxicité des composés organiques dans le milieu aquatique pour une estimation précise des dangers et des risques de ses matrices moléculaires et les clusters formés⁻.

Cette deuxième partie de ce travail est structuré en sept chapitres :

- Le premier chapitre de cette partie sera consacré à une étude bibliographique sur deux familles ainsi que ses caractéristiques physico-chimiques, leurs impacts sur l'environnement. Egalement, nous présentons les différents mécanismes d'actions avec les organismes vivants.
- Le deuxième chapitre, décrira la méthode théorique et les différentes techniques Méthodologiques utilisées au cours de cette étude, ainsi que les logiciels utilisés au cours de cette étude.
- Le troisième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de H_2O^- en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP**₂.
- Le quatrième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « Glycine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP**₂.
- Le cinquième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « L-Alanine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP**₂.
- Le sixième chapitre étudiera la toxicité des clusters avec le H_2O dans le milieu aquatique en utilisant le code ECOSAR.
- Le septième chapitre se focalise sur l'étude de la réactivité des phényl-urées (cas du monuron).

<u> Références :</u>

- 1. Jindal, K., M. Narayanam, and S. Singh, *Pollution of Aqueous Matrices with Pharmaceuticals*, in *Water and Health*. 2014, Springer. p. 355-373.
- Marchand, M., La contamination des eaux continentales par les micropolluants organiques. Revue des sciences de l'eau/Journal of Water Science, 1989. 2(2): p. 229-264.
- 3. Ferrari, B.t., et al., *Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac*. Ecotoxicology and environmental safety, 2003. **55**(3): p. 359-370.
- 4. Gonzalez, J.-L., et al., *Etude pilote préliminaire: Première évaluation des niveaux de contamination chimique des eaux littorales guyanaises dans le cadre de la préparation du volet chimie du contrôle de surveillance DCE-campagne Novembre 2008.*2009.
- 5. Stahl Jr, R.G., *The genetic toxicology of organic compounds in natural waters and wastewaters*. Ecotoxicology and Environmental Safety, 1991. **22**(1): p. 94-125.
- 6. Montiel, A., *Les résidus de médicaments et le traitement des effluents d'hôpitaux.* Environnement, Risques & Santé, 2006. **5**(4): p. 296-300.
- 7. Zaviska, F., et al., *Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels: Application à la dégradation des polluants réfractaires.* Revue des sciences de l'eau/Journal of Water Science, 2009. **22**(4): p. 535-564.
- Lee, C., W. Yang, and R.G. Parr, *Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density*. Physical review B, 1988.
 37(2): p. 785.
- 9. Frisch, M., et al., *Gaussian 09, revision a. 02, gaussian*. Inc., Wallingford, CT, 2009. **200**.
- 10. Gonzalez, C. and H.B. Schlegel, *An improved algorithm for reaction path following*. The Journal of Chemical Physics, 1989. **90**(4): p. 2154-2161.
- Barone, V. and M. Cossi, *Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model*. The Journal of Physical Chemistry A, 1998. **102**(11): p. 1995-2001.

Partie I : famille des S-Triazines Introduction

Introduction

Le monde est témoin d'une contamination croissante de l'environnement par les produits utilisés comme pesticides en raison de leur consommation croissante et de leur nature récalcitrante [1]. Les sources d'eau comme les rivières, les lacs et même les eaux souterraines ont été trouvés contaminés par ses produits [2].

L'exposition à ces contaminants montre déjà des effets néfastes sur la vie biologique, cette exposition chronique à ses produits, même à l'état de traces, peut également avoir des effets néfastes sur la santé humaine à long terme [3].

Bien qu'il ait été difficile de fournir des données substantielles sur cette pollution, La présence de ces composés dans le milieu aquatique a été reconnue comme l'un des problèmes émergents de la chimie environnementale.

Dans certaines enquêtes menées en Autriche, Brésil, Canada, Croatie, Angleterre, Allemagne, Grèce, Italie, Espagne, Suisse, Pays-Bas et aux États-Unis, ces composés ont été détectés dans le milieu aquatique. Ces études montrent que les contaminants provenant de l'application de ses pesticides ne sont pas complètement éliminés dans les stations d'épuration des eaux et sont donc rejetés en tant que contaminants dans les eaux potable [4].

L'évaluation de la génotoxicité des eaux usées peut devenir une exigence de routine ,Cela s'explique par un risque accru de dommages génétiques ou de cancer chez l'homme [5],[6].

La classe bien connue des herbicides, les dérivés de la famille des S-Triazine, sont couramment utilisés comme réactifs dans la fabrication des résines et de produits pharmaceutiques, et aussi des charbons raffinés au solvant.

Récemment, les dérivés de la s-Triazines ont été observés comme formant des nanostructures à auto-assemblage sur les surfaces métalliques.

Dans ce travail, nous discutons sur divers aspects ce problème, en commençant par la présentation de la famille des S-Triazine, les modes d'actions de ces pesticides, l'étude structurelle de ces matrices moléculaires, ainsi que leurs interactions avec la molécule d'eau et avec les deux acides aminés protéinogénes « Glycine et L-alanine » ainsi que leurs interactions avec les cations : Na^+ , K^+ , Mg^{2+} , Ca^{2+} .

Dans cette étude basée sur les méthodes de la chimie computationnelle, on va s'intéressé essentiellement à l'analyse du comportement de quelques structures cristallines qui comportent un cycle azinique : <u>(6-chloro-2-N,4-N-di (propan-2-yl)-1,3,5-triazine-2,4-diamine,</u>

6-chloro-2-N,4-N-diethyl-1,3,5-triazine-2,4-diamine,4-N-ethyl-6-methylsulfanyl-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine ,6-methoxy-2-N,4-N-di(propan-2-yl)-1,3,5-triazine-2,4diamine).

Cette étude se focalise sur l'interaction de ces structures avec une molécule de H_2O et en deuxième lieu, on va s'intéresse à la compléxation de ses azines avec les deux acides aminés protéinogénes « Glycine et L-alanine» et enfin leurs interactions avec les cations : Na^+ , K^+ , Mg^{2+} , Ca^{2+} .

L'approche théorique se base sur l'utilisation de plusieurs approches quantiques : entre autre l'optimisation des géométries, calcul des fréquences, analyse conformationnelle, analyse des charges nettes et finalement l'établissement des courbes des profils énergétiques.

Ces approches vont être effectuées dans plusieurs niveaux de calculs : DFT/B3LYP, MP2, CASSF pour les états excités [7].

La méthode consiste à optimiser les géométries des molécules choisis, et effectuer une recherche conformationnelle sur les structures correspondantes aux points stationnaires à un [8], en utilisant le code Gaussian 16. [9].[10]

Les énergies du point zéro et les corrections thermiques aux énergies libres de Gibbs ont été obtenues à partir des calculs des modes de vibrations.

Les effets du solvant ont été pris en compte en utilisant la méthode CPCM [11] au niveau pour imiter les conditions expérimentales.

Les résultats obtenus ont été évalués par l'utilisation du logiciel ECOSAR pour l'identification de la toxicité des composés organiques dans le milieu aquatique pour une estimation précise des dangers et des risques de ses matrices moléculaires et leurs clusters formés⁻.

Ce travail est structuré en sept chapitres :

- Le premier chapitre de ce mémoire sera consacré à une étude bibliographique sur ces structures ainsi que ses caractéristiques physico-chimiques, son impact sur l'environnement. Egalement, nous présentons les différents mécanismes d'actions avec les organes vivants.
- Le deuxième chapitre, décrira la méthode théorique et les différentes techniques Méthodologiques utilisées au cours de cette étude, ainsi que les logiciels utilisés au cours de cette étude.

- Le troisième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de H₂O⁻ en utilisant des calculs se basant sur la théorie fonctionnelle de la densité DFT ainsi que la méthode de perturbation MP₂.
- Le quatrième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « Glycine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité DFT ainsi que la méthode de perturbation MP₂.
- Le cinquième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « L-Alanine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité DFT ainsi que la méthode de perturbation MP₂.
- Le sixième chapitre étudiera la toxicité des clusters avec le H_2O dans le milieu aquatique en utilisant le code ECOSAR.
- Le septième chapitre se focalise sur l'étude de la compléxation des S-Triazines avec les cations : Na⁺, K⁺, Mg²⁺, Ca²⁺.

Introduction

<u>Références:</u>

- 1. Jindal, K., M. Narayanam, and S. Singh, *Pollution of Aqueous Matrices with Pharmaceuticals*, in *Water and Health*. 2014, Springer. p. 355-373.
- 2. Marchand, M., *La contamination des eaux continentales par les micropolluants organiques.* Revue des sciences de l'eau/Journal of Water Science, 1989. **2**(2): p. 229-264.
- 3. Ferrari, B.t., et al., *Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac.* Ecotoxicology and environmental safety, 2003. **55**(3): p. 359-370.
- 4. Gonzalez, J.-L., et al., *Etude pilote préliminaire: Première évaluation des niveaux de contamination chimique des eaux littorales guyanaises dans le cadre de la préparation du volet chimie du contrôle de surveillance DCE-campagne Novembre 2008.* 2009.
- 5. Stahl Jr, R.G., *The genetic toxicology of organic compounds in natural waters and wastewaters*. Ecotoxicology and Environmental Safety, 1991. **22**(1): p. 94-125.
- 6. Montiel, A., *Les résidus de médicaments et le traitement des effluents d'hôpitaux.* Environnement, Risques & Santé, 2006. **5**(4): p. 296-300.
- 7. Zaviska, F., et al., *Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels: Application à la dégradation des polluants réfractaires.* Revue des sciences de l'eau/Journal of Water Science, 2009. **22**(4): p. 535-564.
- 8. Lee, C., W. Yang, and R.G. Parr, *Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density*. Physical review B, 1988. **37**(2): p. 785.
- 9. Frisch, M., et al., *Gaussian 09, revision a. 02, gaussian.* Inc., Wallingford, CT, 2009. 200.
- 10. Gonzalez, C. and H.B. Schlegel, *An improved algorithm for reaction path following*. The Journal of Chemical Physics, 1989. **90**(4): p. 2154-2161.
- Barone, V. and M. Cossi, *Quantum calculation of molecular energies and energy gradients in* solution by a conductor solvent model. The Journal of Physical Chemistry A, 1998. **102**(11): p. 1995-2001.

Partie I : famille des S-Triazines Chapitre 01 : Synthèse bibliographique

1)- Généralités sur les herbicides étudiés

<u>1. 1)- Les pesticides :</u>

Le terme de pesticide dérive de "Pest", mot anglais désignant tout organisme vivant (virus, bactéries, champignons, herbes, vers, mollusques, insectes, rongeurs, mammifères, oiseaux) susceptible d'être nuisible à l'homme et/ou à son environnement.

Le mot « pesticide » est un terme générique qui englobe les produits phytopharmaceutiques (herbicides, fongicides, insecticides) utilisés en milieu végétal (agricole et non agricole) [1].

Sont donc toutes les substances chimiques naturelles ou de synthèse utilisées en agriculture pour contrôler les différentes sortes de nuisibles (pestes) (maladies, ravageurs et mauvaises herbes) à l'exception des produits à usage médical et vétérinaire. Mais un certain nombre de produits peuvent être à usage mixte [2].

Les pesticides ont des effets nocifs sur l'homme mais aussi sur les animaux et les plantes. Ainsi, 15 à 20% de ces produits chimiques sont considérés cancérigènes et la plupart d'entre eux sont des perturbateurs endocriniens [3, 4]. Actuellement, la réduction de l'utilisation de pesticides devient une préoccupation majeure aux Etats-Unis, au Canada et en Europe [5]. En Europe, une réduction de 25% des quantités d'herbicides utilisées sur les cultures de céréales n'entraînerait pas de diminution des rendements. Aux Etats-Unis, une réduction de 30-50 % des quantités de pesticides utilisées serait envisageable sans avoir la répercussion sur le rendement des cultures [5].

2)- Présence des pesticides dans l'environnement :

Les voies d'exposition aux pesticides sont très diverses (utilisations agricoles, désherbage des accotements des routes, des voies ferrées, des zones industrielles, entretien des espaces verts et des terrains de sport, des jardins, traitements dans les habitations, soins vétérinaires aux animaux d'élevage ou domestiques) et l'exposition de la population est liée à de multiples facteurs : aliments, eau de consommation, air intérieur et extérieur, poussières dans les habitations et surtout utilisation desdits produits [1].

- Présence généralisée dans les milieux aquatiques
- Présence persistante dans les sols

- Présence dans l'air
- Présence dans les denrées alimentaires

3)- Principales familles de pesticides utilisées :

Les principales familles de pesticides utilisées en agriculture fruitière et légumière sont les fongicides, les herbicides et les insecticides.

3.1)- Les fongicides :

Très fréquemment employés contre les maladies cryptogamiques, les fongicides assurent une excellente protection contre le développement des champignons parasites et permettent l'obtention de plantes saines. On distingue deux grands groupes de fongicides : les fongicides minéraux et les fongicides organiques qui sont majoritairement des produits de synthèse [2].

3.1.1)- Les fongicides minéraux :

- les fongicides à base de cuivre
- les fongicides à base de soufre
- Les fongicides à base de permanganate de potassium

3.1.2)- Les fongicides organiques :

- Les carbamates
- Les dérivés du phénol
- Les dicarboximides
- Les amides et amines

3.2)- Les insecticides :

Sont destinés à détruire les insectes nuisibles ; ils se répartissent en trois grands groupes selon leur nature chimique : substances minérales, molécules organiques d'origine naturelle ou produits organiques de synthèse qui sont de loin les plus utilisés actuellement. Autres que les organochlorés (DDT, dialdrin, ...) qui sont bannis actuellement dans la plupart des pays du nord, les insecticides appartiennent à trois grandes familles chimiques : les organophosphorés (diméthoate,

malation...), les carbamates (aldicarbe, carbofuran...) et les pyréthrinoides de synthèse (bifenthrine, perméthrine...) [6].

3.3)- Les herbicides :

Constituent la famille la plus utilisée des pesticides en tonnages et en surfaces traitées, ils permettent d'éliminer les mauvaises herbes adventices des cultures. Ils appartiennent à plus de 35 familles chimiques différentes. Les plus représentées sont les carbamates (chlorprophame, triallate...), les urées substituées (diuron, chlortoluron...), les triazines (atrazine, simazine, ...), les chlorophenoxyalcanoïques (2,4-D, MCPA, ...), les amides (alachlore, propyzamide...)[6].

- Les herbicides appliqués au niveau foliaire
- Les herbicides appliqués au niveau du sol

Figure I.1.1. : Les différentes familles des pesticides

4)- Modes d'action des pesticides :

Les produits phytosanitaires constituent une catégorie de substances très hétérogène regroupant un grand nombre de molécules (environ 800) qualifiées de matières ou substances actives (MA ou SA) qui peuvent être regroupées en familles chimiques et classées selon des critères très rigoureux permettant d'identifier jusqu'à la molécule ou l'isomère actif. C'est ainsi que sur ces critères, on distinguera par exemple les produits minéraux des produits organiques, parmi ces derniers les
organochlorés, les organophosphorés et les carbamates, eux-mêmes subdivisés en méthyl ou phényle-carbamates et ainsi de suite jusqu'à la molécule et ses isomères.

Cette hétérogénéité chimique s'explique par la diversité des ravageurs visés (insectes, acariens et espèces voisines, végétaux herbacés ou ligneux, champignons, parasites, bactéries, virus et autres micro-organismes, vers, rongeurs et autres prédateurs) et par la multiplicité des cibles biologiques susceptibles d'être atteintes (système nerveux, voies métaboliques, synthèse des protéines et des acides nucléiques, noyau, génome, division cellulaire, photosynthèse, etc...). Dès lors on pressent que les modes d'action de ces substances seront extrêmement divers et qu'en faire une synthèse exhaustive sera très difficile.

Par mode d'action, on entend généralement le mécanisme par lequel la substance va exercer son effet sur la cible biologique du ravageur visé ; mais cette cible peut exister aussi chez d'autres individus non-cibles. Si on prend par exemple les insecticides carbamates, ils inhibent l'acétylcholinestérase qui est une enzyme intervenant dans le processus de la neurotransmission, cette cible existe aussi chez les mammifères, homme compris, qui sont des organismes non-cibles mais dont le fonctionnement du système nerveux pourra être perturbé lors d'exposition à ces produits peu spécifiques. Il faut noter aussi que chez les organismes cibles et non cibles, ces produits peuvent entraîner d'autres effets sans lien avec le mécanisme d'action principal, mais on ne parle pas dans ce cas de mode d'action, ces effets étant qualifiés de secondaires, ce terme ne préjugeant en rien de leur importance biologique.

Dans ce chapitre, nous nous limiterons à décrire les principaux modes d'action sur les organismes cibles en excluant les mécanismes susceptibles d'expliquer les effets secondaires et en essayant de dégager les grandes lignes dans les tableaux suivants qui seront regroupées par familles de produits phytosanitaires que sont les insecticides, les fongicides et les herbicides. Quelques-uns des principaux modes d'action sont illustrés par les tableaux 2 (insecticides), 3 (fongicides) et 4 (herbicides).

Tableau I.1.1.: Modes d'action des insecticides et acaricides

Action sur le système nerveux	Action sur la cuticule		
\rightarrow Action sur les synapses et les	\rightarrow Inhibition de la chitine		
neuromédiateurs			
\rightarrow Action sur la transmission axonale			
Action sur la respiration	Perturbateurs de mue		
\rightarrow Inhibition du transport des électrons dans	\rightarrow Action sur l'ecdysone		
les mitochondries	\rightarrow Action sur l'hormone juvénile		
\rightarrow Inhibition de la phosphorylation oxydative			

Tableau I.1.2. : Modes d'action des fongicides

Action sur les processus respiratoires	Action sur les biosynthèses			
\rightarrow Inhibition des complexes II et III	\rightarrow Biosynthèse des stérols			
\rightarrow Phosphorylation oxydative	\rightarrow Biosynthèse de l'ARN et de l'ADN			
\rightarrow Inhibition de la germination	\rightarrow Biosynthèse des mélanines			
Action sur les microtubules	Autres modes d'action			
\rightarrow Combinaison avec la tubuline	\rightarrow Action sur les membranes et la croissance			
	\rightarrow Inhibition de la germination			
	\rightarrow Modification de la perméabilité cellulaire			
	\rightarrow Inhibition de l'élongation des tubes			
	germinatifs			

Inhibition de la photographàge	Inhibitours de la synthèse des agreténeïdes
Innibilion de la pholosynthèse	Innibileurs de la synthèse des curotenoldes
\rightarrow Inhibition du PS I et du PS II	\rightarrow Inhibition de la PDS et de la 4-HPPD
Inhibition de la synthèse des lipides	inhibiteurs de la synthèse des chlorophylles
\rightarrow Inhibition de l'enzyme ACCase, des	
élongases et des enzymes de cyclisation du	
GGPP	
Inhibition de la synthèse des acides aminés	Découplants
(chloroplastes)	
\rightarrow Inhibition de la synthèse de la glutamine,	
des AA aromatiques et des AA ramifiés	
Perturbation de la régulation de l'auxine AIA	Perturbateurs de croissance
\rightarrow Inhibiteurs de la division cellulaire, blocage	\rightarrow Inhibition du transport auxinique et de la
de la tubuline, du fuseau achromatique,	synthèse de la cellulose
blocage de la synthèse de l'acide folique	

Tableau I.1.3. : Modes d'action des herbicides

5)- Impacts environnementaux des pesticides :

Les mécanismes de dispersion sont variés. Lors de l'application qui s'effectue généralement Sous forme de «spray», une fraction importante des produits phytosanitaires déposés sur les plantes ou le sol ruisselle puis s'infiltre pour atteindre et contaminer respectivement les eaux de surface, puis les eaux souterraines

Le transfert des pesticides vers les eaux souterraines dépend de la quantité de produit susceptible de migrer dans le sol. Cette valeur est tributaire de nombreux facteurs qui interagissent entre eux

Chapitre 01 : Synthèse bibliographique

Une part importante des produits phytosanitaires se retrouve dans l'atmosphère sous l'action De divers phénomènes physico-chimiques ou climatiques : la dérive par le vent lors de l'application. Ce phénomène est lié essentiellement au mode d'application.

Figure I.1.3. : Épandage aérien de pesticides

Ce mode d'épandage est celui qui est le plus susceptible de polluer l'air. Il est peu utilisé en Europe, mais fréquent aux Etats-Unis.

6)- Les familles des pesticides étudiés :

6.1)- Les S-Triazines :

La 1, 3,5-triazine ($C_3H_3N_3$) est un composé organique dont la structure chimique est hétérocyclique à six chaînons composé de trois atomes de carbone et de trois atomes d'azote. Les atomes dans les noyaux triazines sont analogues à ceux dans les noyaux benzène, ce qui en fait des triazines, des analogues aromatiques comme le benzène. [8]

Structure de Base (1.3.5 triazine)

La 1, 3,5-triazine est considérée comme un syntone remarquable en chimie supramoléculaire car elle peut participer à tous les types d'interactions, à savoir la coordination, les liaisons hydrogène, les attractions électrostatiques et aux transferts de charge et les interactions d'empilement aromatique. [9] En effet, plusieurs revues ont mis en évidence la formation de structures supramoléculaires formées par coordination avec les métaux de transition[9, 10] et les liaisons hydrogène[11]. Les dérivés de la triazine ont été largement utilisés dans plusieurs domaines (chimie médicinale et chimie des matériaux).

Les s-triazines sont des herbicides très efficaces qui ont des effets toxicologiques controversés[12, 13].

Les dérivés de la 1, 3,5-triazine étudiés sont :

6.2)- Mode d'action (Exemple de l'atrazine)

L'atrazine est un herbicide qui agit à l'intérieur des feuilles sur la protéine D1 (plastoquinone B), localisée dans la membrane des thylakoïdes à l'intérieur des chloroplastes (**I.1.5**) [14]. L'atrazine inhibe la photosynthèse en bloquant le transfert d'électrons dans le photosystème (II) [15]. Elle empêche en effet la capture des électrons par la plastoquinone B, deuxième accepteur du PS(II). Elle induit, en se fixant, un changement dans le potentiel d'oxydoréduction de la plastoquinone B, ce qui rend thermodynamiquement défavorable le transfert d'électrons de Q- (premier accepteur d'électrons du photosystème (II) vers la plastoquinone B[16].

Figure I.1.5. : Mode d'action de l'atrazine au sein des plantes

Parfois absorbée par le feuillage, mais le plus souvent par les racines, l'atrazine est ensuite transportée jusqu'à son site d'action par les vaisseaux du xylème. Pour cela, la concentration en atrazine dans la couche superficielle du sol (0-10 cm) doit être suffisamment élevée durant 2 à 3 mois pour avoir une action efficace et prolongée sur les plantes en continuelle croissance (Eau 33 mg/l, Chloroforme 52 g/kg, Méthanol 18 g/kg, Diéthyl-éther 12 g/kg, Ethylacétate 28 g/kg) [17].

6.3)- Les S-Triazines et les dommages cellulaires

Le catabolisme de l'atrazine et d'autres chlorotriazines, y compris la simazine et la propazine, se produit chez les animaux par désalkylation, déchloration et conjugaison[18]. Après ces processus, les métabolites seront capables d'interagir avec les cellules par le biais de biomolécules affectant le métabolisme des cellules, des tissus et des organismes. Baker et al.[19]Ont démontré que les triazines affectaient négativement la survie des amphibiens et ont souligné que la compréhension de la manière dont les différentes classes chimiques de pesticides et d'engrais interagissaient avec les populations d'amphibiens pouvait conduire à de nouvelles pratiques et réglementations de gestion. Les marqueurs cellulaires appliqués in vivo ou in vitro peuvent fournir des informations précieuses à différents niveaux d'investigation en utilisant des groupes d'animaux variés. En

outre, de nombreuses recherches résultant des évaluations des effets de l'atrazine [21] et des effets de l'Ametryne et de la simazine sont peu connues.

Les changements pathologiques sont des indicateurs puissants de l'exposition aux facteurs de stress environnementaux. Cependant, les études concernant les effets de l'exposition aux pesticides sur l'histopathologie des tissus sont rares. Les carpes communes exposées de manière subchronique à la contamination par l'atrazine ont été affectées négativement au niveau des tissus. L'exposition à l'atrazine a provoqué des altérations de la structure cérébrale et rénale de la carpe commune, comme en témoigne la dégénérescence des cellules de Purkinje dans le cerveau et la dégénérescence hydropique du rein. Différents degrés de perte de cellules granulaires dans l'hippocampe, réduction des corps de Nissl, dégénérescence des cellules de Purkinje, perte de neuropile ont été observés. Le rein de la carpe commune présentant différents degrés de gonflement trouble des cellules épithéliales des tubules rénaux, une nécrose de l'épithélium tubulaire, une contraction de la glomérule et expansion de l'espace de Bowman. Jusqu'à présent, les activités SOD, GSH-Px et CAT dans le cerveau et les reins ont diminué après l'exposition à l'atrazine [13].

Une exposition subchronique de Prochilodus lineatus à 2, 10 et 25 μ g / L d'atrazine modifie les mécanismes de régulation de l'osmose et des ions, mais n'entraîne pas de modification significative du rapport Na + / Cl-. Les réponses morphologiques des cellules branchiales expliquent, du moins en partie, les mécanismes de maintien de l'absorption des ions et compensent les effets possibles de l'atrazine sur les branchies. On a observé une augmentation des taux d'ions plasmatiques pouvant avoir un effet cumulatif conduisant à l'augmentation significative observée de l'osmolalité. Ces modifications peuvent être liées à des shunts hydriques entre le plasma et le liquide interstitiel, suggérant une altération de l'homéostasie de l'eau et / ou des modifications de la concentration de métabolites dans le sang [22].

6.4)- Les propriétés des structures étudiées :

6.4.1)- La structure de Base (1.3.5 triazine) :

Figure I.1.6. :Structure de Base (1.3.5 triazine)

 Tableau I.1.4. :
 Etat générale de la structure de Base (1.3.5 triazine)

Nom IUPAC	1,3,5-triazine[20]
Formule moléculaire :	C ₃ H ₃ N ₃
Nom du CAS	290-87-9
Identifiant chimique international (InChI)	InChI=1S/C3H3N3/c1-4-2-6-3-5-1/h1-3H[20]
Type de pesticide	Herbicide
Group de substances	Triazine

Tableau I.1.5. : Propriétés physiques et chimiques de la structure de Base (1.3.5 triazine)

Nom de la propriété	Valeur de la propriété
Masse moléculaire	81.078 g/mol
Compte des donneurs de la liaison hydrogène	0
Nombre d'accepteurs de la liaison hydrogène	3
Nombre de liaison rotative	0
Complexité	21.5
Surface polaire topologique	38.7 A^2
Masse mono-isotopique	81.033 g/mol
Masse exacte	81.033 g/mol
XLogP3-AA	0
Le composé est canonisé	Oui
Charge formelle	0
Nombre d'atome lourds	6

Nombre défini de stéréo-centres d'atome	0
Nombre de stéréo-centres d'atome non défini	0
Compte stéréo-centres à liaison définis	0
Compte de stéréo-centres à liaison non définie	0
Nombre d'atome d'isotope	0
Nombre d'unité liée par liaison covalente	1

 Tableau I.1.6.:
 Propriétés expérimentales de la structure de Base (1.3.5 triazine)

Point d'ébullition	114.0°C[21]
Point de fusion	86.0°C[21]
Coefficient de partage octanol / eau	0.12 (LogP)
Solubilité	chloroforme [22]

6.4.2)- La propazine :

La propazine est un herbicide utilisé pour lutter contre les mauvaises herbes à feuilles larges et les graminées annuelles dans le sorgho doux [23]. Il est appliqué en pulvérisation au moment de la plantation ou immédiatement après la plantation, mais avant la levée des mauvaises herbes ou du sorgho. Il est également utilisé comme herbicide sélectif de post levée sur les carottes, le céleri et le fenouil [24, 25]. La propazine est disponible en poudre mouillable, en formulation granulaire dispersables dans l'eau [26].

Figure I.1.7.: Structure de la Propazine

Nom IUPAC	6-chloro-2-N, 4-N-di (propan-2-yl)-1, 3,5-triazine-2,4-
	diamine
Formule moléculaire :	$C_9H_{16}N_5Cl$
Nom du CAS	139-40-2
Identifiant chimique	InChI = 1S / C9H16ClN5 / C1-5 (2) 11-8-13-7 (10) 14-9
international (InChI)	(15-8) 12-6 (3) 4 / h5-6H, 1-4H3, (H2,11, 12,13,14,15)
<i>Type de pesticide</i>	Herbicide
Group de substances	Triazine

<i>Tableau I.1.7.</i> :	Etat	générale	de la	a Pro	<u>pazine</u>
		-			

Tableau I.1.8. : Propriétés physiques et chimiques de la Propazine

Nom de la propriété	Valeur de la propriété
Masse moléculaire	229.712 g/mol
Compte des donneurs de la liaison hydrogène	2
Nombre d'accepteurs de la liaison hydrogène	5
Nombre de liaison rotative	4
Complexité	169
Surface polaire topologique	62.7 A^2
Masse mono-isotopique	229.109 g/mol
Masse exacte	229.109 g/mol
XLogP3	2.9
Le composé est canonisé	Vrai
Charge formelle	0
Nombre d'atome lourds	15
Nombre défini de stéréo-centres d'atome	0
Nombre de stéréo-centres d'atome non défini	0
Compte stéréo-centres à liaison définis	0
Compte de stéréo-centres à liaison non définie	0
Nombre d'atome d'isotope	0
Nombre d'unité liée par liaison covalente	1

Couleur	Poudre incolore [27]
Point de fusion	213.0° C[28]
Densité : Gravité spécifique	1,162 g / cm3 à 20 ° C
Solubilité	Dans l'eau, 8,6 mg / L à 22 ° C[29]
Solubilité	Chloroforme[22]
La pression de vapeur :	1,31X10-7 mm Hg à 25 ° C [30]
РН	Base très faible[27]

 Tableau I.1.9. :
 Propriétés expérimentales de la Propazine

6.4.3)- La simazine :

La simazine est une diamino-1,3,5-triazine qui est la N, N'-diéthyl-1,3,5-triazine-2,4diamine substituée par un groupe chloro en position 6. Elle joue un rôle d'herbicide, un xénobiotique et un contaminant environnemental. Il s'agit d'une chloro-1,3,5-triazine et d'une diamino-1,3,5-triazine.[31]

Figure I.1.8. : Structure de la Simazine

<i>Tableau I.1.10. :</i>	Les p	proprié	tés phys	sico-chimiqu	es de la	Simazine
		<u> </u>	<u> </u>			

Nom de la propriété	Valeur de la propriété
Masse moléculaire	201.658 g/mol
Compte des donneurs de la liaison hydrogène	2
Nombre d'accepteurs de la liaison hydrogène	5
Nombre de liaison rotative	4

Complexité	131	
Surface polaire topologique	62.7 A^2	
Masse mono-isotopique	201.078 g/mol	
Masse exacte	201.078 g/mol	
XLogP3	2.2	
Le composé est canonisé	Vrai	
Charge formelle	0	
Nombre d'atome lourds	13	
Nombre défini de stéréocentres d'atome	0	
Nombre de stéréo-centres d'atome non défini	0	
Compte stéréo-centres à liaison définis	0	
Compte de stéréo-centres à liaison non définie	0	
Nombre d'atome d'isotope	0	
Nombre d'unité liée par liaison covalente	1	

Tableau I.1.11.:Propriétés expérimentales de la Simazine

Couleur	Solide blanc [32]
Point de fusion	437 to 441° F [33]
Densité : Gravité spécifique	1.302 à 68° F [33]
Solubilité	Dans l'eau 4.60e-05 mg/l[34]
Solubilité	900 ppm chloroforme [22]
La pression de vapeur :	6.1e-09 mm Hg à 21 ° C [33]
рКа	1,62 à 20 ° C

Tableau I.1.12. :L'état général de la Simazine

Nom IUPAC	6-chloro-2-N,4-N-diethyl-1,3,5-triazine-2,4-diamine
Formule moléculaire :	$C_7H_{12}ClN_5$
Nom du CAS	122-34-9
Identifiant chimique international	InChI=1S/C7H12ClN5/c1-3-9-6-11-5(8)12-7(13-6)10-4-
(InChI)	2/h3-4H2,1-2H3,(H2,9,10,11,12,13)
<i>Type de pesticide</i>	Herbicide
Group de substances	Triazine

6.4.4)- Ametryne :

<u> Figure I.1.9. :</u>	Structure de l'Ametryne

Tableau I.1.13. :	Les propriétés	physico-chimiques de	<i>l'Ametryne</i>

Nom et identifiant	4-N-ethyl-6-methylsulfanyl-2-N-propan-2-yl-		
	4-N-einyi-0-meinyisuijanyi-2-N-propan-2-yi-		
	1,5,5-inazine-2,4-aiamine [2]		
Nom de la Propriété	Valeur de la Propriété		
Masse Moléculaire	227.33 g/mol		
XlogP3	3		
Nombre de Donneur de Liaison Hydrogène	2		
Nombre d'Accepteurs de Liaisons Hydrogène	6		
Nombre de liaison rotative	5		
Masse exacte	227.12 g/mol		
Mass Mono-isotopique	227.12 g/mo		
Surface polaire topologique	88 A^2		
Nombre Important d'Atome	15		
Accusation Formelle	0		
Complexité	178		
Isotope Atome Count	0		
Nombre défini de Stéréo-centres d'Atomes	0		
Nombre de Stéréo-centres d'Atome non Défini	0		
Compte de Stéréo-centres à liaison définie	0		
Compte de Stéréo-centres à liaison non définie	0		
Nombre de Stéréo-centres à liaison covalente	1		
Le Composé est Canonisé	Oui		
Tableau I.1.14. : Propriété	s Expérimentales de l'Ametryne		

Couleur	Poudre Blanche [4]
Pointe de Fusion	88.0°C [5]
Densité	1.18 à 22°C [6]
Solubilité (dans H2O)	9.19e-04 M [7]
Solubilité (dans Chloroforme)	[8]
La Pression de vapeur	2.74X10-6 mm Hg at 25° C [9]
PH	[10]

6.4.5)- PROMETON :

Figure I.1.10. : <u>Structure de la Prometon</u>

 Tableau I.1.15. :
 Les propriétés physico-chimiques de la Prometon

Nom et identifiant	6-methoxy-2-N,4-N-di(propan-2-yl)-1,3,5-
	triazine-2,4-diamine[2]
Nom de la Propriété	Valeur de la Propriété
Masse Moléculaire	225.296 g/mo
XlogP3	3
Nombre de Donneur de Liaison Hydrogène	2
Nombre d'Accepteurs de Liaisons Hydrogène	6
Nombre de liaison rotative	5
Masse exacte	225.159 g/mol
Mass Mono-isotopique	225.159 g/mo
Surface polaire topologique	72 A^2
Nombre Important d'Atome	16
Accusation Formelle	0
Complexité	182
Isotope Atome Count	0
Nombre défini de Stéréo-centres d'Atomes	0
Nombre de Stéréo-centres d'Atome non Défini	0
Compte de Stéréo-centres à liaison définie	0
Compte de Stéréo-centres à liaison non définie	0
Nombre de Stéréo-centres à liaison covalente	1
Le Composé est Canonisé	Oui

Couleur	Poudre Incolore [4]
Pointe de Fusion	91 to 92° C [5]
Densité	1.088 à 20°C [6]
Solubilité (dans H2O)	0.00 M [7]
Solubilité (dans Chloroforme)	[8]
La Pression de vapeur	2.3X10-6 mm Hg at 20°C [9]
РН	[10]

|--|

<u>Références:</u>

- 1. Gatignol, C. and J. Etienne, Pesticides et santé. Rapport parlementaire. Office parlementaire d'évaluation des choix scientifiques et technologiques. Rapport, 2010(2463).
- 2. APRIFEL, ed. PESTICIDES.RISQUES ET SECURITE ALIMENTAIRE. janvier 2014.
- 3. Sun, Y., Pignatello, J.J., 1993. Photochemical reactions involved in the total mineralization of and -.D.b.F.H.O.U.E.S.T. 2, 27, 304-310.
- 4. Brillas, E., Sirès, I., Oturan, M.A., 2009. Electro-Fenton process and related electrochemical and technologies based on Fenton's reaction chemistry. Chem. Rev., 6570-6631.
- 5. Guivarch, E., Traitement des polluants organiques en milieu aqueux par le procédé, T.d.d.d.l.u.d.M.L. électrochimique des colorants synthétiques, and Vallée.
- 6. Murati, M., Etude d'élimination de trois herbicides: Atrazine, Sulcotrione et Mésotrione, en milieu aqueux par les procédés électrochimiques d'oxydation avancée. 2012, Université Paris-Est.
- 7. McMurray T.A., D.P.S.M., Byrne J.A., 2006. The photocatalytic degradation of atrazine on and nanoparticulate TiO2 films. J. Photochem. Photobio. A: Chem., 43-51.
- 8. Kumar, R., et al., 1, 3, 5-TRIAZINE: A VERSATILE SCAFFOLD. Indian Journal of Drugs, 2018. 6(1): p. 9-48.
- 9. 1. Mooibroek, T.J.G., P. Inorg. Chim. Acta 2007, 360, 381-404.
- 10. Therrien, B.J.O.C., 696, 637-651.
- 11. Gamez, P.R., J. Eur. J. Inorg. Chem. 2006, 2006, 29-42.
- (a) Jason Krutz, L.S., D. L.; Weaver, M. A.; Webb, R. M.; Zablotowicz, R. M.; Reddy, K. N.;, Y.T. Huang, S. J. Pest Manage. Sci. 2010, 66, 461-481; (b) Li, D.; Zhang, Z.; Li, N.; Wang,, and S.J. K.; Zang, J.; Yu, A.; Zhang, H.; Li, X. Anal. Methods 2016, 8, 3788-3794.
- 13. Canero, A.I.C., L.; Redondo-Gómez, S.; Mateos-Naranjo, E.; Hermosín, M. C.; Cornejo, J. J. Agr. and Food Chem. 2011, 5528-5534.
- 14. TASLI, R., TISSUT, THONY, GARINO. Atrazine movement and dissipation, i.a.s.l.s.u.i.a.i.s.-B.E. Contam., and Toxicol., 56, 359-366.
- 15. de, L.F.-E.d.p.d.t.d.m.d.p.-A.e., et al.
- 16. LARSON R., S.M., MARLEY K. .- Ferric ion promoted photodecomposition and of triazines.- J. Agri. Food Chem., 39, 2057-2062.
- 17. SOUTHWICK L.M., W.G.H., BERGSON R.L., LORMAND T.J. Atrazine and, metolachlor in subsurface drain water in Louisiana.- J. irrig. Drain Eng, 1146, 16-, and 23.
- 18. Stanko, J., P., Enoch, R. R., Rayner, J. L., Davis, C. C., Wolf, D. C., Malarkey, D. E., et al.
- 19. Baker, N.J., Betsy A. Bancroft, B.A., Garcia, T.S., 2013. A meta-analysis of the effects, o.p.a.f.o.s.a.g.o.a.S.o.t. Total, and Environment 449.
- 20. https://pubchem.ncbi.nlm.nih.gov/.
- 21. https://comptox.epa.gov/dashboard/DTXSID7052785.
- 22. 1. Meister, R.T.e.F.C.H.W., OH: Meister Publishing Co. .
- 23. USDA Soil Conservation Service. 1990 (Nov.). SCS/ARS/CES Pesticide Properties Database: Version 2.0 (Summary). USDA Soil Conservation Service, S., NY.
- 24. Hayes, W.J.a.E.R.L.e.H.o.P.T., Vol. 3, Classes of Pesticides. Academic Press, Inc., NY.

- 25. Worthing, C.R., ed. 1983. The pesticide manual: A world compendium. Croydon, England: The British Crop Protection Council.
- 26. U.S. Environmental Protection Agency. 1988 (Aug.). Propazine: Health Advisory. Office of Drinking Water, U.E., Washington, DC.
- 27. Tomlin, C.D.S.e.T.P.M.-W.C., 11 th ed., British Crop Protection Council, Surrey, England 1997, p. 1024.
- 28. https://comptox.epa.gov/dashboard/DTXSID3021196.
- 29. Yalkowsky, S.H., He, Yan., Handbook of Aqueous Solubility Data: An Extensive Compilation of Aqueous Solubility Data for Organic Compounds Extracted from the AQUASOL dATAbASE. CRC Press LLC, Boca Raton, FL. 2003.
- 30. (1991), W.R.e.a.R.E.C.T.-.
- 31. http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:27496.
- 32. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+@rel+122-34-9.
- 33. https://cameochemicals.noaa.gov/chemical/18220.
- 34. https://comptox.epa.gov/dashboard/DTXSID4021268.

Partie I : famille des S-Triazines Chapitre 02 : Les méthodes théoriques

1)- Équation de Schrödinger

Toute l'information que l'on peut obtenir sur un système constitué d'un ensemble de particules est contenue dans la fonction d'onde Ψ du système. La fonction d'onde d'un système composé de M noyaux et N électrons est obtenue en résolvant l'équation de Schrödinger indépendante du temps suivante [1] :

ΗΨ=ΕΨ

Où E est l'énergie du système et H est l'opérateur correspondant : l'hamiltonien du système.

 Ψ est la fonction d'onde du système, fonction des coordonnées des noyaux et des électrons, contient toute l'information du système, E est l'énergie totale. Les valeurs propres de H sont les valeurs observables de cette énergie et les fonctions d'onde correspondantes sont les fonctions propres associées.

Cette équation est indépendante du temps et l'opérateur H prend en compte 5 interactions : l'énergie cinétique des noyaux T_N , l'énergie cinétique des électrons Te, la répulsion électrostatique internucléaire V_{NN} et inter électronique Vee et enfin, l'attraction nucléaire des électrons V_{Ne} . On peut développer l'Hamiltonien selon cette équation :

$$H = T_N + Te + V_{NN} + Vee + V_{Ne}$$

Son expression analytique est :

$$H = -\sum_{k} \frac{\hbar^{2}}{2m_{k}} \nabla_{k}^{2} - \sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \sum_{k < l} \frac{e^{2}Z_{k}Z_{l}}{\|R_{k} - R_{l}\|} + \sum_{i < j} \frac{e^{2}}{\|r_{i} - r_{j}\|} + \sum_{k} \sum_{i} \frac{e^{2}Z_{k}}{\|R_{k} - r_{i}\|}$$

Les indices i et j font référence aux électrons, k et l aux noyaux. Les $Z_{k,l}$ sont les charges nucléaires et e est la charge élémentaire, donc charge électronique.

L'équation de Schrödinger n'a de solution analytique exacte que pour les atomes hydrogénoïdes, Dans tous les autres cas, il sera nécessaire d'effectuer quelques approximations sur la nature de la fonction d'onde ψ . Une des spécificités de la fonction d'onde quelconque est qu'elle doit être orthonormée. L'intégration de son produit conjugué vaut l'unité et les produits croisés sont nuls.

$$\int \psi_j^* \psi_i dr = \delta_{ij}$$

Où δ_{ij} symbole de Kronecker, vaut 1 pour i = j et 0 pour i \ne j.

2)- Les méthodes utilisées :

2.1)- La théorie fonctionnelle de la densité :[2].

La fonctionnelle de la densité électronique, telle qu'elle est utilisée aujourd'hui, est en fait basée sur les théorèmes publiés en 1964 par Hohenberg et Kohn [3]. Le premier théorème a comme conséquence que l'énergie de l'état fondamental d'un système ne dépend que de sa densité électronique. Le deuxième théorème qui montre que l'énergie de l'état fondamental est donnée par la densité électronique exacte [3], permet la mise en œuvre du principe variationnel. Cependant, ces théorèmes ne permettent pas pour autant des calculs précis. En particulier, l'énergie ne peut pas être calculée de façon exacte, car l'expression de la fonctionnelle n'est pas connue. La méthode de Kohn et Sham, proposée en 1965, permet de remédier à ce problème [4]. Ces auteurs considèrent un système fictif d'électrons non interagissant ayant la même densité électronique que le système réel étudié. Cette méthode propose de calculer l'énergie cinétique notée $Ts[\rho]$ à partir des spin-orbitales de ce système fictif.

2.2)- Les différentes approximations de la DFT :

Le problème de la fonction de corrélation et d'échange reste toujours délicat, l'utilisation des approximations est toujours demandable et pour cela des nouvelles approximations ont été trouvé avec la DFT. D'après Ziegler les fonctionnels d'énergie d'échange-corrélation ont été classifiés en trois générations.

2.2.1)- Théorèmes de Hohenberg et Kohn

Les deux théorèmes de Hohenberg et Kohn formulés en 1964 [05] ont permis de donner Une cohérence aux modèles développés sur la base de la théorie proposée par Thomas et Fermi à la fin des années 30.

2.2.1.1)- Premier théorème :

On peut utiliser la densité électronique comme variable de base pour la résolution de l'équation de Schrödinger électronique. Etant donné que r (r) est liée au nombre D'électrons du système, elle peut en effet également déterminer les fonctions propres Ψ de L'état fondamental ainsi que toutes les autres propriétés électroniques du système ; si N est le Nombre d'électrons du système, on a :

$$\begin{split} E_v[\rho] &= T[\rho] + \int \rho v(r) dr + v_{ee}(\rho) = \int \rho v(r) dr + F_{HK}[\rho] \\ &\int \rho v(r) dr = N \end{split}$$

$$O\dot{u}$$
: $F_{HK}[\rho]=T[\rho] + V_{ee}[\rho]$

Le terme $V_{ee}[\rho]$ est composé de deux parties : la première correspond à l'interaction coulombienne classique $J[\rho]$, et la seconde partie dite non-classique est appelée « énergie d'échange et de corrélation ».

 $F_{HK}[\rho]$ est une fonctionnelle prenant en compte tous les effets inter électroniques : elle est indépendante du potentiel externe, donc elle est valable quel que soit le système étudié. La connaissance de $F_{HK}[\rho]$ permet l'étude de tous les systèmes moléculaires, malheureusement la forme exacte de ce fonctionnel est à l'heure actuelle inconnue.

2.2.1.2)- Deuxième théorème :

Nous venons d'établir que la densité de l'état fondamental est en principe suffisante pour obtenir toutes les propriétés intéressantes d'un système électronique. Seulement, comment pouvons-nous être sûrs qu'une densité donnée est celle de l'état fondamental recherché ?

Hohenberg et Kohn répondent à cette question à travers un second théorème [5] que nous pouvons énoncer de la façon suivante :

L'énergie $E_{test}[\rho]$, associée à toute densité d'essai, satisfaisant les conditions limites nécessaires $\rho_{test}(r) \ge 0$ et $\int \rho_{test}(r) dr = N$ et associée à un potentiel extérieure, est supérieur ou égale à l'énergie associée à la densité électronique de l'état fondamental. $E[\rho_{fond}]$.

Ce théorème n'est rien d'autre que le principe variationnel exprimé pour des énergies fonctionnelles d'une densité, $E[\rho]$ et non d'une fonction d'onde, $E[\Psi]$ [6, 7]. Or, d'après le premier théorème, une densité d'essai définit son propre hamiltonien et de même son propre Fonction d'onde d'essai. A partir de là, nous pouvons avoir une correspondance entre le principe variationnel dans sa Version fonction d'onde et dans sa version densité électronique telle que :

 $<\!\!\Psi_{test}|H| \; \Psi^*_{test}\!\!> =\!\!E\; \left[\rho_{test}\right] \!\geq \! E_{fond} = <\!\!\Psi_{fond}|H| \; \Psi^*_{fond}\!\!>$

<u>En résumé</u>: toutes les propriétés d'un système défini par un potentiel externe V_{ext} peuvent être déterminées à partir de la densité électronique de l'état fondamental. L'énergie du Système $E(\rho)$ atteint sa valeur minimale si et seulement si la densité électronique est celle de L'état fondamental. L'utilisation de cette approche variationnel se limite à la recherche de L'énergie de l'état fondamental et, pour être plus précis, ce raisonnement est limité à l'état Fondamental pour une symétrie donnée.

2.2)- Approche perturbative Moller-Plesset :

La théorie de la perturbation de Moller-Plesset est l'une des premières théories utilisée pour introduire un certain degré de corrélation électronique. Bien avant que les méthodes DFT soient répondues, la méthode MP₂ était l'une des manières à améliorer les calculs HF.

Dans la méthode des perturbations de Moller-Plesset [8], la corrélation électronique est vue comme une perturbation de l'hamiltonien électronique total construit à partir de la somme des opérateurs de Fock :

$\boldsymbol{H}\boldsymbol{T} = \boldsymbol{H}\boldsymbol{0} + \mathbf{V}$

*H*₀ : le terme d'ordre zéro, construit à partir de la somme des opérateurs de Fock et dont les fonctions propres sont les solutions Hartree-Fock,

V : représente la perturbation due à la corrélation électronique.

Il est important de mentionner que l'énergie d'ordre zéro est égale à la somme des énergies orbitalaires,

Dans la pratique, les méthodes de Moller-Plesset à l'ordre 2 (MP2) ou à l'ordre 4 (MP4) sont les plus utilisées. Cependant, cette approche n'est valable que si la fonction d'onde d'ordre zéro est déjà une bonne approximation de la fonction d'onde exacte. Si cette méthode peut correctement modéliser une grande variété de systèmes et les géométries optimisées par MP2 sont précises, il existe des cas ou la méthode MP2 ne donne pas de solution satisfaisante.

En conclusion, plus la structure électronique d'un système est inhabituelle, tel que dans les composés hybrides, plus le niveau de théorie nécessaire pour le modéliser est élevé [8].

2.3)- La Méthode de l'Espace Actif Complet (CASSCF) :

Les méthodes MCSCF sont assimilables à des interactions de configuration dans lesquelles, Les coefficients pondérant les déterminants tout comme les OM sont optimisés par le principe Variationnel. Pour pouvoir appliquer ce type de méthode, il faut effectuer une sélection Rigoureuse des déterminants à prendre en compte - afin d'en restreindre efficacement le Nombre

- et avoir, par-là même, une bonne connaissance de la structure électronique du Système ainsi étudié.

La méthode MCSCF la plus utilisée est la méthode CASSCF de l'anglais Complete Active Space Self-Consistent Field. Celle-ci consiste à diagonaliser l'hamiltonien dans un espace de Déterminants couramment appelé CAS. Cet espace contient toutes les configurations, qui Respectent la symétrie et le spin de l'état recherché, issues de la partition suivante des OM :

✓ Les orbitales inactives : ces orbitales sont toujours doublement occupées

✓ Les orbitales actives : leur occupation varie d'une configuration à l'autre (0,1 ou 2 Électrons par orbitale)

✓ Les orbitales virtuelles : ces orbitales ne contiennent jamais d'électrons.

La fonction d'onde CAS est donc construite comme combinaison linéaire de toutes les configurations électroniques obtenues par permutation des électrons actifs entre les orbitales actives choisies. Il s'agit d'une méthode développée à partir du modèle RHF qui permet d'obtenir une bonne approximation de la fonction d'onde d'ordre zéro dans le cas de systèmes possédant des niveaux énergétiques quasi-dégénérés. Il est à noter que cette approche n'introduit que les effets de corrélation électronique statique et ne permet pas de décrire les effets de corrélation dynamique [9].

2.4)- Fonctions de base :

Les ensembles de base standard pour les calculs de structure électronique utilisent des combinaisons linéaires de fonctions gaussiennes pour former les orbitales. Les ensembles de base assignent un groupe de fonctions de base à chaque atome d'une molécule pour se rapprocher de ses orbitales. Ces fonctions de base sont elles-mêmes composées d'une combinaison linéaire de fonctions gaussiennes ; ces fonctions de base sont appelées fonctions contractées et les fonctions gaussiennes du composant sont appelées primitives. Une fonction de base consistant en une seule fonction gaussienne est appelée non contractée. Les fonctions gaussiennes cartésiennes sont de la $g_{ijk} = Nx^i y^j z^k e^{-a r^2}$

 $O\hat{u}$: *i*, *j*, *k* sont des entiers non négatifs, α est un exposant positif et N est une constante de normalisation.

2.4.1)- Ensembles de base minimaux :

Les ensembles de base minimaux : contiennent le nombre minimal de fonctions de base nécessaires pour chaque atome.

Par exemple:

H: 1s

C: 1s, 2s, 2p_x, 2p_y, 2p_z

Les ensembles de base minimaux utilisent des orbitales de type atomique de taille fixe.

L'ensemble de la base STO-3G est un ensemble de base minimal ; il utilise trois primitives :

1 gaussiennes par fonction de base («3G»). «STO» signifie «orbitales de type Slater» et l'ensemble de base de STO-3G se rapproche des orbitales Slater avec des fonctions gaussiennes [10].

2.4.2)- Ensembles de base de valence :

Les ensembles de base de valence divisés, tels que les ensembles de base 3-21G et 6-31G, ont deux tailles (ou plus) de fonction de base pour chaque orbite de valence. Par exemple, dans les ensembles de base 3-21G et 6-31G ci-dessus, nous avons :

H: 1s s',

C: 1s, 2s, 2s', 2p_x, 2p_y, 2p_z, 2p_x ', 2 p_y ', 2 p_z'

Ici, les orbitales amorcées et non amorcées diffèrent par leur taille. Les ensembles de base de double valence zêta forment des orbitales moléculaires à partir des combinaisons linéaires de deux ensembles de fonctions pour chaque orbitale de valence atomique. De la même manière, les ensembles de base à triple scission, tels que 6-311G, utilisent trois ensembles de fonctions contractées pour chaque type orbital de valence.

2.4.3)- Base polarisée :

Les ensembles de base de valence fractionnée pourraient être améliorés en ajoutant des orbitales de formes différentes. Les ensembles de base polarisés ajoutent des orbitales avec des moments angulaires allant au-delà des exigences pour une description correcte de l'état fondamental de chaque atome au niveau HF. Par exemple, les ensembles de base polarisés ajoutent aux atomes d'hydrogène. Des exemples d'ensembles de base polarisés sont les ensembles de base 6-31G (d) et 6-311G (d, p). Fonctions d fonctions p

2.4. 4)- Fonctions diffusées

Les ensembles de base avec des fonctions diffuses supplémentaires sont des versions volumineuses des ensembles de base de valence divisée de type s et p. Les orbitales diffuses occupent une plus grande région de l'espace. Les ensembles de base avec des fonctions diffuses sont importants pour les systèmes où les électrons peuvent être éloignés du noyau. Un exemple de fonction de base diffuse est l'ensemble de base 6-311 + G(d, p)

aug-cc-pVTZ : augmente corrélation consistent –pVTZ Base de qualité triple-zeta sur les orbitales de valence aug : fonctions diffuses sur tous les atomes p : fonctions de polarisations sur tous les atomes [10].

3)- Les modèles de solvatations :

3.1)- Modèle de calcul de conducteur polarisable CPCM :

La possibilité d'intégrer les effets dus au solvant pour le calcul des différentes propriétés des systèmes chimiques reste un challenge dans la chimie quantique, car cela implique l'intervention de la mécanique statistique et donc, l'ajout de difficultés d'ordre supérieure. La majorité des réactions chimiques et biologiques ont cependant lieu en solution, le désir du chimiste théorique est donc celui de pouvoir posséder et utiliser des modèles permettant de tenir compte des effets dus au solvant.

Tomasi et Persico [11] ont proposé de diviser les différentes approches possibles du traitement des effets de solvant en quatre catégories :

- Equation d'état virielle, fonctions de corrélation
- Simulation de type Monte Carlo ou dynamique moléculaire
- Traitements de type continuum
- Traitements moléculaires

Le modèle PCM apparaît attractif pour représenter les effets de solvatation, en raison du temps de calcul réduit pour simuler une molécule en solution. Un autre avantage est que le modèle de continuum est une approche systématique où il ne faut pas construire les couches de solvatation pour chaque système étudié

4)- Les Logiciels utilisés :

4.1)- Logiciel Gaussian :

Basé sur les lois fondamentales de la mécanique quantique, le logiciel GAUSSIAN [22] nous a permet de pronostiquer les énergies, les Structures moléculaires et les fréquences de vibration de systèmes moléculaires complexes, et d'en anticiper leurs propriétés chimiques. Les molécules et réactions peuvent être étudiées dans une gamme étendue de conditions Non seulement pour des espèces stables, ou des composés complexes mais également pour des Composés impossibles à observer expérimentalement, comme des intermédiaires éphémères Ou des états de transition

- ✓ Gaussian offre la possibilité de modéliser la réactivité et les spectres de grosses molécules (en particulier grâce à la méthode ONIOM en calcul multicouche), les propriétés magnétiques (déplacements chimiques, constantes de couplage RMN, ...) et les rotations optiques de molécules chirales.
- ✓ Gaussian permet également de modéliser les énergies par des méthodes simples Hartree-Fock et Coupled Cluster, les couplages vibration/rotation et les spectres de vibration (Raman pré et non résonantes NR) en s'appuyant sur des méthodes d'analyse de haute précision telles que G3 et CBS-QB3.
- ✓ Gaussian permet d'étudier des composants et des réactions en phase gazeuse, en solution, et en phase solide (PCB). Par ailleurs les états excités peuvent être également analysés au travers d'un ensemble de méthodes éprouvées et largement reconnues (CASSCF, RASSCF, TDDFT, SAC-CI...).

 ✓ Gaussian propose aussi de réaliser des simulations de dynamique moléculaire basées sur la méthode ACMP (Atome Centered Matrix Propagation) afin d'explorer les hypothèses de chemins réactionnels et de distributions d'états

4.2)- ECOSAR :

Le programme **ECOSAR** (Ecological Structure Activity Relationships) est un système prédictif informatisé qui évalue la toxicité aiguë et chronique des composés organiques de plusieurs classes chimiques en fonction du $Log(K_{OW})$ [23]. Les résultats de ce code QSAR sont considérés comme des alternatives acceptables aux données expérimentales.

Le développement initial de la version informatisée d'ECOSAR, publié au début des années 1990, était axé sur les prévisions basées sur le log Kow pour les matières organiques neutres, sur la base des premières recherches du laboratoire 2 NHERL-Duluth.

Au fil des années, lorsque l'US EPA / OPPT des États-Unis a acquis une expérience en matière d'évaluation et de nouvelles données sur la toxicité par le biais du Programme concernant les nouveaux produits chimiques, de nombreux nouveaux RQSA ont été élaborés pour d'autres classes de produits chimiques qui traitent à la fois des effets aigus et chroniques.

Le Bureau a appuyé l'expansion continue du programme ECOSAR afin d'aider le personnel scientifique du programme de nouveaux produits chimiques EPA / OPPT des États-Unis à élaborer un profil de toxicité standard complet pour chaque produit chimique examiné, afin de caractériser les risques potentiels pour le milieu aquatique. Ce profil standard consiste en :

<u>a. Effets aigus :</u>

- ✓ Poisson CL50 96 heures
- ✓ Daphnie 48 heures LC50
- ✓ Algues 72 ou CE50 96 heures

<u>b. Effets chroniques :</u>

- ✓ Poisson ChV
- ✓ Daphnie ChV
- ✓ Algues ChV

La valeur ChV, ou valeur chronique, est définie comme la moyenne géométrique de la concentration sans effet observé (CSEO) et de la concentration minimale avec effet observé (CMEO).

Cela peut être représenté mathématiquement comme suit :

$ChV = 10 \land ([log (CMEO x CSEO)]/2)$

La toxicité pour ces espèces de substitution (poissons, invertébrés aquatiques et plantes aquatiques) est utilisée pour prédire la toxicité pour une communauté aquatique générale.

EPA / OPPT a axé ses ressources sur des modèles de toxicité aquatique pour les organismes d'eau douce, car la plupart des rejets de produits chimiques industriels se retrouvent dans les eaux douces.

Bien que certaines données sur les espèces terrestres et marines soient disponibles dans certains cas et programmées dans ECOSAR, les espèces terrestres et marines ne sont évaluées qu'au cas par cas en fonction de la fabrication, du traitement et de l'utilisation des produits chimiques.

La version actuelle d'ECOSAR s'efforce de fournir des estimations pour les six paramètres de toxicité pour les organismes aquatiques d'eau douce énumérés ci-dessus pour chaque classe programmée dans ECOSAR.

Les méthodes utilisées pour obtenir ces estimations sont décrites dans ce manuel à des fins de transparence des modèles et sont destinées à accompagner le programme de classe ECOSAR développé par l'EPA pour une utilisation sur un ordinateur personnel [24].

Références:

- 1. (a) E. Schrödinger, A.P.b.S., E. Ann. Phys. 79(1926) and 489.
- 2. Essentials of Computational Chemistry, n.E.C.J.C. and L.I.-.-.c.-.-p. □ 2004 John Wiley & Sons.
- 3. P. Hohenberg, W.K., Phys. Rev, 136 (1964).
- 4. W. Kohn, L.J.S., Phys. Rev. 140 (1965) A1113.
- 5. A. Bencini et D. Gatteschi, E.o.E.C.S.S.V. and Berlin.
- 6. H. A. Kramers, P., 182 (1934).
- 7. P. W. Anderson, P.R., 350 (1950).
- 8. Ml2lller, C.P., M. S. Phys. Rev. 1934,46,618-622.
- 9. Orio, M., Etude par la Théorie de la Fonctionnelle de la Densité des propriétés électroniques et magnétiques de complexes de fer. Application aux systèmes de types Catalase et Fer-Soufre. 2007, Université Joseph-Fourier-Grenoble I.
- 10. Shodor logoThe Shodor Education Foundation, I., N.C.f.S. Applications, and I. © Copyright 1999-2000
- 11. Peuckert, J.P.C., 4945, (1978).
- 12. Nadjia, L., ETUDE CINETIQUE ET THEORIQUE DE LA DETECTIONDE FAIBLES NUCLEOPHILIES PAR COUPLAGEELECTROPHILE AVEC DIVERSNITROBENZOFURAZANES ETNITROBENZOFUROXANES. Soutenue publiquement le: 16/12 /2009.
- 13. H. B. Jansen and P. Ros, C.P.L., 140 (1969).
- 14. B. Liu and A. D. McLean, J.C.P., 4557 (1973).
- 15. F. B. van Duijneveldt, J.G.C.M.v.D.-v.d.R., and J. H. van Lenthe, Chem. Rev. 94, 1873 (1994).
- 16. S. F. Boys and F. Bernardi, M.P., 553 (1970). .
- 17. T. H. Dunning, J.P.C.A., 9062 (2000).
- 18. K. R. Liedl, J.C.P., 3199 (1998).
- 19. A. Halkier, W.K., T. Helgaker, P. Jørgensen, and P. R. Taylor, J. Chem. Phys. 111, 9157 (1999).
- 20. C. D. Sherrill, T.T., and E. G. Hohenstein, J. Phys. Chem. A 113, 10146 (2009).
- 21. K. S. Kim, P.T., and J. Y. Lee, Chem. Rev. 100, 4145 (2000). .
- 22. Frisch, M.J.T., G. W.; Schlegel, H. B.; Scuseria, G.E.; Robb, M. A.; Cheeseman, J. R.;, et al.
- 23. Brain, R.A., et al., Aquatic plants exposed to pharmaceuticals: effects and risks, in Reviews of environmental contamination and toxicology. 2008, Springer. p. 67-115.
- 24. METHODOLOGY DOCUMENTfor theECOlogical Structure-Activity Relationship Model(ECOSAR)Class Program, K.M. Kelly Mayo-Beana, Bill Meylanb, Peter Ranslowc, Editor. May 2012.

Partie I : famille des S-Triazines Chapitre 03 : Etude des clusters S-Triazines-Eau

I.1)- Etude Introductrice de la 1,2,3 Triazine (Cycle de base) :

Dans un premier temps, nous allons examiner les propriétés de la (1.3.5 Triazine) isolée afin de vérifier les méthodes et les approches théoriques choisis dans notre étude.

Figure I.3.1. : Structure chimique de la (1.3.5 Triazine)

<u>Etat Isolé :</u>

 Tableau I.3.1.:
 Paramètres géométriques calculés au niveau MP2/6-31G++(d,p):

Longueurs de	gueurs des liaisons (Å) Angles de valence (°)		Angles dièdre (°)		
H4-	1.0828854	H4-C1-N9	117.10239	H4-C1-N9-C3	179.99162
C1					
H5-C2	1.0828853	H5-C2-N7	117.10257	H5-C2-N7-C1	179.98550
H6-C3	1.0828856	H6-C3-N8	117.10231	H6-C3-N8-C2	-179.98285
N7-C1	1.3423759	N7-C1-N9	125.79765	N7-C1-N9-C3	-0.00232
N8-C2	1.3423759	N8-C2-N7	125.79765	N8-C2-N7-C1	0.01600
N9-C3	1.3423766	N9-C3-N8	125.79779	N9-C3-N8-C2	-0.00413

<u>Etat Solvaté :</u>

Tableau I.3.2.: Paramètres géométriques calculés au niveau MP2/6-31G++(d,p):

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)		
H4-	1.0824945	H4-C1-N9	117.25191	H4-C1-N9-C3	-179.91630	
Cl						
H5-C2	1.0824924	H5-C2-N7	117.25050	H5-C2-N7-C1	-179.85812	
H6-C3	1.0825012	H6-C3-N8	117.24952	<i>H6-C3-N8-C2</i>	179.83364	
N7-C1	1.3423113	N7-C1-N9	125.49292	N7-C1-N9-C3	0.03112	
N8-C2	1.3423113	N8-C2-N7	125.49705	N8-C2-N7-C1	-0.15112	
N9-C3	1.3423044	N9-C3-N8	125.49622	N9-C3-N8-C2	0.04905	

Chapitre 03 : Etude des clusters S-Triazines-Eau

L'étude théorique entamé est basé sur une optimisation des géométries effectué au niveau MP_2 Avec une base 6-31g++ (d, p) montre une corrélation avec les données tabulées dans Les handbooks.

Entre autre, les longueurs des liaisons sont de l'ordre de 1.08 Å pour la liaison C-H et de l'ordre de 1.34 Å pour la liaison C-N .Le cycle triazinique préserve sa forme planaire avec des angles dièdres aux alentours de 180°. Ainsi que les atomes de carbones préservent l'hybridation Sp² avec un angle de valence d'une valeur qui avoisine les 120°.

2)- Complexe (Cycle de base-H₂O) :

Jusqu'à présent une grande attention a été portée aux complexes impliquant des molécules azine Et des molécules d'eau. Les interactions électrostatiques (de type liaison hydrogène) stabilisent ses complexes.

Figure I.3.2 : Structure du cluster (1.3.5 Triazine)-H₂O

<u>Etat Isolé :</u>

Tableau I.3.3. : Paramètres géométriques calculés au niveau MP2/6-31G++(d,p):

Longueurs de	es liaisons (Å)	ons (Å) Angles de valence (°)		Angles dièdr	dre (°)	
H5-C2	1.0826833	H5-C2-N8	117.92564	H5-C2-N8-C3	-179.66116	
N7-C1	1.3419176	N7-C1-N9	125.55150	N7-C1-N9-C3	-0.01904	
N8-C2	1.3411190	N8-C2-N7	125.26101	N8-C2-N7-C1	-0.35032	
N9-C1	1.3406244	N9-C1-N7	125.5515022	N9-C1-N7-C2	0.2519966	
H12-N7	2.06022	H12-N7-C1	144.25596	H12-N7-C1-N9	168.69480	
010-Н12	0.97092	010-H12-N7	145.37221	010-H12-N7-C1	-162.61624	
010-Н5	2.66713	010-Н5-С2	109.64382	010-H5-C2-N7	-8.83921	

Chapitre 03 : Etude des clusters S-Triazines-Eau

Etat solvaté:

Longueurs de	es liaisons (Å)	Angles de ve	alence (°)	Angles dièdre (°)		
H5-C2	1.0823220	H5-C2-N8	117.49428	H5-C2-N8-C3	-179.99384	
N7-C1	1.3423925	N7-C1-N9	125.26000	N7-C1-N9-C3	-0.07676	
N8-C2	1.3404842	N8-C2-N7	125.25808	N8-C2-N7-C1	-0.24467	
N9-C1	1.3404529	N9-C1-N7	125.2600012	N9-C1-N7-C2	0.2434537	
H12-N7	1.97289	H12-N7-C1	122.83786	H12-N7-C1-N9	177.29766	
010-Н12	0.97580	<i>010-H12-N7</i>	177.11111	010-H12-N7-C1	-104.80264	

Tableau I.3.4. : Paramètres géométriques calculés au niveau $MP2/6-31G++(d, p)$
--

Les résultats obtenus montrent que le cycle triazinique préserve sa forme plane avec des angles dièdres aux alentours de 180°. Ainsi que les atomes de carbones préservent leurs hybridations Sp^2 .

La liaison hydrogène formé entre H-----N est de l'ordre de 2.7Å. Cette interaction n'affecte pas La planarité du cycle triazinique.

3)- Analyse vibrationnelle des structures (courbes FTIR) :

3.1)- Cas de la (1.3.5 Triazine) :

<u>Etat isolé :</u>

Figure I.3.3. : Spectre FTIR de la (1.3.5 Triazine) dans la phase gazeuse

MODE	Fréquence	Intensité
1	686.45	15.5392
2	686.45	15.5392
3	748.36	28.9025
4	1462.15	48.2583
5	1462.15	48.2568
6	1609.45	90.1608
7	1609.45	90.1623
8	3273.29	13.7609
9	3273.29	13.7608
10	3276.73	0.0000

Tableau I.3.5. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR de la (1.3.5 Triazine) dans la phase gazeuse

Etat solvaté :

Tableau I.3.6. : Les	fréquences et l	es intensités	des modes	les plus	importants	sur le spectre
FTIR de la (1.3.5 Triazine) solvaté						

MODE	Fréquence	Intensité
1	684.94	20.9147
2	685.09	20.8527
3	745.68	39.7833
4	1465.95	74.7489
5	1466.23	74.8423
6	1614.56	141.9512
7	1614.64	141.9429
8	3278.60	18.3379
9	3278.72	18.2769
10	3282.60	0.0089

3.2)- Cas du cluster (1.3.5 Triazine)-H₂O :

<u>Etat isolé :</u>

Figure 1.3.5. : Spectre FTIR du cluster (1.3.5 Triazine)-H₂O dans la phase gazeuse

Tableau I.3.7. :	Les	fréquences	et les	intensités	des n	10des .	les	plus	impo	rtants	sur	<u>le sp</u>	<i>ectre</i>
	FTIF	R du cluster	(1.3.	5 Triazine	$-H_2O$	dans	la p	phas	e gazo	euse			
									•				

MODE	Fréquence	Intensité
1	119.91	162.4124
2	323.61	85.6986
3	347.22	12.3306
4	358.25	83.7128
5	528.52	131.4475
6	1463.20	52.8541
7	1466.69	51.4949
8	1608.66	69.9502
9	1619.29	126.0991
10	1635.99	68.9530
11	3756.84	264.5522
12	3966.39	145.5604

<u>Etat solvaté :</u>

Figure I.3.6. : Spectre FTIR du cluster (1.3.5 Triazine)-H₂O état solvaté

Tableau I.3.8. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (1.3.5 Triazine)-H2O état solvaté

MODE	Fréquence	Intensité
1	83.40	178.4199
2	1615.88	141.4554
3	1624.76	162.0601
4	1647.98	87.8463
5	3660.95	803.9341
6	3936.79	153.9176

L'analyse vibrationnelle des structures optimisées confirme leurs stabilités par l'absence d'une fréquence imaginaire.

Les bandes d'absorption vibrationnelle pour le cluster d'eau sont légèrement décalé vers le bas Par rapport à celles de la structure de base.

Les bandes d'absorption aux alentours de 600 cm⁻¹ sont moins intenses par rapport à seules du cycle de base. Par contre, les bandes aux alentours de 3000 cm⁻¹ sont plus intenses pour le cluster (cycle de base-eau).
Chapitre 03 : Etude des clusters S-Triazines-Eau

4)- Etude thermodynamique de la formation du cluster (1.3.5 Triazine)-H₂O

Tableau 1.3.9. : Les paramètres thermodynamiques de la formation du complexe (S-triazine-
H2O) calculés dans plusieurs niveaux :

	Clusters	ΔH (kcal/mol)	ΔG (kcal/mol)	$\frac{\Delta E}{(kcal/mol)}$	$\frac{\Delta S}{(cal/mol.kel)}$
DFT/	Isolé	-5.0765559	3.16014036	2.299	-27.626
B3LYP-6-31G (d,p)	Solvaté	-3.77259012	4.24385013	2.228	-26.888
DFT/	Isolé	-3.59374977	3.07417149	2.144	-22.366
B3LYP++6-31G(d,p)	Solvaté	-2.91352893	4.39696257	2.128	-24.516
DFT/	Isolé	-6.02472351	2.33747475	2.337	-28.045
B3LYP-cc-pVDZ	Solvaté	-4.86006495	3.38667147	2.308	-27.661
DFT/ B3LYP-	Isolé	-3.2128512	4.05559713	2.186	-24.376
uug-cc-pvDL	Solvaté	-2.68197774	3.78137526	2.102	-21.675
MP2/6-31G-(d,p)	Isolé	-5.24723862	2.87462331	2.276	-27.242
	Solvaté	-3.80333811	4.10642544	2.239	-26.53
MP2/6-31G-++(d,p)	Isolé	-4.4804214	2.74410123	2.142	-24.231
	Solvaté	-3.50025078	3.58559214	2.132	-23.766

Thermodynamiquement, la formation du complexe (S-triazine- H_2O) n'est pas couteuse en énergie avec une valeur de ΔG aux alentours de 4 Kcal/mol (état isolé et solvaté).

Chapitre 03 : Etude des clusters S-Triazines-Eau

II)- Cas de la Simazine :

Etat Isolé :

 $\overline{L'}$ un des dérivés de la s-triazine, la simazine est un herbicide assez utilisé.

Figure I.3.7.: Structure chimique de la Simazine

Tableau I.3.10.: Paramètres géométriques calculés au niveau MP2/6-31G++(d,p):

Longueurs des	liaisons (Å)	Angles de v	alence (°)	Angles dièdre (°)	
CL25-C2	1.73403	CL25-C2-N6	115.71222	CL25-C2-N6-C3	0.37363
C2-N6	1.32779	C2-N6-C3	112.80473	C2-N6-C3-N4	0.37363
N6-C3	1.35902	N6-C3-N4	125.98765	N6-C3-N4-C1	-0.88790
C3-N4	1.34553	C3-N4-C1	113.83300	C3-N4-C1-N5	0.89221
N4-C1	1.34553	N4-C1-N5	125.98792	N4-C1-N5-C2	-0.38150
C1-N5	1.35901	C1-N5-C2	112.80482	C1-N5-C2-CL25	179.45107
N5-C2	1.32780	N5-C2-CL25	115.71184	С1-N7-С11-Н12	-68.12538
C1-N7	1.35401	С1-N7-Н8	114.44939	С1-N7-С11-Н13	48.73744
N7-H8	1.01092	C1-N7-C11	123.13938	N7-C11-C21-H22	60.09902
N7-C11	1.45555	H8-N7-C11	118.91162	N7-C11-C21-H23	179.37923
С11-Н12	1.09492	N7-C11-C21	109.77975	N7-C11-C21-H24	-60.66292
<i>C11-C21</i>	1.51961	N7-C11-H12	110.36353	<i>C3-N9-C14-C17</i>	-169.50469
C3-N9	1.35397	С11-С21-Н22	111.09284	N9-C14-C17-H18	-179.37357
N9-H10	1.01091	СЗ-N9-Н10	114.45610	N9-C14-C17-H19	-60.09382
N9-C14	1.45553	H10-N9-C14	118.91956	N9-C14-C17-H20	60.66888
C14-H15	1.09492	N9-C14-H15	110.36338	N4-C3-N9-C14	11.35615
<i>C</i> 14- <i>H</i> 16	1.08879	С14-С17-Н18	110.01818	N4-C1-N9-C11	-11.39748

Ce tableau présente les principaux paramètres géométriques pour la simazine.

Les longueurs des liaisons C-N à l'intérieure du cycle sont de l'ordre de 1.35Å et pour les C-N extra cyclique sont de l'ordre de 1.32Å.

Le cycle triazinique et clairement plans avec un angle dièdre de 180°.

Chapitre 03 : Etude des clusters S-Triazines-Eau

Longueurs de	s liaisons (Å)	Angles de	valence (°)	Angles dièd	re (°)
CL25-C2	1.74150	CL25-C2-N6	115.43552	CL25-C2-N6-C3	-179.55769
C2-N6	1.32574	C2-N6-C3	112.65921	C2-N6-C3-N4	0.27682
N6-C3	1.36478	N6-C3-N4	125.59144	N6-C3-N4-C1	-0.73610
C3-N4	1.34596	C3-N4-C1	114.36286	C3-N4-C1-N5	074168
N4-C1	1.34595	N4-C1-N5	125.59421	N4-C1-N5-C2	-0.28700
C1-N5	1.36475	C1-N5-C2	112.65796	C1-N5-C2-CL25	179.56232
N5-C2	1.32574	N5-C2-CL25	115.43473	С1-N7-С11-Н12	-67.47100
C1-N7	1.34825	С1-N7-Н8	115.21772	С1-N7-С11-Н13	49.59964
N7-H8	1.01144	C1-N7-C11	123.36602	N7-C11-C21-H22	60.08899
N7-C11	1.45832	H8-N7-C11	118.68769	N7-C11-C21-H23	179.39580
С11-Н12	1.09396	N7-C11-C21	109.78084	N7-C11-C21-H24	-60.83484
<i>C11-C21</i>	1.51909	N7-C11-H12	110.01486	C3-N9-C14-C17	-170.35471
С21-Н22	1.09054	СЗ-№9-Н10	115.224419	N9-C14-C17-H18	-179.38621
C3-N9	1.34825	H10-N9-C14	123.37512	N9-C14-C17-H19	-60.07980
N9-H10	1.01144	N9-C14-H15	110.01380	N9-C14-C17-H20	60.84368
N9-C14	1.45832	N9-C14-H16	107.90501	N4-C3-N9-C14	9.53102
C14-H15	1.09396	С14-С17-Н18	109.71959	N4-C1-N9-C11	-9.59571

Etat Solvaté :

Tableau I.3.11.: Paramètres géométriques calculés au niveau MP2/6-31G++(d,p):

Les paramètres géométriques conservent pratiquement leurs valeurs pour la simazine solvaté (le solvant utilisé : le chloroforme).

2)- Clusters (Simazine-H₂O) :

Figure I.3.8. : Différentes structures possibles des Clusters Simazine-H₂O

Le balayage de la symétrie des clusters donne cinq positions possibles de la complexation de la simazine avec la molécule H_2O . On aura : le cluster N_4 , le cluster N_5 , le cluster N_6 , le cluster N_7 et le cluster N_9 .

2.1) Etude structurelle des clusters (Simazine-H₂O) :

2.1.1) Etat Isolé :

- <u>Cluster (Simazine-H₂O) Position N4</u> Tablazzi L 2 12 - Deservice a familie and familie and
 - Tableau I.3.12. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des	liaisons (Å)	Angles de v	valence (°)	Angles dièdi	~e (°)
CL25-C2	173349	CL25-C2-N6	115.71090	CL25-C2-N6-C3	-179.83816
C2-N6	1.32440	C2-N6-C3	112.75041	C2-N6-C3-N4	1.10550
N6-C3	1.36201	N6-C3-N4	125.81261	N6-C3-N4-C1	-1.43573
C3-N4	1.34082	C3-N4-C1	114.40534	C3-N4-C1-N5	0.53107
N4-C1	1.36069	N4-C1-N5	124.99193	N4-C1-N5-C2	0.54590
C1-N5	1.35558	C1-N5-C2	113.19512	C1-N5-C2-CL25	179.08460
N5-C2	1.33066	N5-C2-CL25	115.46207	С1-N7-С11-Н12	-72.85709
<i>C1-N7</i>	1.34491	С1-N7-Н8	116.42368	С1-N7-С11-Н13	44.02009
N7-H8	1.01639	C1-N7-C11	123.13253	N7-C11-C21-H22	59.09796
N7-C11	1.45728	H8-N7-C11	119.35417	N7-C11-C21-H23	178.54899
С11-Н12	1.09396	N4-H28-O26	151.61986	N7-C11-C21-H24	-61.65355
<i>C11-C21</i>	1.51968	N7-C11-C21	109.51454	C3-N9-C14-C17	-178.55204
N4-H28	1.94965	N7-C11-H12	110.01480	N9-C14-C17-H18	179.68221
C3-N9	1.35318	СЗ-N9-Н10	114.64633	N9-C14-C17-H19	-60.90190
N9-H10	1.01048	H10-N9-C14	123.58503	N9-C14-C17-H20	60.01716
N9-C14	1.45396	N9-C14-H15	110.04791	N4-C3-N9-C14	8.80943
C14-H15	1.09511	С14-С17-Н18	109.97731	N4-C1-N9-C11	6.41976

Les paramètres géométriques du cluster N4 à l'état isolé ainsi qu'à l'état solvaté ont été calculé : La liaison C-N cyclique persiste à une valeur de 1.34Å.

- La maison C-N cyclique persiste à une valeur de 1.54A.
- *l'extra cyclique à la valeur 1.32Å ainsi que la liaison hydrogène N4-H27 est égale à 1.95Å.*

- <u>Cluster (Simazine-H₂O) Position N5</u>

Tableau I.3.13. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C3	1.3431542	<i>N4-C3-C2</i>	93.0266319	N4-C3-C2-C1	0.2765040
N5-C2	1.3282373	N5-C2-C1	33.9010690	N5-C2-C1-N4	-179.81915
N6-C2	1.3243168	N6-C2-C1	94.7271783	N6-C2-C1-N4	-0.1836579
N7-C1	1.3447477	N7-C1-N4	118.4656219	N7-C1-N4-C3	-179.06344
H8-N7	1.0173203	H8-N7-C1	116.0257799	H8-N7-C1-N4	-172.86175
N9-C3	1.3522277	N9-C3-C2	148.8042045	N9-C3-C2-C1	-177.32957
H10-N9	1.0108549	H10-N9-C3	114.6359577	H10-N9-C3-C2	-12.110217
C11-N7	1.4553462	C11-N7-C1	122.9400316	C11-N7-C1-N4	-7.0798860
C14-N9	1.4556258	C14-N9-C3	123.2368913	C14-N9-C3-C2	-172.17807
H15-C14	1.0946963	H15-C14-N9	110.2736571	H15-C14-N9-C3	68.6931919
H16-C14	1.0888135	H16-C14-N9	107.7205449	H16-C14-N9-C3	-48.113326

Chapitre 03 : Etude des clusters S-Triazines-Eau

<i>C17-C14</i>	1.5195619	C17-C14-N9	109.7932473	C17-C14-N9-C3	-168.97484
CL25-C2	1.7356608	CL25-C2-C1	149.3266387	CL25-C2-C1-N7	-1.8000786
026-N5	2.8429673	026-N5-C2	145.5657848	026-N5-C2-C1	-163.05259
H27-N5	1.98495	H27-N5-O26	145.22913	<i>H27-N5-O26-H8</i>	6.15742
026-Н8	2.02261	<i>026-H8-N7</i>	149.59253	<i>O26-H8-N7-C1</i>	5.34989

- <u>Cluster (Simazine-H₂O) Position N6</u> <u>Tableau I.3.14.: Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):</u>

Longueurs des	liaisons (Å)	Angles de v	alence (°)	Angles dièdre (°)	
N4-C3	1.3431542	N4-C3-C2	93.0266330	N4-C3-C2-C1	-0.2765046
N5-C2	1.3243168	N5-C2-C1	34.2319968	N5-C2-C1-N4	179.561126
N6-C2	1.3282372	N6-C2-C1	94.3954786	N6-C2-C1-N4	-0.5316802
N7-C1	1.3522277	N7-C1-N4	118.1398286	N7-C1-N4-C3	-178.15323
H8-N7	1.0108549	H8-N7-C1	114.6359646	H8-N7-C1-N4	-170.60097
N9-C3	1.3447469	N9-C3-C2	149.3340441	N9-C3-C2-C1	-178.86451
H10-N9	1.0173201	H10-N9-C3	116.0258607	H10-N9-C3-C2	-8.1159574
C11-N7	1.4556258	C11-N7-C1	123.2368990	C11-N7-C1-N4	-10.533075
C14-N9	1.4553459	C14-N9-C3	122.9400134	<i>C14-N9-C3-C2</i>	-173.89791
H15-C14	1.0944564	H15-C14-N9	110.0454833	H15-C14-N9-C3	68.9891030
H16-C14	1.0895684	H16-C14-N9	108.2519161	H16-C14-N9-C3	-47.920092
<i>C17-C14</i>	1.5197435	C17-C14-N9	109.5584402	C17-C14-N9-C3	-169.03974
CL25-C2	1.7356612	CL25-C2-C1	150.1746551	CL25-C2-C1-N4	179.041724
026-N5	2.8429671	026-N6-C2	145.5658006	026-N6-C2-C1	163.450878
H27-O26	0.9773636	H27-O26-N6	23.4643055	H27-O26-N6-C2	15.2655671
H28-O26	0.9637838	H28-O26-N6	124.0943174	H28-O26-N6-C2	60.6049957
H27-N6	1.98495	H28-N6-O26	11.30653	H28-N6-O26-H10	172.74849
026-Н10	2.02261	O26-H10-N9	149.59246	<i>026-H10-N9-C3</i>	-5.34981

- <u>Cluster (Simazine-H2O) Position N7</u>

Tableau I.3.15. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C3	1.3399680	N4-C3-C2	93.1116889	N4-C3-C2-C1	-0.3595007
N5-C2	1.3312460	N5-C2-C1	33.9808588	N5-C2-C1-N4	179.781291
N6-C2	1.3263095	N6-C2-C1	94.3607401	N6-C2-C1-N4	-0.3995915
N7-C1	1.3705733	N7-C1-N4	117.8425802	N7-C1-N4-C3	-176.54429
H8-N7	1.0146471	H8-N7-C1	112.0907782	H8-N7-C1-N4	-162.76073
N9-C3	1.3494215	N9-C3-C2	149.2727643	N9-C3-C2-C1	-177.79599
H10-N9	1.0107086	H10-N9-C3	115.0698069	H10-N9-C3-C2	-9.7593403
C11-N7	1.4666292	C11-N7-C1	120.7940779	C11-N7-C1-N4	-20.063735
C14-N9	1.4561903	C14-N9-C3	123.5783520	C14-N9-C3-C2	-174.07791
H15-C14	1.0943858	H15-C14-N9	110.1765767	H15-C14-N9-C3	70.3840518
H16-C14	1.0889028	H16-C14-N9	107.7821685	H16-C14-N9-C3	-46.485681

Chapitre 03 : Etude des clusters S-Triazines-Eau

<i>C17-C14</i>	1.5194552	C17-C14-N9	109.7608317	<i>C17-C14-N9-C3</i>	-167.37171
CL25-C2	1.7313896	CL25-C2-C1	149.7000773	CL25-C2-C1-N7	178.823630
026-N5	2.9936239	<i>026-N5-C2</i>	106.9342252	026-N5-C2-C1	83.4431791
H27-O26	0.9718291	H27-O26-N5	11.6900496	H27-O26-N5-C2	49.5452216
H28-O26	0.9641089	H28-O26-N5	116.6625624	H28-O26-N5-C2	35.9059712
N7-H27	2.05142	N7-H27- O26	162.80184	N7-H27- O26-H8	-70.89203
026-Н8	3.39095	<i>026-H8-N7</i>	58.78432	O26-H8-N7-C1	-115.36913

_

<u>Cluster (Simazine-H2O) Position N9</u> <u>Tableau I.3.16.:</u> Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des	liaisons (Å)	Angles de v	alence (°)	Angles dièdr	~e (°)
N4-C3	1.3404558	<i>N4-C3-C2</i>	93.0411719	N4-C3-C2-C1	-0.1026462
N5-C2	1.3259631	N5-C2-C1	33.9759072	N5-C2-C1-N4	179.736965
N6-C2	1.3317460	N6-C2-C1	94.3551308	N6-C2-C1-N4	-0.0915385
N7-C1	1.3504433	N7-C1-N4	117.9595538	N7-C1-N4-C3	-178.60652
H8-N7	1.0108853	H8-N7-C1	114.8565806	H8-N7-C1-N4	-171.29447
N9-C3	1.3707653	N9-C3-C2	148.8178341	N9-C3-C2-C1	173.312418
H10-N9	1.0141772	H10-N9-C3	112.0060117	H10-N9-C3-C2	22.4809097
C11-N7	1.4571654	C11-N7-C1	123.1319025	C11-N7-C1-N4	-10.526245
C14-N9	1.4657594	C14-N9-C3	120.8842927	<i>C14-N9-C3-C2</i>	166.138761
H15-C14	1.0901686	H15-C14-N9	106.4295048	H15-C14-N9-C3	168.485880
H16-C14	1.0884043	H16-C14-N9	107.2437235	H16-C14-N9-C3	53.3841522
<i>C17-C14</i>	1.5235717	C17-C14-N9	113.1566458	C17-C14-N9-C3	-69.237514
CL25-C2	1.7312174	CL25-C2-C1	149.9316131	CL25-C2-C1-N4	-179.61852
026-N5	0097409	026-N6-C2	106.5136748	026-N6-C2-C1	-89.786754
H27-O26	0.9712995	H27-O26-N6	8.6298982	H27-O26-N6-C2	49.7201745
H28-O26	0.9640277	H28-O26-N6	113.7188619	H28-O26-N6-C2	48.8544502
N9-H27	2.05461	N9-H27-O26	167.30239	N6-H28-O26-H28	179.17910

Chapitre 03 : Etude des clusters S-Triazines-Eau

2.1.2) Etat solvaté

- <u>Cluster (S</u>	imazine-H ₂ O) Position N4
Tableau I.3.17. :	Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)	
N4-C3	1.3503090	<i>N4-C3-C2</i>	92.1730399	N4-C3-C2-C1	-2.6183560
N5-C2	1.3259691	N5-C2-C1	34.1556212	N5-C2-C1-N4	178.577459
N6-C2	1.3255893	N6-C2-C1	95.0899293	N6-C2-C1-N4	-3.2178530
N7-C1	1.3432197	N7-C1-N4	118.5889367	N7-C1-N4-C3	-175.47570
H8-N7	1.0113808	H8-N7-C1	115.5120263	H8-N7-C1-N4	-178.04638
N9-C3	1.3424356	N9-C3-C2	149.3215490	N9-C3-C2-C1	-176.68651
H10-N9	1.0113046	H10-N9-C3	115.5952371	H10-N9-C3-C2	-2.8327959
C11-N7	1.4589005	C11-N7-C1	125.0378343	C11-N7-C1-N4	5.8649699
C14-N9	1.4594521	C14-N9-C3	124.9155996	<i>C14-N9-C3-C2</i>	173.313354
H15-C14	1.0916822	H15-C14-N9	110.0795089	H15-C14-N9-C3	85.5438071
H16-C14	1.0897403	H16-C14-N9	107.6165487	H16-C14-N9-C3	-31.505979
<i>C17-C14</i>	1.5195048	C17-C14-N9	109.7982182	C17-C14-N9-C3	-152.30127
CL25-C2	1.7403209	CL25-C2-C1	149.5288193	CL25-C2-C1-N7	-4.6984673
N4-H27	1.94962	026-N5-C2	113.7651072	026-N5-C2-C1	55.6027054
H27-O26	0.9762318	H27-O26-N5	4.0270002	H27-O26-N5-C2	-95.613809
H28-O26	0.9654763	H28-O26-N5	101.6769704	H28-O26-N5-C2	44.5089073

_

<u>Cluster (Simazine-H2O) Position N5</u> <u>Tableau I.3.18.:</u> Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)		
N4-C3	1.3447831	N4-C3-C2	92.6865264	N4-C3-C2-C1	0.3735165	
N5-C2	1.3265279	N5-C2-C1	34.0501038	N5-C2-C1-N4	-179.95663	
N6-C2	1.3231595	N6-C2-C1	94.9090227	N6-C2-C1-N4	-0.3398091	
N7-C1	1.3424107	N7-C1-N4	118.6860624	N7-C1-N4-C3	-178.83832	
H8-N7	1.0161818	H8-N7-C1	116.2807014	H8-N7-C1-N4	-174.54438	
N9-C3	1.3465557	N9-C3-C2	148.9477580	N9-C3-C2-C1	-177.37988	
H10-N9	1.0113592	H10-N9-C3	115.3845299	H10-N9-C3-C2	-11.232527	
C11-N7	1.4575028	C11-N7-C1	123.4226849	C11-N7-C1-N4	-4.3637265	
C14-N9	1.4581482	C14-N9-C3	123.5544097	<i>C14-N9-C3-C2</i>	-173.95250	
H15-C14	1.0938117	H15-C14-N9	109.9626772	H15-C14-N9-C3	68.6321144	
H16-C14	1.0887869	H16-C14-N9	107.9049934	H16-C14-N9-C3	-48.426163	
<i>C17-C14</i>	1.5191053	C17-C14-N9	109.7417353	C17-C14-N9-C3	-169.27729	
CL25-C2	1.7403775	CL25-C2-C1	149.3396883	CL25-C2-C1-N7	-1.9025119	
026-N5	2.8505067	026-N5-C2	144.7726377	026-N5-C2-C1	-178.25848	
H27-O26	0.9653860	H27-O26-N5	119.6275192	H27-O26-N5-C2	56.3830429	
H28-O26	0.9781808	H28-O26-N5	20.5826903	H28-O26-N5-C2	4.5005956	
H28-N5	1.96509	H28-N5-O26	149.33874	H28-N5-O26-H8	-6.37704	
<i>O</i> 26- <i>H</i> 8	2.10067	<i>026-H8-N7</i>	148.44965	026-H8-N7-C1	-12.51871	

Chapitre 03 : Etude des clusters S-Triazines-Eau

- <u>Cluster (Simazine-H₂O) Position N6</u> <u>Tableau I.3.19. :</u> Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des	liaisons (Å)	Angles de v	alence (°)	Angles dièdre (°)		
N4-C3	1.3448701	N4-C3-C2	92.6836496	N4-C3-C2-C1	-0.2637836	
N5-C2	1.3230412	N5-C2-C1	34.3067903	N5-C2-C1-N4	179.554156	
N6-C2	1.3267324	N6-C2-C1	94.6333952	N6-C2-C1-N4	-0.5705723	
N7-C1	1.3464639	N7-C1-N4	118.3330020	N7-C1-N4-C3	-178.26059	
H8-N7	1.0113742	H8-N7-C1	115.3808009	H8-N7-C1-N4	-171.32049	
N9-C3	1.3432018	N9-C3-C2	149.1960428	N9-C3-C2-C1	-178.91446	
H10-N9	1.0162307	H10-N9-C3	116.0906518	H10-N9-C3-C2	-7.8876086	
C11-N7	1.4582607	C11-N7-C1	123.5344235	C11-N7-C1-N4	-8.6789778	
C14-N9	1.4579017	C14-N9-C3	123.2449238	<i>C14-N9-C3-C2</i>	-174.63784	
H15-C14	1.0936939	H15-C14-N9	109.8853905	H15-C14-N9-C3	68.7961425	
H16-C14	1.0892426	H16-C14-N9	108.2288359	H16-C14-N9-C3	-48.314362	
<i>C17-C14</i>	1.5192209	C17-C14-N9	109.6325064	<i>C17-C14-N9-C3</i>	-169.27834	
CL25-C2	1.7401854	CL25-C2-C1	150.0750480	CL25-C2-C1-N7	179.131296	
026-N5	2.8490195	026-N5-C2	143.8608259	026-N5-C2-C1	165.246600	
N6-H28	1.96224	N6-H28-O26	149.55969	N6-H28-O26-H10	-8.89510	
<i>O26-H10</i>	2.10626	<i>O26-H10-N9</i>	148.55047	<i>026-H10-N9-C3</i>	-3.17102	

- Clusters (Simazine-H₂O) Position N7

Tableau I.3.20. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)		
N4-C3	1.3391302	N4-C3-C2	92.8479999	N4-C3-C2-C1	-0.0652943	
N5-C2	1.3296445	N5-C2-C1	34.1376124	N5-C2-C1-N4	-179.55739	
N6-C2	1.3240214	N6-C2-C1	94.6794937	N6-C2-C1-N4	0.1262673	
N7-C1	1.3682455	N7-C1-N4	117.9838738	N7-C1-N4-C3	176.594320	
H8-N7	1.0151468	H8-N7-C1	112.3835270	H8-N7-C1-N4	162.837443	
N9-C3	1.3440451	N9-C3-C2	149.4482215	N9-C3-C2-C1	-177.51848	
H10-N9	1.0113930	H10-N9-C3	115.6608536	H10-N9-C3-C2	-9.8883224	
C11-N7	1.4681427	C11-N7-C1	120.6824377	C11-N7-C1-N4	20.6916815	
C14-N9	1.4590673	C14-N9-C3	123.6213729	<i>C14-N9-C3-C2</i>	-175.28248	
H15-C14	1.0933298	H15-C14-N9	109.8081356	H15-C14-N9-C3	67.1225127	
H16-C14	1.0890494	H16-C14-N9	108.0664123	H16-C14-N9-C3	-49.969266	
<i>C17-C14</i>	1.5188664	C17-C14-N9	109.7223074	C17-C14-N9-C3	-170.83298	
CL25-C2	1.7380561	CL25-C2-C1	149.6239704	CL25-C2-C1-N7	-179.93955	
026-N5	3.0163454	026-N5-C2	101.9530869	026-N5-C2-C1	-86.789556	
H27-O26	0.9655372	H27-O26-N5	109.3940232	H27-O26-N5-C2	-30.932335	
H28-O26	0.9733189	H28-O26-N5	5.7801712	H28-O26-N5-C2	-68.134703	
N7-H27	2.05032	N7-H27-O26	171.47950	N7-H27-O26-H28	-143.85891	

Chapitre 03 : Etude des clusters S-Triazines-Eau

- <u>Cluster (Simazine-H₂O) Position N9</u> <u>Tableau I.3.21.:</u> Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des	liaisons (Å)	Angles de vo	alence (°)	Angles dièdre (°)		
N4-C3	1.3394739	N4-C3-C2	92.7658918	N4-C3-C2-C1	0.2149830	
N5-C2	1.3237203	N5-C2-C1	34.1327742	N5-C2-C1-N4	179.545915	
N6-C2	1.3299852	N6-C2-C1	94.6978121	N6-C2-C1-N4	-0.5498344	
N7-C1	1.3447185	N7-C1-N4	118.2350291	N7-C1-N4-C3	-178.11613	
H8-N7	1.0114303	H8-N7-C1	115.6214895	H8-N7-C1-N4	-172.21947	
N9-C3	1.3681566	N9-C3-C2	148.9299877	N9-C3-C2-C1	173.396154	
H10-N9	1.0146550	H10-N9-C3	112.3656785	H10-N9-C3-C2	22.3196643	
C11-N7	1.4590511	C11-N7-C1	123.5442232	C11-N7-C1-N4	-7.6864663	
C14-N9	1.4677086	C14-N9-C3	120.8171754	C14-N9-C3-C2	165.210699	
H15-C14	1.0896496	H15-C14-N9	106.3333322	H15-C14-N9-C3	169.295470	
H16-C14	1.0883617	H16-C14-N9	107.4869543	H16-C14-N9-C3	53.8459663	
<i>C17-C14</i>	1.5231856	C17-C14-N9	112.9987152	<i>C17-C14-N9-C3</i>	-68.847918	
CL25-C2	1.7381256	CL25-C2-C1	149.8453742	CL25-C2-C1-N7	-2.7466249	
026-N5	3.0188555	026-N5-C2	101.8878693	026-N5-C2-C1	-86.826292	
N9-H27	2.04940	N9-H27-O26	173.91621	N9-H27-O26-H28	148.25128	

3)- Analyse vibrationnelle des structures (courbes FTIR) au niveau MP2/6-31G++(d,p):

3.1)- Cas de la simazine :

<u>Etat isolé :</u>

Figure I.3.9. : Spectre FTIR de la Simazine dans la phase gazeuse

Tableau I.3.22.: Les fréquences et les intensités des modes les plus importants sur le spectreFTIR de la Simazine dans la phase gazeuse

MODE	Fréquence	Intensité
1	483.21	66.0212
2	489.94	114.6852
3	509.02	79.9612
4	1561.87	123.6103
5	1565.53	1.1993
6	1589.54	487.4831
7	1589.60	232.2458
8	1645.46	1042.9716
9	1654.81	711.5404

<u>Etat Solvaté :</u>

Tableau I.3.23. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR de la Simazine état solvaté

MODE	Fréquence	Intensité
1	457.58	164.3439
2	463.04	198.9652
3	1380.73	387.1760
4	1389.59	108.8328
5	1533.94	63.1762
6	1534.70	51.7404
7	1553.26	404.1498
8	1557.89	1.2086
9	1577.97	337.5367
10	1585.80	1154.9186
11	1634.27	1225.6208
12	1646.09	818.7847

Remarquant que la région spectrale est de 400 cm⁻¹ à 1600 cm⁻¹ qui Caractérise les deux états : isolé ainsi que l'état solvaté.

Signalant que les 2 pics aux alentours de 1650 cm⁻¹ sont attribués à une déformation du cycle triazinique. L'absence d'une fréquence imaginaire confirme la stabilité de la structure étudiée.

Chapitre 03 : Etude des clusters S-Triazines-Eau

3.2)- Cas des clusters (Simazine-H₂O) :

<u>Etat isolé</u>

- Cluster (Simazine-H₂O) Position N 4 :

Figure I.3.11. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 4 dans la phase gazeuse

Tableau	I.3.24.	: Les	fréque	nces	et les	intensité	s des	modes	les	plus	imp	oortants	sur	le s	pectre
	<u>FTI</u>	R du d	cluster	· (Sin	ıazine	-H ₂ O) Pa	ositio	n N 4 a	lans	la pl	hase	e gazeus	se		

MODE	Fréquence	Intensité
1	244.27	100.6680
2	356.72	83.6014
3	367.58	17.8637
4	448.62	97.1334
5	1621.42	73.2267
6	1637.20	825.2167
7	1653.34	1029.5204
8	1677.74	369.4584
9	3617.86	705.2059

- <u>Cluster (Simazine-H₂O) Position N 5 :</u>

Figure I.3.12. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 5 dans la phase gazeuse

<u> Tableau I.3.25. :</u>	Les fréquer	ices et les	intensités	des modes	les plus	impor	rtants sur	le spectre
FTIK	R du cluster	(Simazine	$-H_2O)$ Pos	ition N 5 a	lans ⁻ la p	hase g	azeuse	-

MODE	Fréquence	Intensité
1	225.39	126.4199
2	360.33	80.2689
3	366.69	35.8139
4	386.72	22.3516
5	1564.97	1.9748
6	1590.89	231.4402
7	1608.80	452.9887
8	1634.41	652.7808
9	1662.27	943.1918
10	1679.72	372.1409
11	3652.49	609.1218
12	3680.02	61.9203

- <u>Cluster (Simazine-H2O) Position N 6 :</u>

*Figure I.3.13. : Spectre FTIR du Cluster (Simazine-H*₂*O) Position N 6 dans la phase gazeuse*

Tableau I.3.26. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Simazine-H2O) Position N 6 dans la phase gazeuse

MODE	Fréquence	Intensité
1	225.39	126.4199
2	360.33	80.2667
3	366.69	35.8163
4	482.66	101.1680
5	1590.89	231.4404
6	1608.80	452.9890
7	1634.41	652.7814
8	1662.27	943.1909
9	1679.72	372.1412
10	3652.49	609.1235
11	3680.02	61.9206

- <u>Cluster (Simazine-H₂O) Position N7:</u>

*Figure I.3.14. : Spectre FTIR du Cluster (Simazine-H*₂*O) Position N 7 dans la phase gazeuse*

Tableau I.3.27. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Simazine-H2O) Position N 7 dans la phase gazeuse

		-
MODE	Fréquence	Intensité
1	88.39	2.2898
2	98.05	21.3883
3	106.68	110.4002
4	88.39	2.2898
5	98.05	21.3883
6	1536.62	16.4781
7	1538.00	43.7552
8	1544.61	30.8228
9	1545.66	18.6218
10	1558.13	395.7258
11	1562.38	71.9468
12	1564.89	7.9331
13	1593.70	286.8895
14	1634.71	255.2290
15	1649.46	839.4808
16	1658.25	597.3288
17	3736.97	299.7689

- <u>Cluster (Simazine-H₂O) Position N 9:</u>

Figure I.3.15. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 9 dans la phase gazeuse

Tableau I.3.28. :	Les fréquer	ces et les in	<u>itensités des</u>	modes les	plus imp	ortants sur	le spectre
FTIR	du cluster	Simazine-H	H ₂ O) Positio	n N 9 dans	la phase	gazeuse	

MODE	Fréquence	Intensité
1	16.63	6.9703
2	23.43	4.2538
3	34.09	1.1736
4	59.05	5.1112
5	73.58	7.0673
6	76.63	4.5760
7	87.94	118.6276
8	1542.61	24.3145
9	1545.30	17.8074
10	1563.59	114.4843
11	1571.93	303.1390
12	1595.51	257.9398
13	1635.30	341.5614
14	1648.28	755.3758
15	1657.02	555.0349
16	3746.66	320.7635

Etat solvaté

- **IR Spectrum** ^{6,000} **□**1_ī2-3-4 4,000 10-11-12-13-14-15 3,500 🛡 16-17-18-19-20 5,000 τ-5,000 4,000 3,000 Σ,000 3,000 2,500 5-6 2,000 7-8-9 21-22-23 1,500 **č** - 1,000 **g** ω 1,000 500 0 0 Γ т 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 Frequency (cm⁻¹)
- <u>Cluster (Simazine-H₂O) Position N 4 :</u>

Figure 1.3.16. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 4 état solvaté

<u> Tableau I.3.29. :</u>	Les	<u>fréquenc</u>	<u>es et les</u>	<u>s intensités</u>	s des n	<u>iodes</u>	les	plus	im	portants	sur	le sp	ectre
	<u>FTI</u>	R du clus	ster (Sir	nazine-H ₂ (O) Pos	ition	N4	état	sol	vaté		_	

MODE	Fréquence	Intensité
1	30.29	20.0459
2	38.20	5.3697
3	43.00	10.2218
4	48.62	46.1068
5	93.21	36.7699
6	97.64	55.1146
7	339.47	10.3763
8	359.17	137.3255
9	367.03	0.2500
10	1528.36	7.7000
11	1529.03	7.5747
12	1534.47	34.9200
13	1535.49	41.0163
14	1555.55	314.9587
15	1560.93	71.3100
16	1576.44	410.2169
17	1601.99	1469.9046
18	1629.92	1090.2148
19	1657.37	91.9947
20	1663.77	858.5478
21	3653.86	575.6367
22	3673.72	248.9017
23	3675.20	23.6731

- <u>Cluster (Simazine-H₂O) Position N 5 :</u>

Figure I.3.16. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 5 état solvaté

<u> Tableau I.3.30. :</u>	Les	fréquences	et les	s intensités	des mo	odes le.	s plus	impo	ortants	sur l	le sp	<i>sectre</i>
	<u>FTI</u>	R du cluste	r (Sin	1azine-H ₂ () Posi	tion N	5 [°] état	solva	<u>até</u>		_	

MODE	Fréquence	Intensité
1	212.00	174.4747
2	348.37	197.7648
3	455.69	172.9597
4	644.96	283.3973
5	1526.77	11.5713
6	1527.47	11.6310
7	1533.81	30.1918
8	1534.48	50.1773
9	1554.02	322.1914
10	1557.83	0.9488
11	1579.55	451.3130
12	1600.59	1166.0225
13	1622.29	659.2508
14	1648.68	1050.7022
15	1666.91	485.4090
16	3627.97	946.5273

- <u>Cluster (Simazine-H₂O) Position N 6 :</u>

Figure I.3.18. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 6 état solvaté

Tableau I.3.31. : Les fréquences et les intensités des modes les plus importants sur le spectre

 FTIR du cluster (Simazine-H2O) Position N 6 état solvaté

MODE	Fréquence	Intensité
1	203.43	157.4665
2	347.63	144.4922
3	457.16	184.4765
4	589.00	194.1257
5	668.26	5.6636
6	1382.95	351.2977
7	1393.35	157.4935
8	1526.95	11.9723
9	1527.64	11.6495
10	1534.00	32.8079
11	1534.52	51.7032
12	1553.95	317.0242
13	1557.70	1.4232
14	1579.67	451.8774
15	1600.34	1166.1785
16	1622.69	713.0836
17	1649.12	1017.3623
18	1666.12	452.1612
19	3626.52	953.4446

- <u>Cluster (Simazine-H₂O) Position N7:</u>

Figure I.3.19. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 7 état solvaté

Tableau I.3.32.:Les fréquences et les intensités des modes les plus importants sur le spectre
FTIR du cluster (Simazine-H2O) Position N 7 état solvaté

MODE	Fréquence	Intensité
1	19.67	5.8735
2	24.87	17.7543
3	31.00	12.3811
4	51.65	61.6713
5	60.69	95.1769
6	68.73	6.0563
7	1527.31	21.2085
8	1528.72	74.9960
9	1532.15	75.1894
10	1534.55	56.4299
11	1549.38	737.2590
12	1557.12	2.8695
13	1560.07	114.1660
14	1583.24	537.7961
15	1632.86	615.9662
16	1638.16	1383.6960
17	1654.33	226.1717
18	3710.88	465.9492

- <u>Cluster (Simazine-H₂O) Position N9 :</u>

Figure 1.3.20. : Spectre FTIR du Cluster (Simazine-H₂O) Position N 9 état solvaté

Tableau I.3.33. :Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Simazine-H2O) Position N 9 état solvaté

MODE	Fréquence	Intensité
1	16.65	96.3390
2	23.80	8.6965
3	33.62	74.1610
4	36.77	8.8574
5	1512.63	105.8256
6	1526.60	15.3706
7	1527.76	9.4078
8	1532.85	90.7693
9	1535.30	19.9691
10	1554.99	268.7580
11	1567.66	530.4260
12	1584.75	522.4717
13	1632.90	713.2728
14	1638.38	1248.4679
15	1652.97	216.7210
16	3714.06	493.4496

La plage de la région spectrale de ce cluster s'allonge de la valeur de 1650 à la valeur 3620cm⁻¹. Le pic à 3600 cm⁻¹ est attribué aux étirements aliphatiques C-H.

Par contre, le pic à 1650 cm⁻¹ est attribué à la déformation du cycle triazinique.

Chapitre 03 : Etude des clusters S-Triazines-Eau

4)- Etude thermodynamique de la formation des clusters (Simazine-H₂O)

Tableau I.3.34. : Les paramètres thermodynamiques de la formation des complexes (Simazine-
H2O) calculés dans plusieurs niveaux :

	Ci	lusterx	ΔH	ΔG	ΔE	ΔS
			(kcal/mol)	(kcal/mol)	(kcal/mol)	(cal/mol.kel)
	N4	Isolé	-6.31024056	3.41302689	2.569	-32.613
		Solvaté	-4.92532599	4.83559206	2.415	-32.74
DFT/	N5	Isolé	-11.1238698	-1.5643824	2.506	-32.062
B3LYP-6-31G (d,p)		Solvaté	-8.0635035	0.17695782	2.354	-27.641
	N6	Isolé	-11.1238698	-1.5581073	2.505	-32.069
		Solvaté	-8.06287599	0.34262046	2.355	-28.192
	N7	Isolé	-11.1859933	-1.5957579	2.514	-32.147
		Solvaté	-1.72000491	6.75953772	2.191	-28.443
	N9	Isolé	-11.1809732	-1.5581073	2.52	-32.259
		Solvaté	-1.4118975	6.50037609	2.177	-26.539
	N4	Isolé	-3.79267044	5.64884502	2.355	-31.667
DFT/ B3LYP ++6-31G (d.p)		Solvaté	-5.3463852	3.99472866	2.275	-31.332
	N5	Isolé	-7.92858885	1.96975389	2.346	-33.199
		Solvaté	-8.38604364	0.87035637	2.175	-31.048
	<i>N</i> 6	Isolé	-7.75665111	3.04907109	2.48	-65.97
		Solvaté	-8.38667115	0.86533629	2.174	-31.033
	N7	Isolé	-1.84613442	6.86433189	2.177	-29.215
		Solvaté	-4.31162121	3.5077809	2.085	-26.229
	N9	Isolé	-1.84550691	6.87186201	2.177	-29.239
		Solvaté	-4.31162121	3.51468351	2.084	-26.252
	N4	Isolé	-7.47740916	1.6503513	2.39	-30.615
DFT/		Solvaté	-6.33283092	3.54354897	2.453	-33.127
B3LYP-cc-pVDZ	N5	Isolé	-12.2929209	-2.69390043	2.494	-32.194
		Solvaté	-9.3687243	0.07718373	2.406	-31.683
	N6	Isolé	-12.2929209	-2.69766549	2.494	-32.182
		Solvaté	-9.36809679	0.07090863	2.407	-31.659
	N7	Isolé	-12.29166588	-2.69892051	2.495	-32.172
		Solvaté	-2.09274585	5.83521549	2.181	-26.591
	N9	Isolé	-12.2929209	-2.69452794	2.494	-32.192
		Solvaté	-2.09274585	5.83521549	2.181	-26.594

Chapitre 03 : Etude des clusters S-Triazines-Eau

	N4	Isolé	-3.20406606	6.27007992	2.301	-31.779
		Solvaté	-1.46523585	7.10592324	2.219	-28.745
	N5	Isolé	-7.10843328	2.36634021	2.308	-31.779
		Solvaté	-4.09324773	5.02259004	2.218	-30.573
	N6	Isolé	-7.10780577	2.36634021	2.309	-31.778
DFT/ B3LYP-aug-cc-pVDZ		Solvaté	-4.09324773	5.02008	2.219	-30.564
	N7	Isolé	-1.25690253	6.86056683	2.088	-27.229
		Solvaté	-0.03890562	6.58320741	2.007	-22.207
	N9	Isolé	-1.25690253	6.85680177	2.088	-27.217
		Solvaté	-0.03890562	6.81601362	2.007	-22.988
	N4	Isolé	-7.29229371	1.52233926	2.475	-29.564
		Solvaté	-33.26681514	-24.9742705	2.274	-27.815
	N5	Isolé	-11.2575294	-2.07015549	2.455	-30.814
		Solvaté	-35.57856198	-26.9088838	2.261	-29.078
	N6	Isolé	-11.2575294	-2.07329304	2.455	-30.802
$MD2 \in 21C (d_m)$		Solvaté	-35.57856198	-26.9082563	2.262	-29.08
1111 2-0-51 G -(<i>u</i> , <i>p</i>)	N7	Isolé	-11.94465285	-2.09776593	2.523	-33.025
		Solvaté	-31.32404418	-22.6355407	2.273	-29.142
	N9	Isolé	-7.95306174	1.59826797	2.538	-32.034
		Solvaté	-33.22477197	-24.3549181	2.461	-29.749
	N4	Isolé	-8.40800649	0.37336845	2.286	-29.452
		Solvaté	-4.267068	3.56049174	2.241	-26.252
	N5	Isolé	-9.7326801	-0.92369472	2.27	-29.547
MP2-6-31G-++(d,p)		Solvaté	-5.96511006	2.25589845	2.102	-27.572
	N6	Isolé	-9.7326801	-0.92369472	2.27	-29.547
		Solvaté	-5.95255986	2.52698277	2.147	-28.44
	N7	Isolé	-4.86257499	3.04216848	2.161	-26.515
		Solvaté	-3.16453293	3.93135015	2.153	-23.799
	N9	Isolé	-4.9385037	2.45544663	2.19	-24.8
		Solvaté	-3.55860921	3.45004998	2.173	-23.507

Thermodynamiquement, les Clusters (Simazine- H_2O) en position N_5 et N_6 sont les plus favorisées avec un $\Delta G = -0.924$ kcal/mol pour l'état isolé.

Chapitre 03 : Etude des clusters S-Triazines-Eau

5)- Analyse des orbitales frontières des clusters étudiées :

L'écart énergétique entre les énergies des deux orbitales frontières (HOMO-LUMO) est un indicateur significatif de la stabilité de ces structures. Cet écart est de l'ordre de 0.48 ev.

III)- Les orbitales frontières des structures étudiées

(1.3.5 Triazine) état isolé MP2/6-31G++(d,p)

- (1.3.5 Triazine) état excité isolé

CASSCF-6-31G-(d,p)

23 —		- 0.0	0000	
22 —		- 0.0	0000	
21 —	11-	- 0.0	0000	
20 —	11 <mark>-</mark>	- 0.0	0000	

- (1.3.5 Triazine) état excité solvaté :

- (1.3.5 Triazine) état solvaté MP2/6-31G++(d,p)

<u>Cluster (1.3.5 Triazine)– H₂O) :</u>

<u>état isolé MP2/6-31G++(d,p)</u>

(1.3.5 Triazine-H₂O)Etat solvaté MP2/6-31G++(d,p)

L'écart énergétique HOMO-LUMO est un indicateur significatif de la stabilité de ces structures. La comparaison des énergies des deux orbitales frontières HOMO-LUMO des deux structures montre un écart de l'ordre de 0.49 ev.

IV)- Les orbitales frontières des clusters (simazine-H₂O)

<u>Etat isolé :</u>

- <u>Cluster (simazine-H₂O) position N 4 :</u>

DFT-B3LYP-aug-cc-pVDZ

LUM	-0.02149			60 —	
LUM	-0.03575	<u> </u>		59 —	
ном	-0.24923	<u> </u>	11	58 —	
ном	-0.26581	<u> </u>	11	57 —	

- <u>Cluster (simazine-H₂O) position N 5 :</u>
- DFT-B3LYP-aug-cc-pVDZ

Cluster (simazine-H₂O) position N 6 :

DFT-B3LYP-aug-cc-pVDZ

<u>MP2-6-31G++(d,p)</u>

Cluster (simazine-H₂O) position N 7 :

DFT-B3LYP-aug-cc-pVDZ

60 — —	-0.01912	
59 —	-0.03354	
58 <mark>- 1 </mark> -	-0.24857	
57 <mark>- 1 </mark> -	-0.25820	

LUMO+1
LUMO
HOMO
HOMO-1

LUMO+1	- 0.04424	60 — —
LUMO	- 0.03600	59 —
Номо	-0.36796	⁵⁸ – 1 J
🛛 НОМО-1	-0.39284	57 -1-

80

Cluster (simazine-H₂O) position N 9 :

DFT-B3LYP-aug-cc-pVDZ

LUMO+1	-0.02616		60 —
🗆 LUMO	-0.03604		59 —
🛛 номо	-0.25341	11-	58 —
🔲 номо-1	-0.26848	11-	57 —

LUMO+1	0.04401		60 —
	0.03599		59 —
🛛 НОМО	-0.36903	11-	58 —
🔲 НОМО-1	-0.39159	11-	57 —

- Etat solvaté :

Cluster (simazine-H₂O) position N 4 :

DFT-B3LYP-aug-cc-pVDZ

Cluster (simazine-H₂O) position N 5 :

DFT-B3LYP-aug-cc-pVDZ

<u>MP2-6-31G++(d,p)</u>

- Cluster (simazine-H₂O) position N 6 :
- DFT-B3LYP-aug-cc-pVDZ

<u>MP2-6-31G++(d,p)</u>

- Cluster (simazine-H₂O) position N9:

<u>I.1)-</u> Etude de la formation du cluster la (1,2,3 Triazine) avec la glycine :</u> On va s'intéressé à la création du cluster du cycle azinique avec l'acide aminé protéinogéne : la

glycine.

Figure I.4.1. : Structure du cluster (1.3.5 Triazine)-Glycine

Tableau I.4.1. : Paramètres géométriques calculés au niveau MP2/6-31G++(d,p)

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
<i>C1H4</i>	1.08239	H4C1N7	179.80120	H4C1N7C2	91.63828
CIN7	2.67050	<i>C1N7C2</i>	57.47810	C1N7C2H5	179.95415
N7H18	1.86745	C1N7H18	170.56364	<i>C1N7C2N8</i>	-0.09590
H18017	0.98455	N7C2H5	117.27583	C1N7H18O17	-10.75108
017C13	1.35190	N7C2N8	125.19991	N7C2H5N8	179.95388
<i>C13C12</i>	1.52216	N7H18O17	170.54149	N7H18O17C13	-147.56937
N10H11	1.01536	H18017C13	111.48002	H18017C13016	174.96341
H5O16	2.38583	017C13O16	121.28414	017C13C12N10	158.08415
		<i>017C13C12</i>	116.11132	<i>017C13C12H14</i>	37.23993
		H14C12H15	107.06375	017C13016C12	176.38262

Ainsi, ce complexe se stabilise par la création d'un cycle à 7 chainons plan avec deux ponts hydrogènes respectivement N7H18 de l'ordre de 1.87 Å et H5O16 de l'ordre 2.39Å.

Les effets de la solvatation affectent les deux longueurs de liaisons hydrogènes : la liaison N7H18 devient 1.76Å et la H5O4 devient 2.2Å.

Partie I : famille des S-Triazines Chapitre 04 : Etude de

Chapitre 04 : Etude des clusters S-Triazines- glycine

Figure I.4.2. : Spectre FTIR du cluster (1.3.5 Triazine)-Glycine dans la phase gazeuse

Tableau I.4.2. : Les fréquences et les intensités des modes les plus importants sur le spectre

 FTIR du cluster (1.3.5 Triazine)- Glycine dans la phase gazeuse

Mode	Fréquence	Intensité
1	1385.14	381.9451
2	1827.12	259.9321
3	3498.69	1265.5855

L'absence d'une fréquence imaginaire confirme de la stabilité de ce cluster.

Les deux pics observés au niveau de 3100 cm⁻¹ sont attribués aux vibrations de la liaison N-H aliphatique.

Le pic 1750 cm⁻¹ *est attribué à la déformation du cycle triazinique.*

Les bandes au niveau de 3100 cm⁻¹ sont plus intenses pour le cluster (S-triazine-glycine).

Partie I : famille des S-Triazines Chapitre 04 : E

Chapitre 04 : Etude des clusters S-Triazines- glycine

Figure I.4.3. : Formes des orbitales frontières

L'écart énergétique entre des orbitales frontières (Homo-Lumo) est un indicateur significatif de la stabilité des structures. L'écart est de l'ordre de 0.44 ev.

4)- Etude thermodynamique de la formation du cluster (1.3.5 Triazine)-Glycine :

Tableau I.4.3. : Les paramètres thermodynamiques de la formation du complexe (S-triazine-Glycine) calculés dans plusieurs niveaux :

	Clusters	$\Delta H(kcal/mol)$	$\Delta G(kcal/mol)$	$\Delta E(kcal/mol)$	$\Delta S(cal/mol.kel)$
DFT/ B3LYP-6-31G (d,p)	Isolé	-12.8953305	-2.8739958	3.034	-33.612
	Solvaté	-12.4334831	-2.0331324	3.013	-34.884
DFT/ B3LYP ++6-31G (d,p)	Isolé	-10.0746730	-0.20645079	3	-33.099
	Solvaté	-9.4000998	0.81764553	2.965	-34.268
DFT/ B3LYP-aug-cc-pVDZ	Isolé	-14.1083073	-4.04304693	3.156	-33.76
	Solvaté	-13.6370473	-3.24799176	3.149	-34.848
DFT/B3LYP-aug-cc-pVDZ	Isolé	-9.86884977	-0.18574296	2.972	-32.474
	Solvaté	3.149	-3.2479917	-13.637047	-34.848
MP2-6-31G-(d,p)	Isolé	-16.2211335	-6.32153574	3.202	-33.203
	Solvaté	2.938	0.38591865	-9.2061992	-32.171

88

<i>MP2-6-31G-++(d,p)</i>	Isolé	-13.4644820	-5.68837815	3.78	-26.082
	Solvaté	5.353	1053.12368	1043.15819	-33.422

Thermodynamiquement, la formation du complexe (S-triazine-Glycine) est favorisée énergétiquement avec une valeur de ΔG aux alentours de -5.7 Kcal/mol (état isolé Niveau :

MP2-6-31G-++ (d,p).

II)- Cas de la Prometon :

On intéresse à l'un des dérivés de la s-triazine qui est différent structuralement de la simazine : le prometon par le changement de l'atome de chlore par un méthoxy (OCH3) greffer directement sur le cycle triazine.

Figure I.4.4. : Structure chimique de la Prometon

1) Etude structurale :

Longueurs des	liaisons (Å)	Angles de valence (°)		Angles diè	dre (°)
С5Н6	1.09411	H6C5H7	110.52976	H6C5H7H8	-121.69891
<i>C504</i>	1.43457	H6C5O4	104.96121	H6C5H7O4	115.95316
<i>04C2</i>	1.34426	C504C2	117.55539	H6C5O4C2	-179.75225
CINII	1.35694	04C2N34	113.97852	C5O4C2N34	179.94969
N11H12	1.01120	<i>C1N11H12</i>	114.52986	C1N35C3N33	-1.28996
N11C13	1.46201	<i>C1 N11N13</i>	125.45111	<i>C1N11C13C15</i>	-81.62562
<i>C13C15</i>	1.53520	C1N35C3	114.00140	H12N11C13C15	88.30824
		H12N11C13	119.32860	H12N11C13H14	-153.64457
		N11C13C15	111.78906	H12N11C1N35	-176.01648
		N11C13H14	106.17234	N11C13C15C19	-122.66474
				H20C19C13C15	-62.30054
				N11C1N35C3	-178.19810

Tableau I.4.4. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

Le tableau présente les principaux paramètres géométriques pour la Prometon. Les longueurs des liaisons CN à l'intérieure du cycle est de l'ordre 1.35 Å. La liaison CO est de l'ordre 1.43 Å.

Le cycle triazinique préserve sa forme planaire avec un angle dièdre de 180°.

Les longueurs des liaisons CN sont de l'ordre de 1.33 Å en extra cycle.

2) <u>Analyse vibrationnelle des structures (courbes FTIR) au niveau DFT-B3LYP-aug-CC-PVDZ :</u>

Figure I.4.5. : Spectre FTIR de la Prometon dans la phase gazeuse

91

Tableau I.4.5. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR de la Prometon dans la phase gazeuse

Mode	Fréquence	Intensité
1	508.89	64.5966
2	1215.70	163.6677
3	1384.00	118.0370
4	1485.03	8.5148
5	1548.92	1098.2558
6	1617.98	594.7674

L'absence des fréquences imaginaires confirme la stabilité de la structure étudiée.

3) <u>Clusters (Prometon-Glycine) :</u>

Figure I.4.6. : Différentes structures possibles des Clusters Prometon-Glycine

Le balayage de la symétrie de cette structure montre cinq possibilités pour la formation des clusters de la prometon avec la glycine : cluster N9 -N10-N11-H15 et N11-H13-O4

3.1) Etude structurelle des clusters (Prometon-Glycine) - Etat Isolé - :

-	<u>Cluster</u>	(Prometon-G	lycine) Positi	ion4-6 :			
Tablea	u I.4.6. :	Paramètres :	<u>géométriques</u>	calculés au	niveau DFT	-B3LYP-au	g-CC-PVDZ :

Longueurs des liaisons (Å)		Angles de	valence (°)	Angles dièdre (°)		
С5Н6	1.09249	H6C5H7	111.35565	H6C5H7H8	-123.57038	
<i>04C2</i>	1.35095	H6C5O4	104.41183	H6C5H7O4	115.29716	
C2H34	1.32974	04C2N34	113.34852	H6C5O4C2	-179.91378	
N11H12	1.01133	<i>C1N11H12</i>	114.66687	N34C1N35C3	1.29667	
N11C13	1.46297	CINIICI3	125.48632	N34C1N11H12	3.82082	
<i>C13C15</i>	1.53491	H12N11C13	119.33672	N34C1N11C13	175.52554	
<i>O4H44</i>	1.86863	N11C13H14	106.16430	H12N11C13H14	-152.79583	

<i>O42H6</i>	2.48012	N11C13C15	111.69955	H12N11C13C15	89.15021
		<i>C15C13C19</i>	112.19379	H20C19C13C15	-62.17576
		H6O42C39	123.88743	H6O42C39O43	-1.50285
		<i>O4H44O43</i>	175.44673	<i>O4H44O43C39</i>	11.17566
		04114045	175.44075	04114045057	11.17500

- Cluster (Prometon-Glycine) Position9-15 :

Tableau I.4.7. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
С5Н6	1.09400	H6C5H7	109.82103	H6C5H7H8	-121.26778
<i>04C2</i>	1.34188	H6C5O4	104.89237	H6C5H7O4	115.57334
C2H34	1.32744	04C2N34	113.10577	H6C5O4C2	168.10425
N11H12	1.01131	<i>C1N11H12</i>	114.60708	N34C1N35C3	3.62077
N11C13	1.46311	<i>C1N11C13</i>	125.44192	N34C1N11H12	3.94038
<i>C13C15</i>	1.53485	H12N11C13	119.33397	N34C1N11C13	174.82226
N33H44	1.74663	N11C13H14	106.11552	H12N11C13H14	-153.95002
O42H10	1.90969	N11C13C15	111.67415	H12N11C13C15	88.03535
		<i>C15C13C19</i>	112.22996	H20C19C13C15	-62.11664
		N33H44O43	172.52540	N33H44O43C39	160.34853
		H10O42C39	113.12245	H10042C39043	-21.69696

La liaison CN cyclique est de l'ordre de 1.34 Å, ainsi que la liaison CN extra cyclique est de l'ordre de 1.46Å.

Le complexe se stabilise par la création d'un cycle à 8 doublements pontés par deux liaisons hydrogènes N33H44 de l'ordre de 1.75 Å et O42H10 de l'ordre de 1.9 Å.

- Cluster (Prometon-Glycine) Position10-13 :

Tableau I.4.8. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

Longueurs des liaisons (Å)		Angles de	Angles de valence (°)		dre (°)
С5Н6	1.09358	H6C5H7	110.63777	H6C5H7H8	-122.00526
<i>04C2</i>	1.34144	H6C5O4	104.88956	H6C5H7O4	115.83944
C2H34	1.33710	04C2N34	113.51227	H6C5O4C2	-179.85789
N11H12	1.02404	<i>C1N11H12</i>	116.46674	N34C1N35C3	1.27758
N11C13	1.46448	CINIICI3	124.54886	<i>N34C1N11H12</i>	2.92846
<i>C13C15</i>	1.53513	H12N11C13	118.75142	N34C1N11C13	177.29509
N34H44	1.69601	N11C13H14	106.61338	H12N11C13H14	-153.18613
<i>O42H12</i>	1.88979	N11C13C15	111.28190	H12N11C13C15	88.67565
		<i>C15C13C19</i>	112.09753	H20C19C13C15	-62.45163
		N34H44O43	175.79179	N34H44O43C39	171.71983
		H12O42C39	122.37196	H12O42C39O43	0.02596

Longueurs de	es liaisons (Å)	Angles de	valence (°)	Angles diè	dre (°)
C5H6	1.09391	H6C5H7	110.55608	H6C5H7H8	-121.80222
<i>04C2</i>	1.34197	H6C5O4	104.93819	H6C5H7O4	115.89763
C2H34	1.33234	04C2N34	113.86382	H6C5O4C2	179.90362
N11H12	1.02193	<i>C1N11H12</i>	117.40589	N34C1N35C3	3.42324
N11C13	1.46695	<i>C1N11C13</i>	124.08337	N34C1N11H12	-175.56584
<i>C13C15</i>	1.53459	H12N11C13	118.25787	N34C1N11C13	-1.45669
H12O42	1.90011	N11C13H14	106.46571	H12N11C13H14	-154.01704
N35H44	1.70887	N11C13C15	111.17450	H12N11C13C15	88.08273
		<i>C15C13C19</i>	112.22925	H20C19C13C15	-62.30795
		H12O42C39	114.78456	H12O42C39O43	20.26115
		N35H44O43	172.56864	N35H44O43C39	-172.04310

Cluster (Prometon-Glycine) Position11-13 :

1

Cluster (Prometon-Glycine) Position11-15 : -

 Tableau I.4.10. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
С5Н6	1.09388	H6C5H7	110.50822	H6C5H7H8	-121.77878
<i>04C2</i>	1.34184	H6C5O4	104.89364	H6C5H7O4	115.85583
C2H34	1.32905	04C2N34	114.05297	H6C5O4C2	179.88918
N11H12	1.01225	<i>C1N11H12</i>	112.10581	N34C1N35C3	-3.32100
N11C13	1.46686	<i>C1N11C13</i>	127.73421	N34C1N11H12	4.3968
<i>C13C15</i>	1.53500	H12N11C13	117.40442	N34C1N11C13	164.86872
N35H44	1.71085	N11C13H14	107.76614	H12N11C13H14	-148.43759
<i>O42H10</i>	1.89600	N11C13C15	111.93790	H12N11C13C15	91.92156
		<i>C15C13C19</i>	112.04881	H20C19C13C15	-61.54314
		N35H44O43	171.76679	N35H44O43C39	-166.69180
		H10042C39	115.83062	H10042C39O43	15.11672

3.2) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (Prometon-Glycine) niveau DFT-B3LYP-aug-CC-pVDZ) -Etat Isolé- :

<u>Cluster (Prometon-Glycine) Position4-6 :</u>

Tableau I.4.11. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position4-6 dans la phase gazeuse

Mode	Fréquence	Intensité
1	1382.51	0.0779
2	1553.34	1080.1133
3	1626.62	619.2798
4	1777.20	264.7737
5	3487.19	1134.3334

Figure I.4.7. : Spectre FTIR du Cluster (Prometon-Glycine) Position4-6 dans la phase gazeuse

- <u>Cluster (Prometon-Glycine) Position 9-15 :</u>

Figure I.4.8. : Spectre FTIR du Cluster (Prometon-Glycine) Position 9-15 dans la phase gazeuse

Tableau I.4.12. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position9-15 dans la phase gazeuse

Mode	Fréquence	Intensité
1	1382.91	13.6153
2	1579.76	901.6476
3	1625.83	745.2553
4	1745.77	368.7408
5	2901.52	2171.2066
6	3420.71	771.4288

- <u>Cluster (Prometon-Glycine) Position 10-13 :</u>

Figure I.4.9. : Spectre FTIR du Cluster (Prometon-Glycine) Position 10-13 dans la phase

<u>gazeuse</u>

FTIR du cluster (Prometon-Glycine) Position 10-13 dans la phase gazeuse						
Mode	Fréquence	Intens	sité			

Tableau I.4.13. : Les fréquences et les intensités des modes les plus importants sur le spectre

Mode	Fréquence	Intensité
1	1570.50	1042.6219
2	1633.01	790.3844
3	2818.46	2789.0999
4	3380.91	962.4370

- <u>Cluster (Prometon-Glycine) Position 11-13 :</u>

Figure I.4.10. : Spectre FTIR du Cluster (Prometon-Glycine) Position 11-13 dans la phase gazeuse

Tableau I.4.14. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position 11-13 dans la phase gazeuse

Mode	Fréquence	Intensité
1	1555.38	752.5427
2	1600.76	925.5406
3	1624.43	452.8441
4	1742.06	497.2600
5	2788.78	2101.8481
6	3409.81	684.3260

Figure I.4.11. : Spectre FTIR du Cluster (Prometon-Glycine) Position 11-15 dans la phase gazeuse

Tableau I.4.15. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position 11-15 dans la phase gazeuse

Mode	Fréquence	Intensité
1	1545.10	794.2527
2	1599.15	591.2553
3	1642.48	370.8911
4	1741.80	451.0512
5	2790.09	2085.4398
6	3407.85	713.1461

La plage de la région spectrale de ce cluster s'allonge de la valeur 250 cm⁻¹ jusqu'à 3500cm⁻¹. Le pic principal -mode5-, est attribué à l'allongement de la liaison CH aliphatique. L'absence d'une fréquence imaginaire confirme la stabilité de ces clusters.

3.3) Etude structurelle des clusters (Prometon-Glycine) - Etat Solvaté - :

- <u>Cluster (Prometon-Glycine) Position 4-6 :</u>

Tableau I.4.16. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

Longueurs des liaisons (Å)		Angles de	valence (°)	Angles dièdre (°)	
С5Н6	1.09579	H6C5H7	111.04799	H6C5H7H8	-123.17102
<i>04C2</i>	1.35387	H6C5O4	104.52521	H6C5H7O4	115.29942
C2H34	1.32641	04C2N34	113.27389	H6C5O4C2	179.90506
N11H12	1.01504	CIN11H12	115.04985	N34C1N35C3	1.016915
N11C13	1.46336	CINIICI3	125.64222	N34C1N11H12	4.48155
<i>C13C15</i>	1.53478	H12N11C13	118.64395	N34C1N11C13	174.96217
<i>O43C39</i>	1.33720	N11C13H14	106.21203	H12N11C13H14	-155.27280
<i>O42C39</i>	1.21869	N11C13C15	111.51066	H12N11C13C15	86.50955
<i>C39C38</i>	1.51321	<i>C15C13C19</i>	112.18602	H20C19C13C15	-62.14375
		<i>043C39042</i>	123.75767	043C39042C38	177.75002
		<i>04H44043</i>	179.49889	<i>O4H44O43C39</i>	-177.13535
		H6O42C39	120.83250	H6O42C39O43	-0.13455

- <u>Cluster (Prometon-Glycine) Position 9-15 :</u>

|--|

Longueurs des liaisons (Å)		Angles de	Angles de valence (°)		dre (°)
С5Н6	1.09332	H6C5H7	109.83996	H6C5H7H8	-121.56889
<i>04C2</i>	1.34259	H6C5O4	113.03906	H6C5H7O4	115.45912
C2H34	1.32910	04C2N34	113.03906	H6C5O4C2	167.85839
N11H12	1.01178	<i>C1N11H12</i>	115.05783	N34C1N35C3	3.49087
N11C13	1.46584	<i>C1N11C13</i>	125.59946	N34C1N11H12	4.24251
<i>C13C15</i>	1.53450	H12N11C13	118.66758	N34C1N11C13	174.64701
<i>043C39</i>	1.32903	N11C13H14	106.18474	H12N11C13H14	-155.52194
<i>O42C39</i>	1.22547	N11C13C15	111.48929	H12N11C13C15	86.29162
<i>C39C38</i>	1.51248	<i>C15C13C19</i>	112.21438	H20C19C13C15	-61.99014
		<i>043C39042</i>	123.80830	043C39042C38	177.99334

Cluster (Prometon-Glycine) Position 10-13 : -

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
С5Н6	1.09307	H6C5H7	110.53578	H6C5H7H8	-122.09193
<i>04C2</i>	1.34196	H6C5O4	1.51419	H6C5H7O4	115.72907
C2H34	1.33890	04C2N34	113.33855	H6C5O4C2	179.96325
N11H12	1.02247	<i>C1N11H12</i>	116.37997	N34C1N35C3	1.11515
N11C13	1.46629	<i>C1N11C13</i>	124.67335	N34C1N11H12	3.16767
<i>C13C15</i>	1.53484	H12N11C13	118.66578	N34C1N11C13	176.97738
<i>O43C39</i>	1.32323	N11C13H14	106.55614	H12N11C13H14	-154.38877
<i>O42C39</i>	1.22813	N11C13C15	111.27819	H12N11C13C15	87.39235
<i>C39C38</i>	1.51419	<i>C15C13C19</i>	112.09042	H20C19C13C15	-61.68686
		<i>043C39042</i>	124.26738	043C39O42C38	177.79429
		H12O42C39	122.00906	H12O42C39O43	0.96679
		C34H44O43	174.35884	<i>C34H44O43C39</i>	176.83358

Tableau I.4.18. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

Cluster (Prometon-Glycine) Position 11-13 : -

Tableau I.4.19. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

r	0			1		
Longueurs des liaisons (A)		Angles de	valence (°)	Angles dièdre (°)		
C5H6	1.09708	H6C5H7	110.34036	H6C5H7H8	-121.21357	
<i>04C2</i>	1.34081	H6C5O4	105.19085	H6C5O4C2	179.82598	
C3N11	1.35014	04C2N33	113.59435	04C2N33C3	177.88412	
N11H12	1.01567	C3N35C1	114.40652	C3N11H12C13	-173.98463	
N11C13	1.46499	H12N11C13	117.79668	C3N11C13C19	-116.36145	
<i>C13C19</i>	1.53354	N11C13C19	110.45938	H12N11C13C19	70.65425	
<i>042C39</i>	1.33472	N11C13H14	106.85245	H12N11C13H14	-171.18660	
<i>C39C38</i>	1.51879	<i>043C39042</i>	123.86990	N11C13C19C15	-122.71796	
N35H44	1.73717	H12O42C39	86.00930	H18C15C13C19	-61.35542	
<i>O42H12</i>	5.35968	N33H44O43	166.17673	N11C3N35C1	-176.03715	
				043C39042C38	178.27362	
				H12O42C39O43	29.30519	
				N33H44O43C39	160.73685	

- Cluster (Prometon-Glycine) Position 11-15 :

Longueurs des liaisons (Å)		Angles de	valence (°)	Angles dièdre (°)			
С5Н6	1.09331	H6C5H7	110.45220	H6C5H7H8	-121.95820		
<i>04C2</i>	1.34286	H6C5O4	104.89643	H6C5H7O4	115.71937		
C2H34	1.33121	04C2N34	113.76780	H6C5O4C2	179.68182		
N11H12	1.01274	<i>C1N11H12</i>	112.80107	N34C1N35C3	-3.77122		
N11C13	1.46941	CINIICI3	127.10621	N34C1N11H12	5.08347		
<i>C13C15</i>	1.53464	H12N11C13	116.87342	N34C1N11C13	163.96454		
<i>043C39</i>	1.32818	N11C13H14	107.54027	H12N11C13H14	-153.07414		
<i>042C39</i>	1.22583	N11C13C15	111.65941	H12N11C13C15	87.52376		
<i>C39C38</i>	1.51316	<i>C15C13C19</i>	112.15509	H20C19C13C15	-61.74340		
		<i>043C39042</i>	123.88603	043C39042C38	177.57876		
		C35H44O43	172.00566	<i>C35H44O43C39</i>	-162.62619		
		H10042C39	114.17532	H10042C39O43	21.59458		

Tableau I.4.20. : Paramètres géométriques calculés au niveau DFT-B3LYP-aug-CC-PVDZ :

3.4) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (Prometon-Glycine) niveau DFT-B3LYP-aug-CC-pVDZ) -Etat Solvaté- :

- <u>Cluster (Prometon-Glycine) Position 4-6 :</u>

Figure I.4.12. : Spectre FTIR du Cluster (Prometon-Glycine) Position 4-6 -état Solvaté-

Tableau I.4.21. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position 4-6 –état Solvaté-

Mode	Fréquence	Intensité
1	1540.27	1865.9199
2	1615.08	739.8498
3	1755.84	447.2099
4	3435.24	1392.4113

- <u>Cluster (Prometon-Glycine) Position 9-15 :</u>

Figure I.4.13. : Spectre FTIR du Cluster (Prometon-Glycine) Position 9-15 - état Solvaté-

Tableau I.4.22. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position 9-15-état Solvaté-

Mode	Fréquence	Intensité
1	1379.46	4.6775
2	1564.86	621.5749
3	1612.38	46.8049
4	1725.34	540.9095
5	2909.94	2787.6706
6	3429.31	851.0312

- <u>Cluster (Prometon-Glycine) Position 10-13 :</u>

Figure I.4.14. : Spectre FTIR du Cluster (Prometon-Glycine) Position 10-13 -état Solvaté-

Tableau I.4.23. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position 10-13 –état Solvaté-

Mode	Fréquence	Intensité
1	1571.18	870.3674
2	1638.18	523.1653
3	1714.05	684.2360
4	2690.72	3808.6673
5	3404.03	970.3522

- <u>Cluster (Prometon-Glycine) Position 11-13 :</u>

Tableau I.4.24. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position 11-13 –état Solvaté-

Mode	Fréquence	Intensité
1	1383.80	57.1950
2	1559.15	2216.1047
3	1639.07	640.5368
4	2957.86	2272.1506

- <u>Cluster (Prometon-Glycine) Position 11-15 :</u>

Figure I.4.15. : Spectre FTIR du Cluster (Prometon-Glycine) Position 11-15-état Solvaté-

Tableau I.4.25. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Prometon-Glycine) Position 11-15 –état Solvaté-

Mode	Fréquence	Intensité
1	1529.20	1414.7946
2	1604.03	759.2036
3	1721.52	606.2644
4	2803.27	2793.4078
5	3417.52	807.8047

3.5) Etude thermodynamique de la formation des clusters (Prometon-Glycine) :

Tableau I.4.26. : Les paramètres thermodynamiques de la formation des complexes (Prometon-
Glycine) calculés au niveau DFT/B3LYP-6-31G (d,p) :

	Clusters		$\Delta H (kcal/mol)$	$\Delta G(kcal/mol)$	$\Delta E(kcal/mol)$	$\Delta S(cal/mol.kel$
	N4 – 6	isolé	-18.2360681	-9.23945724	2.685	-30.176
		solvaté	-9.2181219	0.31312749	3.162	-31.967
DFT/B3LYP-6-31G (d,p)	N9 — 15	isolé	-17.0751746	-5.7856422	2.958	-37.866
		solvaté	-13.3898084	-1.58822781	3.131	-39.582
	N10 - 13	isolé	-20.7555208	-9.80045118	2.904	-36.745
		solvaté	-17.0701545	-5.60303679	3.077	-38.461
	N11 – 13	isolé	-15.5114197	-3.62763531	3.024	-39.86
		solvaté	-11.8260535	0.56977908	3.197	-41.576
	N11 – 15	isolé	-17.3644567	-6.19728876	2.932	-37.456
		solvaté	-13.6790905	-1.9998743	3.105	-39.172

I.)- Etude de la formation du cluster la (1,2,3 Triazine) avec la L-Alanine :

L'étude se focalisé sur l'interaction de la structure de base s-triazine avec l'acide aminé protéinogénique L-alanine. Hypothétiquement, cette compléxation passe par la création d'un cycle à sept chainons stabilisé par la formation de deux ponts hydrogène N-H et O-H.

Figure I.5.1. : Structure du cluster (1.3.5 Triazine)-L-Alanine

I.1) Etude structurelle de la formation du cluster (1,2,3 Triazine)-L-Alanine

Etat Isolé :

Tableau I.5.1. : Paramètres géométriques calculés au niveau MP2/6-31G++(d,p):

Longueurs des liaisons (Å)		Angles de ve	alence (°)	Angles dièdre (°)		
H5-C2	1.08292	H5-C2-N8	117.43299	H5-C2-N8-C3	179.98947	
N8-C2	1.33913	N8-C2-N7	125.25512	N8-C2 -N7-C1	-0.03068	
C1-N7	1.34546	C1-N7-C2	115.27067	C1-N7-C2-H5	179.98119	
N9-C1	1.34087	N9-C1-N7	124.70373	N9-C1-N7-C2	0.04469	
N7-H22	1.82394	N7-H22-O21	178.46408	N7-H22-O21-C15	10.46118	
019-Н4	2.37965	019-Н4-С1	131.38239	019-H4-C1-N7	0.82666	
<i>C15-C12</i>	1.52096	C15-C12-N10	115.11299	C15-C12-N10-C11	-60.47183	

Etat solvaté :

Tableau I.5.2. : Paramètres géométriques calculés au niveau MP2/6-31G++(d,p):

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)			
H5-C2	1.08231	H5-C2-N8	117.67241	H5-C2-N8-C3	179.977772		
N8-C2	1.33928	N8-C2-N7	124.95409	N8-C2 -N7-C1	0.04804		
<i>C1-N7</i>	1.34345	<i>C1-N7-C2</i>	115.43014	C1-N7-C2-H5	-179.94093		
N9-C1	134021	N9-C1-N7	124.73919	N9-C1-N7-C2	-0.05817		
N7-H22	1.77620	N7-H22-O21	179.92150	N7-H22-O21-C15	42.00654		
019-Н4	2.47423	019-Н4-С1	129.34326	019-H4-C1-N7	-0.07643		
<i>C15-C12</i>	1.51375	C15-C12-N10	109.36146	C15-C12-N10-C11	66.51101		

Les paramètres structuraux du cycle triazinique sont préservés et les deux liaisons hydrogènes ont :

- N7-H22 à une valeur de 1.82Å et la liaison O19-H4 à une valeur de 2.38Å.

On remarque une légère élongation de cette liaison sous l'effet du solvant de l'ordre de 0.1Å, ainsi on remarque un rétrécissement de l'ordre de 0.04A de la liaison N7-H22.

I.2) Analyse vibrationnelle du cluster (1,2,3 Triazine)-L-Alanine (courbes FTIR) au niveau MP2/6-31G++(d,p):

Figure 1.5.2. : Spectre FTIR du cluster (1.3.5 Triazine)-L-Alanine dans la phase gazeuse

<u>Tableau</u>	I.5.3. :	Les	fréque	nces	et les	intensit	és des	modes	s les	plus	imp	portant	s sur	le s	spectre
	<u>F7</u>	TR d	u clust	er (1.	3.5 T	riazine)	-L-Alc	inine d	ans	- la ph	ase	gazeus	se		-

MODE	Fréquence	Intensité
1	326.94	41.5016
2	842.40	148.7688
3	1305.07	194.8929
4	1597.60	111.5645
5	1620.41	196.7844
6	1651.55	47.7256
7	1784.72	286.1949
8	3209.60	6.3287
9	3219.77	1858.0773

Partie I : famille des S-Triazines

<u>Etat solvaté :</u>

Figure I.5.3. : Spectre FTIR du cluster (1.3.5 Triazine)-L-Alanine état solvaté

Tableau I.5.4. :	Les	fréque	ences e	t les	intensite	ís des	modes	les	plus	im	portants	s sur	le s	<i>pectre</i>
FTIR du cluster (1.3.5 Triazine)-L-Alanine état solvaté														

MODE	Fréquence	Intensité
1	283.74	46.0746
2	904.85	9.0564
3	914.10	158.4303
4	1294.45	4.6962
5	1305.24	182.3241
6	1776.30	226.4748
7	3292.77	4.9677
8	3327.24	1707.5376

Les deux pics principaux des états : isolé et solvaté sont aux alentours de 3300 cm⁻¹ et 3200 cm⁻¹ sont attribuées à l'étirement de la liaison C-H aliphatique.

I.3) Etude thermodynamique de la formation du cluster (1.3.5 Triazine)-L-Alanine :

		ΔH (kcal/mol)	ΔG (kcal/mol)	$\Delta E (kcal/mol)$	$\Delta S(kcal/mol.kel)$	
DFT/	Isolé	-8.8918167	0.90173187	2.044	-32.847	
B3LYP-6-31G (d,p)	Solvaté	-7.58283084	2.17055709	1.929	-32.712	
DFT/ B3LYP ++6-31G (d,p)	Isolé	-6.98669634	2.6229918	2.027	-32.232	
	Solvaté	-5.4656121	4.13152584	1.902	-32.185	
DFT/ B3LYP-cc-pVDZ	Isolé	-9.48293112	0.38152608	2.108	-33.083	
	Solvaté	-8.35341312	1.47339348	1.999	-32.958	
DFT/ B3LYP- aug-cc-pVDZ	Isolé	-8.46761994	1.11006519	2.185	-32.121	
	Solvaté	-5.18699766	4.48857903	1.954	-32.451	
MP2-6-31G-(d,p)	Isolé	-10.78187682	-1.42946778	2.201	-31.368	
	Solvaté	-8.3207826	1.48468866	2.02	-32.886	
<i>MP2-6-31G-++(d,p)</i>	Isolé	-9.89959776	-0.78689754	2.156	-30.561	
	Solvaté	-7.37763507	2.07329304	1.919	-31.695	

 Tableau I.5.5. : Les paramètres thermodynamiques de la formation du complexe ((1.3.5

 Triazine)- L-Alanine calculés dans plusieurs niveaux :

Thermodynamiquement, la formation du complexe ((1.3.5 Triazine)-L-Alanine) est favorisé énergétiquement avec une valeur de ΔG aux alentours de : -1.429 Kcal/mol (état isolé).

I.4) Analyse des orbitales frontières des clusters étudiées

L'écart énergétique (Homo-Lumo) est un indicateur significatif de la stabilité des structures.

La comparaison entre les énergies des orbitales frontières de ces clusters montre un écart de l'ordre de 0.44 ev.

1.5) Les orbitales frontières du cluster (1,2,3 Triazine)-L-Alanine :

<u>Etat Isolé</u>

DFT-B3LYP-6-31G-(d,p)

Chapitre 05 : Etude des clusters S-Triazines- L-Alanine

DFT-B3LYP-cc-pVDZ

<u>DFT-B3LYP-aug-cc-pVDZ</u>

<u>MP2-6-31G-(d,p)</u> <u>MP2-6-31G++(d,p)</u> 0.04730 47 -LUMO+1 47 -0.08765 LUMO+1 46 -0.03835 🔲 LUMO 0.08190 46 -LUMO -0.39643 🔲 HOMO 45 --0.39179 45 HOMO -0.45126 44 HOMO-1 -0.44559 HOMO-1

Q

Partie I : famille des S-Triazines

Chapitre 05 : Etude des clusters S-Triazines- L-Alanine

Etat Solvaté:

<u>DFT-B3LYP-6-31G-(d,p)</u>

<u>DFT-B3LYP-6-31G++(d,p)</u>

Chapitre 05 : Etude des clusters S-Triazines- L-Alanine

<u>MP2-6-31G-(d,p)</u>

<u>MP2-6-31G++(d,p)</u>

47 —	0.04956	LUMO+1
46 —	0.04349	
45 - 11-	-0.40282	🛛 НОМО
44 - 11-	-0.44711	□ HOMO-1

II) Clusters (Propazine-L-Alanine):

Un des herbicides les plus utilisé de la famille des s-triazines c'est : la propazine qui est similaire structuralement à la simazine (groupe de symétrie).

L'étude de la symétrie des clusters (propazine –L-alanine) montre l'existence de quatre complexes : Cluster (N4-N9), Cluster (N6-N7), Cluster (N7-N4) et le Cluster (N9-N5).

Cluster (N4-N9)-alanine

Cluster (N7-N4)-alanine

Cluster (N6-N7)-alanine

Cluster (N9-N5)-alanine

Figure I.5.4. : Différentes structures possibles des Clusters (propazine –L-alanine)
Partie I : famille des S-Triazines

II.1) Etude structurelle des clusters (propazine –L-alanine)- Etat Isolé - :

- <u>Cluster (propazine –L-alanine) Position (N7-N4):</u>

Tableau I.5.6. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C3	1.3450655	N4-C3-N5	124.73411	N4-C3-N5-C2	1.059992
N5-C2	1.3158123	N6-C1-N4	124.02706	N6-C1-N4-C3	3.84040
N6-C2	1.3199780	N5-C2-N6	129.05799	N5-C2-N6-C1	-1.85119
N7-C1	1.3394039	N7-C1-N6	118.8836191	N7-C1-N6-C2	179.0718927
H8-N7	1.0218028	H8-N7-C1	116.4325748	H8-N7-C1-N6	-178.453902
N9-C3	1.3510113	N9-C3-N5	113.95696	N9-C3-N5-C2	-178.26965
H10-N9	1.0122461	H10-N9-C3	112.9682128	H10-N9-C3-N5	-1.54858
<i>C17-C11</i>	1.5345559	C17-C11-N7	112.6368583	C17-C11-N7-C1	63.3978926
<i>CL31-C2</i>	1.7622387	CL31-C2-N6	115.41701	CL31-C2-N6-C1	178.67491
<i>O42-H43</i>	1.01183	042-H43-N4	172.21039	042-H43-N4-C1	135.40690
N7-H8	1.02180	N7-H8-O41	173.71830	N7-H8-O41-C37	80.29508

- <u>Cluster (propazine –L-alanine) Position (N4-N9):</u>

Tableau I.5.7. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C1	1.3494428	N4-C3-N5	123.57405	N4-C3-N5-C2	0.39473
N5-C2	1.3164850	N6-C1-N4	124.34526	N6-C1-N4-C3	-0.36203
N6-C2	1.3226597	N5-C2-N6	129.45219	N5-C2-N6-C1	0.27107
N7-C1	1.3512928	N7-C1-N4	116.9987761	N7-C1-N4-C3	179.6904144
H8-N7	1.0099608	H8-N7-C1	115.0169227	H8-N7-C1-N6	-0.8199113
N9-C3	1.3392393	N9-C3-N5	118.64680	N9-C3-N5-C2	-179.18569
H10-N9	1.0238894	H10-N9-C3	116.5955246	H10-N9-C3-N5	-177.15779
<i>C17-C11</i>	1.5343925	C17-C11-N7	112.4897135	C17-C11-N7-C1	64.0707180
CL31-C2	1.7623113	CL31-C2-N6	115.08940	CL31-C2-N6-C1	-179.93408
<i>O42-H43</i>	1.02283	042-H43-N4	170.76723	<i>042-H43-N4-C3</i>	178.67793
N9-H10	1.02389	N9-H10-O41	175.40184	N9-H10-O41-C37	-0.66687

Les clusters (N4-N9) se stabilisent par la création d'un cycle à 8 chainons et planaire à angle 179.69°. Ce cycle contient deux ponts hydrogène de longueurs respectivement : O41-H10 = 1.92 Å et N4-H43 = 1.68 Å.

-	Cluster	(propazine –L-a	lanine) Position	n (N6-N7):

ubleau 1.3.8 Farametres geometriques calcules du niveau DFT-D3L1F/dug-cc-pvD2 .						
Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdr	re (°)	
N4-C3	1.3454787	N4-C3-N5	124.74039	N4-C3-N5-C2	1.56957	
N5-C2	1.3153125	N6-C1-N4	124.08137	N6-C1-N4-C3	3.58941	
N6-C2	1.3199707	N5-C2-N6	129.02881	N5-C2-N6-C1	-1.70487	
N7-C1	1.3397179	N7-C1-N4	118.7354749	N7-C1-N4-C3	179.1338409	
H8-N7	1.0219829	H8-N7-C1	116.6533284	H8-N7-C1-N6	-178.498798	
N9-C3	1.3508802	N9-C3-N5	113.79440	N9-C3-N5-C2	-178.13269	
H10-N9	1.0122290	H10-N9-C3	112.8948931	H10-N9-C3-N5	-2.08778	
<i>C17-C11</i>	1.5346224	C17-C11-N7	112.6763722	C17-C11-N7-C1	63.7073119	
<i>CL31-C2</i>	1.7623071	CL31-C2-N6	115.42229	CL31-C2-N6-C1	178.74530	
<i>O42-H43</i>	1.01094	042-H43-N4	172.22627	042-H43-N4-C1	147.15047	
N7-H8	1.02198	N7-H8-O41	173.57267	N7-H8-O41-C37	97.58974	

Tableau I 5 8 • Paramètres géométriques calculés au niveau DFT-B3I VP/aug-cc-nVD7 ·

- <u>Cluster (propazine –L-alanine) Position (N5-N9):</u>

Tableau I.5.9. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C3	1.3406149	N4-C3-N5	123.72690	N4-C3-N5-C2	0.63032
N5-C2	1.3213382	N6-C1-N4	125.16268	N6-C1-N4-C3	0.52171
N6-C2	1.3173085	N5-C2-N6	123.72690	N5-C2-N6-C1	-0.86167
N7-C1	1.3503953	N7-C1-N4	116.3970520	N7-C1-N4-C3	-179.615578
H8-N7	1.0099395	H8-N7-C1	113.5572460	H8-N7-C1-N6	0.1043415
N9-C3	1.3394134	N9-C3-N5	116.31335	N9-C3-N5-C2	-179.01108
H10-N9	1.0249005	H10-N9-C3	116.7891243	H10-N9-C3-N5	-2.52529
<i>C17-C11</i>	1.5346528	C17-C11-N7	112.4544963	C17-C11-N7-C1	64.1228180
CL31-C2	1.7615471	CL31-C2-N6	115.53277	CL31-C2-N6-C1	179.71467
<i>O42-H43</i>	1.00763	<i>O42-H43-N5</i>	175.17255	042-H43-N5-C3	170.60678
N9-H10	1.02490	N9-H10-O41	178.26267	N9-H10-O41-C37	-16.81242

II.2) Etude structurelle des clusters (Prometon-Glycine) - Etat Solvaté - :

- <u>Cluster (propazine –L-alanine) Position (N7-N4):</u>

Tableau I.5.10. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C3	1.3453464	N4-C3-N5	124.23862	N4-C3-N5-C2	1.95501
N5-C2	1.3139034	N6-C1-N4	123.92721	N6-C1-N4-C3	4.40558
N6-C2	1.3184143	N5-C2-N6	129.67109	N5-C2-N6-C1	-2.10327
N7-C1	1.3386517	N7-C1-N6	119.1344853	N7-C1-N6-C2	178.9344450
H8-N7	1.0214783	H8-N7-C1	115.8282159	H8-N7-C1-N6	-178.260796
N9-C3	1.3456221	N9-C3-N5	114.52072	N9-C3-N5-C2	-178.10553
H10-N9	1.0126602	H10-N9-C3	113.7194968	H10-N9-C3-N5	-1.11636
<i>C17-C11</i>	1.5341602	C17-C11-N7	112.6404919	C17-C11-N7-C1	63.2329348
<i>CL31-C2</i>	1.7716509	CL31-C2-N6	115.11716	CL31-C2-N6-C1	178.49399
<i>O42-H43</i>	1.01000	042-H43-N4	172.87388	042-H43-N4-C1	119.21324
N7-H8	1.02148	N7-H8-O41	173.61826	N7-H8-O41-C37	56.97780

- <u>Cluster (propazine –L-alanine) Position (N4-N9):</u>

Tableau I.5.11. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C1	1.3508650	N4-C3-N5	123.48320	N4-C3-N5-C2	0.34570
N5-C2	1.3157128	N6-C1-N4	123.95949	N6-C1-N4-C3	-0.26340
N6-C2	1.3188931	N5-C2-N6	129.97906	N5-C2-N6-C1	0.21925
N7-C1	1.3464669	N7-C1-N4	117.2512198	N7-C1-N4-C3	179.7548957
H8-N7	1.0103963	H8-N7-C1	115.1914964	H8-N7-C1-N6	-0.3649207
N9-C3	1.3385688	N9-C3-N5	118.67713	N9-C3-N5-C2	-179.21095
H10-N9	1.0235363	H10-N9-C3	1.0235363	H10-N9-C3-N5	-177.17858
<i>C17-C11</i>	1.5338444	C17-C11-N7	112.4951683	C17-C11-N7-C1	64.3565376
<i>CL31-C2</i>	1.7711024	CL31-C2-N6	114.91148	CL31-C2-N6-C1	-179.94494
<i>O</i> 42- <i>H</i> 43	1.02192	042-H43-N4	170.44742	O42-H43-N4-C3	177.32471
N9-H10	1.02354	N9-H10-O41	175.96410	N9-H10-O41-C37	0.66475

- <u>Cluster (propazine –L-alanine)</u> Position (N6-N7) :

Tableau I.5.12. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C3	1.3454968	N4-C3-N5	124.23532	N4-C3-N5-C2	2.07424
N5-C2	1.3137435	N6-C1-N4	123.94916	N6-C1-N4-C3	4.23601
N6-C2	1.3184515	N5-C2-N6	129.66388	N5-C2-N6-C1	-2.15285
N7-C1	1.3387811	N7-C1-N4	119.0689407	N7-C1-N4-C3	179.1164222
H8-N7	1.0216380	H8-N7-C1	115.9372367	H8-N7-C1-N6	-178.790995
N9-C3	1.3455546	N9-C3-N5	114.47691	N9-C3-N5-C2	-177.98982
H10-N9	1.0126749	H10-N9-C3	113.6920146	H10-N9-C3-N5	-1.17968
<i>C17-C11</i>	1.5342396	C17-C11-N7	112.6583581	C17-C11-N7-C1	63.5069851
<i>CL31-C2</i>	1.7715739	CL31-C2-N6	115.11814	CL31-C2-N6-C1	178.42807
<i>O</i> 42- <i>H</i> 43	1.00978	042-H43-N4	172.88256	O42-H43-N4-C1	125.04525
N7-H8	1.02164	N7-H8-O41	172.92870	N7-H8-O41-C37	65.95122

- <u>Cluster (propazine –L-alanine) Position (N5-N9) :</u>

Tableau I.5.13. : Paramètres géométriques calculés au niveau DFT-B3LYP/aug-cc-pVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N4-C3	1.3393883	N4-C3-N5	123.66823	N4-C3-N5-C2	0.57008
N5-C2	1.3202826	N6-C1-N4	124.74047	N6-C1-N4-C3	0.50927
N6-C2	1.3147284	N5-C2-N6	129.33512	N5-C2-N6-C1	-0.25294
N7-C1	1.3458204	N7-C1-N4	116.6036915	N7-C1-N4-C3	-179.620834
H8-N7	1.0107758	H8-N7-C1	113.8622330	H8-N7-C1-N6	0.1322999
N9-C3	1.3393744	N9-C3-N5	116.19393	N9-C3-N5-C2	-179.03600
H10-N9	1.0234061	H10-N9-C3	116.6606296	H10-N9-C3-N5	-2.79790
<i>C17-C11</i>	1.5341671	C17-C11-N7	112.4820865	C17-C11-N7-C1	64.2497439
CL31-C2	1.7687250	CL31-C2-N6	115.32547	CL31-C2-N6-C1	179.75310
<i>O</i> 42- <i>H</i> 43	1.00998	042-H43-N5	173.94660	O42-H43-N5-C3	174.52489
N9-H10	1.02341	N9-H10-O41	177.86494	N9-H10-O41-C37	-17.41586

<u>II.3) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (propazine –Lalanine) au niveau DFT-B3LYP/aug-cc-pVDZ -Etat isolé- :</u>

- <u>Cluster (propazine –L-alanine) Position (N7-N4)</u>

Figure I.5.5. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N7-N4) –état isolé-

Tableau I.5.14. : Les fréquences et les intensités des modes les plus import	ants sur le spectre
<u>FTIR du cluster (propazine –L-alanine) Position (N7-N4) –état</u>	<u>t isolé-</u>

MODE	Fréquence	Intensité
1	1557.30	607.7296
2	1602.57	1038.6136
3	1612.30	393.3642
4	1613.57	78.5634
5	1651.32	195.9940
6	1738.75	468.0097
7	2918.93	844.9712
8	2922.45	1141.4480
9	3402.93	924.4436

<u>Cluster (propazine –L-alanine) Position (N4-N9) :</u> _

Figure I.5.6. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N4-N9) –état isolé-

Tableau I.5.15.	: Les fréqu	uences et le	es intensités	des modes	les plus	s importants su	<i>ir le spectre</i>
FTI	R du cluste	er (propazi	ne –L-alani	ne) Positio	n (N4-N	9) –état isolé-	*

MODE	Fréquence	Intensité
1	1588.85	549.7023
2	1619.28	1299.8265
3	1628.93	111.8781
4	1651.39	157.3315
5	1741.72	508.2371
6	2715.07	2743.2219
7	3387.05	799.1546

L'absence d'une fréquence imaginaire montre la stabilité de ce cluster à l'état isolé Ainsi qu'à l'état solvaté.

- <u>Cluster (propazine –L-alanine) Position (N6-N7) :</u>

Figure I.5.7. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N6-N7) –état isolé-

Tableau I.5.16. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (propazine –L-alanine) Position (N6-N7) –état isolé-

MODE	Fréquence	Intensité
1	1556.69	640.0103
2	1602.70	1061.6659
3	1612.34	366.3376
4	1650.16	159.3037
5	1738.21	497.1650
6	2940.02	1847.4721
7	3398.53	958.0670

- <u>Cluster (propazine –L-alanine) Position (N9-N5) :</u>

Figure I.5.8. : Spectre FTIR du Cluster (propazine -L-alanine) Position (N9-N5) -état isolé-

MODE	Fréquence	Intensité
1	1538.11	391.1020
2	1609.14	569.2651
3	1611.47	70.9413
4	1625.90	1415.7581
5	1649.47	233.5642
6	1732.09	438.9358
7	2999.14	2247.3652
8	3028.69	20.9263
9	3035.40	34.9256
10	3037.92	29.4217
11	3041.64	12.7181
12	3043.09	16.4647
13	3365.08	1088.8296

Tableau I.5.17. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (propazine –L-alanine) Position (N9-N5) –état isolé-

<u>II.4) Analyse vibrationnelle des structures (courbes FTIR) des Complexes (propazine –L-</u> alanine) au niveau DFT-B3LYP/aug-cc-pVDZ -Etat solvaté- :

- <u>Cluster (propazine –L-alanine) Position (N7-N4) :</u>

Figure 1.5.9. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N7-N4) –état solvaté-

MODE	Fréquence	Intensité
1	1544.36	1237.7280
2	1592.37	1650.2453
3	1600.89	413.1579
4	1609.77	88.3323
5	1644.25	212.9269
6	1716.89	638.0763
7	2936.97	2542.7877
8	2947.37	71.6967
9	3406.22	1042.6909

Tableau I.5.18. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (propazine –L-alanine) Position (N7-N4) –état solvaté -

- <u>Cluster (propazine –L-alanine) Position (N4-N9) :</u>

Figure I.5.10. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N4-N9) –état solvaté-

Tableau	I.5.19.	: Les	fréque	ences	et les	intensités	des n	nodes	les	plus	imp	ortants	sur	le s	pectre
	<u>FTIR</u>	du cli	uster (j	prop	azine	–L-alanin	e) Pos	sition	(N4)	-N9)	_étc	at solve	ıté -		-

MODE	Fréquence	Intensité
1	1538.28	233.2882
2	1554.57	153.3479
3	1572.38	676.5860
4	1604.44	2108.0941
5	1624.11	68.5418
6	1644.79	107.3456
7	2712.45	3467.1453

- <u>Cluster (propazine –L-alanine) Position (N6-N7) ;</u>

Figure I.5.11. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N6-N7) –état solvaté-

Tableau	<i>I.5.20</i> .	: Les	fréque	ences	et les	intensités	des	modes	les	plus	impo	ortants	sur	le s	pectre
	<u>FTIR</u>	du cli	uster (prop	azine	–L-alanin	<u>e) Pa</u>	osition	(N6	-N7)	–éta	it solva	ıté -	-	_

MODE	Fréquence	Intensité
1	1544.15	1263.9411
2	1592.43	1648.1329
3	1601.91	403.2172
4	1639.15	38.7790
5	1644.13	172.8666
6	1714.70	667.9104
7	2943.35	2495.1365
8	3403.39	1062.8086

Figure I.5.12. : Spectre FTIR du Cluster (propazine –L-alanine) Position (N9-N5) –état solvaté-

Tableau I.5.21.	: Les fréquenc	es et les intens	tités des mod	es les plus	importants sur	le spectre
FTIR	du cluster (pro	pazine –L-ala	nine) Positio	on (N9-N5)	<u>–état solvaté -</u>	*

MODE	Fréquence	Intensité
1	1525.16	674.7640
2	1595.59	2201.9204
3	1608.94	91.2014
4	1615.07	587.4734
5	1639.58	348.1048
6	1714.13	634.7839
7	3386.88	1118.1860

II.5) Etude thermodynamique de la formation des clusters (propazine –L-alanine) :

Tableau I.5.22. : Les	paramètres thermod	lynamiques de l	a formation de	es complexes ((propazine –
	L-alanine) calcu	ulés dans plusie	eurs niveaux :		

	Clusters		ΔH	ΔG	ΔE	ΔS
			(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol.kel)
	N7-N4	Isolé	-13.67093286	-2.18122476	1.925	-38.539
		solvaté	-8.14194225	3.74435217	1.962	-39.867
DFT/	N4-N9	Isolé	-15.15060144	-4.52309208	1.763	-35.646
B3LYP-6-31G (d,p)		solvaté	-9.21310182	1.99234425	1.797	-37.583
	N6-N7	Isolé	-15.20833236	-4.08383508	2.088	-37.313
		solvaté	-9.43273032	1.85931213	2.094	-37.874
	N9-N5	Isolé	-15.750501	-4.79041134	1.939	-36.762
		solvaté	-9.84876945	1.27886538	1.889	-37.323
	N7-N4	Isolé	-10.07843811	1.05547182	1.946	-37.344
		solvaté	-3.95707806	7.33747443	1.95	-37.881
DFT/	N4-N9	Isolé	-12.00238377	-1.54681215	1.786	-35.06
B3LYP++6-31G		solvaté	-5.31375468	5.70594843	1.765	-36.96
(d , p)	N6-N7	Isolé	11.48719806	22.7999483	2.887	-37.944
		solvaté	-4.92407097	5.88478878	2.084	-36.253
	N9-N5	Isolé	-12.65499417	-1.78526595	1.977	-37.944
		solvaté	-6.06425664	4.76217339	1.879	-36.31
	N7-N4	Isolé	-12.25715283	-0.12675702	1.986	-40.684
		solvaté	-9.08759982	3.35592348	1.939	-41.735
DFT/	N4-N9	Isolé	-13.67846298	-2.60604903	1.831	-37.135
B3LYP-cc-pVDZ		solvaté	-10.19954754	1.52547681	1.793	-39.326
-	N6-N7	Isolé	-13.84977321	-1.99861935	2.165	-39.748
		solvaté	-10.49698728	1.62587841	2.097	-40.661
	N9-N5	Isolé	-14.57329224	-3.00828294	2.02	-38.788
		Solvaté	-10.49698728	0.70532124	1.905	-39.42
	N7-N4	Isolé	-10.05710277	0.81137043	1.975	-36.453
		solvaté	-4.1666664	6.89194233	1.993	-37.09
DFT/	N4-N9	Isolé	-11.91704241	-1.13955816	1.917	-36.148
B3LYP-aug-cc-		solvaté	-5.46435708	5.57354382	1.916	-37.021
<i>pvDL</i>	N6-N7	Isolé	-11.03099829	-0.84149091	2.16	-34.177
		solvaté	-4.99184205	5.87788617	2.14	-36.457

Partie I : famille des S-Triazines

	N9-N5	Isolé	-12.63867891	-1.56626496	2.053	-37.136
		solvaté	-6.22740924	4.51681698	1.988	-36.036
MP2-6-31G-(d,p)	N7-N4	Isolé	-15.58232832	-4.27899069	2.092	-37.912
	N4-N9	Isolé	-16.6603905	-6.14834298	1.924	-35.257
	N6-N7	Isolé	-17.05823184	-6.21987912	2.203	-36.351
	N9-N5	Isolé	-17.22954207	-6.46460802	2.081	-36.106

Thermodynamiquement le complexe (N9-N5) et le complexe (N6-N7) sont les plus favorisés avec des ΔG de formation qui ont respectivement les valeurs suivantes : -6.464 et -6.219 kcal /mol.

II.6) Analyse des orbitales frontières des structures étudiées :

L'écart énergétique (HOMO-LUMO) est un indicateur significatif de la stabilité des structures. Cet écart est de l'ordre de 0.20 ev dans le cas des clusters (propazine –L-alanine) étudiées.

II.7) Les orbitales frontières du complexes (propazine-alanine)

Etat Isolé :

- <u>Cluster (propazine –L-alanine) Position (N7-N4) :</u>

DFT-B3LYP-aug-cc-pVDZ

<u>MP2-6-31G-(d,p)</u>

<u>MP2-6-31G-(d,p)</u>

- <u>Cluster (propazine –L-alanine) Position (N4-N9) :</u>
- DFT-B3LYP-aug-cc-pVDZ

 87 - -0.11524 IUMO+1

 86 - -0.11730 IUMO

 85 - 1 - -0.30421 HOMO

 84 - 1 - -0.30442 HOMO-1

- <u>Cluster (propazine –L-alanine) Position (N7-N6) :</u>
- DFT-B3LYP-aug-cc-pVDZ

- <u>Cluster (propazine –L-alanine) Position (N5-N9) :</u>

87 —	0.15177
86 —	0.12233
85 <mark>- 1 </mark> -	-0.35659
84 <mark>- 1 </mark> -	-0.36650

<u>MP2-6-31G-(d,p)</u>

<u>MP2-6-31G-(d,p)</u>

<u>Etat Solvaté :</u>

- <u>Cluster (propazine –L-alanine) Position (N7-N4) :</u>

DFT-B3LYP-aug-cc-pVDZ

-0.11321

-0.11512

-0.30334

-0.30394

.....

Chapitre 05 : Etude des clusters S-Triazines- L-Alanine

<u>MP2-6-31G-(d,p)</u>

- <u>Cluster (propazine –L-alanine)Position (N4-N9)</u>

87 -

86 -

85

84

 87 -0.11300
 ■ LUMO+1

 86 -0.11497
 □ LUMO

 85 1...
 -0.30337
 □ HOMO

 84 1...
 -0.30399
 □ HOMO-1

<u>MP2-6-31G-(d,p)</u>

<u>Cluster (propazine –L-alanine) Position (N7-N6) :</u>

DFT-B3LYP-aug-cc-pVDZ

LUMO+1	-0.11437		87 —
	-0.11795		86 —
🛛 номо	-0.30338	11-	85 —
П номо-1	-0.30385	11-	84 —

Cluster (propazine –L-alanine) Position (N5-N9) :

<u>MP2-6-31G-(d,p)</u>

Partie I : famille des S-Triazines Chapitre 06 : Evaluation de la toxicité des s-Triazines

Partie I : famille des S-Triazines Chap

Dans notre étude, l'évaluation de la toxicité de la s-triazine et ses clusters avec l'eau se base sur la méthode dite« QSAR » (Quantitative Structure Activity Relationship) [1].

Au milieu des années 1970, les chercheurs d'un laboratoire américain ont développé et publié un modèle QSAR pour prédire la bioconcentration des substances chimiques organiques basé sur le coefficient de partage octanol / eau (K_{ow}) [2].

La démarche est un algorithme qui lie la valeur du coefficient de partage Octanol-Eau $Log(K_{ow})$ à la valeur moyenne de la toxicité (LC_{50} et EC_{50})[3].

1)- Approche QSAR :

Le **QSAR** est un modèle mathématique utilisé pour prédire les différents types de toxicité des produits chimiques à partir de leurs caractéristiques physiques et de leurs structures (poids moléculaire, nombre des cycles dans la structure, etc.) appelés **descripteurs moléculaires**. Les modèles **QSAR** simples permettent d'estimer la toxicité des produits chimiques en utilisant une simple fonction linéaire de descripteurs moléculaires[4] :

 $Toxicité = ax_1 + bx_2 + c \qquad (6.1)$

Où : x₁ et x₂ sont les variables de descripteurs indépendants.
a, b et c sont des paramètres Ajustés.

Le poids moléculaire et le coefficient de partage Octanol-Eau (log Kow) sont des exemples de descripteurs moléculaires [1].

2)- Le code ECOSAR

Le programme **ECOSAR** (Ecological Structure Activity Relationships) est un système prédictif informatisé qui évalue la toxicité aiguë et chronique des composés organiques de plusieurs classes chimiques en fonction du $Log(K_{OW})$. [5]. Les résultats de ce code QSAR sont considérés comme des alternatives acceptables aux données expérimentales.

Partie I : famille des S-Triazines Chapitre 06 : Evaluation de la toxicité des s-Triazines

3)- Les différentes Classes chimiques de l'ECOSAR

ECOSAR contient une bibliothèque de RQSA basées sur des classes pour la prédiction de la toxicité aquatique, complétée par un arbre de décision expert permettant de sélectionner la classe chimique appropriée.

ECOSAR version 1.11 est programmé pour identifier 111 classes de produits chimiques et permet l'accès à 704 QSAR pour de nombreux paramètres et organismes. Dans la version 1.11, On note la suppression des équations du poisson de 14 jours dans tous les cas sauf les époxydes, classe poly.

Le QSAR de 14 jours relatif au poisson devenait obsolète par rapport à l'équation du poisson de 96 heures pour laquelle de plus grandes quantités de données sont disponibles.

Les informations sur la manière dont ECOSAR calcule les valeurs de la toxicité de trois types généraux de produits chimiques :

- ✓ <u>Produits organiques neutres :</u> Les produits chimiques organiques neutres sont non ionisables et non réactifs et agissent via une simple narcose non polaire, généralement considérée comme une perte de conscience réversible induite par un médicament (anesthésie générale). Cette narcose générale est souvent appelée toxicité de base[6]. Les types de produits chimiques connus pour présenter une narcose générale incluent, sans toutefois s'y limiter, les alcools, les cétones, les éthers, les halogénures d'aryle, les hydrocarbures aromatiques, les hydrocarbures aliphatiques, les cyanates, les sulfures et les disulfures.
- ✓ Produits chimiques organiques : présentant une toxicité excessive Certains types de produits chimiques organiques présentent un mode de toxicité plus spécifique basé sur la présence de groupes fonctionnels réactifs [7]. Ces produits chimiques peuvent être plus toxiques que prévu dans les équations de toxicité de base pour un ou plusieurs organismes aquatiques. Les produits chimiques qui présentent un excès de toxicité comprennent notamment les acrylates, méthacrylates, aldéhydes, anilines, bêta-dicétones (formes linéaires), benzotriazoles, esters, phénols, aziridines et époxydes. Des RQSA distinctes ont été élaborées pour plusieurs classes de produits chimiques identifiées comme présentant une toxicité excessive pour au moins une ou plusieurs espèces. Il convient de noter que

Partie I : famille des S-Triazines

certains organismes sont plus sensibles à certaines classes de composés que d'autres (c'est-à-dire que les produits chimiques apparentés à des herbicides peuvent présenter une toxicité significative uniquement pour les algues vertes), de sorte que la désignation de «toxicité excessive» peut ne pas concerner tous les organismes.

✓ Surfactant (Surface-active) Produits chimiques organiques : Un surfactant est défini comme un matériau pouvant réduire considérablement la tension superficielle de l'eau lorsqu'il est utilisé à de très faibles concentrations.

Les types de produits chimiques souvent conçus avec des propriétés tensioactives sont les détergents, les agents mouillants et les émulsifiants.

Dans ECOSAR, les tensioactifs sont regroupés par charge totale. Ces quatre divisions générales sont les tensioactifs anioniques (charge négative nette), cationiques (charge positive nette), non ioniques (neutre) et amphotères. Les QSAR pour les tensioactifs peuvent être linéaires ou paraboliques et la toxicité est souvent liée à la taille du composant hydrophobe (c'est-à-dire le nombre de carbones) ou au nombre de composants hydrophiles répétés (à savoir les éthoxylates).

- <u>Produits chimiques organiques avec une toxicité excessive</u>: Certains types de produits chimiques organiques présentent un mode de toxicité plus spécifique basé sur la présence de groupes fonctionnels réactifs [8].
- <u>Produits chimiques organiques tensioactifs</u> ; Un agent tensioactif est brièvement défini comme un matériau qui peut réduire considérablement la tension superficielle de l'eau lorsqu'il est utilisé à de très faibles concentrations[9].
- <u>Produits chimiques organiques polymériques :</u> Les polymères sont généralement définis comme des matériaux composés de plus petites sous-unités répétitives. Les polymères et monomères de masse moléculaire faible (PM <1000) peuvent généralement être évalués de la même manière que les composés organiques neutres ou d'autres produits chimiques organiques présentant une toxicité excessive[9].

4)- Tests étudiés :

Les tests d'écotoxicité directs, les plus développés à l'heure actuelle, sont destinés à mettre en évidence la toxicité sur une espèce isolée. Ils concernent plus spécialement : les algues, les daphnies et les poissons[10].

- <u>Le test algue :</u> Les algues jouent un rôle très important dans la structuration planctonique des écosystèmes aquatiques. Elles occupent le premier maillon de la chaine trophique, comme leurs apports d'énergie proviennent du soleil. Les effets des antidépresseurs sur l'inhibition de croissance des algues dépendent de la structure chimique de la molécule testée et de l'espèce[11].
- <u>Le test daphnie</u> La daphnie est une micro crustacé d'eau douce de l'ordre des cladocères est utilisée pour la détermination de la toxicité des effluents industriels. Cette méthode à court terme est utilisée pour étudier la mobilité et déterminer l'inhibition de cette espèce aussi pour déterminer la toxicité aiguë d'échantillons liquides. L'essai consiste à mesurer le pourcentage de mortalité après une période d'exposition de 48 heures. La concentration dite concentration inhibitrice, qui en vingt-quatre heures, immobilise 50 % des daphnies[12].
- <u>Le test poisson</u> Le test consiste à déterminer la toxicité aiguée d'une substance soluble dans l'eau, qui consiste à déterminer La concentration qui en vingt-quatre heures, tue 50 % des poissons mis en expérimentation[12].

5)- Les critères de la toxicité aquatique :

La version actuelle d'ECOSAR s'efforce de fournir des estimations pour les six critères de la toxicité aquatique. Les méthodes utilisées pour les calculer sont discutées comme suit :

<u>5.1)-</u> *Toxicité aigue* : Les études sur la toxicité aigue sont considérées comme des tests «accélérés» dans lesquels la durée d'exposition est remplacée par l'intensité de l'exposition[13].

- Effets aigus :
- ✓ Poisson -LC₅₀ 96 h;
- \checkmark Daphnie-48 heures EC₅₀;

- ✓ Algues- 72 ou 96 heures $EC_{50.}$
- <u>Concentration létale(LC₅₀)</u>

La concentration d'une substance qui cause 50 % de mortalité dans la population testée[12].

• <u>Concentration efficace (EC₅₀)</u>

La concentration efficace qui inhibe 50 % d'un niveau trophique, d'une réponse biologique de type binaire (tout ou rien : mobile-immobile)[12]. La directive européenne 93/67/CEE a classé les substances selon la concentration efficace mesurée (EC₅₀) comme suit[14] :

- ✓ $EC_{50} < l mg/l \rightarrow \ll très toxique \gg$;
- $\checkmark \quad EC_{50} = 1 10 \ mg/l \rightarrow \ll toxique \gg ;$
- ✓ EC_{50} = 10 100 mg/l → « nocive »;
- ✓ EC_{50} > 100 mg/l → pas de classification.

5.2)- La toxicité chronique : La toxicité chronique est caractérisée par l'apparition d'effets indésirables, suite à l'administration répétée d'un polluant sur une longue période [15].

La quantité de substance qui induit une toxicité chronique est généralement faible ou très faible et les effets se manifestent longtemps après le début de l'intoxication.

Pour l'étude des résidus de médicaments se trouvant de manière continue à très faibles concentrations dans le milieu aquatique, les essais de toxicité chronique seront plus

appropriés et plus utiles que les tests de toxicité aigué[16].

• <u>Le paramètre ChV :</u> ou valeur chronique, est défini comme la moyenne géométrique de la concentration sans effet observé (NOEC) et de la concentration minimale avec effet observé (LOEC)[17]. Cela peut être représenté mathématiquement par[9]:

$$ChV = 10 \wedge ([log (LOEC \times NOEC)]/2)$$
 (6-2).

6)- Résultats et discussions :

6.1)- Résultats :

Tableau I.6.1.:Valeurs de la toxicité de la structure de base (1,3,5 Triazine) pour les
organismes aquatiques (mg / L) (ECOSAR V.2).

	Algue vert Ec _{50 (} mg/l)	Daphnie Lc 50	Poisson Lc50	Algue ChV	Daphnie ChV	Poisson ChV
P1(structure	1.74	419	2.49E+3	6.80	42.4	191
de base)						
$P1+H_2O$	3.85	999	7.59E+3	14.5	110	582

Tableau I.6.2.:
 Valeurs de la toxicité de la simazine et de ces clusters d'eau pour les organismes aquatiques (mg / L) (ECOSAR V.2).

		Algue vert	Daphnie	Poisson	Algue	Daphnie	Poisson
		Ec_{50}	Lc_{50}	Lc_{50}	ChV	ChV	ChV
P2(Simazine)		0.166	26.4	42.1	0.782	0.67	3.15
$P2+H_2O$	<i>N4</i>	0.329	56.5	115	1.50	3.89	8.61
	<i>N5</i>	0.329	56.5	115	1.50	3.89	8.61
	<i>N6</i>	0.329	56.5	115	1.50	3.89	8.61
	<i>N</i> 7	0.189	30.3	49.3	0.888	1.93	3.69
	<i>N9</i>	0.189	30.3	49.3	0.888	1.93	3.69

Tableau I.6.3. :Valeurs de la toxicité de la propazine et de ces clusters d'eau pour les
organismes aquatiques (mg / L) (ECOSAR V.2).

		Algue vert Ec50	Daphnie Lc 50	Poisson Lc50	Algue ChV	Daphnie ChV	Poisson ChV
P3(propazine)		0.067	9.25	9.65	0.332	0.502	0.716
$P3+H_2O$	<i>N</i> 4	0.130	19.6	26.1	0.629	1.16	1.94
	<i>N5</i>	0.130	19.6	26.1	0.629	1.16	1.94
	<i>N6</i>	0.130	19.6	26.1	0.629	1.16	1.94
	<i>N</i> 7	0.075	10.5	11.2	0.373	0.575	0.832
	<i>N9</i>	0.075	10.5	11.2	0.373	0.575	0.832

Partie I : famille des S-Triazines

Chapitre 06 : Evaluation de la toxicité des s-Triazines

	Algue vert	Daphnie	Poisson	Algue	Daphnie	Poisson
	EC50	LC50	LC50	ChV	ChV	ChV
Ametryne Isolé	<mark>0.060</mark>	8.17	8.19	0.299	0.437	0.607
	Algue vert	Daphnie	Poisson	Algue vert	Daphnie	Poisson
	EC50	LC50	LC50	ChV	ChV	ChV
N9	0.117	17.3	22.1	0.566	1.01	1.65
N10	0.117	17.3	22.1	0.566	1.01	1.65
N11	2.23	481	2.02E+3	9.13	42.9	154
N12	2.23	481	2.02E+3	9.13	42.9	154
N14	0.117	17.3	22.1	0.566	1.01	1.65
	0.154	23.6	33.6	0.733	1.43	2.50
<u>CritèresLC5</u>	<u>o et EC₅₀</u>					
Non nocif 🄇	Nocif		Toxiq	ue 😑	Très toxique	2
<u>Critères Ch</u>	<u>V</u>					
Faible Préoccupation Préoccupation Modéré					Préoccupa	tion Élevé 🔶

Tableau I.6.4. :Valeurs de la toxicité de l'Ametryne et de ces clusters d'eau pour les
organismes aquatiques (mg / L) (ECOSAR V.2).

6.2)- discussions :

- La toxicité aigué et chronique des dérivés de la S-triazine et leurs clusters avec l'eau aux organismes aquatiques ont été prédites en utilisant le Logiciel ECOSAR sur trois niveaux trophiques (algues vertes, daphnie et poisson).
- Les classifications de la toxicité basée sur les critères LC₅₀ et EC₅₀ ont été utilisée pour rationaliser la toxicité aigue.
- Les toxicités fluctuent entre le caractère nocif jusqu'à le caractère très toxique d'où :
 - Les toxicités aquatiques semblent dépendre de la présence de l'éxistence du chlore ; et des groupements NH et OCH₃.
 - N11, N12 sont également classés non nocifs pour les daphnies.
 - Les toxicités de N4, N5, N6, N7 et N7 sont plus élevés que celles du P2 et P3 pour les trois espèces.
 - Cependant, N11, N12 sont moins toxiques pour les trois espèces.

Globalement, l'évaluation de la EC_{50} et La LC_{50} montre que les dérivés de la S-triazine et leurs clusters d'eau sont nocifs pour les organismes aquatiques.

<u>Références:</u>

- 1. Cappelli, C.I., et al., Validation of quantitative structure–activity relationship models to predict water-solubility of organic compounds. Science of the Total Environment, 2013. **463**: p. 781-789.
- 2. Veith, G.D. and S.J. Broderius, Structure-toxicity relationships for industrial chemicals causing type (II) narcosis syndrome, in QSAR in environmental Toxicology-II. 1987, Springer. p. 385-391.
- 3. Könemann, H., Quantitative structure-activity relationships in fish toxicity studies Part 1: Relationship for 50 industrial pollutants. Toxicology, 1981. **19**(3): p. 209-221.
- 4. Zakharov, A., et al., QSAR modelling of acute toxicity in the fathead minnow. Chemistry Central Journal, 2008. **2**(S1): p. P17.
- 5. Brain, R.A., et al., Aquatic plants exposed to pharmaceuticals: effects and risks, in Reviews of environmental contamination and toxicology. 2008, Springer. p. 67-115.
- 6. Franks, N.L., W. (1990) Mechanisms of General Anesthesia. Environ Health Perspect 87:199-205.
- 7. Hermens, J.E.a.A.T.t.F.E.H.P.-.
- 8. Hermens, J., Electrophiles and acute toxicity to fish. Environmental health perspectives, 1990. **87**: p. 219.
- 9. DOCUMENT, M., et al., ESTIMATING TOXICITY OF INDUSTRIAL CHEMICALSTO AQUATIC ORGANISMS USING THE ECOSAR (ECOLOGICAL STRUCTURE-ACTIVITY RELATIONSHIP) CLASS PROGRAMVersion 2.0. October 2017.
- 10. Fent, K., A.A. Weston, and D. Caminada, Ecotoxicology of human pharmaceuticals. Aquatic toxicology, 2006. **76**(2): p. 122-159.
- 11. Benchouala, A., Écotoxicité, cytotoxicité et potentiel androgène des résidus pharmaceutiques sur les deux modèles biologiques: Hydra attenuata et les cellules MDA-Kb2. 2016, Université de Lorraine.
- 12. QUÉBEC., C.D.E.E.A.E.D., Détermination de la toxicité létale CL50 48h Daphnia magna. MA. 500 D.mag. 1.1. 2016.
- 13. Crane, M., C. Watts, and T. Boucard, Chronic aquatic environmental risks from exposure to human pharmaceuticals. Science of the total environment, 2006. **367**(1): p. 23-41.
- 14. BOULÂND, C., EVALUATION DE L'IMPACT ENVIRONNEMENTAL DE L'IBUPROFÈNE ET DU DICLOFÉNAC DANS LE MILIEU AQUATIQUE.
- 15. van Dartel, D.A. and A.H. Piersma, The embryonic stem cell test combined with toxicogenomics as an alternative testing model for the assessment of developmental toxicity. Reproductive toxicology, 2011. **32**(2): p. 235-244.
- 16. Ferrari, B., et al., Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental toxicology and chemistry, 2004. **23**(5): p. 1344-1354.
- 17. Murado, M. and M. Prieto, NOEC and LOEC as merely concessive expedients: Two unambiguous alternatives and some criteria to maximize the efficiency of dose–response experimental designs. Science of the Total Environment, 2013. **461**: p. 576-586.

Partie I : famille des S-Triazines Chapitre 07 : Etude de l'interaction des S-Triazines avec des cations Partie I : famille des S-Triazines

Chapitre 07 : Etude de l'interaction des S-Triazines avec des cations

1)- Présentation des Structures étudiées :

<u>Prometon</u>	$\begin{aligned} \mathbf{R}_1 &= \mathbf{R}_2 = \mathbf{NHCH}(\mathbf{CH}_3)_2, \\ \mathbf{R}_3 &= \mathbf{OCH}_3 \end{aligned}$	_
<u>Ametryne</u>	$R_1 = \text{NHCH}(\text{CH}_3)_2,$ $R_2 = \text{NHCH}_2\text{CH}_3,$ $R_3 = \text{SCH}_3$	
<u>Terbutryne</u>	$R_1 = \text{NHC}(\text{CH}_3)_3,$ $R_2 = \text{NHCH}_2\text{CH}_3,$ $R_3 = \text{SCH}_3$	R ₁ N R ₂
<u>Simazine</u>	$\begin{aligned} \mathbf{R}_1 &= \mathbf{R}_2 = \mathbf{N}\mathbf{H}\mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_3, \\ \mathbf{R}_3 &= \mathbf{C}\mathbf{l} \end{aligned}$	

2)- Calculs théoriques :

Les calculs de cette partie sont effectuées dans le niveau DFT/B3LYP avec la base 6-311(d,p)

En utilisant le Gaussian16 et les structures sont visualisées è l'aide du Gaussview6. Toutes les géométries sont calculées sans aucune restriction.

Partie I : famille des S-Triazines

Chapitre 07 : Etude de l'interaction des S-Triazines avec des cations

3)- Résultats et Discussions :

3.1)- Résultats :

Tableau I.7.1.:Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires
et charges partielles sur les Hétéro-atomes pour les molécules étudiées

Tableau 1.7.2. : Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires et
charges partielles sur les Hétéro-atomes des complexes avec Na⁺

Valeurs Calcu	lées	S-Triazines		
		$- \begin{pmatrix} Prometon \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Ametryn N	butryn $N = \frac{4 \text{ Cl}}{1 \text{ N}}$ $N = \frac{3 \text{ N}}{1 \text{ N}}$ $N = \frac{3 \text{ N}}{1 \text{ Simazin}}$
HOF (kI mol ⁻¹)	331.01325	529.76031	502.13224	475.13887
HOMO (eV)	- 12.56748	- 11.64465	- 11.62736	-12.69210
LUMO (eV)	- 13.24071	- 12.48956	- 12.41796	- 13.50763
Moment Dipolair (D)	e 9.454	10.226	10.288	11.527
Charges Hétéro Cycles)-			
1	-0.460	-0.450	-0.444	-0.444
2	-0.458	-0.359	-0.364	-0.373
3	-0.370	-0.403	-0.399	-0.365
4	-0.304	-0.287	-0.282	-0.275
5	-0.278	-0.284	-0.318	-0.307
6	-0.211	0.341	0.337	0.176
Na ⁺	0.724	0.733	0.724	0.728
Distance (Å)				
5	2.676	2.661	2.696	2.613
6	4.215	4.222	4.137	4.230
2	2.602	2.596	2.567	2.672

Valeurs	S-Triazine			
Calculees	$ \begin{array}{c} 40 \\ 3 \\ N \\ N \\ R \\ 6 \\ 2 \\ K \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$		$- \underbrace{ \begin{array}{c} 4 \text{ S} \\ 3 \text{ N} \\ N \\ 6 \end{array}}_{6 2 \text{ K}} \underbrace{ \begin{array}{c} 3 \text{ N} \\ N \\ N \\ 6 \end{array}}_{1 \text{ K}} \underbrace{ \begin{array}{c} 3 \text{ N} \\ N \\ N \\ 1 \\ N \\ 1 \end{array}}_{1 \text{ Constraints}} \underbrace{ \begin{array}{c} 4 \text{ S} \\ 1 \\ 1 \\ 1 \\ 1 \end{array}}_{1 \text{ Constraints}} \underbrace{ \begin{array}{c} 4 \text{ S} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}}_{1 \text{ Constraints}} \underbrace{ \begin{array}{c} 4 \text{ S} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}}_{1 \text{ Constraints}} \underbrace{ \begin{array}{c} 4 \text{ S} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	rbutryn N
HOF (kJ mol ⁻¹)	282.23949	484.52573	469.65495	431.92895
HOMO (eV)	-12.42622	-11.63291	-11.58776	-12.57827
LUMO (eV)	- 13.06146	-12.41798	-12.31381	-13.03461
Moment Dipolaire (D)	10.403	9.871	9.626	10.958
Charges Hétéro atome)-			
1	-0.460	-0.461	-0.432	-0.471
2	-0.466	-0.373	-0.383	-0.394
3	-0.382	-0.421	-0.412	-0.393
4	-0.277	-0.288	-0.277	-0.276
5	-0.295	-0.278	-0.301	-0.292
6	-0.215	0.327	0.329	0.162
K ⁺	0.802	0.824	0.776	0.844
Distance (Å)				
5	3.003	3.056	2.970	3.128
6	4.314	4.337	4.427	4.363
2	2.865	2.902	2.884	2.958

Tableau I.7.3. :Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaireset charges partielles sur les Hétéro-atomes des complexes avec K⁺

<u>**Tableau I.7.4.**</u>: Enthalpies de formation, Energies des orbitals frontiers, Moments Dipolaires et charges partielles sur les Hétéro-atomes des complexes avec Mg^{2+}

Valeurs Calculées	S-Triazines			
	$ \begin{array}{c} 40^{-} \\ 3 \\ N^{-} \\ N \\ 6 \\ 2 \\ Mg \\ Mg \\ Mg \end{array} $	4 S 3 N N N 6 2 Mg	4 S 3 N N1 N 6 2	⁴ Cl 3 N N 1 N 2 N 5 M 2 N 5
	Cl Prometon	Ci Ametryn	Cl Terbutryn	Simazin
HOF $(kJ mol^{-1})$	93.54118	269.99276	242.96229	222.93398
HOMO (eV)	-13.88285	-13.39388	-13.19289	-13.93284
LUMO (eV)	-13.23960	-12.38873	-12.32389	-13.62900
Moment Dipolaire (D)	6.224	3.697	3.865	2.314
Charges Hétéro-				
1 atome	-0.352	-0.300	-0.375	-0.327
2	-0.466	-0.470	-0.467	-0.460
3	-0.399	-0.375	-0.308	-0.314
4	-0.191	0.412	0.399	0.233
5	-0.242	-0.248	-0.288	-0.273
6	-0.275	-0.273	-0.249	-0.327
Mg ²⁺ Cl	0.805	0.811	0.802	0.809
Distance (Å)				
5	2.235	2.2837	2.261	2.275
6	3.801	3.7177	3.738	3.736
2	2.117	2.105	2.094	2.115

Valeurs Calculées	s-Triazine						
	$ \begin{array}{c} 40 \\ 3 \\ N \\ N \\ N \\ 6 \\ 2 \\ Ca $	4 S 3 N N1 N 6 Ca Ca	⁴ S ³ N N N N N N S S S S S S S S S S S S S	⁴ Cl ³ N N1 N 2 Ca Cl			
	Prometon	Ametryn	Terbutryn	Simazin			
HOF (kJ mol $^{-1}$)	239.63545	239.63545	376.92725	346.39260			
HOMO (eV)	-13.75047	-13.75047	- 13.01046	-14.00079			
LUMO (eV)	-12.95254	-12.95254	- 12.11962	-13.32801			
Moment Dipolaire (D)	5.902	5.902	2.940	1.559			
Charges Hétéro-atome							
1	-0.361	-0.387	-0.384	-0.343			
2	-0.470	-0.462	-0.467	-0.453			
3	-0.430	-0.331	-0.333	-0.343			
4	-0.200	0.383	0.374	0.210			
5	-0.301	-0.275	-0.311	-0.297			
6	-0.253	-0.286	-0.271	-0.267			
Ca ²⁺ Cl	1.039	0.980	0.985	0.967			
Distance (Å)							
5	2.724	2.866	2.815	2.809			
6	4.295	4.152	4.119	4.213			
2	2.725	2.661	2.639	2.701			

<u>Tableau I.7.5. :</u>	Enthalpies de formation, Energies des orbitals frontiers, Mor	<u>nents Dipolaires</u>
	et charges partielles sur les Hétéro-atomes des com	plexes avec Ca^{2+}

3.1)- Discussions :

L'enthalpie de formation, les énergies des orbitales frontiers (Homo-Lumo), le moment dipolaire

Et les charges partielles sur les hétéro-atomes pour les S-Triazines étudiées sont collectées dans le tableau 1.7.1.

Les Mêmes valeurs ainsi que les distances entre les hétéro-atomes et les cations dans les complexes formés entre les S-Triazines et les cations Na⁺, K⁺, Mg²⁺ et Ca²⁺ sont représentées dans les Tables 1.7.2- 1.7.5, respectivement.

Dans le cas, des structures symétriques (Prometon et Simazin), la coordination des cations pour la formation des complexes avec l'atome N5 ou N6 ont les mêmes énergies.

En ce qui concerne, les structures asymétriques (Ametryn et Terbutryn) les complexes les plus stables sont préférentiellement ceux formés avec l'atome N5, cela est dû à cause de la densité électronique élevée sur cet atome qui résulte de l'effet de l'hyper-conjugaison des substituents alkyls.

L'étude montre que les S-Triazines étudiés forment des complexes très stables avec les cations :

 Na^+ , K^+ , Mg^{2+} , Ca^{2+}

Partie I : famille des S-Triazines Conclusion
Partie I : famille des S-Triazines

Conclusion :

L'étude entamée dans la première partie a mis en évidence une approche de calcul théorique qui permet de proposer des mécanismes de formation des clusters entre les dérivés de la S-Triazines et le H₂O et entre ces dérivés et les deux acides aminés protéinogénes « Glycine et L-alanine» ainsi que leurs interactions avec les cations Na⁺, K⁺, Mg²⁺, Ca²⁺ :

- La compléxation de la Simazine avec une molécule de H₂O forment 5 clusters : Cluster N₄, Cluster N₅, Cluster N₆, Cluster N₇ et le Cluster N₉. Qui se stabilisent par la création d'un cycle a 2 ponts hydrogènes : O-H et N-H est cela pour les clusters N₅, N₆ et par un simple pont hydrogène N-H pour les autres clusters. Ces ponts ont des longueurs de valeurs approximatives de 2 angströms.
- L'analyse vibrationnelle de ces clusters pour les différentes positions et cela pour les deux états isolé et solvaté sont caractérisés par une région spectrale de 1650-3620 Cm⁻¹.
- Le pic principal de 1650 cm⁻¹ est attribué à la déformation du cycle triazinique. Celui de 3620 Cm⁻¹ est attribué aux vibrations des étirements des liaisons aliphatiques C-H.
- L'écart énergétique entre les deux orbitales frontières HOMO LUMO est un indicateur significatif de la stabilité de ces clusters qui est de l'ordre de 0,48 ev.
- Thermodynamiquement les structures en position N_5 et N_6 sont les plus favorisées avec un $\Delta G = -0.924$ kcal/mol pour l'état isolé.
- La compléxation de la Prométon avec la glycine est très stable avec un écart énergétique entre les 2 orbitales HOMO LUMO de l'ordre de 0.28 ev.
- Thermodynamiquement la formation du complexe N_{10} de la Prométon Glycine est plus favorisé avec un $\Delta G = -3.15$ kcal/mol pour l'état solvaté.
- Concernant le cluster (Propazine-L-Alanine), thermodynamiquement, le complexe N9-N5 et le complexe N4-N9 sont les plus favorisés avec des ΔG de formation qui ont respectivement les valeurs suivantes : -1,57 et -1,14 kcal /mol.
- L'étude montre que les S-Triazines étudiés forment des complexes très stables avec les cations : Na⁺, K⁺, Mg²⁺, Ca²⁺
- Enfin, les toxicités aiguées des trois niveaux trophiques (**algue, daphnie et poisson**) sont évaluées en utilisant le code ECOSAR. Les dérivés de la S-Triazine et tous leurs Clusters sont Nocifs pour les organismes aquatiques.

Partie II : familles des Phényle urée & Carbamates Introduction

Introduction

Le monde est témoin d'une contamination croissante de l'environnement par les produits utilisés comme pesticides en raison de leur consommation croissante et de leur nature récalcitrante [1].Les sources d'eau comme les rivières, les lacs et même les eaux souterraines ont été trouvés contaminés par ses produits [2].

L'exposition à ces contaminants montre déjà des effets néfastes sur la vie biologique, cette exposition chronique à ses produits, même à l'état de traces, peut également avoir des effets néfastes sur la santé humaine à long terme [3].

Bien qu'il ait été difficile de fournir des données substantielles sur cette pollution, La présence de ces composés dans le milieu aquatique a été reconnue comme l'un des problèmes émergents de la chimie environnementale.

Dans certaines enquêtes menées en Autriche, Brésil, Canada, Croatie, Angleterre, Allemagne, Grèce, Italie, Espagne, Suisse, Pays-Bas et aux États-Unis, ces composés ont été détectés dans le milieu aquatique. Ces études montrent que les contaminants provenant de l'application de ses pesticides ne sont pas complètement éliminés dans les stations d'épuration des eaux et sont donc rejetés en tant que contaminants dans les eaux potable [4].

L'évaluation de la génotoxicité des eaux usées peut devenir une exigence de routine ,Cela s'explique par un risque accru de dommages génétiques ou de cancer chez l'homme [5],[6].

La classe bien connue des herbicides, les dérivés de la phényle-urée et les dérivés des carbamates, sont couramment utilisés dans les zones agricoles, leurs utilisations intensives provoquent la pollution des sols et des écosystèmes aquatiques.

Ces dérivés sont utilisés pour le contrôle des graminées annuelles et des mauvaises herbes dans de nombreuses cultures. Ces produits se sont polluants importants qui ont des effets toxiques sur la photosynthèse des plantes, sont considérés comme dangereux pour la vie aquatique et la flore et présente un potentiel considérable à l'origine des malformations congénitales chez l'homme.

Dans ce travail, nous discutons sur divers aspects ce problème, en commençant par la présentation de la famille de la phényle-urée et la famille des carbamates, les modes d'actions de ces pesticides, l'étude structurelle de ces matrices moléculaires, ainsi que leurs interactions

avec la molécule d'eau et puis avec les deux acides aminés protéinogénes « Glycine et Lalanine ».

Dans cette étude basée sur les méthodes de la chimie computationnelle, on va s'intéressé essentiellement à l'analyse du comportement des structures cristallines suivantes :

(3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea,3-(4-chlorophenyl)-1,1-dimethylurea, (2,3,4,5,6,7,8-heptadeuterionaphthalen-1-yl)N-methylcarbamate,(2-propan-2yloxyphenyl) Nmethylcarbamate).

Cette étude se focalise sur l'interaction de ces structures avec une molécule de H_2O et en deuxième lieu, on va s'intéresse à leurs compléxations avec les deux acides aminés protéinogénes « Glycine et L-alanine».

L'approche théorique se base sur l'utilisation de plusieurs approches quantiques : entre autre l'optimisation des géométries, calcul des fréquences, analyse conformationnelle, analyse des charges nettes et finalement l'établissement des courbes des profils énergétiques.

Ces approches vont être effectuées dans plusieurs niveaux de calculs : DFT/B3LYP, MP2, CASSF pour les états excités.[7]

La méthode consiste à optimiser les géométries des molécules choisis, et effectuer une recherche conformationnelle sur les structures correspondantes aux points stationnaires à un [8], en utilisant le code Gaussian 16 [9].[10].

Les énergies du point zéro et les corrections thermiques aux énergies libres de Gibbs ont été obtenues à partir des calculs des modes de vibrations.

Les effets du solvant ont été pris en compte en utilisant la méthode **CPCM** [11] au niveau pour imiter les conditions expérimentales.

Les résultats obtenus ont été évalués par l'utilisation du logiciel **ECOSAR** pour l'identification de la toxicité des composés organiques dans le milieu aquatique pour une estimation précise des dangers et des risques de ses matrices moléculaires et les clusters formés⁻.

Ce travail est structuré en sept chapitres :

- Le premier chapitre de ce mémoire sera consacré à une étude bibliographique sur deux structures ainsi que ses caractéristiques physico-chimiques, son impact sur l'environnement. Egalement, nous présentons les différents mécanismes d'actions avec les organes vivants.
- Le deuxième chapitre, décrira la méthode théorique et les différentes techniques Méthodologiques utilisées au cours de cette étude, ainsi que les logiciels utilisés au cours de cette étude.

- Le troisième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de H₂O⁻ en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP2**.
- Le quatrième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « Glycine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP2**.
- Le cinquième chapitre est consacré aux résultats obtenus par l'étude théorique de la compléxation avec un cluster de L'acide aminé protéinogéne « L-Alanine » en utilisant des calculs se basant sur la théorie fonctionnelle de la densité **DFT** ainsi que la méthode de perturbation **MP2**.
- Le sixième chapitre étudiera la toxicité du cluster avec le H₂O dans le milieu aquatique en utilisant le code ECOSAR.
- Le septième chapitre se focalise sur l'étude de la réactivité des phényle-urées (cas du monuron).

<u>Références :</u>

- 1. Jindal, K., M. Narayanam, and S. Singh, Pollution of Aqueous Matrices with Pharmaceuticals, in Water and Health. 2014, Springer. p. 355-373.
- Marchand, M., La contamination des eaux continentales par les micropolluants organiques. Revue des sciences de l'eau/Journal of Water Science, 1989. 2(2): p. 229-264.
- 3. Ferrari, B.t., et al., Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and environmental safety, 2003. **55**(3): p. 359-370.
- 4. Gonzalez, J.-L., et al., Etude pilote préliminaire: Première évaluation des niveaux de contamination chimique des eaux littorales guyanaises dans le cadre de la préparation du volet chimie du contrôle de surveillance DCE-campagne Novembre 2008. 2009.
- 5. Stahl Jr, R.G., The genetic toxicology of organic compounds in natural waters and wastewaters. Ecotoxicology and Environmental Safety, 1991. **22**(1): p. 94-125.
- 6. Montiel, A., Les résidus de médicaments et le traitement des effluents d'hôpitaux. Environnement, Risques & Santé, 2006. **5**(4): p. 296-300.
- 7. Zaviska, F., et al., Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels: Application à la dégradation des polluants réfractaires. Revue des sciences de l'eau/Journal of Water Science, 2009. **22**(4): p. 535-564.
- Lee, C., W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Physical review B, 1988. 37(2): p. 785.
- 9. Frisch, M., et al., Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT, 2009. **200**.
- 10. Gonzalez, C. and H.B. Schlegel, An improved algorithm for reaction path following. The Journal of Chemical Physics, 1989. **90**(4): p. 2154-2161.
- 11. Barone, V. and M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. The Journal of Physical Chemistry A, 1998. **102**(11): p. 1995-2001.

Partie II : familles des Phényle urée & Carbamates Chapitre 01 : Synthèse bibliographique

1) <u>Historique :</u>

Selon la référence [1], l'utilisation des pesticides en agriculture remonte à l'antiquité comme l'indique l'emploi du soufre cité par Homère et celle de l'arsenic signalé par Pline l'ancien, utilisé comme insecticides.

Depuis la fin du XVII ème siècle, à la même époque l'utilisation de la nicotine a été recommandée par Jean de la quintaine (1626-1688) après la découverte de ses propriétés toxiques.

Cependant, c'est lorsque de grave épidémies avaient apparus surtout au cours des XIXème et XXème siècles, que des propriétés biocides de nombreux produits chimiques apparaissent et prennent une grande importance.

L'apparition en Europe en 1845 du mildiou de la pomme de terre a contribué largement à ces progrès. Parmi les pesticides les plus utilisées au cours de XIXème siècle, les fongicides à base de sulfate de cuivre, en particulier la fameuse bouillie bordelaise (mélange de sulfate de cuivre et de chaux) mise au point par A. Millardet (1838-1902) qui en proposa l'utilisation en 1885.

L'arsenic de plomb a été utilisé en Algérie en 1888 autant qu'insecticide pour lutter contre l'Eudémis de la vigne. Ensuite à partir de la 2éme guerre mondiale, le DDT (Dichlorodiphényle trichloroéthane) de la famille des organochlorés, dont les propriétés insecticides ont été découvertes par Müller et Weismann en 1939, a connu un grand succès (lutte contre le Paludisme).

D'autres produits herbicides ont été découverts par Zimmerman et Hitchcock en 1942. Le plus connu est l'acide 2,4-dichlorophénoxy-acétique (2,4-D) pour désherber les mauvaises herbes qui poussent avec les céréales comme le blé.

Après 1950, des insecticides très efficaces ont été découverts appartenant aux familles chimiques des organophosphorés et des carbamates comme la malathion et le parathion. Les fongicides organiques développée durant cette période appartiennent à diverses familles chimiques (les strobilurines, les composés hétérocycliques, benimidazoles). Les herbicides ont aussi connu un important développement, avec l'apparition des urées substituées (linuron, Monuron, fenuron, Neburon, diuron...).

Dans les années 1970-1980 apparaît une nouvelle classe d'insecticides, les pyrétrinoides qui dominent le marché des insecticides.

Les produits spécifiques impliquant une connaissance toujours plus poussée de la physiologie du ravageur ou de sa cible ont aussi été mis sur le marché [2].

la series and	É	volutio	on des prod	uits		
	HERBICID	HERBICIDES FONGICIDES		INSECTICIDES		
Avant 1900	Sulfate de cuivre Sulfate de fer		Soufre Sels de cuivre	•	Nicotine	•
1900 - 1920	Acide sulfurique	(Sels d'arsenic	0
1920 - 1940	Colorants nitrės 🕴	•				
1940 - 1950	Phytohormones	•			Organo-chlorés Organo-phosphorés	
1950 - 1960	Triazines, Urées substituées Carbamates	•	Dithiocarbamates Phtalimides	•	Carbamates	1 .
1960 - 1970	Dipyridyles, Toluïdines	•	Benzimidazoles	•		
1970 - 1980	Amino-phosphonates Propionates	0	Triazoles Dicarboximides Amides, Phosphites Motholines	•	Pyréthrinoïdes Benzoyl-urées (régulateurs de croissance)	0
1980 - 1990	Sulfonyl urées	۲				
1990 - 2000		*****	Phénylpyrroles Strobilurines	*****		***

<u>Tableau II.1.1. :</u> E	Evolution	historique	des classes	des	pesticides.
----------------------------	-----------	------------	-------------	-----	-------------

2) <u>Les pesticides</u>

C'est un terme générique qui regroupe différentes catégories telles que les insecticides, les fongicides, les herbicides, les raticides, les algicides, etc. Les pesticides ont des effets nocifs sur l'homme mais aussi sur les animaux et les plantes. Ainsi, 15 à 20% de ces produits chimiques sont considérés cancérigènes et la plupart d'entre eux sont des perturbateurs endocriniens [3, 4].

Actuellement, la réduction de l'utilisation de pesticides devient une préoccupation majeure aux Etats-Unis, au Canada et en Europe [5]. En Europe, une réduction de 25% des quantités d'herbicides utilisées sur les cultures de céréales n'entraînerait pas de diminution des rendements. Aux Etats-Unis, une réduction de 30-50 % des quantités de pesticides utilisées serait envisageable sans avoir la répercussion sur le rendement des cultures [5].

3) <u>Classification :</u>

Les pesticides, étymologiquement « tueurs de fléaux » sont aussi appelés, dans la réglementation nationale et européenne " produits phytosanitaires". Les mots sont aujourd'hui utilisés indifféremment par les services impliqués dans le contrôle de la qualité de l'eau. Les producteurs de pesticides utilisent aussi l'appellation « produits phytopharmaceutiques », appellation à consonance plus médicale et plus positive.

Les pesticides sont exclusivement d'origine anthropique. Ruissellement, drainage, érosion, entraînent ces produits vers les eaux superficielles et les eaux souterraines sont contaminées par infiltration (transfert par le sous-sol) ou directement.

Les familles de pesticides suivies dans les analyses d'eaux souterraines sont les triazines (atrazine, désitylatrazine...), les urées substituées (diuron), les organochlorés (lindane).

Les pesticides sont classés par grandes familles selon un double classement :

3. 1) Classement par cible : on distingue quatre grandes familles :

a. Les insecticides : destinés à lutter contre les insectes. Ils interviennent en tuant ou en empêchant la reproduction des insectes, ce sont souvent les plus toxiques. En voici quelques exemples :

- *l'arsenic, très utilisé avant la seconde guerre mondiale.*
- les POP- notamment le fameux DDT (dichlorodiphényltrichloroéthane), insecticide très puissant très utilisé jusqu'à son interdiction, très persistant, très mobile et très soluble puisque l'on retrouve des traces de DDT dans les glaces et les mammifères de l'Arctique et de l'Antarctique.
- Le LINDANE (hexachlorocyclohexane HCH), de la famille des organochlorés est interdit depuis 1999.
- Le carbaryl tristement célèbre car il fut la cause de la catastrophe de Bhopal (décembre 1984), due à l'échappement de l'isocyanate de méthyle de l'usine où il était fabriqué.

<u>b. Les fongicides :</u> destinés à éliminer les moisissures et parasites (champignons...) des plantes. Les fongicides les plus anciens sont le soufre, le cuivre et ses dérivés organiques comme la bouillie bordelaise.

Les fongicides de synthèse (le plus souvent aromatiques) sont utilisés à titre préventif et curatif, ils ont l'avantage d'avoir une faible toxicité et un large spectre d'action.

<u>c. Les herbicides :</u> destinés à lutter contre certains végétaux (les « mauvaises herbes »), qui entrent en concurrence avec les plantes à protéger en ralentissant leur croissance. Ils sont de nature assez différente de celle des trois autres familles.

D'une part, leur action n'est pas d'intervenir contre un intrus, de nature différente (insecte/parasite), mais de lutter contre un autre végétal. D'autre part, leur mode d'épandage est différent puisqu'ils sont déposés directement au sol, par opposition aux autres produits, plutôt pulvérisés sur la plante en croissance.

Les herbicides les plus connus sont l'acide sulfurique, utilisé pour désherber les céréales dès 1911, et les phytohormones (le 2-4 D) ainsi que des dérivés de l'acide 2-phénoxyétahnoïque (comme le MCPP) et les sulfonylurées.

Ce fut dans les années 1930 que pour la première fois, une hormone végétale (acide b-indolacétique ou IAA) a été identifiée. Il s'en est suivi une période de recherche sur les phytohormones ; les acides phénoxyalcanoïques, comme le 2,4-D (acide 2-(2,4dichlorophénoxy) éthanoïque ont ainsi été synthétisés.

Les herbicides constituent aujourd'hui le groupe le plus important, le plus utilisé. On y trouve d'ailleurs quelques-uns des produits « sous surveillance », notamment : le Linuron, Monuron désherbant total, utilisé surtout en voierie.

<u>d.</u> Le dernier groupe est celui des **pesticides spéciaux, tels que les répulsifs de rongeurs, fumigènes**.

<u>3. 2) Classement par groupe chimique</u> : il s'agit d'un classement technique à partir de la molécule principale utilisée. On distingue :

- Les organochlorés, parmi les plus anciens et les plus persistants, dont le fameux DDT déjà évoqué. Ils sont surtout utilisés comme insecticides en agriculture et dans les métiers du bois. (Exemples : aldrine, dieldrine, etc...)
- Les organophosphorés, eux aussi utilisés comme insecticides.
- Les carbamates, fongicides et insecticides.
- Les phénox, herbicides (Exemple 2-4 D)

- Les organo-azotés, repérables par le suffixe « zine », principalement utilisés comme herbicides. (Exemple : atrazine, simazine, etc...)
- Les urées, repérables par le suffixe « uron », utilisés comme herbicides et fongicides. (Exemple : Monuron, Linuron, etc.). [4]

4) Mécanisme d'action :

4.1) Les effets des pesticides sur l'environnement :

Les données recueillies ont montré une présence de pesticides plus régulière durant l'été. Les plus souvent utilisés sont les herbicides. Le problème c'est que l'on retrouve plusieurs pesticides présents en même temps dans l'eau des rivières, allant jusqu'à vingt dans certain cas dans un même échantillon.

Dans les cours d'eau qui drainent des zones de vergers on détecte régulièrement des fongicides et ceux les plus souvent identifié sont les insecticides. Leurs concentrations dépassent parfois les critères de la qualité de l'eau essentielle à la protection des espèces aquatiques.

Les données recueillis dans les rivières et ruisseaux qui drainent les terres en cultures maraîchères révèlent la présence de plusieurs insecticides ainsi que du fongicide chlorothalonil.

En plus d'avoir des effets négatif sur les espèces aquatiques, la présence de pesticide dans l'eau des rivières a également un impact direct sur la qualité des sources d'approvisionnement en eau potable. Les petits cours d'eau agricole échantillonnés se jettent dans des rivières plus grandes, comme par exemple [6]

Les mécanismes de dispersion sont variés. Lors de l'application qui s'effectue généralement sous forme de «spray», une fraction importante des produits phytosanitaires déposés sur les plantes ou le sol ruisselle puis s'infiltre pour atteindre et contaminer respectivement les eaux de surface, 23 puis les eaux souterraines.

Figure II.1.1. : Devenir des pesticides dans l'environnement [4]

Une part importante des produits phytosanitaires se retrouve dans l'atmosphère sous l'action de divers phénomènes physico-chimiques ou climatiques : la dérive par le vent lors de l'application. Ce phénomène est lié essentiellement au mode d'application.

Ce mode d'épandage est celui qui est le plus susceptible de polluer l'air. Il est peu utilisé en Europe, mais fréquent aux Etats-Unis.

• la volatilisation après le traitement.

• l'érosion éolienne des particules de sol sur lesquelles les pesticides sont adsorbés.

Si certains pesticides peuvent avoir une durée de vie de quelques jours, d'autres sont très stables[7]. Certaines molécules peuvent effectuer plusieurs centaines de kilomètres avant de retomber sur la lithosphère, soit par re-déposition sèche, soit par lessivage de l'atmosphère par les précipitations[8].

La contamination peut s'effectuer à tous les niveaux, de l'air à l'eau en passant par les aliments. Les apports de pesticides peuvent présenter des risques de toxicité pour des organismes vivants qui n'étaient pas visés par le traitement phytosanitaire[9]. Les données concernant la qualité des eaux souterraines font état en France d'une contamination par les pesticides considérée suspecte dans 35% des points de mesure et certaines dans 13% des cas[5].

Concernant la qualité des eaux de surface, il apparaît globalement une contamination généralisée par les pesticides, y compris dans les zones de dilution importante. Les eaux marines font elles – aussi état d'une contamination généralisée et pérenne par les pesticides. Environ 25% des eaux de distribution sont non-conforme. L'ingestion de fruits et légumes contribue également aux apports en pesticides pour les humains[10].

Les chiffres à ce sujet sont inquiétants puisque 8.3% des échantillons d'aliments végétaux d'origine française analysée contiennent des résidus de pesticides supérieurs aux limites maximales et que 49.5% en contiennent [5].

4.2) Les effets toxiques des pesticides sur la santé :

On a observé des problèmes d'ordre respiratoire, cutané, neurologique, reproductif, de développement et bien d'autres. Au Québec les statistiques démontrent qu'entre 5 à 6% des 1 500 cas annuels d'intoxication aiguë aux pesticides rapportés au Centre anti-poison du Québec (CAPQ) sont associées à une exposition reliée à des pratiques professionnelles.

Dans les effets d'ordre dermatologiques et respiratoires, on observe l'irritation, de l'érythème, de l'ædème, de l'urticaire, des éruptions cutanées, des dermatites, des allergies, la toux chronique, l'asthme, la dyspnée, la rhinite ainsi qu'une baisse de capacité vésicatoire observée chez les agriculteurs exposés aux pesticides pour ce qui est de la toxicité aigüe.

Pour les toxicités chroniques on observe des effets à long terme qui sont suspectés. Dans ce cas-ci, il est difficile de démontrer la principale source reliée à la maladie. Plusieurs pesticides ont été identifiés comme étant cancérigènes ; les types de cancer sont les lymphomes, la leucémie ainsi que le cancer des tissus conjonctifs, du cerveau et de la prostate.

Quelques études tendent à démontrer des risques accrus pour le cancer des reins et du cerveau ainsi que la leucémie chez les enfants d'agriculteurs, et utilisateurs professionnels de pesticides. Il est cependant difficile de tirer des conclusions en matière de cancérogénicité des pesticides à cause de certaines limites des études épidémiologiques.

D'autres études ont montré un lien important entre l'exposition aux pesticides et certains troubles de la reproduction et du développement. Selon certains chercheurs, les agriculteurs qui utilisent des pesticides ont une densité de spermatozoïdes moins élevée que les agriculteurs possédant des fermes biologique.

D'autres chercheurs indépendants affirment que 36% des femmes qui manipulent des pesticides qui sont soumis à une période moyenne de 2 250 heures par année ont eu des fausses couches à la vingtième semaine de grossesse comparé à 12% chez les femmes qui sont exposées aux pesticides sur une période plus courte, soit sur une moyenne de 250 heures par année.

Les analyses statistiques ont démontré une différence significative (p<0,01) On observe également que les pesticides pourraient être responsables de malformations chez les nouveaunés de parents agriculteurs exposés aux pesticides.

La panoplie d'études réalisées sur les effets néfastes des pesticides sur la santé semblent assez solides et convaincantes. Un petit nombre d'agriculteurs qui possèdent des fermes biologiques l'ont heureusement compris. Il reste maintenant à convaincre les autres agriculteurs et les gouvernements à tout simplement abolir ces pratiques ou du moins à restreindre leur utilisation. [11]

• <u>Translocation d'herbicides dans les plantes :</u>

Les herbicides systémiques sont transférés dans les plantes, tandis que les herbicides de contact ne le sont pas. La plupart des herbicides de contact appliqués sur les feuilles agissent en perturbant les membranes cellulaires. Il est essentiel de bien couvrir les plantes avec des herbicides de contact appliqués sur les feuilles pour tuer toute la plante.

Les herbicides de contact sont généralement inefficaces pour lutter contre les mauvaises herbes vivaces à long terme. Les herbicides de contact endommagent les parties de la plante avec lesquelles la solution de pulvérisation entre en contact, mais la partie souterraine des plantes vivaces reste intacte et peut rapidement déclencher une nouvelle croissance.

Les herbicides de contact sont souvent plus efficaces sur les feuilles que sur les graminées. Le point de croissance des jeunes graminées se situe dans la région cime de la plante, située à la surface du sol ou en dessous de celle-ci, et donc difficile à entrer en contact avec le produit pulvérisé. En revanche, le point de croissance des jeunes plantes à feuilles larges est exposé au traitement par pulvérisation. Ainsi, le parquât ne peut pas tuer tous les points de croissance d'un plant de graminées, et une repousse peut se produire.

Les herbicides systémiques peuvent être transférés vers d'autres parties de la plante, soit dans le xylème, soit dans le phloème. Le xylème est un tissu non vivant à travers lequel l'eau et les nutriments passent des racines aux pousses et aux feuilles des plantes. La translocation dans le xylème est seulement ascendante et externe chez les plantes, des racines aux feuilles et aux marges des feuilles. Phloème est un système vivant et conducteur dans lequel les matériaux peuvent se déplacer vers le haut et Vers le bas.

Figure II.1.2. : Translocation d'herbicide chez les plantes.

Translocation réduite d'herbicide dans une plante Espèces pourraient être à la base de la résistance aux herbicides, mais entraînerait probablement seulement une diminution marginale de sensibilité des plantes[12].

Les herbicides inhibiteurs de la photosynthèse contrôlent de nombreuses mauvaises herbes à feuilles larges et certaines mauvaises herbes. Ces herbicides agissent en perturbant la photosynthèse, mais il existe trois sites de liaison différents. Le site de liaison A comprend les triazines, les triazinones et les uraciles, le site de liaison B comprend les phénylurées et le site de liaison C comprend le bentazon et le bromoxynil.

Les phénylurées sont des herbicides appliqués au sol ou en post levée précoce dans les cultures et les sites non cultivés. Ces herbicides sont absorbés à la fois par les pousses et les racines, mais sont transloqués uniquement dans le xylème.

Récolte et sélectivité des mauvaises herbes vis-à-vis des herbicides à base d'urée, tels que le linuron, est due principalement à la mise en place d'herbicide plutôt que métabolisme ou la tolérance physiologique différentielle des espèces végétales.[13] .Tandis que les phénylurées bloquent les réactions de photophosphorylation.

5) <u>Présentation générale des phényle-urées et des carbamates étudiées :</u> 5.1) <u>Formule et nomenclature</u>

Dans cette étude, deux N-méthyl-carbamates substitués par un cycle aryle en plus de deux phényle-urées ont été étudiés.

Les deux carbamates sont le naphtoxy-N-méthyl-carbamate, également appelé carbaryl ou Sevin et 2-isopropyloxyphénoxyN-méthylcarbamate, également appelé propoxur ou Baygon.

Les deux phénylurées sont : la N '- (4-chlorophényl) -N, N-diméthyle-urée (monuron), et N '- (3,4-dichlorophényl) -N-méthyl-N-méthoxy-urée (linuron). Tous les pesticides aromatiques étudiés sont des molécules polyfonctionnelles solides[14].

Formule des phényle-urées :

Figure II.1.3. : Structures, noms et masses moléculaires des phényle-urées étudiées

CH₃

CH₃

<u>Formule des Carbamates :</u>

Sevin, **1** *M*, 201

Baygon, **2** *M*_r 209

Figure II.1.4. : Structures, noms et masses moléculaires des carbamates étudiées

6) Les propriétés physiquo- chimiques des phényle-urées et des carbamates étudiées

- <u>6.1) Cas des Phényle-urées :</u>

- Structure de base phényle-urée :

Figure II.1.5. : Structure de la phényle-urée(Structure de base) [15]

Noms et identifiants :

- ♦ *Nom IUPAC* : *Urea*, *N*,*N*-*dimethyl*-*N* -*phenyl*-
- ✤ Formule moléculaire : C7H8N2O [15]
- **♦** *Nom de CAS* : 101428

Nom de la propriété	Valeur de la propriété
Masse moléculaire	135.153 g/mol
XLogP3	0.8
Compte de donneurs de liaison hydrogène	2
Nombre d'accepteurs de liaisons hydrogène	1
Nombre de liaisons rotatives	1
Masse exacte	135.066 g/mol
Masse mono-isotopique	135.066 g/mol
Surface polaire topologique	55.1 A^2
Nombre d'atomes lourds	10
Charge formelle	0
Complexité	119
Nombre d'atomes d'isotopes	1
Nombre défini de stéréo-centres d'atomes	0
Compte de stéréo-centres atomiques non définis	0
Compte de stéréo-centres à liaisons définies	0
Compte de stéréo-centres à liaison non définie	0
Nombre d'unités liées par covalence	1
Le composé est canonisé	OUI

	Tableau II.1.2. :	Propriétés calculée	[15]
--	-------------------	---------------------	------

Propriétés expérimentales :

- **♦** *Point de fusion* : *133.5°C*
 - Solubilité (ppm) : Dans l'acétone

Monuron :

Noms et identifiants :

- ✤ Nom IUPAC : 3-(4-chlorophenyl)-1,1-dimethylurea [15]
 - ✤ Formule moléculaire : C₉H₁₁ClN₂O
 - ✤ Nom de CAS : 150-68-5 [16]

Figure II.1.6. : Structure du Monuron [15]

Nom de la propriété	Valeur de la propriété
Masse moléculaire	198.65 g/mol
XLogP3	1.9
Compte de donneurs de liaison hydrogène	1
Nombre d'accepteurs de liaisons hydrogène	1
Nombre de liaisons rotatives	1
Masse exacte	198.056 g/mol
Masse mono-isotopique	198.056 g/mol
Surface polaire topologique	32.3 A^2
Nombre d'atomes lourds	13
Charge formelle	0
Complexité	177
Nombre d'atomes d'isotopes	0
Nombre défini de stéréo-centres d'atomes	0
Compte de stéréo-centres atomiques non définis	0
Compte de stéréo-centres à liaisons définies	0
Compte de stéréo-centres à liaison non définie	0
Nombre d'unités liées par covalence	1
Le composé est canonisé	OUI

Tableau II.1.3. : Propriétés calculées

Propriétés expérimentales :

- Description physique : MONURON est un solide cristallin blanc ou une poudre blanche légèrement odorante. Point de fusion 175 ° C. Modérément toxique par ingestion. Utilisé comme herbicide.[17]
- **♦** *Point d'ébullition* : 365 à 392 ° F à 760 mm Hg
- **♦** *Point de fusion* : *338,9 à 340,7 ° F*
- ✤ Solubilité (ppm): acétone 52 000 (à 27 ° C)[17]
- **♦ Densité** : 1,27 à 68 ° F

Linuron :

Figure II.1.7. : Structure de Linuron

Noms et identifiants :

- Nom IUPAC : 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea
- ✤ Formule moléculaire : C9H10Cl2N2O2
- ✤ Nom de CAS : 330-55-2 [18]

Tableau II.1.4. : Propriétés calculées

Nom de la propriété	Valeur de la propriété
Masse moléculaire	249.091 g/mol
XLogP3	3.2
Compte de donneurs de liaison hydrogène	1
Nombre d'accepteurs de liaisons hydrogène	2
Nombre de liaisons rotatives	2
Masse exacte	248.012 g/mol
Masse mono-isotopique	248.012 g/mol
Surface polaire topologique	<i>41.6 A</i> ^2
Nombre d'atomes lourds	15
Charge formelle	0
Complexité	228
Nombre d'atomes d'isotopes	0
Nombre défini de stéréo-centres d'atomes	0
Compte de stéréo-centres atomiques non définis	0
Compte de stéréo-centres à liaisons définies	0
Compte de stéréo-centres à liaison non définie	0
Nombre d'unités liées par covalence	1
Le composé est canonisé	OUI

<u>Propriétés expérimentales :</u>

- Description physique : LINURON est un cristal incolore. Non corrosif. Utilisé comme herbicide. [19]
- **♦** *Point de fusion* : 93.0°C [20]
- Solubilité (ppm): Dans l'acétone 500 [21]
- **♦ Densité** : 1,49 à 20 ° C [22]

6.2) Cas des Carbamates :

- <u>Sevin :</u>

Figure II.1.8. : Structure du sevin [15]

<u>Noms et identifiants :</u>

- *Nom IUPAC* : naphthalen-1-yl N-methyl-carbamate
- **♦** *Formule moléculaire* : *C*₁₂*H*₁₁*NO*₂
- ***** Nom de CAS : 63-25-2

Tableau II.1.5. : Propriétés calculée [15]

Nom de la propriété	Valeur de la propriété
Masse moléculaire	201.225 g/mol
XLogP3	2.4
Compte de donneurs de liaison hydrogène	1
Nombre d'accepteurs de liaisons hydrogène	2
Nombre de liaisons rotatives	2
Masse exacte	201.079 g/mol
Masse mono-isotopique	201.079 g/mol
Surface polaire topologique	38.3 A^2
Nombre d'atomes lourds	15
Charge formelle	0
Complexité	230
Nombre d'atomes d'isotopes	0
Nombre défini de stéréo-centres d'atomes	0
Compte de stéréo-centres atomiques non définis	0
Compte de stéréo-centres à liaisons définies	0
Compte de stéréo-centres à liaison non définie	0
Nombre d'unités liées par covalence	1
Le composé est canonisé	OUI

Propriétés expérimentales :

- Description physique : CARBARYL est un solide cristallin blanc. Insoluble dans l'eau. Combustible, bien que difficile à enflammer. Toxique par inhalation (poussière, etc.). Produit des oxydes d'azote toxiques lors de la combustion.[23]
- Solubilité (ppm) : Dans l'acétone 200-300 (à 27 ° C)
- ✤ Point d'ébullition : 365 à 392 ° F à 760 mm Hg
- **♦** *Point de fusion* : *338,9 à 340,7 ° F*
- ✤ Solubilité (ppm): acétone 52 000 (à 27 ° C)[17]
- ✤ Densité : 1,27 à 68 ° F

<u>Baygon</u>

Figure II.1.9. : Structure du Baygon [15]

<u>Noms et identifiants :</u>

- ♦ Nom IUPAC : naphthalen-1-yl N-methyl-carbamate [15]
- **♦** Formule moléculaire : C₁₁H₁₅NO₃
- ✤ Nom de CAS : 114-26-1 [16]

Nom de la propriété	Valeur de la propriété
Masse moléculaire	209.245 g/mol
XLogP3	1.5
Compte de donneurs de liaison hydrogène	1
Nombre d'accepteurs de liaisons hydrogène	3
Nombre de liaisons rotatives	4
Masse exacte	209.105 g/mol
Masse mono-isotopique	209.105 g/mol
Surface polaire topologique	47.6 A^2
Nombre d'atomes lourds	15
Charge formelle	0
Complexité	206
Nombre d'atomes d'isotopes	0
Nombre défini de stéréo-centres d'atomes	0
Compte de stéréo-centres atomiques non définis	0
Compte de stéréo-centres à liaisons définies	0
Compte de stéréo-centres à liaison non définie	0
Nombre d'unités liées par covalence	1
Le composé est canonisé	OUI

Tableau II.1.6. : Propriétés calculées

Propriétés expérimentales :

- Description physique : PROPOXUR est une poudre cristalline blanche à beige avec une légère odeur caractéristique. Utilisé comme insecticide [24]
- ✤ Point de fusion : 187 à 197 ° F
- * Solubilité (ppm) : acétone
- **♦** *Densité* : (à 20 ° C) : 1,1 g / cm³

<u> Référencesb :</u>

- 1. Calvet R., B.E., Benoit B., Bedos C., Charnay K., et Coquet Y., (2005)., Les pesticides dans le sol: Conséquences agronomiques et environnementales, and P. Paris: Editions France Agricoles, 255, 25,272.
- 2. Tissut M., D.P.P., Mamarot J., Ravanel P., (2006). Plantes, herbicides et and P. désherbage. Acta.
- 3. [1] Meyer A., C.J., Moreira J.C., Koifman S., 2003. Cancer mortality among agricultural and s.o.R.d.J. workers from Serrana Region, Brazil. Environ Res., 93, 264-271.
- 4. Viel J.F., C.B., Pitard A., Pobel D., 1998. Brain cancer mortality among French farmers: and the vineyard pesticide hypothesis. Arch. Environ. Health., 65–70.
- 5. Tron I., P.O., Cohuet S., 2001. Effet chroniques des pesticides sur la santé: état actuel and d.c.R.d.l.o.R.d.l.S.d. Bretagne.
- 6. P. Augustijn-Beckers, A.H., R. Wauchope, The SCS/ARS/CES pesticide properties database for environmental decision-making. II. Additional compounds, Reviews of environmental contamination and toxicology, Springer, 1994, pp. 1-82.
- 7. Bintein S., D.J., 1996. Evaluating the environmental fate of atrazine in France, and Chemosphere, 2441-2456.
- 8. Roche F., T.d.p.p.v.l.a., Mécanismes de, D.p.d.l.C.R.d.E.d. transfert des produits phytosanitaires, and P.d.L. Pollutions des Eaux par les Produits Phytosanitaires (CREPEPP), mai 1998.
- 9. Maroni M., C.C., Ferioli A., Fait A., 2000. Biological monitoring of pesticide exposure: a and review. Toxicology, 5-118.
- 10. Tadeo J.L., S.-B.C., Perez, R.A., Fernandez M.D., 2000. Analysis of herbicide and f.a.v.J.C.A. residues in cereals, 882, 175-191.
- 11. -saida, j.l., pesticides ,risques sécurité alimentaire, aprifel, Editor. janvier 2004.
- 12. M. Das, J.R.R., G. Haberer, G. Welzl, F.F. Aceituno, M.T. Mader, L.S. Watrud, T.G. Pfleeger, R.A. Gutiérrez, A.R. Schäffner, A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus, Plant molecular biology 72 (2010) 545-556.
- 13. Jerzykiewicz, G.K., The effect of triazine-and urea-type herbicides on photosynthetic apparatus in cucumber leaves, Acta Societatis Botanicorum Poloniae 76 (2007).
- 14. Bourcier, S., Y. Hoppilliard, and T. Kargar, Analysis of aromatic pesticides by mass spectrometry. Advantage of plasma desorption over electron impact and NH3 or CH4 positive chemical ionization: the competitive formation of M+. and MH+ ions. Rapid communications in mass spectrometry, 1997. **11**(9): p. 1046-1056.
- 15. https://pubchem.ncbi.nlm.nih.gov.
- 16. https://chem.nlm.nih.gov/chemidplus/sid/000015068.
- 17. https://cameochemicals.noaa.gov/chemical/18178.
- 18. https://chem.nlm.nih.gov/chemidplus/sid/0000330552.
- 19. https://cameochemicals.noaa.gov/chemical/18165.
- 20. https://comptox.epa.gov/dashboard/DTXSID2024163.
- 21. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+@rel+330-55-2.
- 22. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+@rel+330-55-2https://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+@rel+330-55-2.
- 23. https://cameochemicals.noaa.gov/chemical/2808.
- 24. https://cameochemicals.noaa.gov/chemical/16093.

Partie II : familles des Phényle urée & Carbamates Chapitre 02 : Etude Théorique et Méthodologique

1) Introduction :

L'équation proposée par Schrödinger en 1926 ; est à la base de la chimie quantique. La résolution de cette équation est cependant trop compliqué pour des systèmes comportant plus de deux électrons, d'où l'utilisation des méthodes approchées.

Dans le domaine de la chimie quantique, deux grandes familles se dégagent : les méthodes semi-empiriques et les méthodes ab-initio.

Les méthodes semi empiriques de résolution rapide, elles permettent de modéliser les "gros" systèmes moléculaires grâce à deux approximations. La première consiste à ne prendre en compte que la couche de valence.

La seconde consiste à négliger la plupart des intégrales de répulsion électronique à plusieurs centres. Elles utilisent des paramètres ajustés aux résultats expérimentaux ou obtenus par des calculs ab initio.

2) <u>Base théorique :</u>

La mécanique quantique est une branche de science qui décrit les phénomènes physicochimiques régissant le monde de l'infiniment petit. L'équation de Schrödinger (1) [1] formulée en 1926 à partir des travaux de De Broglie, [2] est l'équation fondamentale de ce modèle, si l'on se place dans un cadre non relativiste.

$$\hat{H}\psi = E\psi \tag{1}$$

Avec ψ la fonction d'onde poly-électronique, E l'énergie totale du système et \hat{H} l'opérateur hamiltonien.

Dans l'équation de Schrödinger (1), l'opérateur hamiltonien \hat{H} est la somme des opérateurs d'énergies cinétiques et d'interactions des électrons et des noyaux d'un système équation (2)[1-3]

$$\hat{H} = \hat{T}_N + \hat{T}_e + \hat{V}_{ee} + \hat{V}_{eN} + \hat{V}_{NN} + \hat{V}_{N,ext} + \hat{H}_{e,ext}$$
(2)

Les systèmes étant en général non isolés les uns des autres, les noyaux et les électrons subissent des champs électrostatiques "extérieurs" générés par les noyaux et les électrons des autres systèmes. Cependant, les calculs quantiques en DFT sont réalisés sur des systèmes moléculaires pour lesquels la totalité des électrons et des noyaux sont pris en compte soit sous forme explicite, soit sous forme d'une valeur constante qui simule le champ électrostatique créé par une partie des électrons et des noyaux.

3) <u>Méthodes des fonctionnelles de la densité (DFT) :</u>

La DFT a véritablement débuté avec les théorèmes fondamentaux de Hohenberg et Kohn en 1964 qui établissent une relation fonctionnelle entre l'énergie de l'état fondamental et sa densité[4].

La théorie de la fonctionnelle de la densité (DFT) se distingue des méthodes ab initio car elle s'appuie sur la notion de densité électronique $\rho(r)$ et non sur celle de fonction d'onde multiélectronique.

La précision de la méthode réside donc dans le choix des fonctionnelles. Trois principaux types de fonctionnelles existent :

• Les fonctionnelles locales (LDA) qui dépendent uniquement de la densité électronique en chaque point du système et négligent toute influence de l'inhomogénéité du système. Cette approximation est correcte lorsque la densité varie suffisamment lentement.

• Les fonctionnelles à correction de gradient (GGA) qui introduisent dans leur expression le gradient de la densité permettent de tenir compte de l'inhomogénéité de la distribution électronique

. • Les fonctionnelles hybrides HF-DFT, apparues récemment, qui incluent pour l'énergie d'échange un mélange Hartree-Fock et DFT. Ces fonctionnelles apparaissent comme étant les plus fiables du moment[5].

La DFT est capable de déterminer avec précision les propriétés moléculaires géométriques, les énergies de liaisons et différents types de spectre pour des molécules aussi complexes que des composés de coordination.

De plus, les surfaces d'énergie potentielle des réactions chimiques prédites par les fonctionnelles corrigées par le gradient et/ou les fonctionnelles hybrides sont aussi précises que celles prédites par les niveaux de théories ab initio les plus sophistiqués [5].

Le choix de la base d'orbitales est aussi un critère très important pour une bonne estimation des données, bien qu'il soit moins important pour la DFT que pour les autres méthodes ab initio, en particulier post Hartree Fock, la base représente la description des orbitales atomiques.

Les premières conduisent à des intégrales biélectroniques difficiles à calculer et sont souvent remplacées par une combinaison linéaire de plusieurs fonctions gaussiennes. Une autre amélioration consiste en l'utilisation de bases à valence découplée décrivant différemment les orbitales de cœur et les orbitales de valence [5].

Le point crucial en DFT est que l'énergie d'échange et de corrélation n'est pas connue de façon exacte. Néanmoins les formules approchées pour cette énergie donnent des résultats qui sont comparables ou meilleurs que ceux donnés par la MP2 à un moindre coût de ressource informatique.

<u>La base B3LYP / 6-31 G**</u>: décrit une orbitale atomique par la combinaison de six fonctions gaussiennes par orbitale de cœur, de trois autres pour la description des électrons de valence et d'une dernière pour description des électrons de valence les plus éloignés du noyau (externe). L'astérisque signifie l'utilisation d'orbitales de polarisation pour les atomes lourds c'est à dire d pour les orbitales p, f pour les orbitales d, etc. [4]

La base B3LYP/6-31G++** : La notation (p, d) signifie que des fonctions de type d sont ajoutées à la base pour les éléments de la seconde ligne de la classification périodique des éléments (Na - Ar) et une fonction de polarisation de type d est ajoutée pour les éléments de la première ligne (Li -Ne). La fonction de type p représente les fonctions de polarisation ajoutée à la base pour les hydrogènes.

4) <u>Théorèmes de Hohenberg et Kohn :</u>

Dans un système électronique le nombre d'électrons par unité de volume, dans un état donné, est appelée la densité électronique pour cet état [3].

Cette quantité est désignée par $\rho(r)$ et sa formule, en termes de \tilde{e} , pour l'électron 1, est:

$$\rho(\vec{r}_1) = N \int \dots \int \left| \psi(\vec{r}_1, \vec{r}_2, \dots \vec{r}_N) \right|^2 ds_1 d\vec{r}_2 d\vec{r}_3 \dots d\vec{r}_N \quad (\text{eq.a.})$$

Avec s₁ comme coordonnée de spin

La densité électronique possède les propriétés suivantes :

<u>**1.**</u> $\rho(r)$ est une fonction positive de seulement trois variables d'espace qui tend vers zéro quand tend vers l'infini et dont l'intégrale sur tout l'espace donne le nombre N d'électrons :

$$\begin{cases} \int \rho(\vec{r}) d(\vec{r}) = N \\ \{\lim_{r \to \infty} \rho(\vec{r}) = 0 \end{cases} \quad (eq.b.) \end{cases}$$

<u>2.</u> $\rho(r)$ est une observable qui peut être mesurée expérimentalement (par diffraction X)

Hohenberg et Kohn ont prouvé [4] que l'énergie moléculaire fondamentale E_0 , la fonction d'onde et toutes les autres propriétés électroniques sont uniquement déterminées par la connaissance de la densité électronique $\rho(r)$ en chaque point (r) du volume moléculaire.

 E_0 est une fonctionnelle de $\rho(r)$ et est représentée par $E_0(\rho)$ avec $\rho(r)$.

4.1) Premier théorème de Hohenberg et Kohn

Pour démontrer le premier théorème de Hohenberg et Kohn, la densité d'électrons est suffisante pour déterminer le potentiel v(r) à une constante additive près, seul le principe variationnel (minimum d'énergie) pour l'état fondamental [4,5] est employé.

Donc ρ détermine v et **n** et de là toutes les propriétés de l'état fondamental.

$$E[\rho] = \langle \psi | \hat{H} | \psi \rangle$$
 (eq.c.)

4.2) Second théorème de Hohenberg et Kohn

Le second théorème de Hohenberg-Kohn découle du premier théorème et reconsidère le principe variationnel d'énergie en fonction de la densité électronique. Il dit que pour une densité d'essai $\rho(r)$

 $\widetilde{\rho}(r)$, tel que $\widetilde{\rho}(r) \ge 0$ et $\int \widetilde{\rho}(r) dr = n$ $E_0 \le E_v [\widetilde{\rho}] = \langle \widetilde{\psi} | \hat{H} | \widetilde{\psi} \rangle$ (eq.d.)

Chapitre 02 : Etude Théorique et Méthodologique

Ou : [*r*] *n* ~ *E* est la fonctionnelle d'énergie de

$$E_{v}[\widetilde{\rho}] = T[\widetilde{\rho}] + V_{ne}[\widetilde{\rho}] + V_{ee}[\widetilde{\rho}].$$

Cependant les théorèmes de Hohenberg et Kohn ne nous disent pas comment calculer E_0 à partir de $\rho(r)$, ou comment trouver ρ sans trouver Ψ en premier.

De plus, les théorèmes de Hohenberg et Kohn fournissent les fondements théoriques pour l'obtention de méthodes de calcul toujours plus précises.

5) Les équations de Kohn-Sham :

L'absence d'une expression analytique pour l'hamiltonien (Eq.A.10) a amené Kohn et Sham à reformuler le problème en introduisant des orbitales moléculaires et en scindant l'hamiltonien en terme classique et résiduel.

L'énergie électronique totale d'un système à n-électrons peut-être écrite sans approximation comme [4, 6]

$$E^{e} = -\frac{1}{2} \sum_{i} \int \phi_{i}(\vec{r}_{1}) \nabla^{2} \phi_{i}(r_{1}) d\vec{r}_{1} - \sum_{A} \int \frac{Z_{A}}{\left|\vec{R}_{A} - r_{1}\right|} \rho(\vec{r}_{1}) d(\vec{r}_{1}) + \frac{1}{2} \int \int \frac{\rho(\vec{r}_{1})\rho(\vec{r}_{2})}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} d\vec{r}_{1} d\vec{r}_{2} + E_{XG}$$
$$= T_{S}[\rho] + V_{ne}[\rho] + J[\rho] + E_{XG}[\rho]$$

Le premier terme représente l'énergie cinétique de n électrons non-interagissant [7-9] avec la même densité que le système actuel d'électrons interagissant.

$$\rho(\vec{r}_1) = \sum_i \phi_i(\vec{r}_1) \phi_i(\vec{r}_1)$$

Le second terme tient compte de l'attraction électron-noyau, soit du potentiel externe,

Et le troisième terme de l'interaction Coulombienne ($J[\rho]$) entre les deux distributions de charge $\rho(r)$ et $\rho(r)$.

Le dernier terme (l'énergie d'échange et de corrélation $E_{xc}[\rho]$) contient la différence entre l'énergie cinétique du système non interagissant Ts ([ρ]) par rapport au système interagissant (($T[\rho]$), et le terme non classique du potentiel d'interaction électron-électron, soit :

$$E_{XC} = T[\rho] - T_s[\rho] + V_{ee} - J[\rho] \text{ (eq.f.)}$$

En appliquant le principe variationnel (eq.d.) et en tenant compte de la contrainte (eq.b.) grâce au multiplicateur de Lagrange, les orbitales { $\{\varphi_i (r_i); i = 1,...n\}$ de (eq.e.) sont des solutions du système d'équations à un électron de Kohn-Sham :

$$\left[-\frac{1}{2}\nabla^2 - \sum_{A}\frac{Z_A}{\vec{R}_A - \vec{r}_1} + \int \frac{\rho(\vec{r}_2)}{\left|\vec{r}_1 - \vec{r}_2\right|} d(\vec{r}_2) + V_{XC}\right] \phi_i(\vec{r}_1) = h_{KS}\phi_i(\vec{r}_1) = \varepsilon_i \phi_i(\vec{r}_i) \quad (\text{eq.g.})$$

Où le potentiel d'échange et de corrélation VXC est défini comme la dérivée fonctionnelle d'EXC en fonction de la densité électronique :

6) <u>Energie point-Zéro :</u>

Même à une température de 0 degré kelvin, une molécule connaît des phénomènes vibrationnels qui font que son énergie n'est jamais égale à celle donnée par la théorie. La différence entre cette énergie minimale et l'énergie réelle est l'énergie de point zéro. (Plus communément appelée zero point energy ou ZPE).

Il est possible d'estimer la ZPE à l'aide du calcul des fréquences. Cependant, pour calculer la différence d'énergie entre deux molécules, il est parfois possible de négliger la ZPE, lorsque celle-ci varie peu.

7) <u>Méthodes d'analyse de population :</u>

La charge globale d'une molécule peut être fractionnée en diverses charges partielles reliées aux atomes et rendant compte de leurs électronégativités relatives.

Si la charge atomique partielle n'est pas une grandeur observable, ce concept est très utile pour le chimiste dans la mesure où il permet d'élucider une vaste gamme de problèmes chimiques.

D'un point de vue fondamental, la connaissance des charges atomiques va dans le sens d'une meilleure compréhension de la nature de la liaison chimique.

Il n'existe pas une méthode universelle pour mesurer la distribution des électrons sur une molécule : de multiples approches ont été proposées par les chimistes théoriciens et il est parfois difficile de choisir la plus adaptée [10, 11]. Dans ce chapitre nous allons présenter l'analyse de population utilisée dans cette thèse.

7.1) Analyse de la population naturelle NPA (1985) :

Parmi les méthodes d'analyse basées sur une projection de la densité sur une base d'orbitales, l'amélioration la plus aboutie est due à Reed, Weinstock et Weinhold. [12]. Elle consiste à introduire des orbitales atomiques naturelles qui diagonalisent la matrice de densité par bloc atomiques et sur lesquelles on projette la densité électronique.

Les orbitales naturelles sont des orbitales localisées à un centre permettant de décrire l'atome dans son environnement moléculaire, puisqu'elles prennent en compte les deux effets physiques suivants :

 Leur étendue spatiale est optimisée pour tenir compte de la charge atomique effective dans l'environnement moléculaire.

- Elles prennent en compte le confinement stérique (de Pauli) de l'environnement moléculaire :

Lorsque les orbitales des atomes voisins commencent à s'interpénétrer, les fréquences oscillatoires augmentent et l'énergie cinétique croît tout en conservant l'orthogonalité interatomique.

7.2) Analyse de bond naturel NBO :

L'analyse NBO (Natural Bond Analysis) est un prolongement de l'analyse NPA, plus récente et plus complexe. [13] Elle permet de connaître les ordres de liaison.

7.3) Méthodes basées sur le potentiel électrostatique :

Le principe général de ces méthodes, qui datent du milieu des années 80, consiste à ajuster les charges atomiques de manière à reproduire le plus fidèlement possible le potentiel électrostatique moléculaire préalablement calculé. La seule contrainte imposée est que la somme des charges atomiques correspond à la charge globale de la molécule.

8) Les logiciels utilisés :

✤ Logiciel Gaussian [14]:

Le logiciel Gaussian est un code de modélisation dédié aux calculs théorique. Ce logiciel nous permet de modéliser :

- la réactivité et des spectres de grosses molécules.
- les propriétés magnétiques (déplacement chimiques, constantes de couplage RMN, ...)
- des rotations optiques de molécules chirales.
- les énergies grâce aux méthodes simples Hartree-Fock et Coupled Cluster, mais nous ouvre aussi la possibilité d'affiner notre analyses grâce à des méthodes de haute-précision telles que G3 et CBS-QB3.
- les spectres de vibrations (Raman pré et non résonantes), les couplages vibration/rotation.

9) <u>Calcul des enthalpies de formation :</u>

Dans ce travail nous avons choisi de calculer systématiquement les enthalpies de formation standard (ΔH_f°) des différentes espèces à l'aide de la méthode des réactions isodesmiques.

Nos résultats ont été systématiquement comparés aux valeurs expérimentales disponibles. La méthode des réactions isodesmiques permet de calculer une enthalpie de formation en considérant l'équation chimique équilibrée :

$\alpha A + \beta B \Leftrightarrow \delta C + \chi D$

Où A, B, C et D sont des espèces chimiques, et a, b, d et c sont les coefficients stæchiométriques. L'enthalpie de réaction ΔH_f° est définie comme la différence entre l'enthalpie standard de formation des produits et l'enthalpie standard de formation des réactifs. Pour la réaction de l'équation ΔH_f° (à 298 K) est donc :

$\Delta_r H^0_{298} = [\delta \Delta_f H^0_{298}(C) + \chi \Delta_f H^0_{298}(D)] - [\alpha \Delta_f H^0_{298}(A) + \beta \Delta_f H^0_{298}(B)]$

Le calcul issu du package Gaussian permet d'accéder aux enthalpies de formation. Ces enthalpies « apparentes » peuvent être utilisées de la même manière pour calculer une enthalpie de réaction. On peut donc écrire :

$$\Delta_{r}H_{298}^{0} = [\delta H_{298}(C) + \alpha H_{298}(D)] - [\alpha H_{298}(A) + \beta H_{298}(C)]$$

Où ΔH_{298} est la quantité obtenue avec un calcul théorique (énergie électronique calculée au niveau CBS-QB3 et calcul de fréquence au niveau B3LYP/CBSB7 dans ce travail). Dès lors, on peut identifier les équations, et si les enthalpies de formation sont connues (expérimentalement) pour toutes les espèces sauf une (par exemple B), son enthalpie de formation peut être déterminée par :

$$\Delta_{f}H_{298}^{0}(B) = -\frac{1}{\beta} \left(\begin{bmatrix} \delta H_{298}(C) + \chi H_{298}(D) \end{bmatrix} - [\alpha H_{298}(A) + \beta H_{298}(B)] - [\delta \Delta_{f}H_{298}^{0}(C) \\ + \chi \Delta_{f}H_{298}^{0}(D) \end{bmatrix} + \alpha \Delta_{f}H_{298}^{0}(A) \right)$$

Cette méthode permet d'obtenir des résultats d'une grande précision car la réaction équilibrée est construite de telle sorte que le nombre et le type de liaisons soient identiques pour les réactifs et les produits (d'où le nom isodesmique).

Dans ce cas une grande partie des erreurs systématiques dues à la méthode de calcul quantique s'annulent (compensation) dans le calcul de l'enthalpie de réaction de l'équation [15]

10) Le modèle de solvatation «Modèle de calcul de conducteur polarisable » (CPCM) :

La possibilité d'intégrer les effets dus au solvant pour le calcul des différentes propriétés des systèmes chimiques reste un challenge dans la chimie quantique, car cela implique l'intervention de la mécanique statistique et donc, l'ajout de difficultés d'ordre supérieure.

La majorité des réactions chimiques et biologiques ont cependant lieu en solution, et le désir du chimiste théorique est donc celui de pouvoir posséder et utiliser des modèles permettant de tenir compte des effets dus au solvant.

Tomasi et Persico [16] ont proposé de diviser les différentes approches possibles du traitement des effets de solvant en quatre catégories :

- Equation d'état virielle, fonctions de corrélation
- Simulation de type Monte Carlo ou dynamique moléculaire

- Traitements de type continuum
- Traitements moléculaires

Le modèle CPCM apparaît attractif pour représenter les effets de solvatation, en raison du temps de calcul réduit pour simuler une molécule en solution.

Un autre avantage est que le modèle de continuum est une approche systématique où il ne faut pas construire les couches de solvatation pour chaque système étudié.

11) Modélisation de l'allure du spectre d'absorption IR :

En théorie, le profil du spectre d'absorption d'une molécule est décrit par une fonction lorentzienne. Cette fonction est caractérisée par un profil très affûté dont la largeur à mihauteur renseigne sur la durée de vie associée à l'état électronique excité de la molécule.

Cependant, les molécules en solution ne sont jamais statiques et un autre type d'élargissement vient s'ajouter au profil lorentzien du pic d'absorption. Plus précisément, les molécules colorantes qui entrent en collision avec celles du solvant voient leur structure électronique s'altérer. Il en résulte une modification des énergies d'excitations électroniques des molécules colorantes et un élargissement du pic d'absorption qui est décrit à l'aide d'une fonction gaussienne.

Généralement, ces effets sont importants et le profil gaussien définit dès lors l'allure générale du spectre d'absorption. Les équations des fonctions gaussiennes utilisées pour la simulation de l'allure d'un spectre d'absorption IR prennent alors la forme générale :

$$A(\lambda) = fP_{i}e^{-4log2\left[\frac{(\lambda-\lambda_{max})^{2}}{\gamma^{2}}\right]}$$

Où A est l'absorbance, f, la force d'oscillateur associée au Λ_{max} et γ , la largeur (en nm) à mihauteur du pic d'absorption. p_i est la proportion en espèce i présente en solution. γ^2 , qui représente la largeur de la courbe d'absorption à mi-hauteur(FWHH), est posé à 4000 nm².

Chapitre 02 : Etude Théorique et Méthodologique

<u> Références :</u>

- 1. Schrödinger, E.A.P., 79, 361.
- 2. De Broglie, L.A.P., 3, 22.
- 3. Born, M.O., R. Ann. Phys. 1927, 84, 457.
- 4. Bouchakri M (2007). Chimie pharmaceutique, d.b.é.P.F.
- 5. dynamique, F.S.A.p.d.m.d.c.q.e.d. and m.T.d.d.U.N.-S.A. 198-199.
- 6. T. Ziegler, C.R., 91, 651, (1991).
- 7. Dewar, M.J.S.Z., E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. and 1985, 3902.
- 8. (a) Stewart, J.J.P.J.C.C., 10, 209 and J.J.P.J.C.C. (b) Stewart, 10, 221. (c) Stewart, J. J. P. J. Comp. .
- 9. (a) Hartree, D.R.P.C.P., 24, 89 and J.C.P.R. (b) Slater, 48, 35.
- 10. K. B. Wiberg , P.R.R., J. Comput. Chem. 14(1993) 1504. .
- 11. F. Martin, H.Z., J. Comput. Chem. 26 (2005) 97. .
- 12. A.E. Reed, R.B.W., F. Weinhold, J. Chem. Phys. 83(1985)735.
- 13. A. E. Reed, L.A.C., F. Weinhold, Chem. Rev. 88 (1988) 899. .
- 14. Frisch, M.J.T., G. W.; Schlegel, H. B.; Scuseria, G.E.; Robb, M. A.; Cheeseman, J. R.;, et al.
- 15. Lyamine, m., ed. *étude théorique et expérimentale dégradation atmophérique des composés organiqes oxygénes.* 23 juin 2013.
- 16. Peuckert, J.P.C., 4945, (1978).

Partie II : familles des Phényle urée & Carbamates Chapitre 03 : Etude des clusters Phényle urées -Eau **<u>I.1)-</u>** Etude Introductrice de la structure du Phényle urée (Cycle de base) :

Figure II.3.1. : Structure du Phényle urée (Cycle de base)

Dans un premier temps nous allons examiner la structure de base non substituée des phényleurée afin de vérifier les méthodes utilisées.

<u>Etat Isolé :</u>

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
	1				
<i>C4 C3</i>	1.4022577	<i>C4 C3 C2</i>	119.8748330	<i>C4 C3 C2 C1</i>	0.8240674
C6 C5	1.3987182	C6 C5 C4	120.1470897	C6 C5 C4 C3	2.2461878
H7 C1	1.0830653	H7 C1 C2	119.6624750	H7 C1 C2 C3	-179.9200723
H11 C6	1.0827509	H11 C6 C5	120.0999529	H11 C6 C5 C4	179.1674667
N12 C3	1.4220662	N12 C3 C2	120.6124730	N12 C3 C2 C1	179.0272880
H13 N12	1.0111318	H13 N12 C3	117.8042914	H13 N12 C3 C2	-47.2103702
C14 N12	1.3914989	C14 N12 C3	124.8585793	C14 N12 C3 C2	104.1217494
015 C14	1.2331185	015 C14 N12	121.3946676	<i>O15 C14 N12 C3</i>	-168.1494510
N16 C14	1.3787521	N16 C14 N12	115.6100597	N16 C14 N12 C3	9.9664868
H17 N16	1.0070750	H17 N16 C14	120.0083697	H17 N16 C14 N12	18.9112232
H18 N16	1.0075924	H18 N16 C14	113.9450821	H18 N16 C14 N12	164.7535380

<u>Etat Solvaté :</u>

Tableau II.3.2. :	Paramètres	géométriques	calculés au niveau	MP2/6-31G++(d,)	p):
		•		· · ·	

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
C4 C3	1.4019453	<i>C4 C3 C2</i>	120.2154627	C4 C3 C2 C1	0.9848735
C6 C5	1.3993078	C6 C5 C4	120.1939903	C6 C5 C4 C3	2.3380386
H7 C1	1.0829573	H7 C1 C2	119.6190769	H7 C1 C2 C3	119.6190769
Н11 Сб	1.0827045	H11 C6 C5	120.0745227	H11 C6 C5 C4	179.1746210
N12 C3	1.4247886	N12 C3 C2	120.0145412	N12 C3 C2 C1	178.7539872
H13 N12	1.0118979	H13 N12 C3	117.5182337	H13 N12 C3 C2	-46.1545944
C14 N12	1.3801547	C14 N12 C3	125.0213669	C14 N12 C3 C2	107.9964611
015 C14	1.2450672	015 C14 N12	121.0432811	<i>O15 C14 N12 C3</i>	-170.6564494
N16 C14	1.3710277	N16 C14 N12	116.4941885	N16 C14 N12 C3	7.2683943
H17 N16	1.0081833	H17 N16 C14	119.7539515	H17 N16 C14 N12	119.7539515
H18 N16	1.0086003	H18 N16 C14	114.8220677	H18 N16 C14 N12	163.2924159

Les études structurales effectué sur la structure isolé et solvaté montrent une parfaite corrélation avec les données tabulées dans les handbooks. La longueur de la liaison c-c du cycle à une valeur de 1,40 Å. La longueur de la liaison N-H à une valeur de 1,01 Å. Le cycle benzylique est légèrement tordu d'un angle dièdre de 1°.

I.2)- - Analyse vibrationnelle des structures (courbes FTIR) :

<u>Etat isolé :</u>

Figure II.3.2. : Spectre FTIR de la Phényle urée (Cycle de base) dans la phase gazeuse

Mode	Fréquence	Intensité
1	406.37	12.2668
2	1431.13 1437.29	32.6671 269 9206
3	1651.84 1666.26	203.5136 24.9275
4	1791.15	631.0045
5	3673.29	50.1629
6	3799.28	77.6960

Tableau II.3.3. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR de la Phényle urée (Cycle de base) dans la phase gazeuse

<u>Etat solvaté :</u>

<u>Figure II.3.3. :</u> <u>Spectre FTIR de la Phényle urée (Cycle de base) solvaté</u> <u>Tableau II.3.4. : Les fréquences et les intensités des modes les plus importants sur le spectre</u> <u>FTIR de la Phényle urée (Cycle de base) solvaté</u>

Mode	Fréquence	Intensité
1	369.53	146.3724
2	390.77	30.1556
	399.41	254.4986
3	1431.63	22.8878
	1446.86	456.1903
4	1641.57	396.2340
	1649.92	30.6346
5	1719.97	1024.2571
6	3648.79	69.8472
	3662.98	86.4488
7	3782.62	125.3428

L'analyse vibrationnelle des structures optimisées (isolé et solvaté) confirme leur stabilité par l'absence des fréquences imaginaires.

Figure II.3.4. : Structures des clusters Phényle urée (Cycle de base) -H₂O

Il existe trois possibilités des interactions électrostatiques entre la structure de base et la molécule d'eau créant ainsi trois clusters : le cluster N1, le cluster o et le cluster N2.

Remarquant que les deux premiers clusters sont stabilisés par une double interaction électrostatique formant un cycle à six chainons.

<u>Etat Isolé :</u>

- <u>Cluster (Phényle urée -H₂O) Position N1</u>

Tableau II.3.5. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
C4 C3	1.4017082	C4 C3 C2	120.3167430	C4 C3 C2 C1	0.6740894
H7 C1	1.0830262	H7 C1 C2	119.6644516	H7 C1 C2 C3	-179.8807779
N12 C3	1.4327216	N12 C3 C2	120.4094800	N12 C3 C2 C1	179.4964926
H13 N12	1.0146255	H13 N12 C3	114.8919054	H13 N12 C3 C2	-38.0682125
C14 N12	1.4094885	C14 N12 C3	122.3162259	C14 N12 C3 C2	97.9195239
<i>015 C14</i>	1.2322498	015 C14 N12	120.5577444	<i>015 C14 N12 C3</i>	-161.8230352
N16 C14	1.3695733	N16 C14 N12	115.6220174	N16 C14 N12 C3	18.1594226
H17 N16	1.0073672	H17 N16 C14	120.1748809	H17 N16 C14 N12	16.1682545
H18 N16	1.0076275	H18 N16 C14	114.6684514	H18 N16 C14 N12	164.5826687
H20 N12	2.10606	H20 N12 C3	106.74569	H20 N12 C3 C4	24.24232
H21 O19	0.96433	H21 O19 H20	105.25630	H21 O19 H20 N12	-128.90355
<i>019 H9</i>	2.43742	019 H9 C4	134.71191	019 H9 C4 C3	-27.48654

Les deux ponts d'hydrogène du cluster ont les valeurs suivantes : H20 N12 à 2.1 Å et le O19 H9 à 2.44 Å .remarquant une légère élongation de cette valeur dans son état solvaté d'une grandeur de 0.45 Å.

- <u>Cluster (Phényle urée -H₂O) Position O :</u>

Tableau II.3.6. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p):

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
C4 C3	1.4032469	C4 C3 C2	119.8857101	C4 C3 C2 C1	0.6076069
H7 C1	1.0830428	H7 C1 C2	119.6019740	H7 C1 C2 C3	-179.7593370
N12 C3	1.4167180	N12 C3 C2	119.6803075	N12 C3 C2 C1	177.6957046
H13 N12	1.0104457	H13 N12 C3	118.4737094	H13 N12 C3 C2	-39.6045832
C14 N12	1.3830285	C14 N12 C3	126.8483036	C14 N12 C3 C2	122.2459774
<i>O15 C14</i>	1.2449501	<i>O15 C14 N12</i>	119.9267510	<i>015 C14 N12 C3</i>	-174.9425258
N16 C14	1.3683635	N16 C14 N12	116.7792372	N16 C14 N12 C3	7.7255109
H17 N16	1.0077384	H17 N16 C14	119.1281040	H17 N16 C14 N12	-22.2330159
H18 N16	1.0143318	H18 N16 C14	114.4770177	H18 N16 C14 N12	-168.8899435
H21 O15	1.88540	H21 O15 C14	109.12572	H21 O15 C14 N16	-7.75687
019 H17	2.06198	019 H17 N16	141.95967	019 H17 N16 C14	-15.57486
H20 019	0.96303	H20 O19 H21	106.52617	H20 019 H21 015	-137.76148

La longueur des deux ponts hydrogène sont H21 O15 à 1.9 Å et O16 H17 à 2.06 Å.

- <u>Cluster (Phényle urée -H2O) Position N2 :</u>

|--|

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
C4 C3	1.4032469	C4 C3 C2	119.8857101	C4 C3 C2 C1	0.6076069
H7 C1	1.0830428	H7 C1 C2	119.6019740	H7 C1 C2 C3	-179.7593370
N12 C3	1.4167180	N12 C3 C2	119.6803075	N12 C3 C2 C1	177.6957046
H13 N12	1.0104457	H13 N12 C3	118.4737094	H13 N12 C3 C2	-39.6045832
C14 N12	1.3830285	C14 N12 C3	126.8483036	C14 N12 C3 C2	122.2459774
<i>O15 C14</i>	1.2449501	015 C14 N12	119.9267510	<i>015 C14 N12 C3</i>	-174.9425258
N16 C14	1.3683635	N16 C14 N12	116.7792372	N16 C14 N12 C3	7.7255109
H17 N16	1.0077384	H17 N16 C14	119.1281040	H17 N16 C14 N12	-22.2330159
H18 N16	1.0143318	H18 N16 C14	114.4770177	H18 N16 C14 N12	-168.8899435
H21 O15	1.88540	H21 O15 C14	109.12572	H21 O15 C14 N16	-7.75687
<i>019H17</i>	2.06198	019 H17 N16	141.95967	019 H17 N16 C14	-15.57486
H20 019	0.96303	H20 O19 H21	106.52617	H20 O19 H21 O15	-137.76148

<u>Etat solvaté :</u>

- <u>Cluster (Phényle urée -H₂O) Position N1 :</u>

Tableau II.3.8. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
C4 C3	1.4013209	C4 C3 C2	120.3282215	C4 C3 C2 C1	0.9392963
H7 C1	1.0828900	H7 C1 C2	119.5781411	H7 C1 C2 C3	-179.9350917
N12 C3	1.4330131	N12 C3 C2	120.2222104	N12 C3 C2 C1	179.1145233
H13 N12	1.0157647	H13 N12 C3	114.3587863	H13 N12 C3 C2	-33.4056359
C14 N12	1.4043434	C14 N12 C3	122.3655515	C14 N12 C3 C2	102.5192813
<i>015 C14</i>	1.2412257	<i>O15 C14 N12</i>	120.0739649	<i>015 C14 N12 C3</i>	-162.5876510
N16 C14	1.3587031	N16 C14 N12	116.4613653	N16 C14 N12 C3	17.6099238
H17 N16	1.0071936	H17 N16 C14	121.5663016	H17 N16 C14 N12	10.1281386
H18 N16	1.0078396	H18 N16 C14	116.6480870	H18 N16 C14 N12	167.0974345

- <u>Cluster (Phényle urée -H₂O) Position O :</u>

Longueurs des ligisons (Å)		Analas de valence (°)		Analas diàdra (°)	
Longueurs des naisons (A)		Ingles de V	aience ()	Angles aleare ()	
C4 C3	1.4022368	C4 C3 C2	120.2504175	C4 C3 C2 C1	0.9680123
H7 C1	1.0829215	H7 C1 C2	119.5762567	H7 C1 C2 C3	-179.8579885
N12 C3	1.4220317	N12 C3 C2	119.4855060	N12 C3 C2 C1	178.0207538
H13 N12	1.0116919	H13 N12 C3	117.8591066	H13 N12 C3 C2	-40.5229115
C14 N12	1.3731935	C14 N12 C3	126.0095823	C14 N12 C3 C2	118.6474352
<i>015 C14</i>	1.2540456	015 C14 N12	120.2231610	<i>015 C14 N12 C3</i>	-173.6949764
N16 C14	1.3654780	N16 C14 N12	117.3469159	N16 C14 N12 C3	9.5498901
H17 N16	1.0090704	H17 N16 C14	119.3208792	H17 N16 C14 N12	-22.1699012
H18 N16	1.0122795	H18 N16 C14	114.7591830	H18 N16 C14 N12	-167.9584245
H21 O15	1.83991	H21 O15 C14	110.24505	H21 O15 C14 N16	-10.14985
<i>019 H17</i>	2.20918	019 H17 N16	139.62988	019 H17 N16 C14	-16.82850
H20 019	0.96511	H20 O19 H21	105.84231	H20 O19 H21 O15	-133.75552

Tableau II.3.9. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

- <u>Cluster (Phényle urée -H₂O) Position N2 :</u>

Tableau II.3.10. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
C4 C3	1.4006862	C4 C3 C2	120.2324167	C4 C3 C2 C1	2.5027249
H7 C1	1.0830211	H7 C1 C2	119.5950875	H7 C1 C2 C3	179.8318974
N12 C3	1.4268533	N12 C3 C2	119.6295598	N12 C3 C2 C1	-179.8655015
H13 N12	1.0127800	H13 N12 C3	116.9872448	H13 N12 C3 C2	-44.1314620
C14 N12	1.3777911	C14 N12 C3	124.4736785	C14 N12 C3 C2	105.9648907
<i>015 C14</i>	1.2401789	015 C14 N12	121.7321934	<i>015 C14 N12 C3</i>	-163.3726570
N16 C14	1.3892477	N16 C14 N12	116.0633766	N16 C14 N12 C3	13.9216233
H17 N16	1.0116894	H17 N16 C14	117.0096581	H17 N16 C14 N12	32.1151150
H18 N16	1.0122173	H18 N16 C14	111.7193571	H18 N16 C14 N12	164.2297072
H21 N16	2.08966	H21 N16 C14	109.67364	H21 N16 C14 N12	-74.45744
H20 019	0.96678	H20 O19 H21	104.04575	H20 O19 H21 N16	-29.18675

Par contre, le cluster de la position N2 est stabilisé par la création d'une seule liaison Hydrogène H21 N16 qui a une longueur de 2.2 Å. I.4) Analyse vibrationnelle (courbes FTIR) des clusters (Phényle urée -H₂O) :

<u>Etat isolé :</u>

- <u>Cluster (Phényle urée -H₂O) Position N1 :</u>

Figure II.3.5. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position N 1 dans la phase gazeuse

Tableau II.3.11. : Les	fréquences et les	intensités des n	nodes les pli	us importants sur le
spectre FTIR du clu	ster (Phényle urée	e -H ₂ O) Positio	on N 1 dans	la phase gazeuse

Mode	Fréquence	Intensité
1	182.29	156.1144
2	316.10	130.5837
3	405.25	53.7518
4	703.58	129.6513
5	1429.91	109.8438
6	1641.11	52.7274
	1653.48	15.0939
7	1796.72	576.7660
8	3751.28	187.6841
	3797.96	89.9345
9	3949.32	127.0116

- <u>Cluster (Phényle urée -H2O) Position O :</u>

Figure II.3.6. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position O dans la phase gazeuse

Tableau II.3.12. : Les fréquences et les intensités des modes les plus impo	rtants sur le
spectre FTIR du cluster (Phényle urée -H2O) Position O dans la phase	<u>gazeuse</u>

Mode	Fréquence	Intensité
1	213.98	149.1071
2	387.05	68.2327
	392.25	157.5718
3	705.86	209.2258
4	1470.93	267.3843
	1481.01	83.8056
5	1663.69	310.2720
	1669.59	32.4496
6	1773.93	538.0930
7	3646.59	526.9818
	3683.62	50.6009
8	3752.37	179.2945
9	3957.55	112.7586

- <u>Cluster (Phényle urée -H₂O) Position N2 :</u>

Figure II.3.7. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position N2 dans la phase gazeuse

Tableau II.3.13. : Les fr	réquences et les in	tensités des modes	s les plus impo	rtants sur le
spectre FTIR du clust	ter (Phényle urée -	-H ₂ O) Position N2	2 dans la phase	e gazeuse

Mode	Fréquence	Intensité
1	221.94	69.8010
2	337.87	183.0668
3	1427.25	228.1743
4	1642.59	66.3741
	1649.74	5.4294
	1661.45	183.6490
	1665.01	42.1913
5	1798.87	589.3720
6	3797.33	107.0817
7	3941.97	73.4467

La région spectrale de ce cluster s'allonge de la valeur de 200 à 3950cm⁻¹.

Notant que le pic dégénéré aux alentours de 1650 cm⁻¹ correspond aux absorptions du carbonyle C=O et le pic à 1770 cm⁻¹ correspond à la vibration de la liaison N-H.

<u>Etat solvaté :</u>

- <u>Cluster (Phényle urée -H₂O) Position N1 :</u>

Figure II.3.8. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position N1 état solvaté

Tableau II.3.14. :	<u>Les fréquences</u>	s et les intensité	s des modes les	s plus important.	s sur le
spectre F	TIR du cluster	(Phényle urée -	$H_2O)$ Position	Nlétat solvaté	

spectre 1 11K du clusier (1 nengie uree -1120) I ostiton Wieldi solvale					
Mode	Fréquence	Intensité			
1	85.27	137.5875			
2	253.46	249.3318			
	283.10	166.3273			
3	700.57	236.8722			
4	1421.72	170.6568			
	1433.59	284.5647			
5	1634.68	276.9787			
	1651.93	69.9188			
	1653.82	67.3712			
6	1735.60	1019.9529			
7	3703.48	496.4214			
8	3797.76	156.8305			
9	3922.31	181.0636			

- <u>Cluster (Phényle urée -H2O) Position O :</u>

Figure II.3.9. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position O état solvaté

Tableau II.3.15. : Les fréquences et les intensités des modes les plus importants sur lespectre FTIR du cluster (Phényle urée -H2O) Position O état solvaté

Mode	Fréquence	Intensité
1	176.62	11.7147
	189.98	208.7415
2	367.74	275.7417
3	461.94	251.7276
4	704.49	314.0128
5	1471.18	311.1144
	1479.73	178.8375
6	1631.95	352.3788
	1639.26	524.5364
	1652.53	74.8178
7	1718.62	701.9200
8	3581.63	309.7132
	3608.82	527.5408
9	3747.01	232.3352
10	3925.10	142.0138

- <u>Cluster (Phényle urée -H₂O) Position N2 :</u>

Figure II.3.10. : Spectre FTIR du Cluster (Phényle urée -H₂O) Position N2 état solvaté

Tableau II.3.16. : Les fréquences et les intensités des modes les plus importants sur lespectre FTIR du cluster (Phényle urée -H2O) Position N2 état solvaté

Mode	Fréquence	Intensité
1	187.88	144.8500
2	435.67	24.9566
	443.32	156.8154
3	703.05	207.8903
4	1432.85	116.8892
5	1637.60	265.3773
	1649.57	20.5801
6	1737.39	1021.0689
7	3720.81	380.3191
	3733.51	103.9170
8	3907.24	138.0711

Les pics aux environs de 3600 cm⁻¹ sont attribués aux vibrations stéréo-symétrique des liaisons *N*-*C*-*N*.

2,081

2,57

3,44188687

-1,81726751

Isolé

N1

0

I.5) Etude thermodynamique de la formation des clusters (Phényle urée -H₂O) :

Tableau II.3.17. : Les paramètres thermodynamiques de la formation des complexes(Phényle urée -H2O) calculés dans plusieurs niveaux :

DFT/ B3LYP-							
<i>6-31G**</i>	pos	∆E/(kcal/mol)	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolé	N1	2.292	1.693019282	-6.928959899	-28.919	15.43045861	
	0	2,54	-2,34374612	-11,787766	-31,674	2,63428488	
	N2	2,37	4,1346568	-4,50300817	-28,97	2,12913973	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	N1	2.13	3.786389306	-4.525598514	-27.879	15.14180424	
	0	1,898	1,20732828	-25,5910924	-30,861	2,37888851	
	<i>N2</i>	2,409	5,14181284	-21,2957899	-29,649	2,25401412	
<i>6-31G</i> ++**	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolé	N1	2,017	4,885157565	-1,96912324	-22,989	1,357929476	
	0	2.302	0.59864406	-8,33332616	-29.957	2.214481026	
	<i>N2</i>	2,361	5,038273775	-3,36658847	-28,19	2,100901806	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.)$	∆ ZPE/(kcal/mol)	
	<i>N1</i>	2,081	6,83734351	-0,22966848	-23,705	1,46711721	
	0	2,12	4,46786764	-4,51053829	-28,126	1,91013892	
	<i>N2</i>	2,298	6,6779561	-0,98205237	-25,695	1,95155455	
cc-pvdz	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolé	<i>N1</i>	2,071	4,30722521	-3,60504208	-26,536	1,56375367	
	0	2,454	-2,89156378	-12,3525245	-31,731	2,53576589	
	<i>N2</i>	2,424	2,9392545	-5,96196776	-29,855	2,24522899	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	<i>N1</i>	2.099	5.53777134	-2.57655401	-27.216	1.6779604	
	0	2.371	0.28049675	-9.080062465	-31.396	2.428461765	
	<i>N2</i>	2.48	3.766312019	-5.283002481	-30.351	2.370103382	
aug-cc-pvdz	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolé	<i>N1</i>	1,915	5,30120026	-1,31965248	-22,208	1,15838254	
	0	2,221	1,26694168	-7,44163516	-29,21	2,06387875	
	<i>N2</i>	1,98	5,26919727	-1,05484347	-21,214	1,3673432	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	<i>N1</i>	1.966	6.527981328	-0.10102903	-22.233	1.243723829	
	0	2.109	4.472260206	-3.7782347	-27.673	1.863075706	
	N2	2.021	6.133277853	-0.432981555	-22.024	1.450174455	
0-310***	pos	ΔL ($\pi c u (mol)$	$\Delta O (\kappa c u / m o l)$	$\Delta H (\kappa c u / m o l)$	$\Delta \mathcal{O}(\mathcal{C}\mathcal{U}/\mathcal{W}\mathcal{O}\mathcal{U},\mathcal{K})$		

-4,18423335

-11,0673851

-25,577

-31,026

1,52547559

2,59098673

Partie II : familles des Phényle urées &Carbamates

Chapitre 03 : Etude des clusters Phényle urées -Eau

	<i>N2</i>	2,382	3,27434457	-5,25852961	-28,618	2,11094196
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	<i>N1</i>	2.14	5.150597976	-3.039028508	-27.47	1.764556714
	0	2.378	1.662272666	-7.245224687	-29.877	2.302332355
	<i>N2</i>	2.423	4.444649789	-4.243219239	-29.14	2.230168763
<i>6-31G</i> ++**	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
Isolé	N1	2,362	3,26053936	-5,14934296	-28,204	2,09462671
	0	2,455	-0,38905589	-9,55257712	-30,733	2,42532422
	<i>N2</i>	2,303	3,51091565	-4,7295391	-27,636	1,97728243
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
	<i>N1</i>	2,247	5,03137117	-2,49623279	-25,246	1,78526453
	0	2,286	3,9501723	-4,73330416	-29,125	2,13604234
	<i>N2</i>	2,343	5,7071989	-2,96121733	-29,074	2,13604234

Les calculs énergétiques montrent que le phénomène de la formation des clusters est plus favorisée par rapport à la position O car la valeur ΔG est minimale soit : -0,39 kcal/mol.

I.6) Analyse des orbitales frontières des clusters étudiées :

Les écarts énergétiques entre les deux niveaux (HOMO-LUMO) démontrent la stabilité des trois clusters étudiés dans l'état isolé de la position O ainsi que dans l'état solvaté avec un écart d'une valeur de 0.38 ev

II) Clusters (Linuron-H₂O) :

L'un des dérivées de la famille des phényle-urée : Linuron.

*Figure II.3.11. : D*ifférentes structures possibles des Clusters (Linuron-H₂O)

Le balayage des symétries possibles pour la Compléxation de Linuron avec H_2O donne naissance à 4 clusters : Cluster N1, Cluster O1, Cluster N2 et le Cluster O2.

II.1) Etude structurelle des clusters (Linuron-H₂O) :

Etat Isolé ;

- <u>Cluster (Linuron-H₂O) Position N1 :</u>

Tableau II.3.18. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs de	es liaisons (Å)	Angles de	valence (°)	Angles dièdre (°)	
C5 C4	1.3938166	C5 C4 C3	119.4975060	C5 C4 C3 C2	-0.1606121
C6 C5	1.3992028	C6 C5 C4	120.6580638	C6 C5 C4 C3	0.3522748
H8 C4	1.0843544	H8 C4 C3	120.3776818	H8 C4 C3 C2	179.1903068
CL10 C6	1.7292748	CL10 C6 C5	118.9456824	CL10 C6 C5 C4	179.3508778
CL11 C1	1.7290847	CL11 C1 C2	118.4182317	CL11 C1 C2 C3	-179.9958452
N12 C3	1.4418777	N12 C3 C2	118.5355996	N12 C3 C2 C1	179.7590098
H13 N12	1.0189800	H13 N12 C3	111.7273468	H13 N12 C3 C2	-86.5147064
C14 N12	1.4220472	C14 N12 C3	116.6088738	C14 N12 C3 C2	150.7768289
015 C14	1.2315612	015 C14 N12	122.1374920	015 C14 N12 C3	120.4973732
N16 C14	1.3783363	N16 C14 N12	114.1056093	N16 C14 N12 C3	-65.6956942
C17 N16	1.4555621	C17 N16 C14	128.0480793	C17 N16 C14 N12	12.4610010
H18 C17	1.0916801	H18 C17 N16	111.6939849	H18 C17 N16 C14	81.4160411
O21 N16	1.4095230	O21 N16 C14	113.0502831	<i>O21 N16 C14 N12</i>	158.3324681
C22 O21	1.4398714	C22 O21 N16	109.1805404	C22 O21 N16 C14	94.5673806
H23 C22	1.0873038	H23 C22 O21	104.5231727	H23 C22 O21 N16	177.5262816
H27 N12	2.02553	H27 N12 C3	108.31995	H27 N12 C3 C2	26.62680
<i>O26 H7</i>	2.49189	026 H7 C2	125.85302	026 H7 C2 C3	-38.49757
H28 O26	0.96427	H28 O26 H27	106.23842	H28 O26 H27 N12	179.48136

- <u>Cluster (Linuron-H₂O) Position O1 :</u>

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4183204	N12 C3 C2	121.6666716	N12 C3 C2 C1	179.6117519
H13 N12	1.0124141	H13 N12 C3	116.6380861	H13 N12 C3 C2	-124.562112
C14 N12	1.3810708	C14 N12 C3	128.2674004	C14 N12 C3 C2	29.5870391
015 C14	1.2454575	015 C14 N12	121.1752930	015 C14 N12 C3	-151.735929
N16 C14	1.3764880	N16 C14 N12	116.7864975	N16 C14 N12 C3	27.7577999
C17 N16	1.4566249	C17 N16 C14	120.7756788	C17 N16 C14 N12	174.2273829
H18 C17	1.0871766	H18 C17 N16	106.8973050	H18 C17 N16 C14	162.4019055
021 N16	1.4089366	<i>O21 N16 C14</i>	116.9884639	<i>O21 N16 C14 N12</i>	26.5898117
C22 O21	1.4465835	C22 O21 N16	110.8740889	C22 O21 N16 C14	70.5351814
H23 C22	1.0872398	H23 C22 O21	104.0600310	H23 C22 O21 N16	178.1981715
O26 H19	2.50545	<i>O26 H19 C17</i>	125.50272	026 H19 C17 N16	46.64677
H27 O15	1.94530	H27 O15 C14	102.84918	H27 O15 C14 N16	69.13919

Tableau II.3.19. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

- <u>Cluster (Linuron-H₂O) Position N2 :</u>

Tableau II.3.20. : Paramètres ;	géométriques	calculés au niveau l	MP2/6-31G++(d,p):
	•		

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
C5 C4	1.3939908	C5 C4 C3	119.7219656	C5 C4 C3 C2	-2.1106580
C6 C5	1.3982454	C6 C5 C4	120.4242263	C6 C5 C4 C3	0.2616807
H8 C2	1.0833813	H8 C2 C3	119.8148051	H8 C4 C3 C2	179.3075074
CL10 C6	1.7303299	CL10 C6 C5	118.9874581	CL10 C6 C5 C4	-178.8279189
CL11 C5	1.7289252	CL11 C5 C4	118.3003925	CL11 C5 C4 C3	178.6630089
N12 C3	1.4265499	N12 C3 C2	121.2522149	N12 C3 C2 C1	-179.9894388
H13 N12	1.0129135	H13 N12 C3	117.1253593	H13 N12 C3 C2	-108.5847445
C14 N12	1.3752495	C14 N12 C3	129.1292498	C14 N12 C3 C2	50.5866575
015 C14	1.2345564	015 C14 N12	122.5719115	015 C14 N12 C3	-159.8813320
N16 C14	1.4115257	N16 C14 N12	116.9547612	N16 C14 N12 C3	18.2956550
C17 N16	1.4644849	C17 N16 C14	115.9520099	C17 N16 C14 N12	163.4057542
H18 C17	1.0870953	H18 C17 N16	106.6971397	H18 C17 N16 C14	176.6760348
O21 N16	1.4199467	O21 N16 C14	115.1525249	O21 N16 C14 N12	28.2336558
C22 O21	1.4404278	C22 O21 N16	112.2447511	C22 O21 N16 C14	69.3726039
H23 C22	1.0872436	H23 C22 O21	104.0863140	H23 C22 O21 N16	-173.0046862
H28 N16	2.04910	H28 N16 C14	100.07392	H28 O26 C14 N12	-92.13659
O26 H7	2.31055	026 H7 C2	156.48644	026 H7 C2 C3	-70.52550

- <u>Cluster (Linuron-H₂O) Position O2 :</u>

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4216378	N12 C3 C2	121.2919032	N12 C3 C2 C1	-178.4494469
H13 N12	1.0130926	H13 N12 C3	116.7075486	H13 N12 C3 C2	-114.9164831
C14 N12	1.3879241	C14 N12 C3	125.9083783	C14 N12 C3 C2	33.8797978
015 C14	1.2337563	015 C14 N12	122.6383756	015 C14 N12 C3	-149.4575004
N16 C14	1.3930036	N16 C14 N12	115.3176158	N16 C14 N12 C3	29.5467602
C17 N16	1.4563121	C17 N16 C14	119.0498271	C17 N16 C14 N12	170.9633192
H18 C17	1.0871557	H18 C17 N16	107.0480253	H18 C17 N16 C14	170.0926314
021 N16	1.4164126	<i>O21 N16 C14</i>	115.3802280	<i>O21 N16 C14 N12</i>	29.2845711
C22 O21	1.4427310	C22 O21 N16	112.3203318	C22 O21 N16 C14	71.4237853
H23 C22	1.0870412	H23 C22 O21	104.3283795	H23 C22 O21 N16	-177.5893839
H28 O21	1.94502	H28 O21 N16	101.64895	H28 O21 N16 C17	78.15862

Tableau II.3.21. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

La stabilisation de ce cluster passe par la création d'un cycle à deux ponts hydrogènes :

O-H et N-H pour les clusters N1 O1 N2 O2 ainsi par un simple pont hydrogène O-H pour le cluster O2. Ces ponts ont une valeur approximative de 2,5 Å pour le pont O-H et d'une valeur de 2 Å pour le pont N-H.

Etat solvaté :

- Cluster (Linuron-H₂O) Position N1 :

Tableau II.3.22. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4356491	N12 C3 C2	117.9938494	N12 C3 C2 C1	178.9968665
H13 N12	1.0186019	H13 N12 C3	112.3360779	H13 N12 C3 C2	-76.4630718
C14 N12	1.4141207	C14 N12 C3	118.8897329	C14 N12 C3 C2	156.1560876
015 C14	1.2379604	015 C14 N12	121.9744448	015 C14 N12 C3	123.3192633
N16 C14	1.3701384	N16 C14 N12	114.4101655	N16 C14 N12 C3	-63.1493289
C17 N16	1.4554177	C17 N16 C14	129.0540481	C17 N16 C14 N12	10.6364446
H18 C17	1.0907668	H18 C17 N16	111.3719780	H18 C17 N16 C14	86.8135518
O21 N16	1.4053346	<i>O21 N16 C14</i>	113.8913434	<i>O21 N16 C14 N12</i>	162.8283262
C22 O21	1.4450632	C22 O21 N16	109.0646844	C22 O21 N16 C14	98.2408938
H23 C22	1.0866759	H23 C22 O21	104.6537614	H23 C22 O21 N16	178.2044691
H27 N12	2.03007	H27 N12 C3	110.82507	H27 N12 C3 C2	33.05093
O26 H7	2.88791	026 H7 C2	121.17544	026 H7 C2 C3	-38.34994

- <u>Cluster (Linuron-H₂O) Position O1 :</u>

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4182269	N12 C3 C2	121.1004592	N12 C3 C2 C1	179.7747271
H13 N12	1.0130577	H13 N12 C3	116.8791621	H13 N12 C3 C2	-123.2641815
C14 N12	1.3737888	C14 N12 C3	127.7006743	C14 N12 C3 C2	34.4803296
015 C14	1.2499631	015 C14 N12	121.3609251	015 C14 N12 C3	-151.8164331
N16 C14	1.3756253	N16 C14 N12	117.1440418	N16 C14 N12 C3	27.2408372
C17 N16	1.4570572	C17 N16 C14	120.6428906	C17 N16 C14 N12	173.4252996
H18 C17	1.0865000	H18 C17 N16	106.9778938	H18 C17 N16 C14	166.7371021
<i>O21 N16</i>	1.4087011	<i>O21 N16 C14</i>	116.8986607	<i>O21 N16 C14 N12</i>	25.6921853
C22 O21	1.4475155	C22 O21 N16	111.0827773	C22 O21 N16 C14	71.8844588
H23 C22	1.0866002	H23 C22 O21	104.3149025	H23 C22 O21 N16	-179.5217596
H27 O15	1.85937	H27 O15 C14	125.93062	H27 O15 C14 N16	51.48602

Tableau II.3.23. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

- <u>Cluster (Linuron-H₂O) Position N2 :</u>

Tableau II.3.24. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4228840	N12 C3 C2	120.5093232	N12 C3 C2 C1	-179.7290962
H13 N12	1.0132630	H13 N12 C3	117.4107798	H13 N12 C3 C2	-111.8290590
C14 N12	1.3682993	C14 N12 C3	128.6445360	C14 N12 C3 C2	53.6847354
<i>O15 C14</i>	1.2387950	015 C14 N12	122.5742056	015 C14 N12 C3	-161.3540476
N16 C14	1.4122955	N16 C14 N12	116.9218454	N16 C14 N12 C3	16.9483768
C17 N16	1.4677934	C17 N16 C14	115.7695638	C17 N16 C14 N12	164.6282781
H18 C17	1.0868325	H18 C17 N16	106.6820270	H18 C17 N16 C14	179.1476092
O21 N16	1.4231263	<i>O21 N16 C14</i>	114.4988968	<i>O21 N16 C14 N12</i>	30.6444727
C22 O21	1.4454616	C22 O21 N16	112.3787909	C22 O21 N16 C14	69.0909447
H23 C22	1.0868136	H23 C22 O21	104.0478990	H23 C22 O21 N16	-173.3129997
H28 N16	1.98794	H28 N16 C14	112.02619	H28 N16 C14 N12	-84.71674
026 H7	2.50062	026 H7 C2	134.19375	026 H7 C2 C3	-95.55102

- <u>Cluster (Linuron-H₂O) Position O2 :</u>

Tableau 11.3.23. Parametres geometriques calcules au niveau MP2/0-31G++ (a,p)
--

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4212899	N12 C3 C2	120.4182643	N12 C3 C2 C1	-178.5976114
H13 N12	1.0131884	H13 N12 C3	117.3985121	H13 N12 C3 C2	-113.0208973
C14 N12	1.3755802	C14 N12 C3	126.1302390	C14 N12 C3 C2	43.5409223
<i>015 C14</i>	1.2407331	015 C14 N12	122.6826814	015 C14 N12 C3	-153.4815994
N16 C14	1.3942611	N16 C14 N12	115.9821037	N16 C14 N12 C3	25.4085933
C17 N16	1.4592424	C17 N16 C14	118.4622285	C17 N16 C14 N12	169.6204207
H18 C17	1.0866164	H18 C17 N16	106.9377806	H18 C17 N16 C14	174.5568693
<i>O21 N16</i>	1.4167206	<i>O21 N16 C14</i>	115.0655595	<i>O21 N16 C14 N12</i>	30.2892052
C22 O21	1.4478652	C22 O21 N16	112.6110799	C22 O21 N16 C14	69.4366524
H23 C22	1.0867531	H23 C22 O21	104.2467819	H23 C22 O21 N16	-178.1009410
H28 O21	1.90079	H28 O21 N16	124.37775	H28 O21 N16 C17	22.11742

II.2) Analyse vibrationnelle (courbes FTIR) des clusters (Linuron-H₂O) :

<u>Etat isolé :</u>

- <u>Cluster (Linuron-H₂O) Position N1 :</u>

Figure II.3.12. : Spectre FTIR du Cluster (Linuron-H₂O) Position N1 dans la phase gazeuse

Tableau II.3.26. : Les	fréquences et les	s intensités des	modes les p	olus importan	ts sur le
spectre FTIR du	cluster (Linuron	-H ₂ O) Position	<u>NI dans la</u>	<u>phase gazeu</u>	se

Mode	Fréquence	Intensité
1	186.25	19.6032
2	363.88	122.4034
3	754.84	65.1935
4	1187.61	8.8860
5	1203.91	127.0941
6	1525.76	105.7731
7	1767.82	416.8230
8	3114.28	47.3655
9	3703.16	251.1688
10	3945.12	128.2033

- <u>Cluster (Linuron-H₂O) Position O;</u>

 $\frac{1}{2}$

3

4

5

6 7

8

9

130.5113

142.3692

132.8308

21.0861

3.5467

160.8430

248.4854

503.4516

262.3208

131.9025

Mode	Fráquança	Intensitá

154.60

366.11

558.41

1170.43

1174.50

1504.38

1642.89

1729.62

3722.14

3953.39

Tableau II.3.27. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du cluster (Linuron-H₂O) Position O dans la phase gazeuse

-	Cluster	(Linuron-	(H_2O)	Position	N2 :	

Tableau II.3.28. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Linuron-H2O) Position N2 dans la phase gazeuse

Mode	Fréquence	Intensité
1	78.29	18.0900
2	214.33	65.8443
3	335.09	68.6571
4	578.81	100.6665
5	1420.75	44.3214
	1427.92	275.7738
6	1546.82	6.4427
7	1756.67	564.0662
8	3649.49	67.6391
	3726.90	216.6354
9	3938.25	118.0729

Cluster (Linuron-H₂O) Position O2

Figure II.3.15. : Spectre FTIR du Cluster (Linuron-H₂O) Position O2 dans la phase gazeuse

Tableau	II.3.29. :	Les	fréque	nces et	les i	ntensités	des	modes	les	plus	imp	ortants	sur	le s	pectre
	<u>FTI</u>	R du	cluster	(Linu	on-E	$H_2O)$ Pos	ition	O2 da	ns l	a ph	ase g	gazeuse	, -		

Mode	Fréquence	Intensité
1	32.17	4.4065
2	218.60	77.5536
3	332.67	81.3173
4	511.83	75.5236
5	1055.16	33.5406
6	1439.17	253.7036
7	1522.25	13.9446
	1529.29	108.1659
	1534.58	55.8919
8	1639.30	82.8093
9	1759.20	534.7213
10	3648.24	65.5126
11	3788.15	146.7512
12	3949.05	110.3775

<u>Etat solvaté :</u>

- <u>Cluster (Linuron-H₂O) Position N1</u>

Figure II.3.16. : Spectre FTIR du Cluster (Linuron-H₂O) Position N1 état solvaté

Tableau II.3.30. : Les	fréquences e	t les intensités	des modes l	les plus i	mportants	sur le
spectre FT	<u>R du cluster</u>	(Linuron-H ₂ O) Position N	<u>Il état so</u>	lvaté	

Mode	Fréquence	Intensité
1	17.27	50.6431
2	72.62	29.9529
3	371.11	158.2910
4	747.40	161.1429
5	1204.98	201.0486
6	1728.26	914.9216
7	3123.22	45.7668
8	3576.84	95.0804
9	3694.02	495.1766
10	3918.30	180.8259

- Cluster (Linuron-H₂O) Position O1 :

Figure II.3.17. : Spectre FTIR du Cluster (Linuron-H₂O) Position O1 état solvaté

Tableau II.3.31. : Les fréquences et les intensités des modes les plus importants sur lespectre FTIR du cluster (Linuron-H2O) Position O1 état solvaté

Mode	Fréquence	Intensité
1	42.35	30.6149
2	576.46	177.1901
3	1058.41	36.6512
4	1500.93	274.3489
	1515.39	4.9315
	1526.82	86.8832
	1534.20	256.6421
5	1649.88	272.9199
	1654.56	79.4456
6	3648.66	122.9065
	3672.36	800.0305
7	3927.02	187.0841

- Cluster (Linuron-H2O) Position N2

Figure II.3.18. : Spectre FTIR du Cluster (Linuron-H2O) Position N2 état solvaté

Tableau II.3.32. : Les	fréquences et	les intensités	des modes le	s plus impo	ortants s	sur le
spectre FTI	<u>R du cluster (</u>	<u> Linuron-H2</u> O) Position N2	état solvat	té	

Mode	Fréquence	Intensité
1	70.29	41.9773
2	116.35	57.4768
3	388.38	126.1303
4	605.04	92.7195
5	1044.70	42.4118
	1052.06	63.3613
6	1170.80	40.7547
	1173.36	54.3003
7	1422.52	461.6872
8	1529.96	232.4953
9	1721.03	1097.2718
10	3644.58	158.1912
	3661.97	540.4055
11	3911.39	167.6634

- <u>Cluster (Linuron-H₂O) Position O2</u>

Figure II.3.19. : Spectre FTIR du Cluster (Linuron-H₂O) Position O2 état solvaté

Tableau II.3.33. : Les fréquences et les intensités des modes les plus importants sur lespectre FTIR du cluster (Linuron-H2O) Position O2 état solvaté

Mode	Fréquence	Intensité
1	132.14	205 5386
2	350.92	205.5380
3	503.83	153.2851
4	1052.68	63.9169
5	1156.43	47.3729
	1170.04	15.1008
	1173.68	72.5049
6	1434.16	407.5447
7	1528.50	234.2726
8	1713.62	1030.7425
9	3648.91	124.2227
10	3728.70	416.2992
11	3924.57	170.1477

L'analyse vibrationnelle, des clusters pour les différentes positions (état isolé et solvaté), est caractérisée par un pic principal à 1700cm⁻¹ attribué à l'absorption du groupement carbonyle C=O.

II.3) *Etude thermodynamique de la formation des clusters (Linuron-H₂O) :*

Tableau II.3.34. : Les paramètres thermodynamiques de la formation des complexes (Linuron-H₂O) calculés dans plusieurs niveaux :

B3LYP-DF1							
6-31G**	pos	∆E/(kcal/mol)	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(cal/mol.k)$	∆ZPE/(kcal/mol)	
Isolé	N1	2.339	5.229184204	-3.548566222	-29.451	2.107176901	
	01	2.331	1.369697566	-7.021203795	-28.145	2.074546407	
	<i>N2</i>	2.167	4.933168979	-3.541663618	-28.433	1.887548576	
	02	2.095	3.645001031	-3.952054831	-25.489	1.529868161	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	<i>N1</i>	2.41	7.096464223	-1.600149225	-29.168	2.184988079	
	01	2.277	3.140667029	-4.935362217	-27.087	1.974772396	
	<i>N2</i>	2.228	6.669760211	-2.168045322	-29.642	2.010540438	
	02						
<i>6-31G</i> ++**	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$	
Isolé	<i>N1</i>	2.221	6.738736421	-0.950049383	-25.804	1.753261543	
	01	2.256	2.226385695	-5.603032326	-26.265	1.8825285	
	<i>N2</i>	2.028	7.241084291	-0.971384706	-27.561	1.69427565	
	02	2.214	4.223234161	-3.440634589	-25.716	1.785264527	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	<i>N1</i>	2.231	8.289352939	0.924949003	-24.703	1.701805764	
	01	3.872	1969.229603	1962.885484	-21.319	3.271207024	
	<i>N2</i>	2.037	8.709781892	0.792544498	-26.556	1.625877115	
	02	2.107	6.201013304	-1.659762628	-26.365	1.641564852	
cc-pvdz	pos	∆E/(kcal/mol)	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolée	<i>N1</i>	2.357	2.855418048	-5.862193749	-29.242	2.147337509	
	01	2.44	-3.026003093	-12.49183162	-31.741	2.467367354	
	02	2.518	1.483211878	-7.789275423	-31.1	2.349395568	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	<i>N1</i>	2.286	4.622835965	-3.428711908	-27.004	1.978537454	
	01	2.316	0.096008403	-8.988446078	-30.467	2.265309295	
	02	2.443	3.399826966	-5.437369818	-29.641	2.173065399	
aug-cc- pvdz	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolé	<i>N1</i>	2.101	6.309138054	-1.620229529	-26.609	1.688628065	
	01	2.211	3.249268813	-4.50551821	-26.015	1.791539623	
	<i>N2</i>	1.92	6.50857204	-0.464984539	-23.403	1.211720844	
	02	2.191	4.725582031	-3.95142732	-29.112	1.88064597	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	N1	2.125	7.208787779	0.30120456	-23.171	1.496610158	
	01	2.168	4.713196815	-2.821910222	-25.276	1.733808748	
	02	2.064	4.391913794	-3.372236053	-26.044	1.56814624	

DIVD DET

MP2							
6-31G**	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolé	N1	2.372	4.547471176	-4.200548593	-29.351	2.107176901	
	01	2.363	1.315135437	-6.725019311	-26.971	2.009912929	
	N2	2.231	2.66225557	-6.121355172	-29.465	1.99610772	
	02	2.393	2.232030053	-6.93962756	-30.768	2.156750152	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	N1	2.401	6.210425892	-2.361318248	-28.75	2.12160962	
	01	2.278	3.269933245	-4.616587391	-26.454	1.913903975	
	N2	2.109	3.733660105	-4.348640835	-27.108	1.677960403	
	02	2.299	4.137773905	-4.732676649	-29.752	1.994225191	
<i>6-31G</i> ++**	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
Isolé	N1	2.197	6.05514194	-2.927959327	-30.14	1.928964203	
	01	2.223	0.699900404	-7.571529627	-27.742	1.846132949	
	N2	2.114	3.973000952	-4.993093092	-30.079	1.861820687	
	<i>O2</i>	2.064	1.176535088	-7.174943623	-28.012	1.640309833	
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)	
	<i>N1</i>	2.167	7.260870769	-0.287399351	-25.318	1.685490517	
	01	2.115	2.615444591	-3.773842133	-21.431	1.514180424	
	<i>N2</i>	2.098	5.387765657	-3.530995957	-29.915	1.859938158	
	02	1.953	2.880252081	-5.410386909	-27.808	1.495982648	

Thermodynamiquement la structure en position O_1 est la plus favorisée avec un

 $\Delta G = 2,62 \text{ kcal/mol pour l'état solvaté.}$

II.4) Analyse des orbitales frontières des clusters étudiées :

L'écart énergétique (HOMO-LUMO) est un indicateur significatif de la stabilité des structures. Cet écart est de l'ordre de 0,37 ev pour toutes les positions. Partie II : familles des Phényle urée & Carbamates Chapitre 04 : Etude des clusters Phényle urées -Glycine I.)- Complexes (Phényle urée -Glycine) :

Figure II.4.1. : Structures des clusters (Phényle urée –Glycine)

Dans cette partie, on va se focalisé sur l'étude du phénomène de la compléxation de la structure de base avec la glycine. Les différentes symétries permettent quatre possibilités : Cluster 1 (avec un cycle à 8 chainons), Cluster 2 (avec un cycle à 8 chainons) , Cluster 3 (avec un cycle à 9 chainons) et le Cluster 4 (avec un cycle à 9 chainons).

<u>I.1) Etude Structurale des clusters (Phényle urée –Glycine) :</u> <u>Etat Isolé :</u>

- <u>Cluster (Phényle urée - Glycine) Complexe 1 :A8</u>

Tableau II.4.1. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4121554	N12 C3 C2	118.2836280	N12 C3 C2 C1	-177.5278536
C14 N12	1.3656245	C14 N12 C3	127.5609448	C14 N12 C3 C2	-132.3467988
<i>015 C14</i>	1.2473258	015 C14 N12	121.7339813	015 C14 N12 C3	175.0013291
N16 C14	1.3737837	N16 C14 N12	117.7496693	N16 C14 N12 C3	-7.7654939
H17 N16	1.0074465	H17 N16 C14	118.1427738	H17 N16 C14 N12	26.6003746
H18 N16	1.0070872	H18 N16 C14	112.6079725	H18 N16 C14 N12	166.4921150
C23 C21	1.0894230	C23 C21 C24	110.5405881	H23 C21 N19 H28	125.9216162
H26 C22	1.3240324	H26 C22 C21	112.5213384	H26 C22 C21 N19	158.6573343
<i>015 H27</i>	1.64613	<i>O15 H27 O26</i>	173.43352	<i>O15 H27 O26 C22</i>	148.86576
H13 O25	1.85186	H13 O25 C22	121.89843	H13 O25 C22 C21	-174.13558

- <u>Cluster (Phényle urée - Glycine) Complexe 2 :A8</u>

Tableau II.4.2. : Paramètres	géométric	ues calculés au niveau MP2/6-31G++ (d	(,p):

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4129292	N12 C3 C2	119.3706535	N12 C3 C2 C1	-177.6154032	
H13 N12	1.0089019	H13 N12 C3	118.4043891	H13 N12 C3 C2	35.1337324	
C14 N12	1.3797825	C14 N12 C3	127.7583341	C14 N12 C3 C2	-128.8255682	
<i>O15 C14</i>	1.2470163	015 C14 N12	118.7302865	015 C14 N12 C3	176.1809653	
N16 C14	1.3567172	N16 C14 N12	117.5913846	N16 C14 N12 C3	-6.1793218	
H17 N16	1.0058385	H17 N16 C14	119.0484368	H17 N16 C14 N12	20.3484836	
H18 N16	1.0177692	H18 N16 C14	114.9018902	H18 N16 C14 N12	169.4085957	
C23 C21	1.0910014	C23 C21 C24	109.9050697	H23 C21 N19 H28	119.5939999	
H26 C22	1.3266932	H26 C22 C21	112.1177302	H26 C22 C21 N19	179.4228018	
<i>O15 H27</i>	1.65017	<i>O15 H27 O26</i>	173.81748	<i>O15 H27 O26 C22</i>	-166.12812	
H18O25	1.90221	H18O25 C22	123.34288	H18025 C22 C21	174.78915	
- Cluster (Phényle urée - Glycine) Complexe 3 · 49						

- <u>Cluster (Phényle urée - Glycine) Complexe 3 : A9</u>

Tableau II.4.3. : Paramètres	géométriques	calculés au niveau	<i>и MP2/6-31G++</i>	(<i>d</i> , <i>p</i>) :
------------------------------	--------------	--------------------	----------------------	---------------------------

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4119491	N12 C3 C2	119.0096190	N12 C3 C2 C1	-177.2681035	
H13 N12	1.0191023	H13 N12 C3	117.2633087	H13 N12 C3 C2	29.8534995	
C14 N12	1.3765086	C14 N12 C3	126.5227412	C14 N12 C3 C2	-126.2605954	
015 C14	1.2393088	015 C14 N12	121.9798841	015 C14 N12 C3	172.5791172	
N16 C14	1.3825386	N16 C14 N12	116.5484832	N16 C14 N12 C3	-10.7616834	
H17 N16	1.0079802	H17 N16 C14	117.5501240	H17 N16 C14 N12	29.6213890	
H18 N16	1.0074055	H18 N16 C14	111.7124764	H18 N16 C14 N12	166.3068225	
H23 C21	1.0919360	H23 C21 C22	109.9804625	H23 C21 C22 O25	177.3820368	
<i>O26 C22</i>	1.3588124	O26 C22 C21	110.3627850	026 C22 C21 N19	-176.1028335	
<i>013H25</i>	2.51528	O13H25 C22	108.08942	<i>O13H25 C22 C21</i>	-2.82441	
015 H20	2.02008	015 H20 N19	153.56823	015 H20 N19 C21	-117.65663	
Chuster (Dhémula anéa - Chusing) Complement 4,40						

- <u>Cluster (Phényle urée - Glycine) Complexe 4 :A9</u>

Tableau II.4.4. : Paramètres ,	géométriques calculés au niveau MP2/6-31G++ (a	d,p):
		_

Longueurs de	es liaisons (Å)	Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4121206	N12 C3 C2	119.4665742	N12 C3 C2 C1	-177.4884039
H13 N12	1.0090618	H13 N12 C3	117.7511450	H13 N12 C3 C2	31.3165034
C14 N12	1.3871994	C14 N12 C3	127.9536118	C14 N12 C3 C2	-128.1260003
<i>015 C14</i>	1.2387186	015 C14 N12	119.6459915	015 C14 N12 C3	173.7867051
N16 C14	1.3678675	N16 C14 N12	116.6717772	N16 C14 N12 C3	-9.2534157
H17 N16	1.0072446	H17 N16 C14	117.7652268	H17 N16 C14 N12	24.4330495
H18 N16	1.0150823	H18 N16 C14	113.8539774	H18 N16 C14 N12	165.0360952
H23 C21	1.0922477	H23 C21 C22	-173.5325441	H23 C21 C22 O25	4.6015740
<i>O26 C22</i>	1.3366628	O26 C22 C21	23.8636913	O26 C22 C21 N19	4.0918890
H18 O25	1.98587	018H25 C22	104.68180	018H25 C22 C21	62.89363
015 H20	2.15116	015 H20 N19	130.70997	015 H20 N19 C21	-23.32167
Etat Solvaté :

- Cluster (Phényle urée - Glycine) Complexe 1 :A8

Tableau II.4.5. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des tidisons (A) Angles de valence () Angles dieure	e (°)
N12 C3 1.4153257 N12 C3 C2 118.4336082 N12 C3 C2 C1 -	-177.3053408
C14 N12 1.3645458 C14 N12 C3 127.3046408 C14 N12 C3 C2 -	-130.3279666
015 C14 1.2536202 015 C14 N12 121.1672506 015 C14 N12 C3	175.3674295
N16 C14 1.3656261 N16 C14 N12 118.1349991 N16 C14 N12 C3	-7.8662176
H17 N16 1.0078543 H17 N16 C14 118.7293505 H17 N16 C14 N12	25.0042904
H18 N16 1.0076117 H18 N16 C14 113.7625652 H18 N16 C14 N12	166.5150299
H23 C21 1.08968 H23 C21 N19 110.02908 H23 C21 N19 H28	-70.06241
026 C22 1.32768 026 C22 C21 112.30126 026 C22 C21 N19	164.50919
<i>O15 H27 1.62583 O15 H27 O26 171.60866 O15 H27 O26 C22</i>	163.88862
H13 O25 1.88359 H13 O25 C22 120.75879 H13 O25 C22 C21	-171.51864

- <u>Cluster (Phényle urée - Glycine) Complexe 2 :A8</u>

|--|

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)				
N12 C3	1.4169670	N12 C3 C2	119.2706841	N12 C3 C2 C1	-177.6050625			
H13 N12	1.0100238	H13 N12 C3	117.6978732	H13 N12 C3 C2	34.0755157			
C14 N12	1.3737567	C14 N12 C3	127.0227287	C14 N12 C3 C2	-125.7679747			
015 C14	1.2537810	015 C14 N12	118.8591713	015 C14 N12 C3	174.1568247			
N16 C14	1.3542432	N16 C14 N12	118.0461632	N16 C14 N12 C3	-8.8243989			
H17 N16	1.0067791	H17 N16 C14	119.3899963	H17 N16 C14 N12	20.0714640			
H18 N16	1.0158549	H18 N16 C14	115.1867853	H18 N16 C14 N12	169.4465753			
C23 C21	1.09094	C23 C21 N19	109.88991	H23 C21 N19 H28	177.79118			
H26 C22	1.32930	H26 C22 C21	112.09820	H26 C22 C21 N19	179.48075			
015 H27	1.62552	<i>O15 H27 O26</i>	171.20086	<i>O15 H27 O26 C22</i>	-171.38504			
H17 O25	1.94046	H17O25 C22	122.34753	H17025 C22 C21	176.08450			

- <u>Cluster (Phényle urée - Glycine) Complexe 3 :A9</u>

Tableau II.4.7. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de v	valence (°)	Angles dièdre (°)				
N12 C3	1.4133994	N12 C3 C2	118.8571309	N12 C3 C2 C1	-176.9464181			
H13 N12	1.0230234	H13 N12 C3	117.0969659	H13 N12 C3 C2	28.8468895			
C14 N12	1.3758303	C14 N12 C3	126.6057102	C14 N12 C3 C2	-125.7581576			
015 C14	1.2429279	015 C14 N12	121.2744646	015 C14 N12 C3	171.7896466			
N16 C14	1.3779674	N16 C14 N12	116.9539880	N16 C14 N12 C3	-12.0702193			
H17 N16	1.0085063	H17 N16 C14	117.8663484	H17 N16 C14 N12	28.4517286			
H18 N16	1.0081630	H18 N16 C14	112.5796793	H18 N16 C14 N12	165.3962910			
H23 C21	1.09077	H23 C21 C22	107.26019	H23 C21 C22 O25	-120.76642			
<i>O26 C22</i>	1.3509	O26 C22 C21	110.58290	O26 C22 C21 N19	179.35587			
H13 O25	2.64905	H13 O25 C22	104.16716	H13 O25 C22 C21	11.27467			
015 H20	2.20291	015 H20 N19	143.08760	015 H20 N19 C21	-132.60907			

- Cluster (Phényle urée - Glycine) Complexe 4 : A9

Tableau II.4.8. : Paramètres	géométriqu	es calculés au n	iveau MP2/6-31G+	+ (d,p):

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)				
N12 C3	1.4154932	N12 C3 C2	119.2970585	N12 C3 C2 C1	-177.4607537			
H13 N12	1.0101271	H13 N12 C3	117.3266375	H13 N12 C3 C2	31.5745227			
C14 N12	1.3809910	C14 N12 C3	127.5659916	C14 N12 C3 C2	-127.0541519			
<i>O15 C14</i>	1.2435180	015 C14 N12	120.0947912	015 C14 N12 C3	173.5032366			
N16 C14	1.3676894	N16 C14 N12	116.9117517	N16 C14 N12 C3	-9.8346145			
H17 N16	1.0077957	H17 N16 C14	118.5612898	H17 N16 C14 N12	166.8075442			
H18 N16	1.0127565	H18 N16 C14	113.9641036	H18 N16 C14 N12	125.3799961			
H23 C21	1.09147	H23 C21 C22	106.82018	H23 C21 C22 O25	80.84778			
O26 C22	1.33667	O26 C22 C21	113.27236	O26 C22 C21 N19	21.33235			
H18 O25	2.07251	H18 O25 C22	101.17067	H18 O25 C22 C21	58.85058			
015 H20	2.23910	015 H20 N19	125.67422	015 H20 N19 C21	-33.01410			

Notant que, ces clusters se stabilisent par la création de deux liaisons hydrogène O-H d'une grandeur approximative de : 2.3 Å.

I.2) Analyse vibrationnelle (courbes FTIR) des clusters (Phényle urée - Glycine) :

<u>Etat isolé :</u>

- <u>Cluster (Phényle urée - Glycine) Complexe 1 :A8</u>

Figure II.4.2. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 1 :A8 dans la phase

<u>gazeuse</u>

Tableau II.4.9. : Les	fréquen	ces et les	intensités	s des modes	les p	olus imp	oortants	sur le sp	pectre
FTIR du cluster	· (Phény	le urée -	Glycine)	Complexe I	! :A8	dans la	a phase z	gazeuse	

Mode	Fréquence	Intensité
1	21.99	3.3435
2	182.01	26.7970
3	230.42	95.5409
4	494.12	67.8984
5	539.54	154.9829
6	806.74	109.2796
7	895.59	110.2045
8	1009.95	138.0374
9	1338.57	151.2299
10	1516.34	173.2402
11	1812.07	906.8449
12	3171.47	1522.8467
13	3454.98	1130.0594

- Cluster (Phényle urée - Glycine) Complexe 2 :A8

IR Spectrum

Figure II.4.3. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 2 :A8 dans la phase gazeuse

Tableau II.4.10. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du cluster (Phényle urée - Glycine) Complexe 2 :A8 dans la phase gazeuse

Mode	Fréquence	Intensité
1	250.89	59.6542
2	481.45	148.1778
3	493.20	88.1890
4	744.00	58.8430
5	780.92	105.7811
6	887.02	102.8862
7	994.49	181.2820
8	1002.44	128.5376
9	1302.95	211.1990
10	1500.43	300.5017
11	1677.73	286.0970
12	1814.13	817.5719
13	3192.00	1918.5730
14	3517.05	897.8569

- Cluster (Phényle urée - Glycine) Complexe 3 : A9

Figure II.4.4. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 3 :A9 dans la phase gazeuse

Tableau II.4.11. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du cluster (Phényle urée - Glycine) Complexe 3 :A9 dans la phase gazeuse

Mode	Fréquence	Intensité
1	430.77	42.3773
2	483.92	49.7242
3	555.43	176.1549
4	593.50	62.3846
5	677.86	120.3856
6	701.57	85.0139
7	766.30	111.3549
8	980.32	142.7722
9	1046.54	191.0425
10	1176.30	233.9741
11	1475.00	242.6125
12	1660.72	198.2348
13	1811.00	521.1377
14	1854.40	339.0136
15	3534.89	571.6853

- Cluster (Phényle urée - Glycine) Complexe 4 : A9

Figure II.4.5. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 4 :A9 dans la phase gazeuse

Mode	Fréquence	Intensité
1	12 70	3 2074
2	404.46	38.1098
3	492.16	127.5283
4	519.27	48.2191
5	706.88	75.6981
6	769.13	106.0998
7	890.22	193.3333
8	1030.09	105.2958
9	1467.50	538.0731
10	1692.10	175.3312
11	1813.15	433.9420
12	1854.98	420.3352
13	3490.61	270.1515
14	3570.11	295.2751
15	3748.98	166.7571

Tableau II.4.12. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Phényle urée - Glycine) Complexe 4 :A9 dans la phase gazeuse

<u>Etat solvaté :</u>

- <u>Cluster (Phényle urée - Glycine) Complexe 1 :A8</u>

Figure II.4.6. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 1 :A8 état solvaté

Tableau II	.4.13. :	Les	fréque	ences d	et les	inten	sités	des	modes	les	plus	impe	ortants	sur	le sp	pectre
	FTIR o	du cli	uster	(Phén	yle u	rée - (Glyci	ne)	Compl	exe	1 :A8	8 éta	t solva	<u>té</u>	_	

Mode	Fréquence	Intensité
1	17.84	6.0005
2	205.58	102.0361
3	482.61	291.2920
4	752.89	156.5642
5	917.10	188.8206
6	978.42	170.1330
7	1304.17	254.9053
8	1509.80	324.7986
9	1651.43	352.1306
10	1746.50	730.8244
11	1787.36	834.1427
12	3085.22	2242.9993
13	3472.11	1098.5519

- <u>Cluster (Phényle urée - Glycine) Complexe 2 :A8</u>

Tableau II.4.14. : Les	fréquences et les	s intensités des	modes les	plus impo	ortants sur	le spectre
<u>FTIR du c</u>	luster (Phényle ı	<u>irée - Glycine)</u>	Complexe	2 :A8 étai	t solvaté	

Mode	Fréquence	Intensité
1	246.82	88.4092
2	474.37	304.1290
3	706.23	103.9620
4	747.48	104.0005
5	886.62	126.4951
6	976.89	168.7998
7	1000.64	207.9468
8	1285.55	217.5316
9	1497.83	366.4783
10	1656.48	403.9967
11	1749.28	648.2821
12	1789.86	704.2487
13	3090.38	2497.8959
14	3539.88	715.5218

- <u>Cluster (Phényle urée - Glycine) Complexe 3 : A9</u>

Figure II.4.8. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 3 : A9 état solvaté

Tableau II.4	4.15. : Les	fréquences	et les int	ensités des	s modes les	plus im	portants sur	le spectre
	<u>FTIR du c</u>	luster (Phér	iyle urée	- Glycine)	Complexe	- 3 :A9 é	état solvaté	_

Mode	Fréquence	Intensité
1	20.34	2.2750
2	96.62	9.3206
3	384.71	50.6722
4	530.24	256.2288
5	653.93	141.5931
6	729.93	102.6785
7	768.39	224.5404
8	954.11	275.6517
9	1055.86	158.6482
10	1164.86	250.4195
11	1468.49	401.0365
12	1653.17	319.1186
13	1779.80	802.8107
14	1834.31	415.3882
15	3436.16	787.8057

- <u>Cluster (Phényle urée - Glycine) Complexe 4 : A9</u>

Figure II.4.9. : Spectre FTIR du Cluster (Phényle urée - Glycine) Complexe 4 : A9 état solvaté

Tableau II.4.16. : Les fréquences et les intensités des modes les plus importants sur le spe	<u>ctre</u>
FTIR du cluster (Phényle urée - Glycine) Complexe 4 :A9 état solvaté	

Mode	Fréquence	Intensité
1	4.3234	4.3234
2	322.04	37.4157
3	378.17	44.8642
4	477.88	199.3554
5	496.47	207.7242
6	660.91	147.3933
7	905.19	235.6290
8	1016.36	146.8026
9	1451.81	743.3893
10	1472.54	349.1630
11	1670.52	259.9375
12	1774.03	830.6795
13	1834.44	466.3816
14	3365.70	516.0482
15	3596.85	231.2193
16	3752.24	229.3523

Les courbes FTIR sont caractérisé par 2 pics principaux :

- _
- Le premier à 1800 cm⁻¹ attribué à la liaison carbonyle C=O. Le deuxième pic principal à 3700 cm⁻¹ est attribué à l'absorption de la liaison NH. -

1.3) Etude thermodynamique de la formation des clusters (Phényle urée -Glycine) :

Tableau II.4.17. : Les paramètres thermodynamiques de la formation des complexes(Phényle urée -Glycine) calculés dans plusieurs niveaux :

	B3LYP-DFT								
6-31G**	comp	∆E/(kcal/mol)	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)			
Isolé	<i>1-A8</i>	2.892	-10.2453558	-21.2343109	-36.859	2.1021585			
	2-A8	2.851	-10.1380516	-20.8992206	-36.096	2.02560228			
	3-A9	3.206	-2.50564743	-12.4033627	-33.199	2.23519062			
	4-A9	3.124	-2.34374985	-12.151103	-32.896	2.12161131			
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)			
	1-A8	3.341	-8.17582779	-17.7785992	-32.206	2.05948782			
	2-A8	3.339	-7.949911521	-17.5301054	-32.132	2.046308479			
	3-A9	3.815	-0.92369472	-9.862566811	-29.98	2.41340346			
	4-A9	3.726	-1.10128005	-9.65297864	-28.681	2.25778098			
<i>6-31G</i> ++**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)			
Isolé	1-A8	3.328	17.9680927	6.74196207	-37.651	2.618597144			
	2-A8	2.884	-6.35980371	-17.0174301	-35.744	2.041288404			
	3-A9	3.209	0.821409281	-9.37436442	-34.195	2.25024907			
	4-A9	3.139	0.755520836	-8.98217098	-32.658	2.123492148			
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)			
	1-A8	3.84	22.3594363	12.4836839	-33.125	2.66503497			
	2-A8	3.401	-3.39294657	-12.9474138	-32.045	2.12474886			
	3-A9	3.777	2.95180704	-6.02346849	-30.105	2.35630005			
	4-A9	3.756	2.91980403	-5.88353376	-29.526	2.30421672			
cc-pvdz	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)			
Isolé	1-A8	2.999	-11.1816007	-22.2715849	-37.197	2.22640548			
	2-A8	2.958	-9.91152045	-21.3604404	-36.414	2.18875488			
	3-A9	3.308	-3.827811	-14.2720874	-35.032	2.38642053			
	4-A9	3.54	-5.46874965	-16.15901	-35.855	2.82505002			
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)			
	1-A8	2.91	-7.9191762	-19.4465349	-38.662	2.21385528			
	2-A8	2.878	-6.80973852	-18.1494717	-38.032	2.1837348			
	3-A9	3.35	-1.17658125	-12.2828807	-37.249	2.54643558			
	4-A9	3.518	-9.86006463	-20.1462086	-34.498	2.51004			
aug-cc- pvdz	сотр	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)			
Isolé	1-A8	2.755	-5.22904083	-16.1044166	-36.427	2.12223882			
	2-A8	2.669	-6.19854378	-16.7262791	-35.262	1.94465349			
	- 110								
	3-A9	2.82	4.93285611	-4.77848865	-32.524	1.92143562			
	3-A9 4-A9	2.82 2.931	4.93285611 0.67959333	-4.77848865 -8.91817212	-32.524 -32.142	1.92143562 2.0331324			
Solvaté	3-A9 4-A9 comp	2.82 2.931 Δ E/(kcal/mol)	4.93285611 0.67959333 Δ G/(kcal/mol)	-4.77848865 -8.91817212 Δ H /(kcal/mol)	-32.524 -32.142 ΔS/(kcal/mol.k)	1.92143562 2.0331324 ∆ ZPE/(kcal/mol)			
Solvaté	3-A9 4-A9 comp 1-A8	2.82 2.931 ∆E/(kcal/mol) 2.765	4.93285611 0.67959333 Δ G/(kcal/mol) -2.28350889	-4.77848865 -8.91817212 Δ H/(kcal/mol) -12.5734179	-32.524 -32.142 Δ S/(kcal/mol.k) -34.511	1.92143562 2.0331324 Δ ZPE/(kcal/mol) 1.91829807			
Solvaté	3-A9 4-A9 comp 1-A8 2-A8	2.82 2.931 ∆E/(kcal/mol) 2.765 2.805	4.93285611 0.67959333 Δ G/(kcal/mol) -2.28350889 -2.67758517	-4.77848865 -8.91817212 Δ H/(kcal/mol) -12.5734179 -13.2875242	-32.524 -32.142 Δ S/(kcal/mol.k) -34.511 -35.584	1.92143562 2.0331324 ∆ ZPE/(kcal/mol) 1.91829807 1.98857919			
Solvaté	2-A8 3-A9 4-A9 comp 1-A8 2-A8 3-A9	2.82 2.931 ∆E/(kcal/mol) 2.765 2.805 3.104	4.93285611 0.67959333 ∆G/(kcal/mol) -2.28350889 -2.67758517 5.58295647	-4.77848865 -8.91817212 ΔH/(kcal/mol) -12.5734179 -13.2875242 -4.40574771	-32.524 -32.142 Δ S /(kcal/mol.k) -34.511 -35.584 -33.501	1.92143562 2.0331324 Δ ZPE/(kcal/mol) 1.91829807 1.98857919 2.09713842			

Partie II : familles des Phényle urées &Carbamates

Chapitre 04 :	Etude	des	clusters	Phényle
			urées	-Glycine

MP2								
6-31G**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol. k)$	∆ ZPE/(kcal/mol)		
Isolé	1-A8	3.188	-11.0510786	-22.1962837	-37.383	2.46548679		
	2-A8	3.195	-12.4573285	-23.0233419	-35.439	2.35002495		
	3-A9	3.26	-5.36332797	-16.0498233	-35.845	2.43411129		
	4-A9	3.525	-6.26066727	-17.3952047	-37.348	2.91101889		
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol.k)$	$\Delta ZPE/(kcal/mol)$		
	1-A8	3.575	-9.40700241	-18.9075038	-31.864	2.2966866		
	2-A8	3.642	-10.4706319	-19.6203552	-30.687	2.3029617		
	3-A9	3.759	-4.13466339	-13.3527853	-30.919	2.41905105		
	4-A9	3.931	-4.67118444	-15.061495	-34.85	2.85140544		
<i>6-31G</i> ++**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol.k)$	$\Delta ZPE/(kcal/mol)$		
Isolé	1-A8	4.032	-11.6848637	-21.3315749	-32.353	2.85015042		
	2-A8	4.021	-9.81613893	-19.3279355	-31.9	2.81312733		
	3-A9	4.367	-5.17381995	-15.6400592	-35.1	3.47766042		
	4-A9	3.849	-3.19653594	-11.109437	-26.537	2.30045166		
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(kcal/mol.k)$	∆ ZPE/(kcal/mol)		
	1-A8	4.384	-7.83634488	-17.4711334	-32.937	2.59475385		
	2-A8	3.869	-5.86533597	-15.6005261	-32.651	2.69578296		
	3-A9	3.958	-4.30534611	-15.1016557	-36.21	3.07166145		
	4-A9	3.999	-0.70971381	-9.72075741	-30.22	2.62048176		

Thermodynamiquement, la formation du complexe 2 est favorisée (état isole et solvaté) avec un ΔG =-12.46 K cal / mol pour le premier et un ΔG =-10.47 Kcal / mol pour le second état.

I.4) Analyse des orbitales frontières des clusters étudiées :

L'analyse des écarts des énergies (HOMO-LUMO) est de l'ordre de 0.44 ev pour les complexes 1, 3 et 4. Un écart de l'ordre de 0.27 ev est observé pour le complexe 2.

II) Complexes (Monuron-Glycine) :

L'un des dérivés des phényle-urées : le Monuron.

*Figure II.4.10. : D*ifférentes structures possibles des Clusters (Monuron-Glycine)

De la même manière précédente, on propose Les quatre différentes possibilités de symétries suivantes : Cluster 1 (avec un cycle à 8 chainons), Cluster 2 (avec un cycle à 8 chainons) , Cluster 3 (avec un cycle à 9 chainons) et le Cluster 4 (avec un cycle à 9 chainons).

II.1) Etude Structurale des clusters (Monuron –Glycine) :

Etat Isolé :

- Cluster (Monuron –Glycine) Complexe 1 :A8

Tableau II.4.18. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4111455	N12 C3 C2	117.3333505	N12 C3 C2 C1	-177.7050992
H13 N12	1.0246745	H13 N12 C3	115.3039204	H13 N12 C3 C2	41.0691645
C14 N12	1.3769811	C14 N12 C3	127.3862262	C14 N12 C3 C2	-166.9244338
015 C14	1.2521165	015 C14 N12	121.2036772	015 C14 N12 C3	-142.3946198
N16 C14	1.3672127	N16 C14 N12	117.7223573	N16 C14 N12 C3	38.6154111
C17 N16	1.4552989	C17 N16 C14	117.4188990	C17 N16 C14 N12	-175.2758270
H18 C17	1.0888800	H18 C17 N16	108.4989785	H18 C17 N16 C14	152.1978950
C21 N16	1.4566213	C21 N16 C14	122.5396193	C21 N16 C14 N12	28.9733619
H22 C21	1.0911926	H22 C21 N16	108.7293026	H22 C21 N16 C14	120.8890932
H26 N25	1.0139151	H26 N25 C27	108.79775	H26 N25 C27 H29	65.20675
C28 C27	1.5217398	C28 C27 N25	118.0356857	C28 C27 N25 H26	-56.87339
<i>O31 C28</i>	1.2333383	<i>O31 C28 C27</i>	121.2753470	<i>O31 C28 C27 N25</i>	-178.9849582
H33 O32	1.0036233	H33 O32 C28	110.3341585	H33 O32 C28 C27	-178.1901991
H33 O15	1.64206	H33 O15 C14	124.19890	H33 O15 C14 N12	8.84289
H13 O31	1.83618	H13 O31 C28	120.55405	H13 O31 C28 O32	9.85623

- <u>Cluster (Monuron –Glycine) Complexe 2 :A10</u>

Tableau II.4.19. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4136582	N12 C3 C2	121.2820214	N12 C3 C2 C1	-177.8328267
H13 N12	1.0080077	H13 N12 C3	114.5672262	H13 N12 C3 C2	162.2440006
C14 N12	1.3954030	C14 N12 C3	121.6338816	C14 N12 C3 C2	-47.5896885
<i>015 C14</i>	1.2367340	015 C14 N12	122.0918072	015 C14 N12 C3	4.1013462
N16 C14	1.3720216	N16 C14 N12	114.8497818	N16 C14 N12 C3	-178.8288416
C17 N16	1.4555795	C17 N16 C14	118.0321592	C17 N16 C14 N12	171.9759504
H18 C17	1.0846533	H18 C17 N16	108.7124945	H18 C17 N16 C14	19.6251413
C21 N16	1.4497412	C21 N16 C14	123.2445048	C21 N16 C14 N12	3.8717358
H22 C21	1.0953021	H22 C21 N16	112.9726698	H22 C21 N16 C14	78.5684435
C27 C28	1.4516706	C27 C28 O32	111.31184	C27 C28 O32 H33	-179.85815
<i>O31 C28</i>	1.2198198	<i>O31 C28 C27</i>	125.9196080	<i>O31 C28 C27 N25</i>	-4.8496944
H33 O32	0.9709114	H33 O32 C28	105.4651024	H33 O32 C28 C27	-179.8581481
H26 O15	2.20520	H26 O15 C14	115.27389	H26 O15 C14 N16	-84.90489
H18 O31	2.66846	H18 O31 C28	109.86815	H18 O31 C28 C27	84.29853

- <u>Cluster (Monuron –Glycine) Complexe 3 : A9</u>

Longueurs des liaisons (Å) Angles de valence (°,		alence (°)	Angles diè	edre (°)	
N12 C3	1.4109732	N12 C3 C2	118.0946868	N12 C3 C2 C1	-177.7962642
H13 N12	1.0100634	H13 N12 C3	116.5158036	H13 N12 C3 C2	43.8774235
C14 N12	1.3834451	C14 N12 C3	128.0698941	C14 N12 C3 C2	-161.9718731
<i>015 C14</i>	1.2497662	015 C14 N12	119.3576152	015 C14 N12 C3	-143.1989826
N16 C14	1.3619983	N16 C14 N12	116.7379158	N16 C14 N12 C3	36.6575641
C17 N16	1.4571086	C17 N16 C14	118.7276088	C17 N16 C14 N12	-170.5687416
H18 C17	1.0849688	H18 C17 N16	108.8974181	H18 C17 N16 C14	22.5389752
C21 N16	1.4570864	C21 N16 C14	122.4022939	C21 N16 C14 N12	31.4018786
H22 C21	1.0901127	H22 C21 N16	108.2117366	H22 C21 N16 C14	121.8177771
H26 N25	1.0140295	H26 N25 C27	108.12535	H26 N25 C27 H29	55.31523
C28 C27	1.5117795	C28 C27 N25	108.1578390	C28 C27 N25 H26	-65.58817
<i>O31 C28</i>	1.2240162	<i>O31 C28 C27</i>	124.6559852	<i>O31 C28 C27 N25</i>	-124.4523692
H33 O32	0.9960896	H33 O32 C28	108.3937671	H33 O32 C28 C27	108.3937671
H33 O15	1.96081	H33 O15 C14	108.22822	H33 O15 C14 N16	57.23212
H24 O31	2.90585	H24 O31 C28	129.04138	H24 O31 C28 O32	-79.07545

Tableau II.4.20. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

- Cluster (Monuron –Glycine) Complexe 4 :A9

Tableau II.4.21. : Paramètres	géométriq	ues calculés au niveau MP2/6-31G++ (d	l,p) .	

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4073655	N12 C3 C2	117.0834978	N12 C3 C2 C1	-178.2204532
H13 N12	1.0179639	H13 N12 C3	114.6823421	H13 N12 C3 C2	35.5217594
C14 N12	1.3837574	C14 N12 C3	128.2629533	C14 N12 C3 C2	-170.5639632
015 C14	1.2435625	015 C14 N12	121.2861618	015 C14 N12 C3	-141.8115249
N16 C14	1.3762883	N16 C14 N12	116.6598258	N16 C14 N12 C3	38.7758808
C17 N16	1.4540005	C17 N16 C14	116.6532890	C17 N16 C14 N12	-175.9128237
H18 C17	1.0891828	H18 C17 N16	108.5524322	H18 C17 N16 C14	154.7629775
C21 N16	1.4565844	C21 N16 C14	122.1027035	C21 N16 C14 N12	32.5832445
H22 C21	1.0922275	H22 C21 N16	109.1452707	H22 C21 N16 C14	115.1078523
C28 C27	1.5198431	C28 C27 N25	111.1928453	C28 C27 N25 H26	74.75093
<i>O31 C28</i>	1.2154036	<i>O31 C28 C27</i>	125.5883132	<i>O31 C28 C27 N25</i>	-7.1753638
H33 O32	0.9672346	H33 O32 C28	109.6710115	H33 O32 C28 C27	-1.0159175
H26 O15	2.00084	H26 O15 C14	109.97308	H26 O15 C14 N12	22.86337
H13 O31	1.95124	H13 O31 C28	125.65828	H13 O31 C28 C27	-13.81282

<u>Etat solvaté :</u>

- <u>Cluster (Monuron –Glycine) Complexe 1 :A8</u>

Tableau II.4.22. : Paramètres géométriques calculés au niveau MP2/6-31G++ (d,p) :

Longueurs des liaisons (Å) Angles de valence		valence (°)	ce (°) Angles dièdre (°)		
N12 C3	1.4133990	N12 C3 C2	118.8571557	N12 C3 C2 C1	-176.9465799
H13 N12	1.0230216	H13 N12 C3	117.0969366	H13 N12 C3 C2	28.8431749
C14 N12	1.3758296	C14 N12 C3	126.6056011	C14 N12 C3 C2	-125.7593738
<i>O15 C14</i>	1.2429257	015 C14 N12	121.2747648	015 C14 N12 C3	171.7869635
N16 C14	1.3779702	N16 C14 N12	1.3779702	N16 C14 N12 C3	-12.0718968
C17 N16	1.0085069	C17 N16 C14	117.8658433	C17 N16 C14 N12	28.4522768
H18 C17	1.0081628	H18 C17 N16	112.5792480	H18 C17 N16 C14	165.3956214
C21 N16	1.4545478	C21 N16 C14	129.8935066	C21 N16 C14 N12	-61.8731732
H22 C21	1.5101373	H22 C21 N16	110.7361270	H22 C21 N16 C14	-7.5122447
H20 015	2.20293	H20 O15 C14	107.42904	H20 O15 C14 N12	-10.72679
H13 N19	2.01814	H13 N19 H20	76.80981	H13 N19 H20 O15	-10.09201

- <u>Cluster (Monuron –Glycine) Complexe 2 :A10</u>

Tableau II.4.23. : Paramètres g	géométriques	calculés au niv	veau MP2/6-310	G + + (d, p):
---------------------------------	--------------	-----------------	----------------	---------------

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4104484	N12 C3 C2	121.2763171	N12 C3 C2 C1	-177.9384189
H13 N12	1.0093234	H13 N12 C3	114.6186171	H13 N12 C3 C2	161.8007202
C14 N12	1.3946472	C14 N12 C3	121.6708600	C14 N12 C3 C2	-47.9383687
<i>015 C14</i>	1.2433226	015 C14 N12	121.7130687	015 C14 N12 C3	3.9361183
N16 C14	1.3649421	N16 C14 N12	115.0022124	N16 C14 N12 C3	-178.8812832
C17 N16	1.4562688	C17 N16 C14	118.3552491	C17 N16 C14 N12	170.8096225
H18 C17	1.0840652	H18 C17 N16	108.7411046	H18 C17 N16 C14	19.3972280
C21 N16	1.4546331	C21 N16 C14	123.1797965	C21 N16 C14 N12	4.3794924
H22 C21	1.0930967	H22 C21 N16	112.4964871	H22 C21 N16 C14	77.7634498
<i>O31 C28</i>	1.2207985	<i>O31 C28 C27</i>	125.5420251	<i>O31 C28 C27 N25</i>	-14.3149347
H33 O32	0.9722453	H33 O32 C28	106.5749324	H33 O32 C28 C27	178.0117568
H26 015	2.22103	H26 O15 C14	114.24804	H26 O15 C14 N16	-84.64087
H18 031	2.77152	H18 O31 C28	104.55089	H18 O31 C28 C27	90.33221

- Cluster (Monuron –Glycine) Complexe 3 :A9

Tableau II.4.24. : Paramètres ;	géométriques	calculés au niveau	MP2/6-31G++	(d,p):

Longueurs de	es liaisons (Å)	Angles de valence (°)		Angles dièdre (°)	
N12 C3	1.4148047	N12 C3 C2	117.9223478	N12 C3 C2 C1	-177.8514579
H13 N12	1.0112375	H13 N12 C3	115.8439442	H13 N12 C3 C2	45.5482960
C14 N12	1.3810838	C14 N12 C3	127.3445074	C14 N12 C3 C2	-162.6332119
015 C14	1.2562328	015 C14 N12	119.2691240	015 C14 N12 C3	-141.9666853
N16 C14	1.3558440	N16 C14 N12	117.2611958	N16 C14 N12 C3	38.4421251
C17 N16	1.4565340	C17 N16 C14	119.1993192	C17 N16 C14 N12	-169.2789714
H18 C17	1.0846282	H18 C17 N16	109.1542487	H18 C17 N16 C14	23.1364402
C21 N16	1.4569153	C21 N16 C14	123.1085518	C21 N16 C14 N12	28.1846740
H22 C21	1.0897156	H22 C21 N16	108.1263017	H22 C21 N16 C14	123.9920811
<i>O31 C28</i>	1.2263818	<i>O31 C28 C27</i>	124.5472042	<i>O31 C28 C27 N25</i>	-127.7111407
H33 O32	1.0006809	H33 O32 C28	108.5862913	H33 O32 C28 C27	-173.0733267
H33 O15	1.65313	H33 O15 C14	109.45856	H33 O15 C14 N16	53.26194

- Cluster (Monuron –Glycine) Complexe 4 :A9

F ableau II.4.25. : Paramètres g	géométriq	ues calculés au nivea	$\mu MP2/6-31G++(d,$	<i>,p)</i> :

Longueurs des liaisons (A)		Angles de valence (°)		Angles dièdre (°)	
	-				
N12 C3	1.4092902	N12 C3 C2	117.0392189	N12 C3 C2 C1	-178.3003870
H13 N12	1.0189317	H13 N12 C3	113.6422463	H13 N12 C3 C2	38.5954108
C14 N12	1.3903672	C14 N12 C3	126.7602853	C14 N12 C3 C2	-175.5342894
015 C14	1.2470966	015 C14 N12	120.6869932	015 C14 N12 C3	-135.2436776
N16 C14	1.3652399	N16 C14 N12	116.6960943	N16 C14 N12 C3	45.9191483
C17 N16	1.4553193	C17 N16 C14	117.7268371	C17 N16 C14 N12	-175.2034033
H18 C17	1.0882432	H18 C17 N16	108.5211725	H18 C17 N16 C14	151.6931385
C21 N16	1.4570951	C21 N16 C14	123.0872689	C21 N16 C14 N12	26.7443062
H22 C21	1.0906232	H22 C21 N16	108.7633372	H22 C21 N16 C14	120.6159774
<i>O31 C28</i>	1.2209224	<i>O31 C28 C27</i>	125.3271324	<i>O31 C28 C27 N25</i>	-8.2280855
H33 O32	0.9691544	H33 O32 C28	110.4771847	H33 O32 C28 C27	-1.6869255
H26 015	2.07851	H26 O15 C14	106.42844	H26 O15 C14 N12	29.77129
H13 O31	1.93980	H13 O31 C28	126.89800	H13 O31 C28 O32	-10.72827

Pour les quatre complexes (état isolé et solvaté), les paramètres géométriques du Monuron et de la Glycine sont préservés. La stabilisation de ces complexes passe par la création de 2 liaisons hydrogènes O---H.

II.2) Analyse vibrationnelle (courbes FTIR) des clusters (Monuron –Glycine) :

<u>Etat isolé :</u>

- <u>Cluster (Monuron –Glycine) Complexe 1 :A8</u>

Figure II.4.11. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 1 :A8 dans la phase gazeuse

Tableau II.4.26. : Les fre	équences et les inte	nsités des modes le	rs plus importants sur le
spectre FTIR du cluster	<u>(Monuron –Glycin</u>	e) Complexe 1 :A8	dans la phase gazeuse

Mode	Fréquence	Intensité
1	285.12	60.9589
2	871.73	106.5486
3	980.67	207.7783
4	1353.99	242.8657
5	1481.12	207.5577
6	1596.74	271.3678
7	1748.10	435.4051
	1797.37	590.9799
8	3145.92	232.0003
	3150.11	1400.6357
9	3415.14	1311.3583

- Cluster (Monuron –Glycine) Complexe 2 :A10

Figure II.4.12. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 2 :A10 dans la phase gazeuse

Tableau II.4.27. : Les fréquences et les intensités des modes les plus importants sur lespectre FTIR du cluster (Monuron –Glycine) Complexe 2 :A10 dans la phase gazeuse

Mode	Fréquence	Intensité
1	339.90	104.8619
2	473.84	26.6581
3	482.98	65.5456
4	1018.27	140.6938
5	1145.49 1156 02	76.3322
6	1451.05	209.4657
7	1550.53	203.9636
8	1784.55	392.8625
0	1844.69	215.2674
9	3089.93 3111.81	47.4248 71.9848
10	3666.42	15.9034
11	3700.35 3815.06	21.7989 54.1800

- <u>Cluster (Monuron –Glycine) Complexe 3 :A9</u>

Figure II.4.13. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 3 :A9 dans la phase gazeuse

Tableau II.4.28. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Monuron –Glycine) Complexe 3 :A9 dans la phase gazeuse

Mode	Fréquence	Intensité
1	31.41	1.2991
2	335.01	44.0871
3	527.17	88.2611
4	951.92	245.9492
5	1342.15	33.8665
6	1598.73	255.0134
7	1748.18	500.1548
8	1830.02	285.0115
9	3305.10	1237.5114
10	3684.48	61.7781

- <u>Cluster (Monuron –Glycine) Complexe 4 :A9</u>

Figure II.4.14. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 4 :A9 dans la phase gazeuse

Tableau	e II.4.29. : Les fre	équences et les	intensités d	les modes les	plus importe	ants sur le spectre
	FTIR du cluster	(Monuron –Gl	lycine) Com	plexe 4 :A9 d	dans la phase	<u>e gazeuse</u>

Mada	Enéqueraç	Interneté
Mode	Frequence	Intensite
1	50.85	10.7479
2	458.32	120.2855
3	969.46	161.2894
4	1318.57	439.1031
5	1475.65	37.4202
6	1587.99	186.4410
7	1769.25	514.4245
8	1867.09	331.1564
9	3516.31	118.8641
	3550.79	739.2768
10	3857.60	60.3970

<u>Etat solvaté :</u>

- <u>Cluster (Monuron –Glycine) Complexe 1 :A8</u>

Figure II.4.15. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 1 :A8 état solvaté

Tableau II.4.30. : Le	s fréquences et	les intensités	des modes le	es plus imp	portants sur	le spectre
<u>FTIR d</u>	lu cluster (Mon	uron –Glycine) Complexe	1 :A8 état	t solvaté	-

Mode	Fréquence	Intensité
1	530.25	256.8258
2	768.39	224.4806
3	954.12	275.6419
4	1164.87	250.4461
5	1456.32	77.4993
	1468.49	400.9764
6	1653.17	319.1273
7	1779.80	802.8328
	1834.30	415.3929
8	3436.20	787.6929
9	3545.56	105.3707
10	3779.54	92.4593
	3801.42	115.3181

- <u>Cluster (Monuron –Glycine) Complexe 2 :A10</u>

Figure II.4.16. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 2 :A10 état solvaté

Tableau II.4.31. : Les	fréquences et les	intensités des m	nodes les plus in	mportants sur	le spectre
<u>FTIR du</u>	cluster (Monuron	n –Glycine) Com	plexe 2 :A10 é	tat solvaté	-

Mode	Fréquence	Intensité
1	22.71	5.4681
2	352.59	128.5698
3	488.26	123.1463
4	662.99	91.3692
5	1023.72	205.3238
	1032.25	43.1408
6	1152.14	217.9061
	1153.60	70.5332
7	1451.79	332.4649
8	1542.61	294.9817
9	1752.68	659.0282
	1831.80	360.0845
10	3118.97	90.0786
11	3657.05	26.3199
	3688.55	58.3616
12	3798.96	97.0568

- <u>Cluster (Monuron –Glycine) Complexe 3 :A9</u>

Figure II.4.17. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 3 : A9 état solvaté

Tableau II.4.32. : Les	fréquences et les	s intensités des	modes les	plus imp	portants sur	le spectre
<u>FTIR du</u>	u cluster (Monuro	on –Glycine) C	Complexe 3	:A9 état	<u>solvaté</u>	*

Mode	Fréquence	Intensité
1	42.92	6.3643
2	185.22	1.3742
3	315.33	47.8878
4	526.20	133.3695
5	975.31	249.5894
6	1328.71	216.3428
7	1588.83	556.8917
8	1715.46	807.9723
9	1811.31	427.8781
10	3190.00	1844.6065
11	3669.98	103.1524

- Cluster (Monuron –Glycine) Complexe 4 :A9

Figure II.4.18. : Spectre FTIR du Cluster (Monuron –Glycine) Complexe 4 : A9 état solvaté

Tableau II.4.33. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Monuron –Glycine) Complexe 4 :A9 état solvaté

Mode	Fréquence	Intensité
1	52.76	19.7968
2	391.47	80.6268
3	518.90	28.3805
4	785.88	96.7784
5	964.21	211.7084
6	1311.06	591.9703
7	1468.94	327.9781
8	1581.26	301.1804
9	1746.57	760.9138
10	1839.18	461.9166
11	3117.31	55.5794
	3121.64	76.5424
12	3523.42	238.4646
	3530.50	737.6067
13	3838.88	129.4508

L'analyse des courbes FTIR pour les différents complexes (Monuron-glycine) pour les deux (états isolé et solvaté) sont caractérise par les deux pics principaux :

- Le premier pic à 1720 cm⁻¹ qui décrit la vibration de la liaison carbonyle CO.
- le 2eme pic à 3200 cm⁻¹ qui décrit l'absorption de la liaison NH.

II.3) Etude thermodynamique de la formation des clusters (Monuron –Glycine) :

Tableau II.4.34. : Les paramètres thermodynamiques de la formation des complexes (Monuron –Glycine) calculés dans plusieurs niveaux :

			B3LY.	P-DFT		
6-31G**	pos	Δ <i>E/(kcal/mol)</i>	$\Delta G/(kcal/mol)$	∆ H /(kcal/mol)	$\Delta S/(cal/mol.k)$	△ZPE/(kcal/mol)
Isolé	NI	2.301	5.5051306	-3.424319341	-29.961	2.088979126
	0	2.351	1.530248196	-7.203181551	-29.296	2.181223022
	<i>N2</i>	2.38	0.637812465	-8.874239349	-31.905	2.375123457
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	N1	2.295	6.701763012	-1.885666047	-28.801	1.999245267
	0	2.318	3.158864701	-5.140557824	-27.837	2.100901806
	N2	2.343	7.38009689	-1.27949187	-29.045	2.106549392
<i>6-31G</i> ++**	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
Isolé	N1	2.183	5.636205138	-2.160515209	-26.162	1.758281619
	0	2.267	2.277184918	-5.640055386	-26.574	1.928964203
	<i>N2</i>	2.231	7.495707557	-1.056725998	-28.7	1.965987264
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
	N1	2.169	6.287609118	0.06400597	-20.873	1.509787857
	0	2.121	3.831551025	-3.365333449	-24.138	1.667292742
	<i>N2</i>	2.193	9.579505069	1.804089812	-26.079	1.751379014
cc-pvdz	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
Isolé	N1	2.391	3.6236779	-5.339478336	-30.068	2.258406691
	0	2.454	0.565062961	-8.259280039	-29.598	2.326805226
	<i>N2</i>	2.361	-1.011594402	-10.65824886	-32.353	2.392066214
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
	N1	2.294	4.987416893	-3.46385244	-28.346	2.040033385
	0	2.449	2.346872066	-6.502880948	-29.681	2.352533116
	<i>N2</i>	2.423	6.102494877	-2.776729537	-29.781	2.238953896
aug-cc-pvdz	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
Isolé	<i>N1</i>	2.078	5.949780588	-1.574421335	-25.251	1.585716507
	0	2.294	1.707731901	-7.302955561	-30.227	2.186870608
	N2	2.112	7.378430339	-0.283634294	-25.716	1.623994586
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
	N1	2.149	6.903819912	0.092871406	-22.844	1.513552914
	0	2.168	4.714451827	-3.707326126	-28.249	1.957202131
			M	<i>IP2</i>		
<i>6-31G**</i>	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
Isolé	N1	2.294	2.659746967	-5.889176658	-28.679	2.04505346
	0	2.373	1.183433748	-7.205691588	-28.141	2.136042338
	<i>N2</i>	2.217	4.306018079	-4.865081153	-30.769	2.089606635
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	N1	2.279	4.858150678	-3.71422873	-28.751	2.006147872
	0	2.311	3.08105397	-5.072786798	-27.348	2.04568097

....

Partie II : familles des Phényle urées &Carbamates

Chapitre 04 : Etude des clusters Phényle urées -Glycine

	<i>N2</i>	2.198	5.976993697	-2.666287866	-28.991	1.99924527
<i>6-31G</i> ++**	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
Isolé	N1	2.291	3.246760209	-5.520201071	-29.412	2.081449012
	0	2.427	-0.302286734	-9.595875274	-31.171	2.400223838
	N2	2.406	4.591371739	-4.48041783	-30.436	2.382026062
Solvaté	pos	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
	<i>N1</i>	2.191	4.403836406	-2.915409137	-24.549	1.721258559
	N2	2.304	7.164862366	-1.74133886	-29.871	2.18373306

Thermodynamiquement la formation du complexe 1 du Monuron-Glycine est plus favorisé avec un ΔG =-11.90kcal/mol.

II.4) Analyse des orbitales frontières des structures étudiées

La compléxation du Monuron avec la glycine est très stable avec un écart énergétique entre les deux orbitales (HOMO – LUMO) de l'ordre de 0.44 ev.

Partie II : familles des Phényle urée & Carbamates Chapitre 05 : Etude des clusters Phényle urées & carbamates –L-Alanine

Figure II.5.1. : Structures des clusters (Phényle urée –L-Alanine)

Nous avons élargi notre étude à une autre interaction avec un autre acide aminé protéinogéne :

Le (*L*-alanine). *Méthodiquement, le balayage des symétries donne quatre possibilités : (Cluster 1 –A8), (Cluster 2–A8), (Cluster 3-A9) et le (Cluster 4-A9). Remarquant que cette Compléxation passe par la création de cycles doublement ponté O-H.*

<u>I.1) Etude Structurale des clusters (Phényle urée – L-Alanine) :</u> <u>Etat Isolé :</u>

- <u>Cluster (Phényle urée - L-Alanine) Complexe 1 :A8</u>

Tableau II.5.1. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4146146	N12 C3 C2	118.0191789	N12 C3 C2 C1	-177.8985740	
H13 N12	1.0285123	H13 N12 C3	117.2273731	H13 N12 C3 C2	29.1213974	
C14 N12	1.3659543	C14 N12 C3	129.2597182	C14 N12 C3 C2	-140.4236196	
015 C14	1.2475773	015 C14 N12	1.2475773	015 C14 N12 C3	-179.4994450	
N16 C14	1.3702735	N16 C14 N12	119.0090187	N16 C14 N12 C3	-0.3719575	
H17 N16	1.0096247	H17 N16 C14	114.3183025	H17 N16 C14 N12	168.4952627	
H18 N16	1.0104155	H18 N16 C14	120.1341001	H18 N16 C14 N12	20.6716982	
C23 C21	1.5330421	C23 C21 C24	113.05633	<i>C23 C21 C24 O28</i>	141.48178	
C24 C21	1.5244896	C24 C21 N19	109.1611742	C24 C21 N19 H20	-37.95426	
H26 C23	1.0957188	H26 C23 C21	111.1824337	H26 C23 C21 H22	-54.01937	
O28 C24	1.2295755	O28 C24 C21	122.3101141	O28 C24 C21 N19	18.0302169	
<i>O29 C24</i>	1.3211962	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21	113.5622167	<i>O29 C24 C21 C23</i>	76.85041	
H31 N19	1.0157786	H31 N19 C21	110.78898	H31 N19 C21 C23	76.85041	
H30 015	1.61033	H30 O15 C14	126.42411	H30 O15 C14 N12	-1.07586	
H13 O28	1.84185	H13 O28 C24	122.32566	H13 O28 C24 O29	7.95219	

- <u>Cluster (Phényle urée - L-Alanine) Complexe 2 :A8</u>

Tableau II.5.2. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4153501	N12 C3 C2	118.7814488	N12 C3 C2 C1	-177.7659703	
H13 N12	1.0113772	H13 N12 C3	117.5271783	H13 N12 C3 C2	31.8870341	
C14 N12	1.3817807	C14 N12 C3	129.8086907	C14 N12 C3 C2	-136.5290822	
015 C14	1.2482636	015 C14 N12	118.1309097	015 C14 N12 C3	179.7904048	
N16 C14	1.3511626	N16 C14 N12	119.0667253	N16 C14 N12 C3	-0.5979832	
H17 N16	1.0250499	H17 N16 C14	116.6031438	H17 N16 C14 N12	174.4478411	
H18 N16	1.0081821	H18 N16 C14	120.9315145	H18 N16 C14 N12	12.3476361	
C23 C21	1.5330316	C23 C21 C24	113.09171	<i>C23 C21 C24 O28</i>	141.21465	
C24 C21	1.5250207	C24 C21 N19	109.1340125	C24 C21 N19 H20	-37.43454	
H26 C23	1.0957553	H26 C23 C21	111.1754667	H26 C23 C21 H22	-54.02476	
O28 C24	1.2287028	O28 C24 C21	122.2737675	O28 C24 C21 N19	17.7391712	
<i>O29 C24</i>	1.3220476	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21	113.4461885	<i>O29 C24 C21 C23</i>	-41.36795	
H31 N19	1.0157979	H31 N19 C21	110.79156	H31 N19 C21 C23	77.41539	
H17 O28	1.85515	H17 O28 C24	124.24959	H17 O28 C24 O29	0.16049	
H30 O15	1.61397	H30 O15 C14	124.69503	H30 O15 C14 N16	6.13787	

- <u>Cluster (Phényle urée - L-Alanine) Complexe 3 : A9</u>

Tableau II.5.3. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4118580	N12 C3 C2	118.0131018	N12 C3 C2 C1	-177.9660705	
H13 N12	1.0201898	H13 N12 C3	116.5099527	H13 N12 C3 C2	28.0196851	
C14 N12	1.3761680	C14 N12 C3	130.0851328	C14 N12 C3 C2	-142.3039803	
015 C14	1.2361070	015 C14 N12	120.8275744	015 C14 N12 C3	-179.9442728	
N16 C14	1.3795214	N16 C14 N12	117.9924270	N16 C14 N12 C3	-1.0418444	
H17 N16	1.0101743	H17 N16 C14	113.1156975	H17 N16 C14 N12	166.6626410	
H18 N16	1.0113183	H18 N16 C14	119.3851029	H18 N16 C14 N12	24.2027523	
C23 C21	1.5377306	C23 C21 C24	110.78314	<i>C23 C21 C24 O28</i>	123.90058	
H26 C23	1.0954811	H26 C23 C21	111.3879886	H26 C23 C21 H19	-179.5887817	
O28 C24	1.2146716	O28 C24 C21	126.9257913	O28 C24 C21 N19	1.8138059	
<i>O29 C24</i>	1.3557459	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21	111.7493219	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21 <i>C</i> 23	-57.44187	
H30 O29	0.9708912	H30 O29 C24	106.9283737	H30 O29 C24 C21	-178.0383973	
H20 015	2.02846	H20 O15 C14	116.68207	H20 O15 C14 N12	-37.39165	
H13 O28	1.96496	H13 O28 C24	135.20838	H13 O28 C24 C21	28.26159	

- <u>Cluster (Phényle urée - L-Alanine) Complexe 4 : A9</u>

Tableau II.5.4. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4111277	N12 C3 C2	118.6232038	N12 C3 C2 C1	-177.7368327	
H13 N12	1.0111474	H13 N12 C3	117.1940193	H13 N12 C3 C2	28.1798915	
C14 N12	1.3911887	C14 N12 C3	130.8208158	C14 N12 C3 C2	-141.1511629	
<i>O15 C14</i>	1.2366754	015 C14 N12	118.9689306	015 C14 N12 C3	-179.2354338	
N16 C14	1.3612775	N16 C14 N12	118.0034253	N16 C14 N12 C3	0.1747263	
H17 N16	1.0180582	H17 N16 C14	116.1994506	H17 N16 C14 N12	170.1510106	
H18 N16	1.0088749	H18 N16 C14	120.3239237	H18 N16 C14 N12	17.0875711	
C23 C21	1.5379905	C23 C21 C24	110.62320	<i>C23 C21 C24 O28</i>	122.86304	
H26 C23	1.0955283	H26 C23 C21	111.4007627	H26 C23 C21 H19	-179.7192939	
O28 C24	1.2143466	O28 C24 C21	127.0665709	O28 C24 C21 N19	0.8668831	
<i>O29 C24</i>	1.3569190	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21	111.6341554	<i>O29 C24 C21 C23</i>	-58.41806	
H30 O29	0.9707452	H30 O29 C24	106.8801439	H30 O29 C24 C21	-178.4632068	
H17 O28	1.97765	H17 O28 C24	134.57407	H17 O28 C24 C21	22.68462	
H20 015	2.03420	H20 O15 C14	115.77300	H20 O15 C14 N16	-19.93659	

<u>Etat solvaté :</u>

- <u>Cluster (Phényle urée - L-Alanine) Complexe 1 :A8</u>

Tableau II.5.5. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles de v	alence (°)	Angles dièdre (°)		
N12 C3	1.4185043	N12 C3 C2	118.2046394	N12 C3 C2 C1	-177.5576752	
H13 N12	1.0254935	H13 N12 C3	117.2154463	H13 N12 C3 C2	32.5750175	
C14 N12	1.3649323	C14 N12 C3	128.9369650	C14 N12 C3 C2	-137.3020307	
015 C14	1.2567995	015 C14 N12	120.4016168	015 C14 N12 C3	-179.5405435	
N16 C14	1.3586911	N16 C14 N12	119.4222651	N16 C14 N12 C3	-0.4931390	
H17 N16	1.0096021	H17 N16 C14	116.1420447	H17 N16 C14 N12	170.6553591	
H18 N16	1.0101551	H18 N16 C14	121.2484946	H18 N16 C14 N12	16.5987388	
C23 C21	1.5342949	C23 C21 C24	112.33239	<i>C23 C21 C24 O28</i>	132.12049	
C24 C21	1.5226362	C24 C21 N19	109.6371124	C24 C21 N19 H20	-49.15349	
H26 C23	1.0955161	H26 C23 C21	111.0709473	H26 C23 C21 H22	-53.27357	
O28 C24	1.2291115	O28 C24 C21	123.2133909	O28 C24 C21 N19	9.2773488	
<i>O29 C24</i>	1.3249206	<i>O29 C24 C21</i>	113.2237978	<i>O29 C24 C21 C23</i>	-49.99208	
H31 N19	1.0174109	H31 N19 C21	109.32651	H31 N19 C21 C23	69.38829	
H30 015	1.58994	H30 O15 C14	125.95299	H30 O15 C14 N12	-1.29731	
H13 O28	1.89125	H13 O28 C24	121.58393	H13 O28 C24 O29	5.16165	

- <u>Cluster (Phényle urée - L-Alanine) Complexe 2 :A8</u>

|--|

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4197679	N12 C3 C2	118.6304725	N12 C3 C2 C1	-177.7749820	
H13 N12	1.0121676	H13 N12 C3	117.0471411	H13 N12 C3 C2	32.5013839	
C14 N12	1.3734124	C14 N12 C3	129.2343720	C14 N12 C3 C2	-134.1066916	
015 C14	1.2575727	015 C14 N12	118.3626632	015 C14 N12 C3	178.6986754	
N16 C14	1.3480640	N16 C14 N12	119.5416694	N16 C14 N12 C3	-1.7504424	
H17 N16	1.0212930	H17 N16 C14	117.1928536	H17 N16 C14 N12	176.1414878	
H18 N16	1.0086850	H18 N16 C14	121.6199131	H18 N16 C14 N12	9.5851360	
C23 C21	1.5343318	C23 C21 C24	112.34878	<i>C23 C21 C24 O28</i>	132.08164	
C24 C21	1.5231759	C24 C21 N19	109.6599735	C24 C21 N19 H20	-48.64410	
H26 C23	1.0955574	H26 C23 C21	111.0700593	H26 C23 C21 H22	-53.15065	
O28 C24	1.2286088	O28 C24 C21	123.2127887	O28 C24 C21 N19	9.2202233	
<i>O29 C24</i>	1.3253381	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21	113.0795744	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21 <i>C</i> 23	-49.98970	
H31 N19	1.0174746	H31 N19 C21	109.33273	H31 N19 C21 C23	69.85247	
H17 O28	1.91374	H17 O28 C24	122.99825	H17 O28 C24 O29	-0.48796	
H30 015	1.59098	H30 O15 C14	124.21427	H30 O15 C14 N16	3.93345	

- Cluster (Phényle urée - L-Alanine) Complexe 3 :A9

Tableau II.5.7. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4157498	N12 C3 C2	118.1358083	N12 C3 C2 C1	-177.6387265	
H13 N12	1.0201584	H13 N12 C3	116.5560907	H13 N12 C3 C2	29.9505165	
C14 N12	1.3747465	C14 N12 C3	129.7892581	C14 N12 C3 C2	-139.6689316	
015 C14	1.2445798	015 C14 N12	120.1195020	015 C14 N12 C3	179.6615497	
N16 C14	1.3688314	N16 C14 N12	118.4405425	N16 C14 N12 C3	-1.5985666	
H17 N16	1.0101634	H17 N16 C14	114.8761629	H17 N16 C14 N12	167.7877538	
H18 N16	1.0109757	H18 N16 C14	120.4519202	H18 N16 C14 N12	20.6473950	
C23 C21	1.5373376	C23 C21 C24	111.03030	<i>C23 C21 C24 O28</i>	123.45328	
H26 C23	1.0953695	H26 C23 C21	111.2030400	H26 C23 C21 H19	-177.8888402	
O28 C24	1.2185112	O28 C24 C21	126.2937707	O28 C24 C21 N19	1.1663973	
<i>O29 C24</i>	1.3479242	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21	111.8769222	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21 <i>C</i> 23	-57.77879	
H30 O29	0.9722104	H30 O29 C24	108.1297998	H30 O29 C24 C21	-178.5721910	
H20 015	2.11370	H20 O15 C14	114.07452	H20 O15 C14 N12	-39.49459	
H13 O28	1.96992	H13 O28 C24	136.95811	H13 O28 C24 C21	23.43441	

- <u>Cluster (Phényle urée - L-Alanine) Complexe 4 : A9</u>

|--|

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)		
N12 C3	1.4167411	N12 C3 C2	118.5882803	N12 C3 C2 C1	-177.6799173	
H13 N12	1.0119794	H13 N12 C3	116.6750786	H13 N12 C3 C2	29.0776814	
C14 N12	1.3832991	C14 N12 C3	129.9520794	C14 N12 C3 C2	-136.3055438	
015 C14	1.2449940	015 C14 N12	119.3013215	015 C14 N12 C3	178.1966886	
N16 C14	1.3584559	N16 C14 N12	118.4319115	N16 C14 N12 C3	-2.8020044	
H17 N16	1.0171682	H17 N16 C14	116.6978747	H17 N16 C14 N12	171.2652215	
H18 N16	1.0094421	H18 N16 C14	120.9567367	H18 N16 C14 N12	15.0854181	
C23 C21	15.0854181	C23 C21 C24	111.09695	<i>C23 C21 C24 O28</i>	124.30843	
H26 C23	1.0953492	H26 C23 C21	111.2475971	H26 C23 C21 H19	-177.7889235	
<i>O28 C24</i>	1.2183466	<i>O28 C24 C21</i>	126.3403427	028 C24 C21 N19	1.9794099	
<i>O</i> 29 <i>C</i> 24	1.3485192	<i>O</i> 29 <i>C</i> 24 <i>C</i> 21	1.3485192	<i>O29 C24 C21 C23</i>	-57.02669	
H30 O29	0.9721709	H30 O29 C24	108.0891400	H30 O29 C24 C21	-178.4138496	
H17 O28	1.97821	H17 O28 C24	137.32843	H13 O28 C24 C21	26.24353	
H20 015	2.10572	H20 O15 C14	116.07936	H20 O15 C14 N16	-20.44729	

Les longueurs des deux liaisons hydrogènes : O----H ont des valeurs avoisinantes à 2 Å.

I.2) I.2) Analyse vibrationnelle (courbes FTIR) des clusters (Phényle urée – L-Alanine) : Etat isolé :

- Cluster (Phényle urée - L-Alanine) Complexe 1 :A8

Figure II.5.2. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 1 :A8 dans la phase gazeuse

Tableau II.5.9. : Les	fréquences e	t les intensités	des modes	les p	lus impo	ortants s	ur le spec	tre
FTIR du cluster	(Phényle uré	e - L-Alanine)	Complexe	1 :Ā8	8 dans la	n phase	gazeuse	

Mode	Fréquence	Intensité
1	231.13	40.7335
2	826.44	125.5871
3	1290.19	197.0037
4	1607.59	111.7986
5	1735.58	1064.2630
6	2968.63	1973.5085
7	3306.80	1353.9235
8	3701.51	74.3068

- Cluster (Phényle urée - L-Alanine) Complexe 2 :A8

Figure II.5.3. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 2 :A8 dans la phase gazeuse

Tableau II.5.10. : Les fréquences et les intensités des modes les plus importants sur le spectre FTIR du cluster (Phényle urée - L-Alanine) Complexe 2 :A8 dans la phase gazeuse

Mode	Fréquence	Intensité
1	231.62	42.1483
2	493.94	90.4964
3	1288.24	238.1625
4	1454.29	253.7238
5	1604.32	295.0936
6	1740.80	831.5030
7	2970.36	2454.7350
8	3352.04	1364.3342
9	3663.78	155.0007

- <u>Cluster (Phényle urée - L-Alanine) Complexe 3 :A9</u>

Figure II.5.4. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 3 :A9 dans la phase gazeuse

Tableau II.5.11. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Phényle urée - L-Alanine) Complexe 3 :A9 dans la phase gazeuse

Mode	Fréquence	Intensité
1	451.93	88.7637
2	1140.54	240.4205
3	1427.64	274.2022
4	1607.46	267.2336
5	1728.71	567.3444
6	1785.51	606.6752
7	3421.79	191.9125
8	3464.72	671.7258
9	3689.46	60.1356
	3743.52	63.9344

- <u>Cluster (Phényle urée - L-Alanine) Complexe 4 : A9</u>

<u>Figure II.5.5. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 4 :A9 dans la</u> <u>phase gazeuse</u>

Tableau II.5.12. : Les	fréquences et	les intensités	s des modes l	les plus in	<i>iportants s</i>	ur le spectre
FTIR du cluster	(Phényle urée	- L-Alanine)	Complexe 4	:A9 dans	la phase g	azeuse

Mode	Fréquence	Intensité
1	496.35	86.9128
2	1139.03	250.7146
3	1431.77	126.2468
4	1628.67	251.3347
5	1731.40	472.9482
6	1787.69	549.9509
7	3417.56	281.6710
8	3477.90	632.6031
9	3664.04	189.4805
10	3745.37	65.7761
<u>Etat solvaté :</u>

- Cluster (Phényle urée - L-Alanine) Complexe 1 :A8

Figure II.5.6. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 1 :A8 état solvaté

Tableau II.5.13. : Les	s fréquences et les i	intensités des mode.	s les plus imp	portants sur	le spectre
FTIR du cli	uster (Phényle uré	e - L-Alanine) Com	plexe 1 :A8 e	état solvaté	- <u> </u>

Mode	Fréquence	Intensité
1	333.57	260.3942
2	1470.92	315.3650
3	1609.10	165.9750
4	1673.61	645.6333
	1704.58	971.9380
5	2866.51	2890.2474
6	3348.96	1256.2178
7	3703.30	128.6240

Partie II : familles des Phényle urées &Carbamates

Chapitre 05 : Etude des clusters Phényle urées&carbamates –L-Alanine

- Cluster (Phényle urée - L-Alanine) Complexe 2 :A8

Figure II.5.7. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 2 :A8 état solvaté

Tableau II.5.14. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Phényle urée - L-Alanine) Complexe 2 :A8 état solvaté

Mode	Fréquence	Intensité
1	216.04	39.9188
	233.75	52.4497
2	486.59	182.2450
3	1268.65	351.0735
4	1584.90	646.0979
5	1670.38	593.6074
	1708.42	819.9694
6	2859.63	3216.8358
7	3404.45	1038.0779
8	3604.28	83.0548
	3662.77	235.6240

- <u>Cluster (Phényle urée - L-Alanine) Complexe 3 : A9</u>

Figure II.5.8. : Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 3 :A9 état solvaté

Tableau II.5.15.	: Les fréquences d	et les intensités d	es modes les	plus importants	s sur le spectre
<u>FTIR</u>	du cluster (Phény	le urée - L-Alanii	ne) Complexe	e 3 :A9 état solv	vaté

Mode	Fréquence	Infrarouge
1	25.72	2.5051
2	393.52	109.6769
3	1131.18	337.8819
4	1425.62	570.5657
5	1599.04	486.4966
6	1682.83	815.2389
7	1749.22	745.1168
8	3432.28	156.9366
	3457.11	813.8263
9	3691.92	106.9504
	3727.04	119.5585

- <u>Cluster (Phényle urée - L-Alanine) Complexe 4 : A9</u>

Figure II.5.9.: Spectre FTIR du Cluster (Phényle urée – L-Alanine) Complexe 4 :A9 état solvaté

Tableau II.5.16.	: Les fréquence	s et les intensit	és des modes	les plus im	portants sur	le spectre
<u>FTIR</u>	du cluster (Phé	nyle urée - L-A	lanine) Comp	olexe 4 :A9	état solvaté	-

Mode	Fréquence	Intensité
1	13.80	4.3698
2	398.75	132.9921
3	477.88	201.1686
4	1130.12	341.6660
5	1432.84	506.0610
6	1607.08	505.9168
7	1682.82	789.1309
8	1750.10	703.8836
9	3425.76	251.3515
	3480.85	636.7256
10	3660.28	255.5208
11	3727.78	120.5396

L'existence de deux pics principaux : Le premier à 1750 cm⁻¹ *qui caractérise l'absorption du carbonyle C=O, le deuxième à 3450 cm*⁻¹ *qui caractérise l'étirement de la liaison N-H.*

<u>I.3) Etude thermodynamique de la formation des clusters (Phényle urée –L-Alanine) :</u>

Tableau II.5.17. : Les paramètres thermodynamiques de la formation des complexes (Phényle urée - L-Alanine) calculés dans plusieurs niveaux :

	DF1/B3LYP-							
6-31G**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)		
Isolé	1-A8	1.845	-7.32680092	-18.32578744	-36.891	1.046058336		
	2-A8	1.786	-7.172433585	-17.89155086	-35.952	0.942519269		
	3-A9	2.183	1.0040152	-8.927577657	-33.31	1.178462841		
	4-A9	2.268	1.629642172	-7.739074664	-31.424	1.162147594		
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)		
	1-A8	1.587	-2.92356676	-13.92882837	-36.91	0.751128871		
	2-A8	1.562	-3.406749075	-13.67845208	-34.449	0.659512484		
	3-A9	2.05	3.66026291	-5.69778626	-31.387	0.975777272		
	4-A9	2.151	5.118594991	-4.198038555	-31.247	1.059236036		
<i>6-31G</i> ++**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)		
Isolé	1-A8	1.889	-4.172310666	-15.07089566	-36.553	1.073041245		
	2-A8	1.854	-4.182350817	-14.82553945	-35.696	1.00464271		
	3-A9	2.208	3.290032308	-6.772082524	-33.747	1.198543145		
	4-A9	2.128	3.319525255	-6.364828858	-32.48	1.066138641		
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)		
	1-A8	1.618	0.857177977	-9.9278278	-36.177	0.741716229		
	2-A8	1.653	0.97891482	-9.780990577	-36.09	0.796309556		
	3-A9	2.075	7.459205427	-2.62298971	-33.82	1.054843469		
	4-A9	2.044	7.144195658	-2.477407506	-32.273	0.988954972		
cc-pvdz	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)		
Isolé	1-A8	1.865	-7.716484321	-18.81649987	-37.226	1.084963925		
	2-A8	1.788	-7.425947423	-18.28499932	-36.418	0.964482102		
	3-A9	2.049	4.814880393	-5.690256146	-35.234	1.075551283		
	4-A9	2.245	1.383030938	-8.138798215	-31.935	1.16779518		
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)		
	1-A8	1.662	-3.558606375	-14.65924943	-37.235	0.85341292		
	2-A8	1.586	-3.884911314	-14.33168947	-35.041	0.704065659		
	3-A9	2.074	6.075546979	-4.29216498	-34.776	1.076806302		
	4-A9	2.143	4.662395585	-4.871983758	-31.981	1.090611511		
aug-cc-pvdz	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$		
Isolé	1-A8	1.912	-3.721131335	-14.72074536	-36.894	1.110691815		
	2-A8	1.87	-3.704816088	-14.40197053	-35.879	1.033508147		
	3-A9	2.196	3.303837518	-6.528608838	-32.977	1.166540161		
	4-A9	2.113	3.362195901	-6.223011712	-32.15	1.037900713		
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$		
	1-A8	1.697	1.177207822	-9.782873105	-36.761	0.849647863		
	2-A8	1.738	1.482804948	-9.590227689	-37.138	0.932479117		
	3-A9	2.059	7.171806075	-2.6487176	-32.937	0.997112596		
	4-A9	2.03	6.958452845	-2.564003817	-31.937	0.948794364		

Partie II : familles des Phényle urées &Carbamates

Chapitre	<i>05</i> :	Etude	des	clusters	Phényle
	uré	es&car	rban	nates –L	-Alanine

MP2						
6-31G**	comp	∆E/(kcal/mol)	$\Delta G/(kcal/mol)$	∆ <i>H/(kcal/mol)</i>	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
Isolé	1-A8	2.108	-7.338723603	-18.18522531	-36.378	1.289532023
	2-A8	2.177	-7.912894795	-17.94802672	-33.657	1.228663601
	3-A9	2.056	5.375246377	-4.870101229	-34.362	1.038528223
	4-A9	2.275	-0.485692353	-10.1192182	-32.31	1.282001909
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	1-A8	1.868	-3.007653034	-13.94326109	-36.68	1.019075428
	2-A8	1.903	-3.742466658	-13.46949142	-32.627	0.931224098
	3-A9	2.139	6.431344865	-4.087596883	-35.283	1.147714876
	4-A9	2.128	3.005770505	-6.482800644	-173.253359	88747.51585
<i>6-31G</i> ++**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
Isolé	1-A8	2.263	-6.728784369	-17.64995971	-36.629	1.533633218
	2-A8	2.252	-4.120854887	-14.88515285	-36.101	1.428211622
	3-A9	2.578	-3.889931391	-15.88791303	-40.239	1.984812549
	4-A9	2.255	-0.205823116	-9.657371205	-31.698	1.223643525
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	1-A8	1.957	-2.684485641	-12.26090812	-32.117	1.128262081
	2-A8	2.104	-0.282379275	-10.97200361	-35.851	1.274471795
	3-A9	2.309	1.83295525	-9.771577934	-38.92	1.610189377
	4-A9	2.19	4.018570838	-5.493845673	-31.903	1.184737936

Thermodynamiquement le complexe 1 et le complexe 3 sont les clusters les plus favorisé avec des ΔG de formation qui ont respectivement les valeurs suivantes : -6.729 et -3.89 kcal/mol.

I.4) Analyse des orbitales frontières des clusters étudiées :

L'analyse des écarts des énergies (HOMO-LUMO) est de l'ordre de 0.36 ev pour les complexes 1, 3 et 4. Un écart de l'ordre de 0.29 ev est observé pour le complexe 2.

cluster-2-(Sevin avec L- alanine-A9)

cluster-1-(Sevin avec L- alanine-A8)

Figure II.5.10. : Différentes structures possibles des Clusters (Sevin- L-Alanine)

L'approche précédente a été appliqué au sevin qui est l'un des dérivés des carbamates. Notre démarche propose 3 possibilités : cluster 1 cycle à 8 chainons, cluster 2 cycle à 9 chainons et cluster 3 cycle à 10 chainons.

<u>II.1) Etude Structurale des clusters (Sevin – L-Alanine) :</u> <u>Etat Isolé :</u>

- <u>Cluster (Sevin - L-Alanine) Complexe 1-A8</u>

Tableau II.5.18. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles de valence (°)		Angles dièdre (°)	
<i>C4C3</i>	1.4357385	C4C3C2	119.2504317	C4C3C2C1	0.0717273
H7C1	1.0903072	<i>H7C1C2</i>	119.9041286	H7C1C2C3	179.8629286
<i>C11C5</i>	1.0908306	H11C5C4	118.6593009	H11C5C4C3	-179.9595848
<i>C14C9</i>	1.3739769	C14C9C2	122.2315050	<i>C14C9C3C2</i>	-179.6299329
C15C10	1.0904458	C15C10C4	118.8854490	C15C10C4C3	179.8854579
<i>018C9</i>	1.4021563	018C9C3	118.1309215	018C9C3C2	-3.9003052
C19O18	1.3684159	<i>C19018C9</i>	118.0498703	C19O18C9C3	100.2139978
N20C19	1.2339032	020C19O18	122.4888498	020C19018C9	-0.8005621
N21C19	1.3406786	N21C19O18	112.0138934	N21C19O18C9	179.3681184
H22N21	1.0242551	H22N21C19	114.5583756	H22N21C19O18	-179.5150277
C23N21	1.4560465	C23N21C19	125.0849198	C23N21C19O18	-0.7992253
H26C23	1.0983621	H26C23N21	111.5710067	H26C23N21C19	-60.5993458
<i>C32C29</i>	1.5243079	C32C29N27	109.1079437	C32C29N27N21	-3.7788813
<i>036C32</i>	1.2279008	<i>036C32C29</i>	122.4539219	O36C32C29N27	17.3924492
H38O37	1.0044853	H38O37C32	111.3887669	H38O37C32C29	-176.4677863
H22O36	1.86224	H22O36C32	124.95310	H22O36C32C29	179.43971
O20H38	1.64808	O20H38O37	174.64506	<i>O20H38O37C32</i>	-179.33589

- Cluster (Sevin - L-Alanine) Complexe 2-A9

Tableau II.5.19. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

T 1	1 (Å)				
Longueurs ae	es liaisons (A)	Angles de valence (°)		Angles diedre (°)	
	1		1		
<i>C4C3</i>	1.4356260	C4C3C2	119.2650003	C4C3C2C1	-0.0235736
H7C1	1.0903476	<i>H7C1C2</i>	119.9113688	H7C1C2C3	-179.8873416
<i>C11C5</i>	1.0908003	H11C5C4	118.6431011	H11C5C4C3	-179.9959749
<i>C14C9</i>	1.3750215	C14C9C3	122.1438387	C14C9C3C2	179.7835409
C15C10	1.0903345	C15C10C4	118.9152554	C15C10C4C3	-179.8020544
<i>018C9</i>	1.3994182	018C9C3	117.1378869	018C9C3C2	3.8837112
C19O18	1.3758730	<i>C19018C9</i>	118.8377331	C19O18C9C3	-116.6419950
<i>O20C19</i>	1.2222526	<i>020C19018</i>	123.4166696	020C19018C9	3.8184262
N21C19	1.3482437	N21C19O18	109.5861925	N21C19O18C9	-176.1325967
H22N21	1.0097203	H22N21C19	116.2197269	H22N21C19O18	-3.0706655
C23N21	1.4579241	C23N21C19	123.6758844	C23N21C19O18	-175.8381677
H26C23	1.0999439	H26C23N21	111.3967828	H26C23N21C19	93.7570783
<i>C32C29</i>	1.5275418	C32C29N27	109.6581644	C32C29N27H20	-14.0799679
<i>O36C32</i>	1.2173109	<i>036C32C29</i>	124.3871372	O36C32C29N27	-138.5160214
H38O37	0.9873881	H38O37C32	110.5036749	H38O37C32C29	177.5733857
H25O36	2.29933	H25O36C32	121.59601	H25O36C32C29	165.90765
O20H38	1.75105	<i>O20H38O37</i>	167.60789	<i>O20H38O37C32</i>	-168.87454

- <u>Cluster (Sevin - L-Alanine) Complexe 3-A10</u>

Tableau II.5.20. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

0							
Longueurs des liaisons (A)		Angles de	valence (°)	Angles dièdre (°)			
C4C3	1.4356419	<i>C4C3C2</i>	119.2050932	C4C3C2C1	0.0242155		
H7C1	1.0904585	<i>H7C1C2</i>	119.9100661	H7C1C2C3	179.8416562		
<i>C11C5</i>	1.0909258	H11C5C4	118.6250763	H11C5C4C3	179.9566964		
<i>C14C9</i>	1.3762009	<i>C14C9C3</i>	121.8361854	<i>C14C9C3C2</i>	-179.9220117		
H5C10	1.0904572	<i>C15C10C4</i>	118.9703505	C15C10C4C3	179.8406965		
<i>018C</i> 9	1.3940863	018C9C3	116.7855173	018C9C3C2	-3.9891803		
<i>C19018</i>	1.3814559	<i>C19018C9</i>	119.2128926	<i>C19018C9C3</i>	123.0794953		
N20C19	1.2232593	<i>020C19018</i>	123.7202098	020C19O18C9	-3.3560918		
H21N20	1.3475116	H21N20C19	110.6820029	H21N20C19O18	176.6616047		
C22N21	1.0181016	C22N21C19	115.0661799	C22N21C19O18	177.4055318		
C23N21	1.4551470	C23N21C19	125.4750492	C23N21C19O18	2.3272864		
H26H23	1.0969752	H26H23N21	111.2325048	H26H23N21C19	-55.2860441		
<i>C32C29</i>	1.5208181	C32C29N27	109.7428430	C32C29N27O20	72.3081520		
<i>036C32</i>	1.2154265	<i>036C32C29</i>	126.7332797	O36C32C29N27	-29.2676400		
H38O37	0.9714030	H38O37C32	107.2214077	H38O37C32C29	176.5847913		
O20H39	2.07907	O20H39N27	175.33066	O20H39N27C29	-143.24994		
H22O36	1.94435	H23O36C32	137.29384	H23O36C32C29	-3.64503		

Etat solvaté

- Cluster (Sevin - L-Alanine) Complexe 1-A8

Tableau II.5.21. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs des liaisons (Å)		Angles a	le valence (°)	Angles dièdre (°)			
C4C3	1.4363345	C4C3C2	119.3094088	C4C3C2C1	0.2793615		
H7C1	1.0901955	H7C1C2	119.8873933	H7C1C2C3	-179.9715912		
C11C5	1.0906781	H11C5C4	118.6816919	H11C5C4C3	-179.9254846		
<i>C14C9</i>	1.3744664	<i>C14C9C3</i>	122.3629765	<i>C14C9C3C2</i>	-179.0224757		
H15C10	1.0902801	H15C10C4	118.8739108	H15C10C4C3	-179.9662400		
<i>018C9</i>	1.4035179	018C9C3	118.4517917	018C9C3C2	-3.5185053		
<i>C19018</i>	1.3643208	<i>C19018C9</i>	118.1697851	<i>C19018C9C3</i>	93.6868769		
<i>O20C19</i>	1.2404126	020C19018	122.2500865	020C19018C9	-0.7270703		
H21N21	1.3362079	H21N21C19	112.4318585	H21N21C19O18	179.3432948		
H22N21	1.0221891	H22N21C19	114.7842148	H22C21C19O18	-179.9019431		
C23N21	1.4593335	C23N21C19	125.0809605	C23N21C19O18	-0.2482566		
H26C23	1.0974380	H26C23N21	111.2590226	H26C23N21C19	-60.5770675		
<i>C32C29</i>	1.5223049	C32C29N27	109.6179394	C32C29N27N21	-2.0101351		
<i>036C32</i>	1.2274010	<i>036C32C29</i>	123.4764217	O36C32C29N27	8.1404534		
H38O37	1.0054354	H38O37C32	111.2477505	H38O37C32C29	-177.3561164		
H22O36	1.91161	H22O36C32	124.21284	H22O36C32C29	178.96914		
O20H38	1.63974	O20H38O37	172.13517	O20H38O37C32	179.13535		

- Cluster (Sevin - L-Alanine) Complexe 2-A9

Tableau II.5.22. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

Longueurs de	es liaisons (Å)	Angles de	valence (°)	Angles dièdre (°) [°]			
C4C3	1.4362049	C4C3C2	118.5391149	C4C3C2C1	-0.2329694		
<i>C11C4</i>	1.4260752	H11C4C3	117.6504088	H11C4C3C2	-179.8718527		
<i>C14C11</i>	1.3783797	<i>C14C11C4</i>	122.0592324	<i>C14C11C4C3</i>	-0.7426545		
C15C10	1.3788499	C15C10C3	120.8125988	C15C10C3C2	-179.6529620		
<i>018C11</i>	1.3989288	<i>018C11C4</i>	117.8079294	<i>018C11C4C3</i>	-176.5755255		
C19O18	1.3746030	C19O18C11	121.7377702	C19O18C11C4	-103.0550182		
N20C19	1.3414892	N20C19O18	117.4005458	N20C19O18C11	0.2598107		
H21N20	1.0137083	H21N20C19	118.5422768	H21N20C19O18	4.6544931		
C22N20	1.4574032	C22N20C19	122.3876287	C22N20C19O18	177.8856843		
H23C22	1.0981608	H23C22N20	110.0269103	H23C22N20C19	37.9023151		
O26C19	1.2284784	<i>026C19018</i>	116.4621946	<i>026C19018C11</i>	-179.2050268		
C32C29	1.5267522	C32C29N27	108.7974035	C32C29N27O26	16.8801958		
<i>036C32</i>	1.2213009	<i>036C32C29</i>	123.3508777	O36C32C29N27	14.3069386		
H23O36	2.37434	H23O36C32	112.51385	H23O36C32C29	-152.95361		
O26H38	1.68255	O26H38O37	166.08922	O26H38O37C32	147.64463		

La stabilisation de ces clusters est basée sur deux interactions électrostatiques de type liaison hydrogène entre O----H qui ont des longueurs avoisinantes à 2 Å.

- Cluster (Sevin - L-Alanine) Complexe 3-A10

Tableau II.5.23. : Paramètres géométriques calculés au niveau B3LYP/aug-cc-PVDZ :

r							
Longueurs de	Longueurs des liaisons (Å)		valence (°)	Angles dièdre (°)			
C4C3	1.4356419	C4C3C2	119.2050932	C4C3C2C1	0.0242155		
H7C1	1.0909258	H7C1C2	118.6250763	H7C1C2C3	179.9566964		
C11C5	1.3940863	H11C5C4	116.7855173	H11C5C4C3	-3.9891803		
O18C9	1.3940863	O18C9C3	116.7855173	O18C9C3C2	-3.9891803		
C19O18	1.3814559	C19O18C9	119.2128926	C19O18C9C3	123.0794953		
N20C19	1.2232593	O20C19O18	123.7202098	O20C19O18C9	-3.3560918		
H21N20	1.3475116	H21N20C19	110.6820029	H21N20C19O18	176.6616047		
C22N21	1.0181016	C22N21C19	115.0661799	C22N21C19O18	177.4055318		
H26C23	1.0969752	H26C23N21	111.2325048	H26C23N21C19	-55.2860441		
C32C29	1.5208181	C32C29N27	109.7428430	C32C29N27O20	72.3081520		
O36C32	1.2154265	O36C32C29	126.7332797	O36C32C29N27	-29.2676400		
H38O37	0.9714030	H38O37C32	107.2214077	H38O37C32C29	176.5847913		
H39O20	2.07907	H39O20N27	175.33066	H39O20N27C29	-143.24994		
H22O36	1.94435	H22O36C32	137.29384	H22O36C32C29	-3.64503		

II.2) Analyse vibrationnelle (courbes FTIR) des clusters (Sevin - L-Alanine) :

<u>Etat isolé ;</u>

- Cluster (Sevin - L-Alanine) Complexe 1 : A8

Figure II.5.11. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 1 :A8 dans la phase gazeuse

<u>Tableau</u>	II.5.24. :	Les fre	équences	et les int	ensités	des mo	des les	plus	import	tants si	ır le s	spectre
	<u>FTIR du</u>	cluster	· (Sevin -	L-Alanir	<u>ie) Con</u>	iplexe I	l :A8 d	ans la	i phase	e gazeu	<u>se</u>	-

MODE	Fréquence	Intensité
1	230.76	35.4774
2	1120.89	243.9122
3	1245.07	157.7826
4	1281.34	219.0967
5	1373.70 1386.83	220.2807 255.9959
6	1763.06	870.4018
7	3080.58	1984.4708
8	3379.64	1280.3162

- Cluster (Sevin - L-Alanine) Complexe 2 : A9

Figure II.5.12. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 2 :A9 dans la phase gazeuse

Tableau II.5.25. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Sevin - L-Alanine) Complexe 2 : A9 dans la phase gazeuse

MODE	Fréquence	Intensité
1	9.84	1.3494
2	283.71	53.6976
3	520.51	47.4127
4	786.34	91.3866
5	852.96	83.4991
6	1137.06	139.4370
7	1215.40	278.7125
8	1239.56	520.3019
9	1570.18	298.5063
10	1783.50	647.2115
11	3418.29	1450.4981

- Cluster (Sevin - L-Alanine) Complexe 3 : A10

Figure II.5.13. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 3 :A10 dans la phase gazeuse

MODE	Fréquence	Intensité
1	22.60	3.4059
2	344.65	46.8833
3	610.98	59.5316
4	787.32	78.2661
5	942.67	85.4550
6	1110.79	296.5570
7	1146.50	313.8644
8	1246.52	165.6027
9	1360.59	428.0778
10	1768.88	215.7584
	1791.69	694.3353
11	3428.66	169.1790
12	3494.02	772.5867

Tableau II.5.26. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Sevin - L-Alanine) Complexe 3 :A10 dans la phase gazeuse

<u>Etat solvaté :</u>

Figure II.5.14. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 1 :A8 état solvaté

 Tableau II.5.27. : Les fréquences et les intensités des modes les plus importants sur le spectre

 FTIR du cluster (Sevin - L-Alanine) Complexe 1 :A8 état solvaté

MODE	Fréquence	Intensité
1	29.64	4.9793
2	229.49	34.4734
3	786.81	163.0299
4	1115.23	373.2767
5	1240.96	241.2030
	1259.04	336.3221
6	1372.64	290.1354
	1381.36	243.1741
	1387.84	101.7135
7	1722.22	1542.2012
8	3038.27	2203.7556
9	3409.59	1092.0484

- <u>Cluster (Sevin - L-Alanine) Complexe 2 : A9</u>

Figure II.5.15. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 2 : A9 état solvaté

Tableau II.5.28. : Les fréquences et les intensités des modes les plus importants sur le spectreFTIR du cluster (Sevin - L-Alanine) Complexe 2 :A9 état solvaté

MODE	Fréquence	Intensité
1	16.91	4.0097
2	52.44	9.9252
3	199.90	69.7922
4	904.36	194.6047
5	1125.67	216.7060
6	1231.49	276.1230
	1235.4	320.8998
7	1555.39	367.0534
8	1744.35	564.8833
9	1770.79	1022.4983
10	3240.79	2284.9873

- <u>Cluster (Sevin - L-Alanine) Complexe 3 : A10</u>

Figure II.5.16. : Spectre FTIR du Cluster (Sevin - L-Alanine) Complexe 3 :A10 état solvaté

Tableau II.	.5.29. :	Les	fréquen	ces et	les	intensités	des	modes	les	plus	imp	ortants	s sur	le sp	<u>pectre</u>
	<u>FTI</u>	R du	cluster	(Sevi	n - 1	L-Alanine	Co	mplexe	3 :	A10 a	état	solvaté	<u>í</u>	_	

MODE	Fréquence	Intensité
1	22.60	3.4055
2	344.65	46.8837
3	610.99	59.5227
4	787.32	78.2651
5	942.67	85.4573
6	1110.79	296.5572
7	1146.50	313.8685
8	1246.52	165.5988
9	1360.59	428.0767
10	1768.88	215.7727
	1791.6	694.3212
11	3428.65	169.1830
12	3494.02	772.5855

Ces structures montrent une région spectrale entre 20 cm⁻¹ à 3500 cm⁻¹. Les deux pics principaux : à 1750 cm⁻¹ assigné au carbonyle C=O et à 3500 cm⁻¹ qui caractérise l'absorption de la liaison N-H.

II.3) Analyse des orbitales frontières des structures étudiées :

La compléxation du Sevin avec la L-Alanine est stable avec un écart énergétique entre les deux orbitales (HOMO – LUMO) est de l'ordre de 0.28 ev.

II.4) Etude thermodynamique de la formation des clusters (Sevin - L-Alanine) :

Tableau II.5.30. : Les paramètres thermodynamiques de la formation des complexes (Sevin L-Alanine) calculés dans plusieurs niveaux :

6-31G**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
Isolé	1-A8	1.918	-7.06199754	-18.3327047	-33.967	1.04417664
	2-A9	3.325	-0.55534635	-10.288654	-31.311	2.29856913
	3-A10	3.55	1.50225894	-8.70042615	-32.887	2.43599382
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	∆ H/(kcal/mol)	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
	1-A8	1.841	-3.14445261	-13.0747984	-33.306	0.96950295
	2-A9	1.908	2.25025086	-7.39018527	-32.334	0.85278609
	3-A10	2.115	3.6897588	-5.5534635	-31	0.86219874
<i>6-31G</i> ++**	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
Isolé	1-A8	2.175	-4.28903085	-15.2064498	-36.619	1.3742469
	2-A9	2.249	-2.22640548	-11.45394	-30.949	1.15273587
	3-A10	2.219	2.28852897	-6.1119474	-28.176	0.92620476
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	1-A8	2	0.93059733	-9.35429157	-34.496	1.129518
	2-A9	2.038	1.82730912	-7.22828769	-30.374	0.87725898
	3-A10	2.081	6.11696748	-2.31362937	-28.277	0.73732425
cc-pvdz	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	$\Delta ZPE/(kcal/mol)$
Isolée	1-A8	2.096	-7.62299148	-18.9344867	-37.938	1.3428714
	2-A9	2.116	-2.29856913	-10.82392	-28.594	1.09123989
	3-A10	2.268	1.85366454	-10.1468367	-40.251	1.37801196
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	1-A8	1.892	-2.69703798	-13.993473	-37.892	1.10755515
	2-A9	1.93	2.26091853	-8.0823288	-34.695	0.92808729
	3-A10	2.142	4.329819	-6.31714317	-35.712	1.02974391
aug-cc-pvdz	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
Isolé	1-A8	1.918	-3.51154596	-13.6383023	-33.967	1.04417664
	2-A9	2.032	0.03827811	-8.38855368	-28.264	0.88165155
	3-A10	2.174	2.823795	-6.55936203	-31.472	1.05233427
Solvaté	comp	$\Delta E/(kcal/mol)$	$\Delta G/(kcal/mol)$	$\Delta H/(kcal/mol)$	$\Delta S/(cal/mol.k)$	∆ ZPE/(kcal/mol)
	1-A8	1.857	1.83170169	-8.50213299	-34.66	1.00338849
	3-A10	2.423	16.7388292	7.00112907	-32.66	1.36985433

B3LYP-DFT

Concernant le cluster (Sevin-L-Alanine), thermodynamiquement, le complexe 1 et le complexe 2 sont les plus favorisés avec des ΔG de formation qui ont respectivement les valeurs suivantes : -7.623 et -2.30 kcal /mol.

Partie II : familles des Phényle urée & Carbamates Chapitre 06 : Evaluation de la Toxicité des Phényle-urées et des carbamates & Carbamates

1) Evaluation de la Toxicité des Phényle-urées et des carbamates :

Dans notre étude, l'évaluation de la toxicité de la Phényle-urées et des Carbamates et leurs clusters avec l'eau se base sur la méthode dite« QSAR » (Quantitative Structure Activity Relationship) [1].

Au milieu des années 1970, les chercheurs d'un laboratoire américain ont développé et publié un modèle QSAR pour prédire la bioconcentration des substances chimiques organiques basé sur le coefficient de partage octanol / eau (K_{ow}) [2].

La démarche est un algorithme qui lie la valeur du coefficient de partage Octanol-Eau $Log(K_{ow})$ à la valeur moyenne de la toxicité (LC_{50} et EC_{50})[3].

2) Approche QSAR :

Le **QSAR** est un modèle mathématique utilisé pour prédire les différents types de toxicité des produits chimiques à partir de leurs caractéristiques physiques et de leurs structures (poids moléculaire, nombre des cycles dans la structure, etc.) appelés **descripteurs moléculaires**. Les modèles **QSAR** simples permettent d'estimer la toxicité des produits chimiques en utilisant une simple fonction linéaire de descripteurs moléculaires[4] :

 $Toxicit\acute{e} = ax_1 + bx_2 + c \qquad (6-1)$

 $O\dot{u}$: x_1 et x_2 sont les variables de descripteurs indépendants.

a, b et c sont des paramètres Ajustés.

Le poids moléculaire et le coefficient de partage Octanol-Eau (log Kow) sont des exemples de descripteurs moléculaires [1].

3) Outil utilisé :

3.1) Le code ECOSAR :

Le programme **ECOSAR** (Ecological Structure Activity Relationship) est un système prédictif informatisé qui évalue la toxicité aiguë et chronique des composés organiques de plusieurs classes chimiques en fonction du $Log(K_{OW})[5]$. Les résultats de ce code QSAR sont considérés comme des alternatives acceptables aux données expérimentales.

3.2) Les différentes Classes chimiques de l'ECOSAR :

Le code **ECOSAR** contient une bibliothèque de modèles QSAR basés sur les classes pour la prédiction de la toxicité aquatique. La version 2.0 est programmée pour identifier 111 classes chimiques et permet l'accès à 704 QSAR pour de nombreux paramètres et organismes[6].L'ECOSAR renvoie des valeurs de toxicité pour quatre types généraux de produits chimiques:

- <u>Produits organiques neutres :</u> Les produits chimiques organiques neutres sont non ionisables et non réactifs et agissent par simple narcose non polaire. Cette narcose générale est souvent appelée toxicité de base [7].
- <u>Produits chimiques organiques avec une toxicité excessive:</u> Certains types de produits chimiques organiques présentent un mode de toxicité plus spécifique basé sur la présence de groupes fonctionnels réactifs [8].
- Produits chimiques organiques tensioactifs ;Un agent tensioactif est brièvement défini comme un matériau qui peut réduire considérablement la tension superficielle de l'eau lorsqu'il est utilisé à de très faibles concentrations[6].
- <u>Produits chimiques organiques de polymère :</u> Les polymères sont généralement définis comme des matériaux composés de plus petites sousunités répétitives. Les polymères et monomères de masse moléculaire faible (PM <1000) peuvent généralement être évalués de la même manière que les composés organiques neutres ou d'autres produits chimiques organiques présentant une toxicité excessive[6].

3.3) Tests étudiés :

Les tests d'écotoxicité directs, les plus développés à l'heure actuelle, sont destinés à mettre en évidence la toxicité sur une espèce isolée. Ils concernent plus spécialement : les algues, les daphnies et les poissons[9].

- <u>Le test algue :</u> Les algues jouent un rôle très important dans la structuration planctonique des écosystèmes aquatiques. Elles occupent le premier maillon de la chaine trophique, comme leurs supports d'énergie proviennent du soleil. Les effets des antidépresseurs sur l'inhibition de croissance des algues dépendent de la structure chimique de la molécule testée et de l'espèce[10].
- <u>Le test daphnie :</u> La daphnie est une micro crustacé d'eau douce de l'ordre des cladocères est utilisée pour la détermination de la toxicité des effluents industriels. Cette méthode à court terme est utilisée pour étudier la mobilité et déterminer l'inhibition de cette espèce et aussi pour déterminé la toxicité aiguë d'échantillons liquides. L'essai consiste à mesurer le pourcentage de mortalité après une période d'exposition de 48 heures. La concentration dite concentration inhibitrice, qui en vingt-quatre heures, immobilise 50 % des daphnies[11].
- <u>Le test poisson :</u> Le test consiste à déterminer la toxicité aiguë d'une substance soluble dans l'eau, qui consiste à déterminer La concentration qui en vingt-quatre heures, tue 50 % des poissons mis en expérimentation[11].

3.4) Les critères de toxicité aquatique :

La version actuelle du code ECOSAR s'efforce de fournir des estimations pour les six critères de toxicité aquatique. Les méthodes utilisées pour calculer ces estimations sont discutées :

- <u>Toxicologie aigue :</u>Les études sur la toxicité aigüe sont considérées comme des tests «accélérés» dans lesquels la durée d'exposition est remplacée par l'intensité de l'exposition[12].
- <u>Effets aigus :</u>
- ✓ Poisson - LC_{50} 96 h;
- \checkmark Daphnie-48 heures EC_{50;}
- ✓ Algues- 72 ou 96 heures EC_{50.}
- <u>Concentration létale(LC₅₀)</u>

La concentration d'une substance qui cause 50 % de mortalité dans la population testée[11].

• <u>Concentration efficace (EC₅₀)</u>

La concentration efficace qui inhibe 50 % d'un niveau trophique, d'une réponse biologique de type binaire (tout ou rien : mobile-immobile)[11]. La directive européenne 93/67/CEE a classé les substances selon la concentration efficace mesurée (EC_{50}) comme suit[13] :

- ✓ $EC_{50} < l mg/l \rightarrow \ll très toxique >>;$
- \checkmark EC₅₀= 1 10 mg/l \rightarrow « toxique»;
- ✓ $EC_{50} = 10 100 \text{ mg/l} \rightarrow \ll \text{ nocive } \gg$;
- ✓ $EC_{50} > 100 \text{ mg/l} \rightarrow pas de classification.}$

- La toxicité chronique

La toxicité chronique est caractérisée par l'apparition d'effets indésirables, suite à l'administration répétée d'un polluant sur une longue période [14].

La quantité de substance qui induit une toxicité chronique est généralement faible ou très Faible et les effets se manifestent longtemps après le début de l'intoxication.

Pour l'étude des résidus de médicaments se trouvant de manière continue à très faibles

Concentrations dans le milieu aquatique, les essais de toxicité chronique seront plus

appropriés et plus utiles que les tests de toxicité aiguë[15].

• <u>Le paramètre ChV :</u>

ou valeur chronique, est défini comme la moyenne géométrique de la concentration sans effet observé (**NOEC**) et de la concentration minimale avec effet observé (**LOEC**)[16]. Cela peut être représenté mathématiquement par[6]:

 $ChV = 10 \land ([log (LOEC \times NOEC)]/2)$

4)- Résultats et discussions :

4.1)- Résultats :

Figure II.6.1. : Structure de base (Phényle-urée)

Tableau II.6.1. :	Valeurs de la toxicité de la structure de bas	se et ses clusters d'eau pour les
	organismes aquatiques (mg / L) (ECOS	SAR V.2).

Espèces Produits		Algue Ec ₅₀	Daphnie Lc ₅₀	Poisson Lc ₅₀	Algue ChV	Daphnie ChV	Poisson ChV
<i>P1</i>		0.387	71.8	146	<i>0.139</i>	3.71	3.31
<i>P1+H20</i>	N1	<i>3.92 E+3</i>	1.42 E+4	<i>3.17 E+4</i>	603	709	2.33 E+3
	0	<i>167</i>	117	1.29 E+3	<i>45.3</i>	7.32	176
	N2	<i>912</i>	2.32E+3	4.77 E+3	<i>169</i>	147	389

Monuron :

Figure II.6.2. : Structure du Monuron

Partie II : familles des Phényle urée

Chapitre 06 : Evaluation de la Toxicité des Phényle-urées et des carbamates

&Carbamates

 Tableau II.6.2. : Valeurs de la toxicité du Monuron et de ces clusters d'eau pour les organismes aquatiques (mg / L) (ECOSAR V.2).

Espèces Produits		Algue Ec ₅₀	Daphnie Lc ₅₀	Poisson Lc ₅₀	Algue ChV	Daphnie ChV	Poisson ChV
P 2		0.266	<u>19.7</u>	16.9	0.097	1.45	1.30
<i>P2+H20</i>	N1	0.246	14.1	40.4	0.091	1.15	1.03
	0	<u>69.6</u>	56.5	580	20	<i>3.81</i>	62.7
	N2	388	773	1.50 E+3	82.3	57.8	131

Linuron :

Figure II.6.3. : Structure de Linuron

Tableau II.6.3. :	Valeurs de la	toxicité de	e Linuron	et de ces	clusters a	d'eau	pour	les
	organismes ad	quatiques	(mg / L) (ECOSAR	V.2).		-	

Espèces		Algue	Daphnie	Poisson	Algue	Daphnie	Poisson
Produits		Ec_{50}	Lc_{50}	Lc_{50}	ChV	ChV	ChV
<i>P3</i>		0.154	3.24	12.4	0.058	0.387	0.352
<i>P3+H2O</i>	N1	507	1.02 E+3	1.99 E+3	<i>107</i>	75.9	173
	01	<i>1.57</i>	13.3	3.37	<i>0.551</i>	13.8	<i>9.32</i>
	N2	118	168	300	<i>29.9</i>	15.7	28.8
	02	1.78	15.7	<u>3.81</u>	0.614	17.7	12.2

Sevin :

Figure II.6.4. : Structure du Sevin

 Tableau II.6.4. : Valeurs de la toxicité du Sevin et de ces clusters d'eau pour les organismes
 aquatiques (mg / L) (ECOSAR V.2).

Espèces		Algue	Daphnie	Poisson	Algue	Daphnie	Poisson
Produits		Ec_{50}	<i>Lc</i> ₅₀	<i>Lc</i> ₅₀	ChV	ChV	ChV
<i>P4</i>		2.23	0.0077	3.73	<i>0.149</i>	0.013	<i>0.348</i>
P4+H2O	N1	<i>2.9</i> 7	0.012	4.66	<i>0.524</i>	0.020	<i>0.476</i>
	01	<i>3.10</i>	34.7	<u>6.51</u>	<i>0.967</i>	63.9	<i>49.4</i>
	02	1.82	17.2	3.87	0.610	22.3	15.3

Baygon :

Figure II.6.5. : Structure du Baygon

Partie II : familles des Phényle urée

&Carbamates

 Tableau II.6.5. : Valeurs de la toxicité du Baygon et de ces clusters d'eau pour les organismes aquatiques (mg / L) (ECOSAR V.2).

Espèces Produits		Algue ECro	Daphnie LCro	Poisson LCro	Algue ChV	Daphnie ChV	Poisson ChV
P5		<u>3.91</u>	0.019	5.55	0.626	0.030	0.649
<i>P5+H20</i>	N	6.19	<i>1.36</i> ^{<i>E</i>+3}	2.70^{E+3}	124	95.2	230
	01	1.57	14.0	3.35	0.538	16.1	11.1
	02	3.71	43.5	7.76	1.14	87.9	69.5
	03	2.50	25.8	5.28	0.806	40.3	30.0

CritèresLC 50 et EC 50

4.2)- discussions des résultats :

- La toxicité aiguée et chronique de la Phényle-urée et des Carbamates et leurs clusters avec l'eau aux organismes aquatiques ont été prédits en utilisant le Logiciel ECOSAR sur trois niveaux trophiques (algues vertes, daphnie et poisson).

. Les classifications de toxicité basée sur les critères LC_{50} et EC_{50} ont été utilisée pour rationaliser la toxicité aiguée.

- Les toxicités fluctuent entre le caractère nocif jusqu'à le caractère très toxique d'où :
 - Les toxicités aquatiques semblent dépendre de la présence de chlore et des groupements NH et OH.
 - N1, N2; O2 sont également classés non nocifs pour les daphnies.
 - Les toxicités de P2 (positionN1) pour le Monuron et le P4 (position N1) pour le sevin sont plus élevées que celles du P2 et P4 pour les trois espèces.
 - Cependant, les clusters **01**, **02 et 03 du Baygon** sont moins toxiques pour les trois espèces.

Globalement, l'évaluation de la EC_{50} et La LC_{50} montre que les dérivés des Phényle-urées et des Carbamates et leurs clusters sont nocifs pour les organismes aquatiques.

Références:

- 1. Cappelli, C.I., et al., Validation of quantitative structure–activity relationship models to predict water-solubility of organic compounds. Science of the Total Environment, 2013. **463**: p. 781-789.
- 2. Veith, G.D. and S.J. Broderius, Structure-toxicity relationships for industrial chemicals causing type (II) narcosis syndrome, in QSAR in environmental Toxicology-II. 1987, Springer. p. 385-391.
- 3. Könemann, H., Quantitative structure-activity relationships in fish toxicity studies Part 1: Relationship for 50 industrial pollutants. Toxicology, 1981. **19**(3): p. 209-221.
- 4. Zakharov, A., et al., QSAR modelling of acute toxicity in the fathead minnow. Chemistry Central Journal, 2008. **2**(S1): p. P17.
- 5. Brain, R.A., et al., Aquatic plants exposed to pharmaceuticals: effects and risks, in Reviews of environmental contamination and toxicology. 2008, Springer. p. 67-115.
- 6. DOCUMENT, M., et al., ESTIMATING TOXICITY OF INDUSTRIAL CHEMICALSTO AQUATIC ORGANISMS USING THEECOSAR (ECOLOGICAL STRUCTURE-ACTIVITY RELATIONSHIP) CLASS PROGRAMVersion 2.0. October 2017.
- 7. Franks, N. and W. Lieb, Mechanisms of general anesthesia. Environmental health perspectives, 1990. **87**: p. 199.
- 8. Hermens, J., Electrophiles and acute toxicity to fish. Environmental health perspectives, 1990. **87**: p. 219.
- 9. Fent, K., A.A. Weston, and D. Caminada, Ecotoxicology of human pharmaceuticals.Aquatic toxicology, 2006. **76**(2): p. 122-159.
- 10. Benchouala, A., Écotoxicité, cytotoxicité et potentiel androgène des résidus pharmaceutiques sur les deux modèles biologiques: Hydra attenuata et les cellules MDA-Kb2. 2016, Université de Lorraine.
- 11. QUÉBEC., C.D.E.E.A.E.D., Détermination de la toxicité létale CL50 48h Daphnia magna. MA. 500 D.mag. 1.1. 2016.
- 12. Crane, M., C. Watts, and T. Boucard, Chronic aquatic environmental risks from exposure to human pharmaceuticals.Science of the total environment, 2006. **367**(1): p. 23-41.
- 13. BOULAND, C., EVALUATION DE L'IMPACT ENVIRONNEMENTAL DE L'IBUPROFÈNE ET DU DICLOFÉNAC DANS LE MILIEU AQUATIQUE.
- 14. van Dartel, D.A. and A.H. Piersma, The embryonic stem cell test combined with toxicogenomics as an alternative testing model for the assessment of developmental toxicity. Reproductive toxicology, 2011. **32**(2): p. 235-244.
- 15. Ferrari, B., et al., Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental toxicology and chemistry, 2004. **23**(5): p. 1344-1354.
- Murado, M. and M. Prieto, NOEC and LOEC as merely concessive expedients: Two unambiguous alternatives and some criteria to maximize the efficiency of dose– response experimental designs. Science of the Total Environment, 2013. 461: p. 576-586.

Partie II : familles des Phényle urée & Carbamates Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

THEORETICAL STUDY OF THE REACTIVITY OF MONURON AND ITS PROTONATED FORMS

<u>Authors:</u> <u>Rida Masmoudi</u>^{*}, Sami Khettaf, Ines Boukhatem, Radja Aberkane, Chaimaa Kahlat, Anouar Soltani, Ammar Dibi.

Corresponding E-mail: redhachem@yahoo.fr

Departement of Chemistry, Faculty of Matter Sciences, University of Batna1, Algeria

Abstract: A theoretical study of 3-(4-Chlorophenyl)-1,1-dimethylureaand its protonated isomers has been made, to emphasize the experimental results of the electrostatic interactions in the herbicide models, for investigating the implications taking place on the structural parameters starting from the gaseous phase to the aqueous one. It has been found that its functionalized structure gives us three protonated targets. The calculations has been performed on both neutral and protonated forms using Density Functional Theory (DFT) with the hybrid functional B3LYP. Many molecular parameters have been studied. To identify the reactive sites, our study has focused on the local and the global reactivity descriptors explaining the chemical reactivity. The calculations have demonstrated that the attacks on the aliphatic branched exocyclic positions are privileged to those of the aromatic ring. Studying the solvent effect has revealed that there is a change in the hierarchy of the electrophilicity. Various vibrational modes have been exploited to discuss the literary spectroscopic data.

Key words: DFT; Monuron; Proton affinity; Global and local reactivity descriptors; Solvation.

I. <u>INTRODUCTION</u>

Pesticides are well known by their benefits in the agricultural field, but the exaggerated use of them has several damages on the soil and the aquatic ecosystems [1-9]. Among these chemicals, the Monuron (C9H11ClN2O), (Figure 1), belongs to the phenyl-urea's class, which is a kind of urea, in which one of the nitrogen's is substituted by a p-chlorophenyl group, while the other is substituted by two methyl groups. It plays the role of a xenobiotic herbicide. The Monuron molecule is considered as a nonselective herbicide, that inhibits the photosynthesis. It was introduced in 1952, and has been used for controlling grasses and weeds, in the industrial sites and the drainage ditch banks[10]. It has been used at lower application rates, in the agricultural areas in some countries, as a post-emergence herbicide.

Besides its pollution effects, Monuron is classified as a persistent (The *half-life* of *Monuron*, in a soil field, ranges from less than 30 days to 166 days). In soil, Monuron is primarily biotransformed into metabolites. Monuron has a moderate mobility in most of soils [11-13]. Although the biodegradation process is slow, the degradation is most likely to occur in water. Monuron is not a volatile substance, and it is not affected by hydrolysis. However, a loss has been observed, due to the photolysis in the surface layers of water, only a small amount has been absorbed by its target, where the major part has entered the ground, water, or air [14]. For these agronomic and environmental aims, it is important to have information on this organic complex, that takes place in the contact with the ground.

As its action depends largely on the quantity of the moving water, and on the retention time in the soil; it is interesting to determine it in an aqueous solution. In the present work, diverse paths of Monuron protonation have been studied using Density Functional Theory (DFT). We have realized a geometrical optimization, a simulation of the attack on the exocyclic chain of Monuron different atoms, a determination of the reactive sites, an analysis and allocation of the normal modes of vibration, and the effect of solvation.

II. MATERIALS AND METHODS

The neutral and protonated Monuron study has undergone significant development for its applications in various chemical problems.[15-18] First, we've made a calculation of geometry optimization using DFT/6-311++G(d,p) chemistry model with the Gaussian16 software [19-22] without a specific parameterization of symmetry. [23] From the output file, the chemical properties, dipole moments as well as the frontier molecular orbitals HOMO and LUMO [23] have been consulted. The local minima has been verified by a frequency analysis of each optimized structure using the same model to obtain the zero point vibrational energy (ZPVE), reported and compared with the experimental literature values. No imaginary frequencies have been detected confirming that the stationary point corresponds to a minimum of the potential energy surface (PES). The global and the local reactivity parameters have been determined in order to characterize the reactive sites of the molecule. The IR spectrum has allowed us to determine the preponderant absorption vibrational bands along with their frequencies. The shift between the theoretical and the experimental spectroscopic values is rationalized by a scale factor. The algorithm that deals with this kind of error is employed in Gaussian16. Consequently, to correct the vibrational anharmonicities, the vibrational frequencies have been scaled by a factor of 0.879[24, 25]. All the geometries of the calculated electronic structures have been built and viewed using the graphical interface Gauss View6.0. The effect of the solvent environment has been taken into account utilizing the CPCM solvation model [26, 27] with $\varepsilon = 78.5$ for water measured at 298.15 °K and 1 atm.

III. RESULTS AND DISCUSSION

A. <u>Structure</u>

The Monuron has been optimized using DFT/6-311++G(d,p) model chemistry within the gas phase. This last structure has been reoptimized without any symmetry constraints employing the CPCM model taking into account the effect of solvent environment. The optimized structure of Monuron is depicted in figure 1, the predicted geometrical parameters as well as the experimental data determined from RX experiment (values in parentheses)[28] are reported in table 1.

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

Fig 1. The optimized Structure of Monuron 3-(4-chlorophenyl)-1,1-dimethylurea

Bond dista	nces (Å)	Valence angles	s (°)	Dihedral angles	(°)
C3 C2	1.39344	C2 C3 C4	119.45827	C4 C3 C2 C1	0.96892
	(1.39387)		119.28970		(0.85940)
C3 C4	1.39527	C3 C2 C1	120.95632	C4 C3 C2 H2	-178.82919
	(1.39523)		(120.83909)		(-179.10146)
C3 H1	1.08451	C4 C3 H1	120.23602	H1 C3 C2 C1	-179.73927
	(1.08443)		(120.57035)		(-179.77749)
C2 C1	1.40491	H1 C3 C2	120.30190	H1 C3 C2 H2	0.46262
	(1.40519)		(120.13685)		(0.26165)
C2 H2	1.08652	C3 C2 H2	119.55104	C2 C3 C4 C5	-0.69980
	(1.08597)		(119.48836)		(-0.66842)
C1 C6	1.40313	C1 C2 H2	119.49233	C2 C3 C4 Cl1	179.38072
	(1.40339)		(119.67254)		(179.45143)
C1 N1	1.41546	C2 C1 C6	118.74870	H1 C3 C4 C5	-179.99208
	(1.41459)		(118.95513)		(179.97129)
C6 C5	1.39593	C2 C1 N1	117.90135	H1 C3 C4 Cl1	0.08843
	(1.39642)		(117.86947)		(0.09115)
C6 H4	1.08385	C6 C1 N1	123.33498	C3 C2 C1 C6	-0.38275
	(1.08382)		(123.15045)		(-0.24033)
C5 C4	1.39379	C1 C6 C5	120.47707	C3 C2 C1 N1	178.25685
	(1.39353)		(120.43275)		(178.00075)
C5 H3	1.08464	C1 C6 H4	120.03267	H2 C2 C1 C6	179.41547
	(1.08449)		(120.35949)		(179.72046)
C4 Cl1	1.74918	C5 C6 H4	119.48638	H2 C2 C1 N1	-1.94493
	(1.76579)		(119.20492)		(-2.03846)
N1 C7	1.40608	C4 C5 H3	120.08450	N1 C1 C6 C5	-179.03883
	(1.39955)		(120.46598)		(-178.72429)
C7 N2	1.37495	C3 C4 C5	120.45264	N1 C1 C6 H4	0.24064
	(1.36354)		(120.81688)		(0.65709)
C7 O1	1.23052	C3 C4 CL1	119.74149	C2 C1 N1 H5	-41.26473
	(1.24241)		(119.56420)		(-38.51949)
N2 C8	1.45974	C5 C4 CL1	119.80582	C2 C1 N1 C7	173.74430
	(1.46120)		(119.61881)		(172.21862)

Table 1. Calculated and experimental structural parameters of Monuron

Partie II : familles des Phényle urée&Carbamates

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

N2 C9	1.46073	C1 N1 H5	114.03583	C6 C1 N1 H5	137.30767
	(1.46324)		(114.54021)		(139.64223)
C8 H6	1.08917	C1 N1 C7	128.59380	C6 C1 N1 C7	-7.68331
	(1.08918)		(128.72379)		(-9.61966)
C8 H7	1.09884	H5 N1 C7	109.02036	C1 C6 C5 C4	0.74370
	(1.09779)		(110.49811)		(0.77233)
C8 H8	1.09465	N1 C7 N2	117.21465	C1 C6 C5 H3	179.80994
	(1.09338)		(117.75378)		(179.95942)
C9 H9	1.08803	N1 C7 O1	119.66341	C6 C5 C4 C3	-0.14922
	(1.08823)		(119.34281)		(-0.14169)
C9 H10	1.09620	N2 C7 O1	123.11077	C6 C5 C4 CL1	179.77021
	(1.09535)		(122.88704		(179.73839
C9 H11	1.09811	C7 N2 C8	117.07443	H3 C5 C4 C3	-179.21477
	(1.09571)		(118.16351)		(-179.32386)
		C7 N2 C9	123.59934	H3 C5 C4 CL1	0.70467
			(124.12397)		(0.55622
		C8 N2 C9	115.23026	C1 N1 C7 N2	-46.69854
			(115.41920)		(-46.11152)
		H6 C8 H7	108.32926	C1 N1 C7 O1	134.47904
			(108.78517)		(135.31756)
		H6 C8 H8	109.76020	H5 N1 C7 N2	166.86207
			(109.38753)		(163.64890)
		H7 C8 H8	108.74540	H5 N1 C7 O1	-11.96035
			(108.69728)		(-14.92202)
		N2 C9 H9	110.82591	N1 C7 N2 C8	175.54137
			(110.68803)		(173.01193)
		N2 C9 H10	111.00407	N1 C7 N2 C9	-28.34545
			(111.20751)		(-25.00787)
		N2 C9 H11	109.56785	C7 N2 C9 H9	8.23565)
			(108.90047)		(-0.95793)
				C7N2C9 H10	129.14985
					(120.47484)
				C7N2C9 H11	-111.20330
					(-119.97682)
				C8 N2 C9 H9	164.74614
					(161.46720)
				C8 N2 C9 H10	-74.33965
					(-77.10003)
				C8 N2 C9 H11	45.30719
					(42.44831)
				C9N2C8 H6	170.62605
					(165.54771)
				C9 N2 C8 H7	-69.45531
					(-73.86144)
				C9 N2 C8 H8	50.54558
					(45.88072)

The differences between the values are interpreted by very fact that the experimental data reported above were recorded in solid state, while the calculations are performed on an isolated molecule. within the solid state, the molecule adapts a conformation characterized by a torsion angle of -41.26° around the N1-C1binding, and the molecule isn't planar, this only can be accounted for an intermolecular hydrogen bonding[29]. The calculated values of dihedral angles (except for the latter case) reveals that the molecular structure features

Partie II : familles des Phényle urée&Carbamates

a planar conformation with a partial electron delocalization between the substituted phenyl group and the dimethyl-urea of the molecule: their values converge to 180° or 0° , this former planar enforces the delocalization of electrons between these two systems. The benzene ring C=C bonds are equivalent at a length of 1.40 Å. The values of the N1 involving angles, C1N1C7, C6C1N1, C2C1N1 respectively 128.59°, 117.90, 123.33° close to 120°, as well as the Partial electron delocalization proves the Sp² nature of the atom. The analysis of both valence and torsion angles formed by N2 and the three surrounding atoms: C7, C8, C9 shows that the latter system features a triangular form. In addition to that, a remarkable decrease in the length of both C=O bond (from 1.254 to 1.245 Å) and C1-N1 (from 1,411 to 1,326 Å) is also shown as a hybridization identity (Sp²) for the atom N1 and N2. The similar behavior in the two atom systems, with a slight difference, is created by the rotation. With reference to the N1 atom, this rotation gives the impression that the molecule is separated into two parts: on one side, there's the phenyl, and on the other one, there's a relocation action resulting in. The angles bond lengths, obtained at the B3LYP/6-311G++(d,p) level, are in well agreement with the results obtained in the literature[28-36]. A frequency analysis of the optimized geometries verifies that the stationary points correspond to the minimum of the potential energy surface. In all cases, the frequencies values have been positive and no imaginary frequency has been obtained.

B. Charges and dipole moment

In order to locate the most likely protonation site(s) on the studied compound, an evaluation of the electron density on each atom of Monuron has been carried out. The obtained Mulliken charges are reported in table 2 (values in parentheses are for aqueous solution). Indeed, the determination of negative charge on each atom will help in the prediction of the most reactive sites toward the electrophilic medium.

Table 2. Values of the charges determined by DFT calculations

$q_k(\mathbf{N})$										
C1	-0.223	(-0.269)	C9	-0.383	(-0.381)	H4	0.165 (0.176)			
C2	-0.844	(-0.763)	N1	-0.373	(-0.364)	H5	0.377 (0.388)			
C3	-0.102	(-0.090)	N2	-0.229	(-0.207)	H6	0.191 (0.179)			
C4	-0.179	(-0.209)	01	-0.477	(-0.585)	H7	0.169 (0.180)			
C5	-0.073	(-0.081)	Cl 1	0.222	(0.189)	H8	0.156 (0.173)			
C6	0.576	(0.512)	H1	0.141	(0.157)	H9	0.169 (0.174)			
C7	0.444	(0.495)	H2	0.123	(0.143)	H10	0.176 (0.188)			
C8	-0.339	(-0.349)	H3	0.147	(0.166)	H11	0.165(0.176)			

Neutral Monuron

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

➤ <u>charge (+1)</u>

$q_k(\mathbf{N})$									
C1	-0.533 (-0.516)	C9	-0.333(-0.359)	H4	0.163(0.182)				
C2	-0.777 (-0.770)	N1	-0.217(-0.192)	H5	0.398(0.423)				
C3	-0.068 (-0.014)	N2	-0.169(-0.116)	H6	0.202(0.186)				
C4	-0.185 (-0.147)	01	-0.343(-0.466)	H7	0.203(0.204)				
C5	-0.043 (-0.075)	Cl 1	0.466(0.387)	H8	0.173(0.183)				
C6	0.876 (0.833)	H1	0.189(0.191)	H9	0.160(0.174)				
C7	0.423 (0.482)	H2	0.149(0.175)	H10	0.198(0.205)				
C8	-0.325 (-0.362)	H3	0.197(0.202)	H11	0.194(0.190)				

charge (-1)

$q_k(\mathbf{N})$								
C1	0.324(-0.543)	C9	0.282 (-0.387)	H4	0.086 (0.153)			
C2	-0.256(-0.257)	N1	-0.480(-0.462)	H5	0.377(0.373)			
C3	-0.308(-0.538)	N2	-0.352(-0.166)	H6	0.129(0.176)			
C4	0.107 (0.371)	01	-0.531 (-0.625)	H7	-0.111(0.173)			
C5	-0.372(-1.010)	Cl 1	0.096 (0.013)	H8	-0.335 (0.168)			
C6	0.010 (0.597)	H1	0.073(0.106)	H9	0.002(0.171)			
C7	0.280(0.472)	H2	-0.003 (0.106)	H10	-0.070 (0.183)			
C8	0.415 (-0.336)	H3	-0.038(0.097)	H11	-0.324(0.166)			

The positive charge on the hydrogen atom of the NH group indicates a high tendency to form a hydrogen bond with a high electronic density center. The negative charge on the nitrogen and oxygen atoms specifies their potentials for interacting with electrophilic species. For that reason, our interest is oriented towards studying these sites. From these results, it is obvious that the urea is the more reactive part of the molecule, assembling three different reactive sites. With regard to the dipole moment μ , the calculated values, in gaseous phase and aqueous phases, are respectively 2.51 and 3.54 Debye. The structural study has allowed us to show the geometric properties of Monuron and the assignment of protonation. The multi-basic structure reveals that the privileged protonation sites are three for Monuron. Therefore, three position isomers have been determined indicating the protonation on the exocyclic part of the molecule. The active sites of protonation O1, N1, and N2 are indicated by arrows for the examination of an electrophilic attack (figure 2).

Partie II : familles des Phényle urée&Carbamates

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

Fig 2. Structure of Monuron and active sites of protonation

According to table 3, it can be noticed that the geometry of the pesticide is almost not affected by protonation. Instead, it gives rise to hydrogen bond formation with O1, N1, and N2, respectively 0.967 Å and 1.016 Å.

	Monuron					
		Protonated isomers				
	Neutral Monuron (X ray)	N1	01	N2		
C7 N1	1.3522	1.3341	1.39188	1.3516		
N1 H9	2.9093	2.7117	2.5322	3.7270		
N1 H9	2.9093	2.7117	2.5322	3.7270		
O1 H8	3.5229	3.7008	3.9248	2.91616		

Table 3. Calculated and experimental parameters of neutral and protonated Monuron

Partie II : familles des Phényle urée&Carbamates

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

O1 H10	3.7746	3.7008	4.2420	2.94916
O1 H			0.96721	
N2 H				1.01630
N1H		1.01630		
N2 C7 O1	122.357	130.96935	115.33184	97.6222
N2 C9 H9	109.464 109.65384		109.72670	109.69065
N1 H5 O1	25.194	44.1220	109.94873	63.8252
H N2 C8				109.75521
H N2 C9				172.23554
N1 H9 C9	70.121	108.78465	100.3730	71.4094
H O1 C7			-26.68481	
Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

H N1 C6 C1		20.49327				
C2 C1 N1 H5	-47.342	-26.6848	4.9050	-4.7265		
O1 C7 N2 C9	-159.795	0.22842	-92.30185	-56.4054		
H5 O1 C7 N2	178.017	20.9359	131.1167	110.8396		
N1 H9 C9 N2	-55.235p	6.4017	17.8924	55.2133		
H N1 H5 O1		111.7740				
H N1 H9 C9		-8.54				
H N2 C8 H8				68.1678		
H N2 C9 H10				-67.8027		
H N2 C9 H10				-67.8027		

Partie II : familles des Phényle urée&Carbamates des phényle-Urées (cas du Monuron)

H O1 C7 N1		69.5418	
H O1 C7 N2		-151.7409	

The calculations, made at the same level of theory, putting under consideration the effect of solvent environment has showed that this factor has no effect on the overall geometry of the studied molecules.

C. Energies and proton affinity

Initially, the energies have been determined in the gas phase for the neutral compound and for the three protonated forms, then, by introducing water as a solvent (values in parentheses), the effect of solvent has been taken into account by a single point calculation on optimized gas phase structure using the PCM (polarizable continuum Model)model [27]. The results are presented in table 4.

Calcul parameters : 6-31G++ (d.p)	<i>E_T</i> Monuron	$E_T \operatorname{PROT}N_1$	$E_T \operatorname{PROT} O_1$	$E_T \operatorname{PROT} N_2$
En (a.u)	-994.354240	-994.894124	-994.871247	-994.878521
	(-994.365878)	(-994.906386)	(-994.879327)	(-994.891109)
En (kcal/mol)	-623957.286	-624296.063	-624281.707	-624286.272
	(-623964.5884)	(-624303.757)	(-624286.778)	(-624294.171)

Table 4. Calculated energies at the B3LYP/6-311++G (d,p) level of theory in u.a

The obtained results allow us to characterize the most potential protonation energetically preferred site. As we observe in the above results, the protonation path "PROTN1" of the urea, in terms of energy, is the most suitable site for protonation. From a theoretical perspective, the Born-Oppenheimer approximation gives a lower energy than the real energy of the system, because of the relativistic consideration consisting that the nuclear movements are neglected. Therefore, a consideration of the zero point energy term must be taken into account. Thus, the proton affinity (PA) is corrected by the following relationship:

PA (M)=[E (M)-E (MH^+)] + [ZPE (M)-ZPE (MH^+)]

Whereas (M) represents the neutral form, (MH+) represents the protonated form.

	Z	PE (a.u)	PA (Kcal/mol)			
Monuron	0.190965	(0.190757)	-	-		
ProtN ₁	0.198545	(0.197209)	334.02076	(335.12014)		
ProtO ₁	0.199744	(0.199196)	318.91307	(316.893775)		
ProtN ₂	0.197990	(0.197288)	324.57814	(325.48425)		

Table 5. Proton affinity of neutral and protonated Monuron for 6-311G++ (d, p)

The obtained results in the table 5 shows that the protonation, at the level of the N1 atom, is more favorable than on O and N2 with an energy gap of 15.11 and 9.43Kcal/mol respectively by introducing the system energy absolute zero (ZPE). Taking into account the effect of solvent, the previous gap increases to 18.3 and 9.64 Kcal/mol. In the two conditions, the values' hierarchy of PA is respected in the protonated forms:

PA (prot (N1)) >PA (prot (O)) >PA (prot (N2))

D. Charges and dipole moment of protonated Monuron

The previously calculated values of point charges can be further exploited. For the explanation of the regioselectivity reaction, it can be done by the calculation of point charges, which has been performed to evaluate the electron density of the studied compound, and will let us confirm the sites of protonation for the studied compound. The results are shown in table 6.

	Monuron	N	Monuron protonated							
$q_k(\mathbf{N})$	Neutral	Neutral N ₁ O ₁		N ₂						
q <i>H</i> ₅	0.377(0.388)	0.302 (0.334)	0.334 (0.363)	0.331 (0.360)						
q N ₁	-0.373(-0.364)	-0.487(-0.500)	-0.251(-0.290)	-0.173(-0.244)						
q <i>N</i> ₂	-0.229 (-0.207)	-0.162(-0.100)	-0.022(-0.207)	-0.358(-0.398)						
q 0 ₁	-0.477 (-0.585)	-0.452 (-0.457)	-0.460 (-0.445)	-0.359 (-0.416)						
q <i>C</i> ₇	0.444 (0.495)	0.301 (0.142)	-0.288 (-0.077)	0.238 (0.292)						
qH		0.384 (0.348)	0.374 (0.400)	0.311 (0.316)						

Table 6. Values of the charges determined by DFT calculations

Mulliken charges on the three exo-cyclic sites of protonation, qualified protonation sites, comprised in the range of [-0.07, -0.5] in aqueous medium. From these results, the protonation would occur preferentially at the level of part urea and more particularly on the N1 atom. As far as it concerns the dipole moment μ , the values calculated in gaseous phase and aqueous phase are presented in table 7.

μ(Debye)	Monuron	ProtN ₁	ProtO ₁	ProtN ₂
DFT /	2.513012	5.751480	3.093578	1.903265
B3LYP6.31G++(d,p)	(3.542955)	(6.145991)	(5.817873)	(3.048268)

The obtained values show an increase in the dipole moment for the solvated form, which can be translated in a predisposition for binding to strongly polar site.

E. Frontier orbitals

The HOMO-LUMO energy gap, also known as hardness, is a significant indication of stability. Indeed, a large energy gap indicates a high stability of the molecule in a chemical reaction. In a comparison of the frontier orbitals energies of the three conjugate acid's isomers (table 8) shows that the energies of the occupied orbital frontier (HOMO) are respectively -0.206, -0.159, -0.215 and -0.216, -0.160, -0.232 in the gaseous and solvated phases leading to the conclusion that the protonated compounds are more stable than the neutral ones.

	Monuron	Monuron protonated						
	Neutre	ProtN ₁	ProtO ₁	ProtN ₂				
HOMO	-0.23146	-0.20616	-0.15966	-0.21552				
	(-0.22992)	(-0.21586)	(-0.16028)	(-0.23175)				
LUMO	-0.03652	-0.02072	-0.02298	-0.04006				
	(-0.03281)	(-0.02640)	(-0.02592)	(-0.04585)				
$\Delta \mathbf{E}$	0.19494	0.18544	0.13668	0.17546				
	(0.19711)	(0.18946)	(0.13436)	(0.1859)				

Table 8. Energies of frontier orbitals in u.a

In the following figures, we have depicted the graphical representation of the frontier molecular orbitals within the gaseous and aqueous phases.

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

Fig. 4. Schematic representation of the frontier orbitals for Protonated Monuron

The qualitative analyzing of the compounds HOMO orbitals shows that dimethyl-urea present a strong contribution among fragments, while the two LUMO orbitals are similar in the gas and aqueous phases. From a quantitative perspective, the difference in energy between the two frontier orbitals is less important in the protonated form of the pesticide; this means that the neutral form is more stable. A further analysis of the results shows that the solvation leads to similar results with a comparable increase in the gap between the frontier orbitals in the neutral and prot(N1) forms in the order of 0.3eV. The prot(O1) form has known a decrease of 0.2eV, which translates its relative instability. The obtained values emphasis the early ones as it concerns the Global indices reflecting the chemical reactivity of the studied systems.

F. Global and Local Reactivity Descriptors

In order to study the reactivity of Monuron, we focalize ourselves to the determination of global indices. Indeed, the global reactivity descriptors, derived from the conceptual Density Functional Theory, enable us to make connections with the general behavior of a molecule. The electronic affinity (EA) and the ionization potential (IP) are calculated with the two next formulas: EA = E(N-1) - E(N), IP = E(N) - E(N+1) where E(N) is the total ground state energy in the neutral, N electrons form, E(N-1) and E(N+1) represent the deficient (N-1) and exceeded (N+1) electron configurations, respectively. The parameters are the electronic chemical potential (μ), the electronegativity (χ), hardness (η) and the global electrophilicity index (ω), which can be determined using the following equations [37-42]:

$$\mu = -1/2 (IP - EA)$$
$$\chi = -\mu$$
$$\eta = (IP - EA)$$
$$\omega = \frac{\mu^2}{2\eta}$$

Each of these parameters has its own meaning, for example, the electronic chemical potential can be translated to the escaping tendency of an electron[15]. The hardness η is directly proportional to the polarizability of the system[43, 44]. The global electrophilicity index ω is an essential identifier of the molecule class; high and low values illustrate respectively the presence of good electrophiles and nucleophiles[44]. The obtained results are inserted in the table 10. The global reactivity descriptors in the aqueous phase has been similarly obtained at the B3LYP/6-311++G(d,p) level of theory.

Partie II : familles des Phényle urée&Carbamates Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

Table 9. Global reactivity descriptors of Monuron at the B3LYP/6-311G++(d,p) level of theory in the gas phase and aqueous phase.

	E neutral	EN-1	EN+1	IP	EA	U	ή	ωo	S	Nu
Gas phase	-27057 77	-	-	-	7 60327308	3 88616873	·	-	-0 12866142	0 16906438
	27007,777	27050,1667	27057,6009	0,16906438	7,00527500	3,00010073	3,88616873	1,94308436	0,12000112	0,10500150
Aqueous phase	-	-	-	1,4811165	5,8041642	2,16152385	-	-	-0,23131829	-1,4811165
	27058,0867	27052,2825	27059,5678				2,16152385	1,08076193		

The obtained results are in good agreement with the literature [45]. However, the latter parameters are global and do not show the distribution of the chemical reactivity on each specific site, it is primordial then, to move on to more detailed descriptors of local reactivity, this can be functionalized with Fukui indices, which exploit the electron density of each atom of the molecular system in different states (neutral, cation and anion) to calculate the Fukui indices, referred by f_k^+ , f_k^- , f_k^0 , allowing the most favorable sites to accept or lose the electronic density. In a molecule with N electrons, the Fukui functions for electrophilic, nucleophilic and free radical were proposed by Yang and Mortier [46] and has been expressed mathematically through the following equations:

 $f_{k}^{+} = [q_{k}(N+1) - q_{k}(N)].$ $f_{k}^{-} = [q_{k}(N) - q_{k}(N-1)].$ $f_{k}^{0} = \frac{1}{2} [q_{k}(N-1) - q_{k}(N+1)].$

Whereas $q_k(N)$, $q_k(N+1)$, $q_k(N-1)$ are respectively the charge distribution of the atom k in the neutral, anionic and cationic molecule. Larger values of Fukui indices mean responsiveness of the site toward symmetry controlled reactions[47]. It is essential to reveal that the Fukui function values, obtained from various population schemes, may provide negative values. The determination of the various parameters, in the two phases, has led us to the values in the following tables and figure 4.

 Table 10. Local reactivity descriptors of Monuron at the B3LYP/6-311G++ (d,p) level of theory in the gas phase.

atomes	q(N)	q(N+1)	q(N-1)	fk⁻	f _k +	f°	ω _k +	ωω _k -	N _k +	N _k -	S _k +	S _k -
C1	-0,269	-0,543	-0,516	0,247	-0,274	0,0135	0,29612877	-0,2669482	0,40582592	-0,3658357	0,06338121	-
												0,05713562
C2	-0,763	-0,257	-0,77	0,007	0,506	-0,2565	-0,5468655	-0,0075653	-0,7494449	-0,0103678	-	-
		0.500	0.014	0.080							0,11704705	0,00161923
C3	-0,09	-0,538	-0,014	-0,076	-0,448	0,262	0,48418134	0,08213791	0,66354019	0,11256485	0,10363059	0,01758019
C4	-0,209	0,371	-0,147	-0,062	0,58	-0,259	-	0,06700724	-0,85904757	0,09182922	-	0,01434173
	0.004	1.04		0.000	0.000		0,62684192				0,13416461	0.00400=04
C5	-0,081	-1,01	-0,075	-0,006	-0,929	0,4675	1,00402783	0,00648457	1,37595723	0,0088867	0,21489469	0,00138791
C6	0,512	0,597	0,833	-0,321	0,085	0,118	-0,0918647	0,34692458	-0,1258949	0,4754384	-	0,07425317
											0,01966205	
C7	0,495	0,472	0,482	0,013	-0,023	0,005	0,02485752	-0,0140499	0,03406568	-0,0192545	0,00532032	-
<u> </u>	0.040	0.000	0.000	0.040	0.040	0.040	0.04.40.400	0.01.10.100	0.0400545	0.0400545		0,00300714
C8	-0,349	-0,336	-0,362	0,013	0,013	-0,013	-0,0140499	-0,0140499	-0,0192545	-0,0192545	-	-
<u></u>	0 201	0.207	0.250	0.022	0.006	0.014	0.00648457	0.02277676	0.0000067	0.02258456	0,00300714	0,00300714
(9	-0,381	-0,387	-0,359	-0,022	-0,006	0,014	0,00648457	0,02377676	0,0088867	0,03258450	0,00138791	0,005089
N1	-0,364	-0,462	-0,192	-0,1/2	-0,098	0,135	0,10591467	0,18589105	0,14514942	0,25475204	0,02266919	0,03978675
N2	-0,207	-0,166	-0,116	-0,091	0,041	0,025	-0,0443112	0,09834934	-0,0607257	0,1347816	-	0,02104996
											0,00948405	
01	-0,585	-0,625	-0,466	-0,119	-0,04	0,0795	0,04323048	0,12861067	0,05924466	0,17625286	0,00925273	0,02752688
Cl 1	0,189	0,013	0,387	-0,198	-0,176	0,187	0,1902141	0,21399086	0,2606765	0,29326107	0,04071202	0,04580102
H1	0,157	0,106	0,191	-0,034	-0,051	0,0425	0,05511886	0,03674591	0,07553694	0,05035796	0,01179723	0,00786482
H2	0,143	0,106	0,175	-0,032	-0,037	0,0345	0,03998819	0,03458438	0,05480131	0,04739573	0,00855878	0,00740219
H3	0,166	0,097	0,202	-0,036	-0,069	0,0525	0,07457257	0,03890743	0,10219704	0,05332019	0,01596096	0,00832746
H4	0,176	0,153	0,182	-0,006	-0,023	0,0145	0,02485752	0,00648457	0,03406568	0,0088867	0,00532032	0,00138791
H5	0,388	0,373	0,423	-0,035	-0,015	0,025	0,01621143	0,03782667	0,02221675	0,05183908	0,00346977	0,00809614

	Partie II :	familles de	es Phényl	e urée&Ca	rbamates	Chapit des phén	re 07 : Etude d yle-Urées (cas	le la réactivité du Monuron)	-			
H6	0,179	0,176	0,186	-0,007	-0,003	0,005	0,00324229	0,00756533	0,00444335	0,01036782	0,00069395	0,00161923
H7	0,18	0,173	0,204	-0,024	-0,007	0,0155	0,00756533	0,02593829	0,01036782	0,0355468	0,00161923	0,00555164
H8	0,173	0,168	0,183	-0,01	-0,005	0,0075	0,00540381	0,01080762	0,00740558	0,01481117	0,00115659	0,00231318
H9	0,174	0,171	0,174	0	-0,003	0,0015	0,00324229	0	0,00444335	0	0,00069395	0
H10	0,188	0,183	0,205	-0,017	-0,005	0,011	0,00540381	0,01837295	0,00740558	0,02517898	0,00115659	0,00393241
H11	0,176	0,166	0,19	-0,014	-0,01	0,012	0,01080762	0,01513067	0,01481117	0,02073563	0,00231318	0,00323846

The values of ω_{k} - obtained for N1, N2 and O1 are respectively0,185, 0,098 and 0,128 confirming that the most favorable site for an electrophilic attack is the N1 holding the Chloro-phenyl group. In regards to nucleophilic attack, it seems that the most qualified sites are C5 and C3 by 1.00, 0.48 respectively for ω_{k} +. The same approach was conducted for the study in an aqueous medium. The results are gathered in table 11.

Table 11. Local reactivity descriptors of Monuron at the B3LYP/6-311G++(d,p) level of theory in the aqueous phase.

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

							ω	ω				
<u></u>	0.000	0.224	0.522	0.04	0.545	0.4005			0.000 47000	0.050.0000		
CI	-0,223	0,324	-0,533	0,31	0,547	-0,4285	- 1.06286714	- 0.60235615	0,09247822	0,05240996	-0,0703778	- 0.03988504
							1,00200714	0,00233013				0,03500504
C2	-0,844	-0,256	-0,777	-0,067	0,588	-0,2605	-1,1425336	0,13018665	0,09940986	-	-	0,00862032
										0,01132731	0,07565291	
C3	-0,102	-0,308	-0,068	-0,034	-0,206	0,12	0,40027538	0,06606487	-	-	0,02650425	0,00437449
									0,03482726	0,00574819		
C4	-0,179	0,107	-0,185	0,006	0,286	-0,146	-0,5557221	-	0,04835241	0,00101439	-	-
							,	0,01165851			0,03679717	0,00077197
C5	0.072	0.272	0.042	0.02	0.200	0.1645	0 50000000	0.05020252	0.0505502		0.02046076	0.00205004
CS	-0,075	-0,372	-0,045	-0,03	-0,299	0,1645	0,58098222	0,05829253	-0,0505502	- 0.00507193	0,03846976	0,00385984
										0,00507155		
C6	0,576	0,01	0,876	-0,3	-0,566	0,433	1,09978575	0,58292531	-0,0956904	-	0,07282236	0,03859843
										0,05071931		
C7	0,444	0,28	0,423	0,021	-0,164	0,0715	0,31866584	-	-	0,00355035	0,02110047	-
								0,04080477	0,02772656			0,00270189
C8	-0,339	0,415	-0,325	-0.014	0.754	-0.37	-1.4650856	0.02720318	0.12747454	-0.0023669	-0.0970107	0.00180126
	- ,	- ,	- ,	0,021	0,701	0,07	_,	-,	-,	3,0020000	3,007.0207	-,
C9	-0,383	0,282	-0,333	-0,05	0,665	-0,3075	-1,2921511	0,09715422	0,11242781	-	-0,0855598	0,00643307
										0,00845322		

Partie II : familles des Phényle urée&CarbamatesChapitre 07 : Etude de la réactivité

des phényle-Urées (cas du Monuron)

N1	-0,373	-0,48	-0,217	-0,156	-0,107	0,1315	0,20791003	0,30312116	-	-	0,01376677	0,02007118
									0,01808989	0,02637404		
N2	-0,229	-0,352	-0,169	-0,06	-0,123	0,0915	0,23899938	0,11658506	-0,0207949	-	0,01582535	0,00771969
										0,01014386		
01	-0,477	-0,531	-0,343	-0,134	-0,054	0,094	0,10492656	0,2603733	-	-	0,00694772	0,01724063
									0,00912948	0,02265463		
Cl 1	0,222	0,096	0,466	-0,244	-0,126	0,185	0,24482863	0,47411258	-0,0213021	-	0,01621134	0,03139339
										0,04125171		
H1	0,141	0,073	0,189	-0,048	-0,068	0,058	0,13212974	0,09326805	-0,0114964	-	0,00874898	0,00617575
										0,00811509		
H2	0,123	-0,003	0,149	-0,026	-0,126	0,076	0,24482863	0,05052019	-0,0213021	-	0,01621134	0,0033452
										0,00439567		
Н3	0,147	-0,038	0,197	-0,05	-0,185	0,1175	0,35947061	0,09715422	-0,0312769	-	0,02380236	0,00643307
										0,00845322	,	
H4	0,165	0,086	0,163	0,002	-0,079	0,0385	0,15350366	-	-0,0133561	0,00033813	0,01016425	-
								0,00388617				0,00025732
H5	0,377	0,377	0,398	-0,021	0	0,0105	0	0,04080477	0	-	0	0,00270189
										0,00355035		
H6	0,191	0,129	0,202	-0,011	-0,062	0,0365	0,12047123	0,02137393	-0,010482	-	0,00797701	0,00141528
										0,00185971		
H7	0,169	-0,111	0,203	-0,034	-0,28	0,157	0,54406362	0,06606487	-0,0473380	-	0,0360252	0,00437449
										0,00574819		

Partie II : familles des Phényle urée&CarbamatesChapitre 07 : Etude de la réactivité
des phényle-Urées (cas du Monuron)

H8	0,156	-0,335	0,173	-0,017	-0,491	0,254	0,95405442	0,03303243	-0,0830106	-	0,06317276	0,00218724
										0,00287409		
H9	0,169	0,002	0,16	0,009	-0,167	0,079	0,32449509	-	-0,0282338	0,00152158	0,02148646	-
								0,01748776				0,00115795
H10	0,176	-0,07	0,198	-0,022	-0,246	0,134	0,47799875	0,04274786	-0,0415898	-	0,03165071	0,00283055
										0,00371942		
H11	0,165	-0,324	0,194	-0,029	-0,489	0,259	0,95016825	0,05634945	-0,0826725	-	0,06291543	0,00373118
										0,00490287		

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

Fig. 5. Fukui functions /aqueous phase.

Fig. 6. Fukui functions /Gas phase

The solvation leads to the same conclusion that an electrophilic attack will be the subject of the nitrogen N1 part of the urea on Monuron, however a nucleophilic attack is now targeting another electrophilic site on the molecule which is carbon labelled C6 with ω_{k+} of 1.1, that is the hierarchy of electrophilicity is changed to: N_k+ (C8) = 0.1274 > N_k+ (C9) = 0.1124

Chapitre 07 : Etude de la réactivité des phényle-Urées (cas du Monuron)

G. IR Study

In order to accomplish a spectroscopic comparative study, a frequency analysis was applied to each of the optimized structures of the neutral, protonated forms of the in both gaseous and aqueous phases (values in parenthesis), to verify that the stationary points correspond to the minimum of the potential energy surface. In all cases, the frequency values were positive and no imaginary frequency was obtained. Thus, the following preponderant vibrational frequencies were located: strong stretching vibrations of the carbonyl bond at 1701cm⁻¹ (1648cm⁻¹), stretching N-H vibrations at 3578cm⁻¹(3564cm⁻¹) while N-C-N symmetric stretching vibrations were observed at 1021cm⁻¹(1023cm⁻¹).For phenyl-urea compounds, the results are in agreement with those obtained in the literature[48].

Fig.7. IR spectra of the neutral and protonated isomers of Monuron in gaseous and aqueous phases

The spectroscopic study of Monuron shows us the absorption bands in gaseous and aqueous phases: 437cm^{-1} (432cm^{-1}) band is characterizing the absorption of benzene ring cycle; 1599cm^{-1} (1595cm^{-1}) correspond to the absorption of the C=C bonds for different isomers, 3100cm^{-1} and 3057cm^{-1} (3104cm^{-1})

and 3068cm^{-1}) determine the absorption of the C-H for the two methyl groups; 3578cm^{-1} (3564cm^{-1}) and 1701cm^{-1} (1648 cm^{-1}) correspond to the absorptions of the N-H and the C=O bonds respectively. It may be noted that the appearance of the absorption bands with the frequencies 3449cm^{-1} , 3246cm^{-1} and 3206cm^{-1} , which means respectively the O-H bond for the protonated at the site of the carbonyl, the N-H bond for the protonated on N1 and N2. In aqueous solution, it has a displacement of absorption bands. For Monuron and its three protonated forms, the results show a shift of absorption bands. Indeed, in the case of the different forms protonated on O, N1 and N2, we get respectively 1818 cm⁻¹ for C=O, 3463 cm⁻¹ for N-H, 3264 cm⁻¹ and 3289 cm⁻¹ for NH⁺, 3549 cm⁻¹ for the binding OH⁺.

CONCLUSION

The theoretical study has been conducted using DFT/6-311++G(d,p). The model chemistry has contributed in verifying the stability of the two conjugate acid forms of Monuron through a comparative energetic based analysis. It has been also demonstrated that protonation does not affect the overall geometry. However, these calculations have shown that the energies of formation of all mono-protonated compounds are very close and concluded that protonation on the nitrogen N1 is the most favorable. Despite of the carbonyl oxygen protonation path, the Frontier orbital analysis has shown that the protonation products present larger energy gap and more stability. The analysis of the chemical reactivity of Monuron in the gas and the aqueous phases, through the global and the local reactivity descriptors IP, EA, μ , η , ω , N, indicates that the electrophilic attack is targeting the most nucleophilic site: N1 nitrogen of the urea. The deviations in vibrational frequencies for the neutral and the protonated forms are used to discuss the experimental results.

REFERENCES

- [1] Sa, F., D. López Malo, and J. Martínez Calatayud, *Determination of the Herbicide Fluometuron* by *Photo-induced Chemiluminescence in a Continuous-flow Multicommutation Assembly*. Analytical letters. 2007, 40 (15): 2872-2885.
- [2] Witkowski, P.T., et al., *Phylogenetic analysis of a newfound bat-borne hantavirus supports a laurasiatherian host association for ancestral mammalian hantaviruses*. Infection, Genetics and Evolution. 2016, 41 113-119. https://doi.org/10.1016/j.meegid.2016.03.036
- [3] Kin, C.M. and T.G. Huat, Simultaneous Determination of Nine Commercial Pesticide Formulations by Gas Chromatography Multi-Pesticide with an Internal Standard Method. MALAYSIAN JOURNAL OF CHEMISTRY (MJChem). 2011, 13 (1): 57-62.
- [4] Ihlaseh, S.M., et al., Transcriptional Profile of Diuron-Induced Toxicity on the Urinary Bladder of Male Wistar Rats to Inform Mode of Action. Toxicological Sciences. 2011, 122 (2): 330-338. 10.1093/toxsci/kfr108
- [5] Yin, X.L., et al., *Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon.* Journal of agricultural and food chemistry. 2008, 56 (12): 4825-4831.
- [6] Wolf, A., et al., Occurrence and distribution of organic trace substances in waters from the *Three Gorges Reservoir, China.* Environmental Science and Pollution Research. 2013, 20 (10): 7124-7139.
- [7] Četkauskaité, A., U. Grigonis, and J. Beržinskiené, *Biodegradation: selection of suitable model*. Ecotoxicology and environmental safety. 1998, 40 (1-2): 19-28.
- [8] Upchurch, R.P. and W. Pierce, *The leaching of monuron from Lakeland sand soil. Part II. The effect of soil temperature, organic matter, soil moisture, and amount of herbicide.* Weeds. 1958, 6 (1): 24-33.
- [9] Tanaka, F.S., R.G. Wien, and B.L. Hoffer, *Investigation of the mechanism and pathway of biphenyl formation in the photolysis of monuron*. Journal of Agricultural and Food Chemistry. 1982, 30 (5): 957-963.
- [10] Booij, P., et al., *Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters*. Journal of Sea Research. 2015, 102 48-56. https://doi.org/10.1016/j.seares.2015.05.001
- [11] Hussain, S., et al., *Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review*. Critical Reviews in Environmental Science and Technology. 2015, 45 (18): 1947-1998.
- [12] Chu, W., et al., *Removal of phenylurea herbicide monuron via riboflavin-mediated photosensitization*. Chemosphere. 2007, 69 (2): 177-183.
- [13] Chu, W., et al., *Removal of phenylurea herbicide monuron via riboflavin-mediated photosensitization*. Chemosphere. 2007, 69 (2): 177-183. https://doi.org/10.1016/j.chemosphere.2007.04.055
- [14] Monuron.
- [15] Mulliken, R.S., *A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities.* The Journal of Chemical Physics. 1934, 2 (11): 782-793.
- [16] Cook, M. and M. Karplus, *Electron correlation and density-functional methods*. Journal of Physical Chemistry. 1987, 91 (1): 31-37.
- [17] Miranda-Quintana, R.A., *Density functional theory for chemical reactivity*. Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, Hamilton. 2018.
- [18] Levandowski, B.J., et al., *Role of orbital interactions and activation strain (distortion energies)* on Reactivities in the normal and inverse electron-demand cycloadditions of strained and unstrained cycloalkenes. The Journal of organic chemistry. 2017, 82 (16): 8668-8675.
- [19] Ciraci, S., A study on the tight-binding method. Journal of Physics and Chemistry of Solids. 1975, 36 (6): 557-561. https://doi.org/10.1016/0022-3697(75)90141-9

- [20] Geldart, D. and M. Rasolt, *Exchange and correlation energy of an inhomogeneous electron gas at metallic densities*. Physical Review B. 1976, 13 (4): 1477.
- [21] Becke, A.D., *Density-functional thermochemistry*. V. Systematic optimization of exchangecorrelation functionals. The Journal of chemical physics. 1997, 107 (20): 8554-8560.
- [22] Boese, A.D., Assessment of coupled cluster theory and more approximate methods for hydrogen bonded systems. Journal of chemical theory and computation. 2013, 9 (10): 4403-4413.
- [23] Frisch, M.J., et al., Gaussian 16 Rev. C.01. 2016: Wallingford, CT.
- [24] Van Leeuwen, R. and E. Baerends, *Exchange-correlation potential with correct asymptotic behavior*. Physical Review A. 1994, 49 (4): 2421.
- [25] Stewart, J.J., *Optimization of parameters for semiempirical methods II. Applications*. Journal of computational chemistry. 1989, 10 (2): 221-264.
- [26] Cammi, R., *Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.* The Journal of chemical physics. 2009, 131 (16): 164104.
- [27] Fedorov, D.G., et al., *The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).* Journal of computational chemistry. 2006, 27 (8): 976-985.
- [28] Khadrani, A., et al., *Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil.* Chemosphere. 1999, 38 (13): 3041-3050.
- [29] Dupuy, N., et al., *Characterization of aqueous and solid inclusion complexes of diuron and isoproturon with* β *-cyclodextrin.* Applied spectroscopy. 2004, 58 (6): 711-718.
- [30] Mendoza-Huizar, L.H., Global and local reactivity descriptors for picloram herbicide: a theoretical quantum study. Química Nova. 2015, 38 (1): 71-76.
- [31] Gražulis, S., et al., *Computing stoichiometric molecular composition from crystal structures*. Journal of applied crystallography. 2015, 48 (1): 85-91.
- [32] Gražulis, S., et al., *Crystallography Open Database–an open-access collection of crystal structures*. Journal of applied crystallography. 2009, 42 (4): 726-729.
- [33] Gražulis, S., et al., *Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration*. Nucleic acids research. 2012, 40 (D1): D420-D427.
- [34] Quirós, M., et al., Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. Journal of cheminformatics. 2018, 10 (1): 1-17.
- [35] Merkys, A., et al., *COD:: CIF:: Parser: an error-correcting CIF parser for the Perl language.* Journal of applied crystallography. 2016, 49 (1): 292-301.
- [36] Downs, R.T. and M. Hall-Wallace, *The American Mineralogist crystal structure database*. American Mineralogist. 2003, 88 (1): 247-250.
- [37] Mendoza-Huizar, L.H., *Chemical reactivity of isoproturon, diuron, linuron, and chlorotoluron herbicides in aqueous phase: A theoretical quantum study employing global and local reactivity descriptors.* Journal of Chemistry. 2015, 2015.
- [38] Gázquez, J.L., *Perspectives on the density functional theory of chemical reactivity*. Journal of the Mexican Chemical Society. 2008, 52 (1): 3-10.
- [39] Liu, S.-B., *Conceptual density functional theory and some recent developments*. Acta Physico-Chimica Sinica. 2009, 25 (3): 590-600.
- [40] Ayers, P.W. and M. Levy, *Perspective on "Density functional approach to the frontier-electron theory of chemical reactivity"*. Theoretical Chemistry Accounts. 2000, 103 (3-4): 353-360.
- [41] Chermette, H., *Chemical reactivity indexes in density functional theory*. Journal of Computational Chemistry. 1999, 20 (1): 129-154.
- [42] Parr, R.G., L.v. Szentpaly, and S. Liu, *Electrophilicity index*. Journal of the American Chemical Society. 1999, 121 (9): 1922-1924.
- [43] Parr, R.G., Density functional theory of atoms and molecules, in Horizons of Quantum Chemistry. 1980, Springer. p. 5-15.

- [44] Ayers, P.W. and R.G. Parr, *Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited.* Journal of the American Chemical Society. 2000, 122 (9): 2010-2018.
- [45] Otero, N., et al., *Establishing the pivotal role of local aromaticity in the electronic properties of boron-nitride graphene lateral hybrids.* Physical Chemistry Chemical Physics. 2016, 18 (36): 25315-25328.
- [46] Yang, W. and R.G. Parr, Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences. 1985, 82 (20): 6723-6726.
- [47] Tazi, R., et al., *Theoretical Approach of the Adsorption of Herbicide Amitrole on the Soil using DFT Method*. Oriental Journal of Chemistry. 2018, 34 (3): 1240-1248.
- [48] Gunasekaran, S., et al., Vibrational spectra and molecular structural investigation of quiniodochlor. 2004.

Partie II : familles des Phényle urée & Carbamates Conclusion

Conclusion

L'étude a mis en évidence une approche de calcul théorique qui permet de proposer des mécanismes de formation des clusters entre les dérivés de la phényle-urée et le H_2O et entre ces dérivés et les deux acides aminés protéinogénes « Glycine et L-alanine». Ainsi pour les dérivés carbamates.

- La compléxation de Linuron avec H₂O forment 4 clusters : Cluster N₁, Cluster O₁, Cluster N₂ et le Cluster O₂ qui se stabilisent par la création d'un cycle a 2 ponts hydrogènes : O-H et N-H est cela pour les clusters N₁, O₁, N₂ et par un simple pont hydrogène O-H pour le cluster O₂. Ces ponts ont des valeurs approximatives de 2 angströms.
- L'analyse vibrationnelle de ces clusters pour les différentes positions et cela pour les deux états isolé et solvaté sont caractérisé par un pic principal de 1700cm⁻¹ qui caractérise l'absorption des groupements carbonyle.
- L'écart énergétique entre les deux orbitales frontières (HOMO LUMO) est un indicateur significatif de la stabilité de ces clusters qui est de l'ordre de 0,37 ev.
- Thermodynamiquement la structure en position O_1 est la plus favorisée avec un $\Delta G = 2,62$ kcal/mol pour l'état solvaté.
- La compléxation du Monuron avec la glycine est très stable avec un écart énergétique entre les 2 orbitales (HOMO LUMO) de l'ordre de 0.44 ev.
- Thermodynamiquement la formation du complexe 1 du Monuron-Glycine est plus favorisé avec un ΔG =-11.90kcal/mol.
- Concernant le cluster (Sevin-L-Alanine), thermodynamiquement, le complexe 1 et le complexe 2 sont les plus favorisés avec des ΔG de formation qui ont respectivement les valeurs suivantes : -3,72 et -3,70 kcal /mol.
- L'étude montre que la protonation du monuron est favorisée sur l'atome de l'azote N1.
- Enfin, les toxicités aiguées des trois niveaux trophiques (algue, daphnie et poisson) sont évaluées en utilisant le code ECOSAR. Les dérivés phényle-urée, les dérivés Carbamates et tous leurs Clusters sont Nocifs pour les organismes aquatiques.

Conclusion générale

Conclusion générale :

- L'étude entamée dans la première partie a mis en évidence une approche de calcul théorique qui permet de proposer des mécanismes de formation des clusters entre les dérivés de la S-Triazines et le H₂O et entre ces dérivés et les deux acides aminés protéinogénes « Glycine et L-alanine» ainsi que leurs interactions avec les cations Na⁺, K⁺, Mg²⁺, Ca²⁺ :
- La compléxation de la Simazine avec une molécule de H₂O forment 5 clusters : Cluster N₄, Cluster N₅, Cluster N₆, Cluster N₇ et le Cluster N₉. Qui se stabilisent par la création d'un cycle a 2 ponts hydrogènes : O-H et N-H est cela pour les clusters N₅, N₆ et par un simple pont hydrogène N-H pour les autres clusters. Ces ponts ont des longueurs de valeurs approximatives de 2 angströms.
- L'analyse vibrationnelle de ces clusters pour les différentes positions et cela pour les deux états isolé et solvaté sont caractérisés par une région spectrale de 1650-3620 Cm⁻¹.
- Le pic principal de 1650 cm⁻¹ est attribué à la déformation du cycle triazinique. Celui de 3620 Cm⁻¹ est attribué aux vibrations des étirements des liaisons aliphatiques C-H.
- L'écart énergétique entre les deux orbitales frontières HOMO LUMO est un indicateur significatif de la stabilité de ces clusters qui est de l'ordre de 0,48 ev.
- Thermodynamiquement les structures en position N_5 et N_6 sont les plus favorisées avec un $\Delta G = -0.924$ kcal/mol pour l'état isolé.
- La compléxation de la Prométon avec la glycine est très stable avec un écart énergétique entre les 2 orbitales HOMO – LUMO de l'ordre de 0.28 ev.
- Thermodynamiquement la formation du complexe N_{10} de la Prométon Glycine est plus favorisé avec un $\Delta G = -3.15$ kcal/mol pour l'état solvaté.
- Concernant le cluster (Propazine-L-Alanine), thermodynamiquement, le complexe N9-N5 et le complexe N4-N9 sont les plus favorisés avec des ΔG de formation qui ont respectivement les valeurs suivantes : -1,57 et -1,14 kcal/mol.
- L'étude montre que les S-Triazines étudiés forment des complexes très stables avec les cations : Na⁺, K⁺, Mg²⁺, Ca²⁺
- Enfin, les toxicités aiguées des trois niveaux trophiques (**algue, daphnie et poisson**) sont évaluées en utilisant le code ECOSAR. Les dérivés de la S-Triazine et tous leurs Clusters sont Nocifs pour les organismes aquatiques.

- II) L'étude entamée dans la deuxième partie a mis en évidence une approche de calcul théorique qui permet de proposer des mécanismes de formation des clusters entre les dérivés de la phényl-urée et le H₂O et entre ces dérivés et les deux acides aminés protéinogénes « Glycine et L-alanine». Ainsi pour les dérivés carbamates et finalement on a entamé l'étude de la réactivité des phényl-urées (cas du Monuron :
- La compléxation de Linuron avec une molécule de H₂O forment 4 clusters : Cluster N₁, Cluster O₁, Cluster N₂ et le Cluster O₂ Qui se stabilisent par la création d'un cycle a 2 ponts hydrogènes : O-H et N-H est cela pour les clusters N₁, O₁, N₂ et par un simple pont hydrogène O-H pour le cluster O₂. Ces ponts ont des longueurs de valeurs approximatives de 2angstroms.
- L'analyse vibrationnelle de ces clusters pour les différentes positions et cela pour les deux états isolé et solvaté sont caractérisé par un pic principal de 1700cm⁻¹ qui caractérise l'absorption des groupements carbonyle.
- L'écart énergétique entre les deux orbitales frontières HOMO LUMO est un indicateur significatif de la stabilité de ces clusters qui est de l'ordre de 0,37 ev.
- Thermodynamiquement la structure en position O_1 est la plus favorisée avec un $\Delta G = 2,62$ kcal/mol pour l'état solvaté.
- La compléxation du Monuron avec la glycine est très stable avec un écart énergétique entre les 2 orbitales HOMO LUMO de l'ordre de 0.44 ev.
- Thermodynamiquement la formation du complexe 1 du Monuron-Glycine est plus favorisé avec un ΔG =-11.90kcal/mol.
- Concernant le cluster Sevin-L-Alanine, thermodynamiquement, le complexe 1 et le complexe 2 sont les plus favorisés avec des ΔG de formation qui ont respectivement les valeurs suivantes : -3,72 et -3,70 kcal /mol.
- Les énergies de formation des structures protonées du Monuron sont très proches mais qui montrent que la position N1 reste la plus favorisée énergétiquement.
- Enfin, les toxicités aiguées des trois niveaux trophiques (algue, daphnie et poisson) sont évaluées en utilisant le code ECOSAR. Les dérivés phényl-urée, les dérivés Carbamates et tous leurs Clusters sont Nocifs pour les organismes aquatiques.

<u> Résumé :</u>

Cette étude est porte sur l'utilisation des outils de la modélisation moléculaire pour étudier le comportement de quelques structures cristallines qui comportent un cycle azinique : les dérivés S-Triazines ainsi que les dérivés des phényl-urées et des carbamates.

. Notre approche utilise la théorie fonctionnelle de la densité (*DFT*) et la méthode de perturbation **MP**₂ pour élucider les différentes interactions de ces structures avec la molécule **H**₂**O** ainsi avec *Les deux acides aminés protéinogénes* « *Glycine et L-alanine*» *et* avec *les cations* Na^+ , K^+ , Mg^{2+} , Ca^{2+} .

- L'interaction des dérivés S-Triazines avec la (H_2O) s'effectue via une formation d'un cycle qui contient deux liaisons hydrogènes de type O---H ou bien N---H d'une grandeur de 2 angströms. Remarquant, la stabilisation de ce cluster passe par une simple interaction électrostatique pour les positions N₄ N₇ et N₉.
- L'interaction des dérivés S-Triazines avec (**la glycine**) s'effectue via une formation d'un cycle à 8 chainons qui contient deux liaisons hydrogènes de type O---H et N---H d'une grandeur de 2 angströms.
- L'interaction des dérivés S-Triazines avec (la L-Alanine) s'effectue via une formation d'un cycle à 8 chainons qui contient deux liaisons hydrogènes de type O---H et N---H d'une grandeur de 2 angströms. L'étude géométrique de ce cluster montre l'existence de 4 complexes : Cluster (N4-N9), Cluster (N6-N7), Cluster (N7-N4) et Cluster (N9-N5)
- les S-Triazines étudiés forment des complexes très stables avec les cations : Na⁺, K⁺, Mg²⁺, Ca²⁺
- L'interaction des dérivés phényl-urée avec la (**H**₂**O**) s'effectue via une formation d'un cycle à 6 chainons qui contient deux liaisons hydrogènes de type **O---H** et bien **N---H** d'une grandeur de 2 angströms et cela pour les clusters : N₁, **O**₁ et N₂.
- Remarquant, la stabilisation de ce cluster passe par une simple interaction électrostatique pour la position **0**₂.
- L'interaction des dérivés phényl-urée avec (**la glycine**) s'effectue via une formation d'un cycle à 8, 9 et 10 chainons qui contiennent deux liaisons hydrogènes de type O---H et N---H d'une grandeur de 2 angströms.
- L'interaction des dérivés Carbamates avec (la L-Alanine) s'effectue via une formation d'un cycle à 8, 9 et 10 chainons qui contiennent deux liaisons hydrogènes de type O---H et N---H d'une grandeur de 2 angströms.
- Enfin, les toxicités aiguées des trois niveaux trophiques (*algue, daphnie et poisson*) sont évaluées en utilisant le code ECOSAR. Les dérivés S-Triazines, phényl-urées, les dérivés Carbamates et tous leurs Clusters sont Nocifs pour les organismes aquatiques.

<u>Mots Clés</u>: S-triazines, phényl-urée, Carbamates, *acides aminés protéinogénes*, glycine, L-Alanine, liaisons hydrogènes, Cluster, MP₂, DFT.